
LLNL-PRES-845366
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Mitigating Numerical Inconsistencies and
Exceptions in Heterogeneous HPC Systems

ZIH-COLLOQUIUM
Technische Universität Dresden
May 26, 2023

Ignacio Laguna

2
LLNL-PRES-845366

Numerical Reproducibility and Numerical
Consistency Is Crucial

x = 1.0001
y = 2.0001
z = 3.0001

x = 1.0001
y = 2.0001
z = 3.0001

x = 1.0001
y = 5.3746
z = ∞

System 1 System 2 System 3

Code Code Code

3
LLNL-PRES-845366

Real example of a numerical inconsistency

clang –O1: |e| = 129941.1064990107
clang –O2: |e| = 129941.1064990107
clang –O3: |e| = 129941.1064990107

gcc –O1: |e| = 129941.1064990107
gcc –O2: |e| = 129941.1064990107
gcc –O3: |e| = 129941.1064990107

xlc –O1: |e| = 129941.1064990107
xlc –O2: |e| = 129941.1064990107
xlc –O3: |e| = 144174.9336610391

Hydrodynamics mini application

Early development and porting to new system (IBM
Power8, NVIDIA GPUs)

It took several weeks of effort and many methods to debug it

4
LLNL-PRES-845366

Sources of Numerical Inconsistencies in
Numerical Software

• New Hardware (e.g., GPU)

• New Compiler

• Optimizations

• Exceptions

• …

• Floating-point error 1.23xxxxx…

Focus of the talk

5
LLNL-PRES-845366

Strategy to Mitigate Numerical Inconsistencies
and Exceptions

Detecting Numerical Exceptions
• Exceptions cause inconsistencies
• Detection is crucial
• Compiler and dynamic instrumentation

Finding Inputs that
Cause Exceptions

• Inputs induce exceptions
• Bayesian Optimization
• Mitigate bad inputs in testing

Isolating Lines
of Code

• Isolate code that is impacted
• Search by enhancing precision
• Isolate expressions

1

2 3

6
LLNL-PRES-845366

● When a CPU exceptions occurs, it is signaled
○ Status flag FPSCR (floating-point status and control register) is set by default
○ Tools can read such registers

○ Peter Dinda, Alex Bernat, and Conor Hetland. Spying on the Floating-Point Behavior of Existing, Unmodified Scientific Applications. In
Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing (HPDC), 2020

State of The Art in FP Exception Detection

NVIDIA GPUs have no mechanism to detect floating-point exceptions,
set a status register or raise a signal when an exception occurs

7
LLNL-PRES-845366

Printf Helps but It’s Not Enough

NaN and Infinity propagate quickly:
2 × ∞ = ∞

printf(“Energy = %f\n”, energy);

Code

Energy = Inf

Output

double x = a/b;
if (x < …) {

//Branch 1

} else {

//Branch 2

}

Exception

8
LLNL-PRES-845366

Compile-time Instrumentation Workflow of
FPChecker

Application
Source:

file1.cpp,
file2.cu,

...

Compiler
Front-End

Optimizations

Runtime System:
runtime.h

CPU IR code

GPU device
IR code

ExecutableBackend Linker

Single checking function
used due to ODR

Instrumentation

Optimizations

Figure 1: Overview of the compile-time instrumentation work�ow of FPC������

Table 2 show such events: cancellation, comparisons, and
latent in�nities/under�ows. Additional capabilities include
histograms that show the density of exponent (binade)
usage, and (in the exception forecasting mode) out-of-range
exponents.
Cancellation. We found cancellation to be pervasive in
scienti�c computing applications. Cancellation occurs when
two values close to each other are subtracted—the most sig-
ni�cant digits match and cancel each other. A cancellation
can be catastrophic or benign. A cancellation is catastrophic
if at least one operand was approximated by rounding.
Otherwise, if both values are exactly representable, the
cancellation is benign.

FPC������ detects the number of canceled bits using
the following formula [8]:

max{exponent(b), exponent(c)} – exponent(a),

where b and c are the instruction’s operands, and a is
the result. A cancellation event occurred if the number of
canceled digits is greater than zero. While cancellation
is very common in real-world numerical applications,
FPC������ only reports such events when at least ten
decimal digits are lost. However, this is a con�gurable
parameter in FPC������.

0

Normal Subnormal

Latent
Infinity

Latent
Underflow

߉� ߉�

Figure 2: Latent in�nity (+ and -) and latent under�ow

Equality Comparisons. One considers (e.g., [16]) the creation
of code involving comparisons such as if (x==2.3) to be
bad practice;5 yet, FPC������ has located such patterns
in deployed code (in one case over a million dynamic in-
stances).FPC������ allows such comparisons to be located
and corrected (if warranted) using better approaches (see
[16]).
Latent Exception Indicators. FPC������ detects quantities
that are not su�ciently large or small enough to become
exceptions but that are close to become one of them
(i.e., they are latent), perhaps with larger/smaller inputs

5. Some compilers do warn.

(see Figure 2). Let erange be the exponent representative
range for a precision (e.g. erange = 256 for single �oating-
points). FPC������ speci�es a threshold percentage ⌧
so that a computation a is declared as latent in�nity if
maxe –exponent(a)  ⌧ ·erange, where maxe is the maximum
unbiased exponent that could be represented as a normal
�oating-point number. Likewise, a computation is declared
latent under�ow if mine +exponent(a)  ⌧ ·erange. Similarly,
mine is the minimum unbiased exponent, which is usually
0. Hence, the zone speci�ed by ⌧ · erange correspond the
latent events checked in FPC������. We allow the user
con�gure to ⌧ however, by default, ⌧ = 0.05.

2.4. Work�ow
FPC������’s work�ow comprises two phases: compile-

time instrumentation and runtime analysis.
Compile-Time Instrumentation. Figure 1 describes the
compile-time instrumentation phase. We start by injecting
the runtime system into the source �les. The runtime
system is a header �le composed of the de�nitions of
checking functions named check<T>. Each check function
is specialized for di�erent precision levels, the running
context (CPU or GPU), and for checking speci�c events
(e.g., cancellation) and exception indicators.

The checking functions are statically declared initially,
but they are later set to use one de�nition rule (ODR)
linkage, so only one function de�nition for a speci�c
event is used at runtime. The code is optimized at the
intermediate representation level (IR), which is followed
by the instrumentation step that identi�es �oating-point
instructions and inserts the check calls from the runtime
into the application. Finally, the linker merges the multiple
de�nitions of the checking functions and produces an
executable that contains all the runtime checking functions.
Automatic Integration. FPC������ is easy to integrate into
the build system and testing environments of scienti�c
applications. To instrument the code, the user only has to
provide the build command to FPC������ and it automat-
ically intercepts all compilation commands and performs
the instrumentation (more details in Section 4.2).
Runtime Analysis. In this phase, the application is executed
with speci�c inputs. FPC������ detects and bookkeeps
exceptional events, and can build usage histograms (option-
ally). Events are stored in global memory (both for CPU and

Application
Source:

file1.cpp,
file2.cu,

...

Compiler
Front-End

Optimizations

Runtime System:
runtime.h

CPU IR code

GPU device
IR code

ExecutableBackend Linker

Single checking function
used due to ODR

Instrumentation

Optimizations

Figure 1: Overview of the compile-time instrumentation work�ow of FPC������

Table 2 show such events: cancellation, comparisons, and
latent in�nities/under�ows. Additional capabilities include
histograms that show the density of exponent (binade)
usage, and (in the exception forecasting mode) out-of-range
exponents.
Cancellation. We found cancellation to be pervasive in
scienti�c computing applications. Cancellation occurs when
two values close to each other are subtracted—the most sig-
ni�cant digits match and cancel each other. A cancellation
can be catastrophic or benign. A cancellation is catastrophic
if at least one operand was approximated by rounding.
Otherwise, if both values are exactly representable, the
cancellation is benign.

FPC������ detects the number of canceled bits using
the following formula [8]:

max{exponent(b), exponent(c)} – exponent(a),

where b and c are the instruction’s operands, and a is
the result. A cancellation event occurred if the number of
canceled digits is greater than zero. While cancellation
is very common in real-world numerical applications,
FPC������ only reports such events when at least ten
decimal digits are lost. However, this is a con�gurable
parameter in FPC������.

0

Normal Subnormal

Latent
Infinity

Latent
Underflow

߉� ߉�

Figure 2: Latent in�nity (+ and -) and latent under�ow

Equality Comparisons. One considers (e.g., [16]) the creation
of code involving comparisons such as if (x==2.3) to be
bad practice;5 yet, FPC������ has located such patterns
in deployed code (in one case over a million dynamic in-
stances).FPC������ allows such comparisons to be located
and corrected (if warranted) using better approaches (see
[16]).
Latent Exception Indicators. FPC������ detects quantities
that are not su�ciently large or small enough to become
exceptions but that are close to become one of them
(i.e., they are latent), perhaps with larger/smaller inputs

5. Some compilers do warn.

(see Figure 2). Let erange be the exponent representative
range for a precision (e.g. erange = 256 for single �oating-
points). FPC������ speci�es a threshold percentage ⌧
so that a computation a is declared as latent in�nity if
maxe –exponent(a)  ⌧ ·erange, where maxe is the maximum
unbiased exponent that could be represented as a normal
�oating-point number. Likewise, a computation is declared
latent under�ow if mine +exponent(a)  ⌧ ·erange. Similarly,
mine is the minimum unbiased exponent, which is usually
0. Hence, the zone speci�ed by ⌧ · erange correspond the
latent events checked in FPC������. We allow the user
con�gure to ⌧ however, by default, ⌧ = 0.05.

2.4. Work�ow
FPC������’s work�ow comprises two phases: compile-

time instrumentation and runtime analysis.
Compile-Time Instrumentation. Figure 1 describes the
compile-time instrumentation phase. We start by injecting
the runtime system into the source �les. The runtime
system is a header �le composed of the de�nitions of
checking functions named check<T>. Each check function
is specialized for di�erent precision levels, the running
context (CPU or GPU), and for checking speci�c events
(e.g., cancellation) and exception indicators.

The checking functions are statically declared initially,
but they are later set to use one de�nition rule (ODR)
linkage, so only one function de�nition for a speci�c
event is used at runtime. The code is optimized at the
intermediate representation level (IR), which is followed
by the instrumentation step that identi�es �oating-point
instructions and inserts the check calls from the runtime
into the application. Finally, the linker merges the multiple
de�nitions of the checking functions and produces an
executable that contains all the runtime checking functions.
Automatic Integration. FPC������ is easy to integrate into
the build system and testing environments of scienti�c
applications. To instrument the code, the user only has to
provide the build command to FPC������ and it automat-
ically intercepts all compilation commands and performs
the instrumentation (more details in Section 4.2).
Runtime Analysis. In this phase, the application is executed
with speci�c inputs. FPC������ detects and bookkeeps
exceptional events, and can build usage histograms (option-
ally). Events are stored in global memory (both for CPU and

Application
Source:

file1.cpp,
file2.cu,

...

Compiler
Front-End

Optimizations

Runtime System:
runtime.h

CPU IR code

GPU device
IR code

ExecutableBackend Linker

Single checking function
used due to ODR

Instrumentation

Optimizations

Figure 1: Overview of the compile-time instrumentation work�ow of FPC������

Table 2 show such events: cancellation, comparisons, and
latent in�nities/under�ows. Additional capabilities include
histograms that show the density of exponent (binade)
usage, and (in the exception forecasting mode) out-of-range
exponents.
Cancellation. We found cancellation to be pervasive in
scienti�c computing applications. Cancellation occurs when
two values close to each other are subtracted—the most sig-
ni�cant digits match and cancel each other. A cancellation
can be catastrophic or benign. A cancellation is catastrophic
if at least one operand was approximated by rounding.
Otherwise, if both values are exactly representable, the
cancellation is benign.

FPC������ detects the number of canceled bits using
the following formula [8]:

max{exponent(b), exponent(c)} – exponent(a),

where b and c are the instruction’s operands, and a is
the result. A cancellation event occurred if the number of
canceled digits is greater than zero. While cancellation
is very common in real-world numerical applications,
FPC������ only reports such events when at least ten
decimal digits are lost. However, this is a con�gurable
parameter in FPC������.

0

Normal Subnormal

Latent
Infinity

Latent
Underflow

߉� ߉�

Figure 2: Latent in�nity (+ and -) and latent under�ow

Equality Comparisons. One considers (e.g., [16]) the creation
of code involving comparisons such as if (x==2.3) to be
bad practice;5 yet, FPC������ has located such patterns
in deployed code (in one case over a million dynamic in-
stances).FPC������ allows such comparisons to be located
and corrected (if warranted) using better approaches (see
[16]).
Latent Exception Indicators. FPC������ detects quantities
that are not su�ciently large or small enough to become
exceptions but that are close to become one of them
(i.e., they are latent), perhaps with larger/smaller inputs

5. Some compilers do warn.

(see Figure 2). Let erange be the exponent representative
range for a precision (e.g. erange = 256 for single �oating-
points). FPC������ speci�es a threshold percentage ⌧
so that a computation a is declared as latent in�nity if
maxe –exponent(a)  ⌧ ·erange, where maxe is the maximum
unbiased exponent that could be represented as a normal
�oating-point number. Likewise, a computation is declared
latent under�ow if mine +exponent(a)  ⌧ ·erange. Similarly,
mine is the minimum unbiased exponent, which is usually
0. Hence, the zone speci�ed by ⌧ · erange correspond the
latent events checked in FPC������. We allow the user
con�gure to ⌧ however, by default, ⌧ = 0.05.

2.4. Work�ow
FPC������’s work�ow comprises two phases: compile-

time instrumentation and runtime analysis.
Compile-Time Instrumentation. Figure 1 describes the
compile-time instrumentation phase. We start by injecting
the runtime system into the source �les. The runtime
system is a header �le composed of the de�nitions of
checking functions named check<T>. Each check function
is specialized for di�erent precision levels, the running
context (CPU or GPU), and for checking speci�c events
(e.g., cancellation) and exception indicators.

The checking functions are statically declared initially,
but they are later set to use one de�nition rule (ODR)
linkage, so only one function de�nition for a speci�c
event is used at runtime. The code is optimized at the
intermediate representation level (IR), which is followed
by the instrumentation step that identi�es �oating-point
instructions and inserts the check calls from the runtime
into the application. Finally, the linker merges the multiple
de�nitions of the checking functions and produces an
executable that contains all the runtime checking functions.
Automatic Integration. FPC������ is easy to integrate into
the build system and testing environments of scienti�c
applications. To instrument the code, the user only has to
provide the build command to FPC������ and it automat-
ically intercepts all compilation commands and performs
the instrumentation (more details in Section 4.2).
Runtime Analysis. In this phase, the application is executed
with speci�c inputs. FPC������ detects and bookkeeps
exceptional events, and can build usage histograms (option-
ally). Events are stored in global memory (both for CPU and

Application
Source:

file1.cpp,
file2.cu,

...

Compiler
Front-End

Optimizations

Runtime System:
runtime.h

CPU IR code

GPU device
IR code

ExecutableBackend Linker

Single checking function
used due to ODR

Instrumentation

Optimizations

Figure 1: Overview of the compile-time instrumentation work�ow of FPC������

Table 2 show such events: cancellation, comparisons, and
latent in�nities/under�ows. Additional capabilities include
histograms that show the density of exponent (binade)
usage, and (in the exception forecasting mode) out-of-range
exponents.
Cancellation. We found cancellation to be pervasive in
scienti�c computing applications. Cancellation occurs when
two values close to each other are subtracted—the most sig-
ni�cant digits match and cancel each other. A cancellation
can be catastrophic or benign. A cancellation is catastrophic
if at least one operand was approximated by rounding.
Otherwise, if both values are exactly representable, the
cancellation is benign.

FPC������ detects the number of canceled bits using
the following formula [8]:

max{exponent(b), exponent(c)} – exponent(a),

where b and c are the instruction’s operands, and a is
the result. A cancellation event occurred if the number of
canceled digits is greater than zero. While cancellation
is very common in real-world numerical applications,
FPC������ only reports such events when at least ten
decimal digits are lost. However, this is a con�gurable
parameter in FPC������.

0

Normal Subnormal

Latent
Infinity

Latent
Underflow

߉� ߉�

Figure 2: Latent in�nity (+ and -) and latent under�ow

Equality Comparisons. One considers (e.g., [16]) the creation
of code involving comparisons such as if (x==2.3) to be
bad practice;5 yet, FPC������ has located such patterns
in deployed code (in one case over a million dynamic in-
stances).FPC������ allows such comparisons to be located
and corrected (if warranted) using better approaches (see
[16]).
Latent Exception Indicators. FPC������ detects quantities
that are not su�ciently large or small enough to become
exceptions but that are close to become one of them
(i.e., they are latent), perhaps with larger/smaller inputs

5. Some compilers do warn.

(see Figure 2). Let erange be the exponent representative
range for a precision (e.g. erange = 256 for single �oating-
points). FPC������ speci�es a threshold percentage ⌧
so that a computation a is declared as latent in�nity if
maxe –exponent(a)  ⌧ ·erange, where maxe is the maximum
unbiased exponent that could be represented as a normal
�oating-point number. Likewise, a computation is declared
latent under�ow if mine +exponent(a)  ⌧ ·erange. Similarly,
mine is the minimum unbiased exponent, which is usually
0. Hence, the zone speci�ed by ⌧ · erange correspond the
latent events checked in FPC������. We allow the user
con�gure to ⌧ however, by default, ⌧ = 0.05.

2.4. Work�ow
FPC������’s work�ow comprises two phases: compile-

time instrumentation and runtime analysis.
Compile-Time Instrumentation. Figure 1 describes the
compile-time instrumentation phase. We start by injecting
the runtime system into the source �les. The runtime
system is a header �le composed of the de�nitions of
checking functions named check<T>. Each check function
is specialized for di�erent precision levels, the running
context (CPU or GPU), and for checking speci�c events
(e.g., cancellation) and exception indicators.

The checking functions are statically declared initially,
but they are later set to use one de�nition rule (ODR)
linkage, so only one function de�nition for a speci�c
event is used at runtime. The code is optimized at the
intermediate representation level (IR), which is followed
by the instrumentation step that identi�es �oating-point
instructions and inserts the check calls from the runtime
into the application. Finally, the linker merges the multiple
de�nitions of the checking functions and produces an
executable that contains all the runtime checking functions.
Automatic Integration. FPC������ is easy to integrate into
the build system and testing environments of scienti�c
applications. To instrument the code, the user only has to
provide the build command to FPC������ and it automat-
ically intercepts all compilation commands and performs
the instrumentation (more details in Section 4.2).
Runtime Analysis. In this phase, the application is executed
with speci�c inputs. FPC������ detects and bookkeeps
exceptional events, and can build usage histograms (option-
ally). Events are stored in global memory (both for CPU and

https://fpchecker.org/
Laguna, Ignacio, et al. "FPChecker: Floating-Point Exception Detection Tool and
Benchmark for Parallel and Distributed HPC." 2022 IEEE International Symposium on
Workload Characterization (IISWC). IEEE, 2022.

9
LLNL-PRES-845366

Floating Point Exceptions and Events Detected
by FPChecker

Exception Description Result

Overflow Result did not fit and it is an infinity ∞

Underflow Result could not be represented as normal 0, subnormal

Divide by Zero Divide-by-zero operation ∞

Invalid Operation operand is not a number (NaN) NaN

Inexact Result is produced after rounding normal

IEEE 754-
2019
Standard

Other events Description

Comparison Two numbers are compared for equality

Cancellation Cancellation in addition or subtraction

Latent Infinity+ Large normal, close to positive infinity

Latent Infinity- Large normal, close to negative infinity

Latent underflow Small normal, close to subnormal

10
LLNL-PRES-845366

Example of Reproducibility Problem:
Subnormal Numbers and Optimizations

double x = a/b;
if (x < …) {

//Branch 1

} else {

//Branch 2

}

• Subnormal numbers: very small quantities, 1e-309

System 2 IBM POWER9
xlc, -O3

X86_64
clang, gcc

-O3, -ffast-math
System 1 Branch 1

a/b ➜ a × (1/b)
➜ NaN

Optimization

Branch 2

11
LLNL-PRES-845366

FPChecker Report

12
LLNL-PRES-845366

• Cancellation is a common event in HPC workloads
• FPChecker reported NaN in a few applications
• Several applications compare floating-point numbers for equality

• This can be dangerous

FPChecker Evaluation Results
TABLE 3: List of events detected by FPC������.

Program Model 1+ 1– NaN DivByZero Cancell. Comp. Underf. Lat. 1+ Lat. 1– Lat. Underf.

LULESH MPI, OpenMP 0 0 430 0 123,068,684 0 0 0 0 0
Kripke MPI, OpenMP, RAJA 0 0 0 0 256 4,096 0 0 0 0
Quiksilver MPI 0 0 0 0 32,786,872 1,153,703,064 0 0 0 0
RAJAPerf RAJA, serial 0 0 0 0 3,306,835,400 0 0 0 0 0
AMG MPI 14 0 0 14 7,885 31,385 0 14 0 0
IS serial 2 0 0 1 1,052 0 0 2 0 0
EP serial 0 0 0 0 134,163 0 0 0 0 0
CG serial 22,505 0 0 0 22,505 0 0 0 0 0
MG serial 0 0 0 0 10,376 0 0 0 0 0
FT serial 0 0 0 0 4,222 0 0 0 0 0
BT serial 0 0 0 0 739 0 0 0 0 0
SP serial 0 0 0 0 752 0 0 0 0 0
LU serial 0 0 0 0 12 0 0 0 0 0

Figure 4: Slowdown of FPC������ versus FPS�� in two
applications: LULESH and Kripke.

benign. We did not see cases of negative in�nity, under�ow,
or latent in�nities.

5.3. Performance Results
We compare the slowdown of FPC������’s fast-

checking mode and FPS�� in two applications: LULESH
and Kripke. The performance �ndings in these two appli-
cations are generally similar to those obtained in the other
applications and the NPB. These two applications are also
easier to con�gure for di�erent workloads and degrees of
parallelism. In both cases, we start with a 1-process run
(i.e., 1 MPI rank) using the default input size. All cases
use OpenMP. We then perform strong scaling experiments
by increasing the number of parallel processes. Note that
LULESH requires cubic processes con�gurations (i.e., 23,
33, . . .). Slowdown is de�ned as tool_time/original_time,
where tool_time is the execution time using the tool and
original_time is the execution time without the tool. We
use System 1 for these experiments.

Figure 4 shows the measured slowdown. We observe
that the slowdown for both approaches are relatively the
same for multi-threaded single-process runs—for Kripke in
particular, we observe that FPS�� incurs less slowdown than
FPC������, i.e., 1.09⇥ versus 2.23⇥, respectively, for a 1-
process run. However, as the number of parallel processes

increases, FPS��’s slowdown also increases signi�cantly
compared to FPC������. Overall, we observe that the
overhead for FPC������ remains almost constant in the
range of 1.4⇥–2.4⇥, whereas the FPS��’s slowdown can
be up to 12⇥; the FPS��’s slowdown is highly correlated to
the number of parallel resources, i.e., threads and processes,
and their I/O performance due to tracing. In contrast,
FPC������’s e�cient tracing and fast-checking algorithm
keeps the slowdown to a minimum. To put these results in
perspective, a 128-process simulation that takes two days
to complete can be checked with FPC������ in about a
week, whereas the same simulation would take about a
month to be checked with FPS��.

5.4. Di�erential Analysis: Two Case Studies
We present two case studies of the di�erential analysis

applied to two applications: Quicksilver (a simpli�ed dy-
namic Monte Carlo particle transport code) and Kripke (a
3D deterministic particle transport code). In these cases, we
focus on understanding cancellation and how they are man-
ifested under compiler optimizations. Given cancellation
is the most dominant event in our experience, we would
like to provide detailed insights to programmers about this
problematic numerical behavior. In all cases, we assume
that there is a default optimization level, which is speci�ed
by the programmers in the application’s build script (e.g.,
make�le).
Quicksilver. Figure 5 shows the output of FPC������
after applying the di�erential analysis to Quicksilver. The
analysis �nds that cancellation events are produced at
optimization level O2 but these events are not observed
in the unoptimized version (O0). FPC������ identi�es
the exact �le and line where cancellation arises. The
programmers can focus on these lines to �x such behavior.
Kripke. Figure 6 shows the analysis output after applying it
to Kripke. In this application, the default optimization level
is O3 -ffast-math for the release (or production) version.
When FPC������ is applied to the O3 -ffast-math level,
no cancellation events are found. FPC������ then goes
back to perform the di�erential analysis to a less aggressive
optimization level, i.e., O3 and �nds that there are 256
cancellation events in the �le Space.cpp. The main �nding
in this case is that there cancellation events starting from
level O0 to level O3; however, when level O3 -ffast-math

13
LLNL-PRES-845366

§ Previous work (FPChecker) uses static and dynamic analysis in LLVM

§ Most HPC applications use nvcc (NVIDIA compiler); not LLVM

§ Source is not available for some GPU libraries:
— cuDNN, cuBLAS, cuFFT, cuSOLVER, CUDA Math API, ….

BinFPE: Dynamic Analysis via Binary
Instrumentation

Why Dynamic Analysis?

14
LLNL-PRES-845366

§ Dynamic binary instrumentation framework for
NVIDIA GPUs

§ Provides APIs that allows:
— Instruction inspection
— Callbacks to CUDA driver APIs
— Injection of arbitrary CUDA functions into any

application before kernel launch

§ The injected analysis functions are executed in
the GPU
— BinFPE: to monitor exceptions

NVBit Overview

CUDA Program

__global__ void kernel1(…) {
double x = y + z;
…

}

__global__ void kernel2(…) {
double tmp = k / 3.0;
…

}

Injected Functions
Oreste Villa, Mark Stephenson, David Nellans, and Stephen W Keckler. 2019. NVBit: A Dynamic Binary
Instrumentation Framework for NVIDIA GPUs. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture. 372–383.

15
LLNL-PRES-845366

BinFPE’s Workflow

CUDA
Program

Executable
(binary)

LD_PRELOAD=/path/tool.so
./application input

Launch Time

Kernel 1

Kernel 2

Kernel 3
...

Instrument
!oating-point

arithmetic
operations

FP mantissa
and exponent

checking

Execution Time
Error Detection

Reports

• Channel between GPU-and-CPU
• Detection is performed in CPU

16
LLNL-PRES-845366

Value-Based Exception Detection

(Instr.) (Destination), (Param1), (Param2) ...

Instruction format (SASS)

Get a copy of Destination Value (register r)

Check r is FP32 or FP64
Analyze exponent

and mantissa

PTX: high-level language (ISA)
SASS: low-level architecture dependent assembly

(Subnormal)

17
LLNL-PRES-845366

BinFPE
Results from
CUDA
Programs

BinFPE: Accurate Floating-Point Exception Detection for GPU Applications SOAP ’22, June 14, 2022, San Diego, CA, USA

Table 3. Results obtained from analyzing 42 CUDA programs. (‘Slowdown’ is w.r.t. uninstrumented execution time.)

FP32 FP64 Time (sec)
Group Program Name Kernels Instructions NaN INF Under. NaN INF Underf. Normal Instrum. Slowdown

Rodinia

backprop 2 28421 0 0 0 0 0 0 0.481 1.218 2.53
bfs 1 0 0 0 0 0 0 0 0.636 1.312 2.06
cfd 5 – 10 0 1 59 24 49 – – –
gaussian 3 33 0 0 0 0 0 0 0.483 1.165 2.41
heartwall 2 795516513 0 0 0 0 0 0 1.195 652.782 546.26
hotspot 1 592540 0 0 0 0 0 0 0.86 1.871 2.16
lavaMD 1 289774400 0 0 0 0 0 0 0.584 226.918 388.56
leukocyte 12 1293579493 0 0 0 0 0 0 0.797 1108.525 1390.87
lud 3 205360 0 0 0 0 0 0 0.558 1.923 3.45
nn 1 13370 0 0 0 0 0 0 0.488 0.943 1.93
nw 2 0 0 0 0 0 0 0 0.58 1.354 2.339
srad/srad_v1 9 60549150 0 0 0 0 0 0 0.606 64.075 105.73
srad/srad_v2 2 18087936 0 0 0 0 0 0 0.814 20.258 24.89
streamcluster 301 1704346338 0 0 0 0 0 0 4.971 1277.952 257.08
path�nder 1 0 0 0 0 0 0 0 0.972 1.394 1.43

Proxy
apps.

Kripke 9 647310240 0 0 0 0 0 0 5.305 544.925 102.72
LULESH 100 119537586 0 0 0 0 0 0 0.437 101.537 232.35
SW4Lite 149 2817345320 0 0 0 0 0 1 3.643 2340 642.33
CoMD 20 46164 0 0 0 0 0 0 0.307 3.932 12.81

NPB-GPU
BT 27 33500406 0 0 0 0 0 0 0.417 33.78 81.01
LU 28 13398491 0 0 0 0 0 0 0.452 53.193 117.68
SP 34 5744336 0 0 0 0 0 0 0.444 17.037 38.37

PolyBench-
GPU

2DCONV 1 4716288 0 0 0 0 0 0 1.621 7.021 4.33
2MM 2 536870912 0 0 0 0 0 0 52.618 672.222 12.78
3DCONV 1 7741920 0 0 0 0 0 0 0.828 7.683 9.279
3MM 3 12582912 0 0 0 0 0 0 1.588 15.91 10.02
ATAX 2 1048576 0 0 0 0 0 2 0.559 2.132 3.81
BICG 2 1048576 0 0 0 0 0 0 0.599 2.221 3.71
CORR 4 137889344 0 0 0 0 0 0 11.878 315.372 26.55
COVAR 3 136479232 0 0 0 0 0 0 11.927 313.643 26.30
FDTD-2D 4 524224000 0 0 0 0 0 0 7.616 529.822 69.57
GEMM 1 8396800 0 0 0 0 0 0 0.889 10.29 11.57
GESUMMV 1 1048832 0 0 0 0 0 3 0.653 1.938 2.97
GRAMSCHM 3 277628940 0 0 0 1 0 3 57.078 790.6 13.85
MVT 2 1048576 0 0 0 0 0 0 0.641 2.26 3.52
SYR2K 1 1342308352 0 0 0 0 0 0 32.417 1571.062 48.46
SYRK 1 67141632 0 0 0 0 0 0 2.448 78.282 31.98

lack of tools and programming language support to detect
exceptions, a problem we seek to alleviate with BinFPE.

NaN Case in GRAMSCHM. BinFPE reports the NaN in
theGRAMSCHMbenchmark (function gramschmidt_kernel1,
line 131). The NaN originates in a line that computes a square
root of a �oating-point number (using sqrt()) and stores
the result in the array r. The CUDA Math API5 speci�es that
sqrt(x) returns NaN if the input parameter x is less than 0.
NaN quantities propagate quickly to other operations; how-
ever, BinFPE does not report a NaN in any other program
location. We hypothesize that the NaN quantity is stored in
the array but it is not used later in other computations. This
exempli�es dangerous situations when NaN or INF quanti-
ties can be hidden in memory locations or can a�ect branch
decisions (e.g., if conditions) without being noticed by pro-
grammers in the program outputs. In practice, NaN < NaN
can evaluate to �0;B4 in such a conditional.

Slowdown. The last column of Table 3 shows the slow-
down introduced by BinFPE. The slowdown is calculated by
the ratio �C

#C
, where �C is the timewith instrumentation and#C

is the normal time of the program (i.e., no instrumentation).
Given the dynamic nature of the tool, the slowdown can be

5h�ps://docs.nvidia.com/cuda/cuda-math-api/

signi�cant in some programs in the order of several 100⇥ or
more, while in others it can be as small as 1⇥–2⇥. Notice that
for programs with higher dynamic counts of �oating-point
instructions, the slowdown is higher. GPU kernels can con-
tain thousands or more parallel threads grouped in warps of
size 32; currently BinFPE performs checking on all of them.
In future work, we will study ways to reduce the slowdown
by avoiding instrumenting all operations. We did not present
slowdown results for cfd because there is a hang at the end
of the program execution, which seems to be caused by the
NVBit channel; we have reported the issue to NVIDIA.

4.3 Limitations and Lessons Learned
While we have found BinFPE to be very robust in analyzing
several GPU programs and detecting hidden �oating-point
exceptions, our work has these limitations:

Slowdown. The slowdown of dynamic binary instrumen-
tation via NVBit can be too high to be used in large-scale
production runs. Developers using such tools must use small-
to-moderate inputs to test programs. More research is re-
quired to decrease the overhead of runtime checking.

Lack of Speci�cations.Most GPU manufacturers do not
release any reference speci�cation for their assembly instruc-
tion sets. In our work, we resorted to reverse engineering,

18
LLNL-PRES-845366

Strategy to Mitigate Numerical Inconsistencies
and Exceptions

Detecting Numerical Exceptions
• Exceptions cause inconsistencies
• Detection is crucial
• Compiler and dynamic instrumentation

Finding Inputs that
Cause Exceptions

• Inputs induce exceptions
• Bayesian Optimization
• Mitigate bad inputs in testing

Isolating Lines
of Code

• Isolate code that is impacted
• Search by enhancing precision
• Isolate expressions

1

2 3

19
LLNL-PRES-845366

XScope in a Nutshell

GPU

Application
Functions

Inputs

0.25846
45.6874
1.8845e-56
8.946e-80
1.0002e-109

Floating-Point Exceptions

Infinity

Division by zero

NaN

Underflows
Xscope

20
LLNL-PRES-845366

Problem with BO Finding Underflows

The second problem we encounter is that, since we assume
that users do not have prior knowledge of the input bounds for
x, there is no guarantee BO finds the global optimum. This
is a known problem—application of the BO framework when
the search region is unknown remains an open challenge in the
community [8], [9]. We tackle this challenge using a divide-
and-conquer approach (inspired by interval analysis [12])
where instead of asking BO to find extremes in an unbounded
range—where an input x can be any floating-point number
between the minimum and maximum normal number—we ask
BO to operate over combinations of intervals in that range. It
turns out that this helps BO identify more interesting inputs
at the cost of more iterations (see Section III-D).

D. Overview of Xscope
Figure 2 shows an overview of Xscope’s workflow. We start

by the user providing the signature of the device function to
test, which includes the return type and the input parameters.
After this, Xscope generates a CUDA program (.cu) that
contains: (a) a kernel wrapper that calls the device function to
test and (b) a C-linkage function that calls the kernel wrapper.
Next, everything is compiled and linked into a shared library
by the nvcc compiler. Alternatively, the user can provide
the shared library directly that already contains the C-linkage
function. Later the shared library is loaded in Python and a
pointer of the C-linkage function is passed to the BO engine
(which is written in Python).

The BO framework works by taking as input several meth-
ods to sample floating-point numbers (see Section III-D) and
considering different input bounds. It then search for inputs
that generate exceptions and, when it finds them, it provides
a report to the user about the category of the exceptions and
the inputs that triggered them.
Xscope’s Practical Utility. Xscope has a wide range of

practical applications. First, given specific exception-triggering
inputs, developers can add assertions in the code to check
for such inputs before they propagate to the functions that
trigger the exception—currently, there are few tools (if
any) to help developers create such assertions. Second, the
exception-triggering inputs can be used in testing campaigns to
strengthen the code and understand how program inputs affect
internal functions or code fragments—today, GPU developers
are in need for such tools to help test GPU code. Third,
such “dangerous” inputs can be documented better so that
users of a library API avoid them. Fourth, when exceptional
quantities (e.g., NaN, INF) are combined with high compiler
optimizations (e.g., -fast-math), they can introduce numer-
ical reproducibility issues [11]; Xscope can help in isolating
inputs that lead to this behavior.

III. APPROACH

We present the technical aspects of our approach.

A. Floating-Point Number Ranges
Before describing our method, it is useful to review the

floating-point input ranges allowed by the IEEE 754 standard

TABLE II
MINIMUM AND MAXIMUM FLOATING-POINT VALUES FOR DOUBLE

PRECISION (FP64)

Number Symbol Value
Min Subnormal (positive) S+

min ⇡ 4.941e-324
Max Subnormal (positive) S+

max ⇡ 2.225e-308
Min Normal (positive) N+

min ⇡ 2.225e-308
Max Normal (positive) N+

max ⇡ 1.798e308
Max Subnormal (negative) S�

max �S+
min

Min Subnormal (negative) S�
min �S+

max

Max Normal (negative) N�
max �N+

min

Min Normal (negative) N�
min �N+

max

for floating-point arithmetic. We focus on double precision
since it is the precision most used in scientific computing
applications; however, our methods can be applied in other
precisions (e.g., FP32 or FP16). Our approach needs these
ranges—and the minimum and maximum values—to perform
the unbounded search in the inputs of f . Table II shows the
minimum and maximum values for normal and subnormal
numbers (positive and negative). Figure 3 illustrates their
location. Note that a computation that produces a value greater
than N

+
max (i.e., the max normal positive) will result in INF+.

B. Function Optimization

By default, our BO implementation maximizes f . To min-
imize f , we maximize y = �f(x). We assume the target
function f has one or more floating-point input parameters,
and that it returns a scalar double precision value. If the
function returns multiple values {r1, r2, . . .} (e.g., it writes
results to an array), we assume the user can transform the
returned values to a scalar, e.g., by applying max(r1, r2, . . .),
or another transformation function.

C. Function Twisting

Let’s suppose we want to search for inputs that produce
subnormal numbers (the result of underflows) in the positive
underflow region. Let’s assume f is a normalized sigmoid
function. The following listing shows the implementation of
f and Figure 4 plots it for the parameter k = 0.9:
1 __device__

2 double sigmoid(double x, double k) {

3 double d = x - (k*x);

4 double n = k - 2.0*k*abs(x) + 1.0;

5 return d/n;

6 }

Since we are searching for small returned values, we ask
BO to minimize f . BO might begin trying random points, e.g.,
x = 0.75 and get f(x) = 0.1363. It may keep trying lower
values following the suggestions of the acquisition functions.
For example, it could try x = 4e-308, which is a normal
number, and get f(x) = 2.105e-309. Note that 2.105e-309 is
a subnormal number since it’s smaller than S

+
max. However,

there is no guarantee that BO stops at this point since there are
even smaller values for f and BO is minimizing the function;
for example, f(0.0) = 0.0 and f(�0.1) = �0.00581. Note

Sigmoid function

Problem:
• BO can’t stop when an underflow occurs
• We need to guide BO to identify underflows

Minimize
f(x) = 0.4.
f(x) = 0.2.
f(x) = 2.105e-309 (subnormal).
f(0.0) = 0.0

.
f(-0.1) = -0.00581

.

21
LLNL-PRES-845366

Function Twisting

• Transform f in a new function f’
• Ask BO to minimize f’
• BO’s output should be a subnormal number (underflow)

Bayesian Optimization

Runs in GPU

• Number Sampling
• Input Bound Splitting

• Function f transformations

Category Input
NaN
INf+
...

1.3e-45
6.2e-109

...

nvcc
compiler

Wrapper Generator

Function signature:

CUDA
Program (.cu)

User Report
Shared
library (.so)

double compute(
 double x, double y,double z)

Fig. 2. Overview of Xscope’s workflow.

INF+INF–
±0

Max Normal (pos)Min Normal (neg) Min Subnormal (pos)

Max Subnormal (pos)

Fig. 3. Location of max and min of normal and subnormal numbers.

Fig. 4. Sample of a normalized sigmoid function

also that there is no guarantee that BO even finds f(x) =
2.105e-309 since it may jump quickly to smaller values of f .

To address this issue, we propose an approach that we
call function twisting, which allows BO to move towards
the positive underflow region and stay in that region until
the smallest subnormal number is found, at which point BO
has identified the function minima. The idea is to twist the
quadrant III of the function to quadrant II so the underflow
region is exposed to BO as the smallest region and it stops in
that region when minimizing. Figure 5 illustrates the idea.

In other words, we transform f into a new function f
0 and

ask BO to minimize f
0. More formally f

0 is defined as:

f
0(x) =

8
><

>:

µ if f(x) = 0.0 or f(x) = �0.0

f(x) if f(x) � S
+
min

-f(x) if f(x) < S
+
min.

(3)

Note that zero is a special case. Since zero is smaller than
S
+
min, BO could think zero is the smallest point and would not

stop at any subnormal number. We assigned zero the parameter
µ with the condition that it must be greater than the largest
subnormal, i.e., S+

max. In practice, we have found that µ = 1.0
works well.

What about negative subnormals? For the negative under-
flow region we want BO to maximize f and use a similar

Fig. 5. illustration of the function twisting idea

approach where the quadrant I is flipped down to quadrant IV.
More formally:

f
0(x) =

8
><

>:

�µ if f(x) = 0.0 or f(x) = �0.0

f(x) if f(x)  S
�
max

-f(x) if f(x) > S
�
max.

(4)

Note that function splitting is not simply flipping the function
on the x or y axis since we only flip one quadrant (flipping
moves both quadrants) and zero must be handled differently.
Also note that for finding inputs that trigger INF+ and INF-,
function flipping is not required.

D. Input Range Splitting

Since we assume that the user has limited (or null) a priori
knowledge of the input bounds, in the general case, input
values can be any normal floating-point number or zero—we
discard exceptional cases, such as INF or NaN, as input since
they are usually not used to compute anything. This, however,
is a very large input range, which challenges BO and there is
no guarantee it can arrive to a global maxima/minima [8], [9].
To address this challenge, we use various divide-and-conquer
methods to split the input bounds and sample numbers:

• Whole-range approach: inputs can be any floating-point
number g 2 F, where F is the domain of acceptable input
floating-point numbers (i.e., normal numbers or zero).

Bayesian Optimization

Runs in GPU

• Number Sampling
• Input Bound Splitting

• Function f transformations

Category Input
NaN
INf+
...

1.3e-45
6.2e-109

...

nvcc
compiler

Wrapper Generator

Function signature:

CUDA
Program (.cu)

User Report
Shared
library (.so)

double compute(
 double x, double y,double z)

Fig. 2. Overview of Xscope’s workflow.

INF+INF–
±0

Max Normal (pos)Min Normal (neg) Min Subnormal (pos)

Max Subnormal (pos)

Fig. 3. Location of max and min of normal and subnormal numbers.

Fig. 4. Sample of a normalized sigmoid function

also that there is no guarantee that BO even finds f(x) =
2.105e-309 since it may jump quickly to smaller values of f .

To address this issue, we propose an approach that we
call function twisting, which allows BO to move towards
the positive underflow region and stay in that region until
the smallest subnormal number is found, at which point BO
has identified the function minima. The idea is to twist the
quadrant III of the function to quadrant II so the underflow
region is exposed to BO as the smallest region and it stops in
that region when minimizing. Figure 5 illustrates the idea.

In other words, we transform f into a new function f
0 and

ask BO to minimize f
0. More formally f

0 is defined as:

f
0(x) =

8
><

>:

µ if f(x) = 0.0 or f(x) = �0.0

f(x) if f(x) � S
+
min

-f(x) if f(x) < S
+
min.

(3)

Note that zero is a special case. Since zero is smaller than
S
+
min, BO could think zero is the smallest point and would not

stop at any subnormal number. We assigned zero the parameter
µ with the condition that it must be greater than the largest
subnormal, i.e., S+

max. In practice, we have found that µ = 1.0
works well.

What about negative subnormals? For the negative under-
flow region we want BO to maximize f and use a similar

Fig. 5. illustration of the function twisting idea

approach where the quadrant I is flipped down to quadrant IV.
More formally:

f
0(x) =

8
><

>:

�µ if f(x) = 0.0 or f(x) = �0.0

f(x) if f(x)  S
�
max

-f(x) if f(x) > S
�
max.

(4)

Note that function splitting is not simply flipping the function
on the x or y axis since we only flip one quadrant (flipping
moves both quadrants) and zero must be handled differently.
Also note that for finding inputs that trigger INF+ and INF-,
function flipping is not required.

D. Input Range Splitting

Since we assume that the user has limited (or null) a priori
knowledge of the input bounds, in the general case, input
values can be any normal floating-point number or zero—we
discard exceptional cases, such as INF or NaN, as input since
they are usually not used to compute anything. This, however,
is a very large input range, which challenges BO and there is
no guarantee it can arrive to a global maxima/minima [8], [9].
To address this challenge, we use various divide-and-conquer
methods to split the input bounds and sample numbers:

• Whole-range approach: inputs can be any floating-point
number g 2 F, where F is the domain of acceptable input
floating-point numbers (i.e., normal numbers or zero).

: min subnormal (positive)

22
LLNL-PRES-845366

Function Twisting: Zero is a Special Case

• Zero is smaller than the minimum subnormal number
• BO could think zero is the smallest point
• BO may not stop at a subnormal number
• Zero gets a special value 𝜇
• Condition:

• 𝜇 must be greater than the largest subnormal
• 𝜇 = 1 worked in practice

Bayesian Optimization

Runs in GPU

• Number Sampling
• Input Bound Splitting

• Function f transformations

Category Input
NaN
INf+
...

1.3e-45
6.2e-109

...

nvcc
compiler

Wrapper Generator

Function signature:

CUDA
Program (.cu)

User Report
Shared
library (.so)

double compute(
 double x, double y,double z)

Fig. 2. Overview of Xscope’s workflow.

INF+INF–
±0

Max Normal (pos)Min Normal (neg) Min Subnormal (pos)

Max Subnormal (pos)

Fig. 3. Location of max and min of normal and subnormal numbers.

Fig. 4. Sample of a normalized sigmoid function

also that there is no guarantee that BO even finds f(x) =
2.105e-309 since it may jump quickly to smaller values of f .

To address this issue, we propose an approach that we
call function twisting, which allows BO to move towards
the positive underflow region and stay in that region until
the smallest subnormal number is found, at which point BO
has identified the function minima. The idea is to twist the
quadrant III of the function to quadrant II so the underflow
region is exposed to BO as the smallest region and it stops in
that region when minimizing. Figure 5 illustrates the idea.

In other words, we transform f into a new function f
0 and

ask BO to minimize f
0. More formally f

0 is defined as:

f
0(x) =

8
><

>:

µ if f(x) = 0.0 or f(x) = �0.0

f(x) if f(x) � S
+
min

-f(x) if f(x) < S
+
min.

(3)

Note that zero is a special case. Since zero is smaller than
S
+
min, BO could think zero is the smallest point and would not

stop at any subnormal number. We assigned zero the parameter
µ with the condition that it must be greater than the largest
subnormal, i.e., S+

max. In practice, we have found that µ = 1.0
works well.

What about negative subnormals? For the negative under-
flow region we want BO to maximize f and use a similar

Fig. 5. illustration of the function twisting idea

approach where the quadrant I is flipped down to quadrant IV.
More formally:

f
0(x) =

8
><

>:

�µ if f(x) = 0.0 or f(x) = �0.0

f(x) if f(x)  S
�
max

-f(x) if f(x) > S
�
max.

(4)

Note that function splitting is not simply flipping the function
on the x or y axis since we only flip one quadrant (flipping
moves both quadrants) and zero must be handled differently.
Also note that for finding inputs that trigger INF+ and INF-,
function flipping is not required.

D. Input Range Splitting

Since we assume that the user has limited (or null) a priori
knowledge of the input bounds, in the general case, input
values can be any normal floating-point number or zero—we
discard exceptional cases, such as INF or NaN, as input since
they are usually not used to compute anything. This, however,
is a very large input range, which challenges BO and there is
no guarantee it can arrive to a global maxima/minima [8], [9].
To address this challenge, we use various divide-and-conquer
methods to split the input bounds and sample numbers:

• Whole-range approach: inputs can be any floating-point
number g 2 F, where F is the domain of acceptable input
floating-point numbers (i.e., normal numbers or zero).

Bayesian Optimization

Runs in GPU

• Number Sampling
• Input Bound Splitting

• Function f transformations

Category Input
NaN
INf+
...

1.3e-45
6.2e-109

...

nvcc
compiler

Wrapper Generator

Function signature:

CUDA
Program (.cu)

User Report
Shared
library (.so)

double compute(
 double x, double y,double z)

Fig. 2. Overview of Xscope’s workflow.

INF+INF–
±0

Max Normal (pos)Min Normal (neg) Min Subnormal (pos)

Max Subnormal (pos)

Fig. 3. Location of max and min of normal and subnormal numbers.

Fig. 4. Sample of a normalized sigmoid function

also that there is no guarantee that BO even finds f(x) =
2.105e-309 since it may jump quickly to smaller values of f .

To address this issue, we propose an approach that we
call function twisting, which allows BO to move towards
the positive underflow region and stay in that region until
the smallest subnormal number is found, at which point BO
has identified the function minima. The idea is to twist the
quadrant III of the function to quadrant II so the underflow
region is exposed to BO as the smallest region and it stops in
that region when minimizing. Figure 5 illustrates the idea.

In other words, we transform f into a new function f
0 and

ask BO to minimize f
0. More formally f

0 is defined as:

f
0(x) =

8
><

>:

µ if f(x) = 0.0 or f(x) = �0.0

f(x) if f(x) � S
+
min

-f(x) if f(x) < S
+
min.

(3)

Note that zero is a special case. Since zero is smaller than
S
+
min, BO could think zero is the smallest point and would not

stop at any subnormal number. We assigned zero the parameter
µ with the condition that it must be greater than the largest
subnormal, i.e., S+

max. In practice, we have found that µ = 1.0
works well.

What about negative subnormals? For the negative under-
flow region we want BO to maximize f and use a similar

Fig. 5. illustration of the function twisting idea

approach where the quadrant I is flipped down to quadrant IV.
More formally:

f
0(x) =

8
><

>:

�µ if f(x) = 0.0 or f(x) = �0.0

f(x) if f(x)  S
�
max

-f(x) if f(x) > S
�
max.

(4)

Note that function splitting is not simply flipping the function
on the x or y axis since we only flip one quadrant (flipping
moves both quadrants) and zero must be handled differently.
Also note that for finding inputs that trigger INF+ and INF-,
function flipping is not required.

D. Input Range Splitting

Since we assume that the user has limited (or null) a priori
knowledge of the input bounds, in the general case, input
values can be any normal floating-point number or zero—we
discard exceptional cases, such as INF or NaN, as input since
they are usually not used to compute anything. This, however,
is a very large input range, which challenges BO and there is
no guarantee it can arrive to a global maxima/minima [8], [9].
To address this challenge, we use various divide-and-conquer
methods to split the input bounds and sample numbers:

• Whole-range approach: inputs can be any floating-point
number g 2 F, where F is the domain of acceptable input
floating-point numbers (i.e., normal numbers or zero).

: min subnormal (positive)

23
LLNL-PRES-845366

§ Calculates the hyperbolic cosine of input argument x

§ It’s an increasing function
è it will produce INF as input increases

§ Library documentation is not clear on specific inputs
that trigger INF

§ Xscope found inputs triggering INF:
— 4.35e+3
— 1e+47
— 4.17+306

Example: cosh(double x)

Documentation

24
LLNL-PRES-845366

Comparison to Random Sampling

(1) Xscope: fp sampling + many-ranges
(2) Random: stops sampling inputs when the first exception is found

•This is how Xscope operates as well
(3) Random unbounded: does not stop sampling when an exception is found
All methods have the same number of trials (samples)

aF
Rs

aF
Rs

h
as

in
as

in
h

at
an

at
an

2
at

an
h

FE
rt

Fe
il

FR
py

si
gn FR

s
FR

sh
FR

sp
i

Fy
l_

Ee
ss

el
_i

1
er

f
er

fF
er

fF
in

v
er

fF
x

er
fin

v
ex

p
ex

p1
0

ex
p2

ex
pm

1
fa

Es
fd

im
flR

Rr
fm

ax
fm

in
fm

Rd
hy

pR
t j0 j1

lg
am

m
a

lR
g

lR
g1

0
lR

g1
p

lR
g2

lR
gE

m
ax m
in

ne
ar

Ey
in

t
ne

xt
af

te
r

nR
rm

Fd
f

nR
rm

Fd
fin

v
pR

w
rF

Er
t

re
m

ai
nd

er
rh

yp
Rt rin
t

rR
Xn

d
rs

Tr
t

si
n

si
np

i
ta

n
ta

nh
tg

am
m

a
tr

Xn
F y0 y1

0

1

2

3

4

Ex
Fe

pt
iR

n
Ty

pe
s

FR
Xn

d

RandRm
RandRm_XnERXnded
XsFRpe

25
LLNL-PRES-845366

Strategy to Mitigate Numerical Inconsistencies
and Exceptions

Detecting Numerical Exceptions
• Exceptions cause inconsistencies
• Detection is crucial
• Compiler and dynamic instrumentation

Finding Inputs that
Cause Exceptions

• Inputs induce exceptions
• Bayesian Optimization
• Mitigate bad inputs in testing

Isolating Lines
of Code

• Isolate code that is impacted
• Search by enhancing precision
• Isolate expressions

1

2 3

26
LLNL-PRES-845366

§ Motivational example 1: example from NMSE 3.3.4/FPBench1

pow((x + 1.0), (1.0 / 3.0)) - pow(x, (1.0 / 3.0)); where x = 8291454011552366.0

Compiler-induced Numerical Inconsistencies

1. Toward a Standard Benchmark Format and Suite for Floating-Point Analysis
NSV’16: N. Damouche, M. Martel, P. Panchekha, C. Qiu, A. Sanchez-Stern, and Z. Tatlock

Command line Platform Results

nvcc -O0 CUDA 0

nvcc –O3 –use_fast_math CUDA 0

gcc -O0 x64 2.9103830456733704e-11

gcc –O3 –ffast-math x64 -5.8207660913467407e-11

27
LLNL-PRES-845366

Ciel (Compiler-induced Inconsistency Expression
Locator)

main()
C_func1()
C_func2()
Cuda_func1()
Cuda_func2()
...

main()
C_func1()
C_func2()
Cuda_func1_t()
Cuda_func2()
...

1. Hierarchy Extraction Can
isolate

further?

Y

Source code Abstract Syntax Trees

Minimal Code Regions

3. Precision Enhancement

Narrow down code regions
by whether inconsistency is resolved
via differential testing

N

Minimal Code Regions

2. Hierarchical Code Isolation

Miao, Dolores, Ignacio Laguna, and Cindy Rubio-González. "Expression Isolation of Compiler-Induced Numerical Inconsistencies in Heterogeneous
Code." High Performance Computing: 38th International Conference, ISC High Performance 2023, Hamburg, Germany, May 21–25, 2023.

28
LLNL-PRES-845366

Hierarchical Bisection Search

Resolved

Unresolved
Text contains inconsistency-inducing code
Text is the source of inconsistency
Text is under consideration as possible source of inconsistency
Text excluded temporarily for bisection search
Text is discarded from bisection search

29
LLNL-PRES-845366

Precision Enhancement

§ Key Idea: infinite precision is best, but not possible

§ Second best is enhanced precision (increased precision)
— Avoid conditions that cause inconsistencies
— Minimize rounding error caused by inconsistencies

§ Can enhance precision for a single statement/expression

a = b * 2.0f + c a = (float)((double)b * 2.0) + c

The expression itself is cast back to original precision

30
LLNL-PRES-845366

Inconsistency Analysis in Synthetic GPU Programs

• 330 randomly generated CUDA programs with compiler-induced inconsistencies

• Successfully isolated code in 328 out of 330

• Examples

+1.8922E-42f + var_3 ==> 0.0f + var_3

sinf(+1.0195E25f）==> sin.approx.ftz.f32

-16458 / 1.67329e-16 ==> div.approx.ftz.f32

powf(-inf, 1.5f) ==> inf or 0.0 or nan

31
LLNL-PRES-845366

Ciel Isolates Inconsistencies in Heterogeneous
Applications

Program Function Lines Expression
Isolated?

#Configs Time(m:s)

BT.S exact_solution 1874-1886 Y 10 1:23

CG.S sparse 1710,1722 Y 18 1:23

CG.W sparse 1710,1713,1765 Y 19 1:34

LU.S ssor_gpu_kernel_2 4023 Y 8 1:03

MG.W rprj3_gpu_kernel 2045-2050 Y 14 1:16

CFD 097K cuda_compute_step_factor 283 Y 14 6:01

CFD 193K compute_speed_sqd 252,257 Y 10 7:29

LUD lud_internal --- N 17 1:16

• CLOUDSC: from leftover debug code, acknowledged by developers
zfallcorr = pow(yrecldp->rdensref/zrho[jl-1], (float)0.4);

32
LLNL-PRES-845366

Ciel Performs Better than State-of-the-art
in Synthetic CPU Programs

§ 50 programs generated by Varity, with inconsistency on x86 gcc 5.4.0

§ Ciel uses 29.7% fewer searches to isolate statements

§ Trade-off for isolating expressions: more searches (16.5 vs. 7.4)

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Isolation Granularity

pLiner Ciel

Expression

Statement

Basic Block

Function

Cannot Resolve

33
LLNL-PRES-845366

Collaborators and Contributors

Ganesh Gopalakrishnan

Xinyi Li

Tanmay Tirpankar

University of Utah

Cindy Rubio-González

Dolores Miao

University of California, Davis

34
LLNL-PRES-845366

1. Hidden floating-point exceptions can cause reproducibility issues
— All exceptions must be addressed (to some degree) via testing

2. We provide tools to isolate exceptions in GPU programs
— FPChecker: Clang/LLVM tool
— BinFPE: binary instrumentation
— Xscope: finds inputs that trigger exceptions

3. Identifying the source of inconsistencies is crucial
— Ciel allows fine grained isolation of expressions

Summary

Thank you!
Contact: ilaguna@llnl.gov

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

