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Abstract—Today’s microprocessors have complex memory
subsystems with several cache levels. The efficient use of this
memory hierarchy is crucial to gain optimal performance,
especially on multicore processors. Unfortunately, many imple-
mentation details of these processors are not publicly available.
In this paper we present such fundamental details of the
newly introduced Intel Nehalem microarchitecture with its
integrated memory controller, Quick Path Interconnect, and
ccNUMA architecture. Our analysis is based on sophisticated
benchmarks to measure the latency and bandwidth between
different locations in the memory subsystem. Special care is
taken to control the coherency state of the data to gain insight
into performance relevant implementation details of the cache
coherency protocol. Based on these benchmarks we present
undocumented performance data and architectural properties.

Keywords-nehalem, multicore, cache coherency, bandwidth,
latency

I. INTRODUCTION

Today, multicore technology is available in most processor
families. The growing number of cores further increases
the demand for a powerful memory subsystem. Previous
generations of Intel Xeon processors are connected to other
processors and a single, off-chip memory controller by
the Front Side Bus. Especially in multiprocessor systems,
this architecture poses a serious bottleneck as it limits the
scalability of both the memory bandwidth and the inter-
processor bandwidth.

Intel addresses these issues with the Nehalem microarchi-
tecture discussed in this paper. Each processor has an inte-
grated memory controller (IMC) that reduces the memory
latency and improves the bandwidth scalability. The Quick
Path Interconnect (QPI) provides point-to-point connectivity
to other processors and the chipset. With these features, a
Nehalem based multiprocessor system represents a cache-
coherent non-uniform memory access (ccNUMA) architec-
ture. Similar systems based on the competing AMD Opteron
processors are well-known and established.

These architectural changes are most valuable for High
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Performance Computing (HPC) and its high demand for
memory performance. However, the community lacks an
accepted benchmark analysis that offers qualitative and
quantitative information on the memory subsystem. Com-
mon memory benchmarks such as STREAM do not cover
all aspects of multicore architectures such as bandwidth and
latency between different processor cores. These character-
istics are of growing importance, e.g. for shared memory
parallelism such as producer-consumer problems as well as
for thread migration between cores and subsequent reuse of
cached data. The complexity increases for accesses to cache
lines in different coherency states, another aspect that has
not been investigated in detail so far.

Our newly developed benchmarks measure both band-
width and latency for accesses to main memory and caches
of other cores. The results reveal detailed performance
characteristics of cache-to-cache transfers and the ccNUMA
implementation. This allows us to gain substantial new
insight into the Nehalem microarchitecture. While the high-
level analysis of application performance is beyond the scope
of this paper, we present fundamental data to facilitate such
research.

This paper is organized as follows: Section II presents
background information and related work. Characteristics
of the Nehalem architecture are outlined in Section III.
Section IV introduces the test system and our benchmarks.
We present the results of our latency and bandwidth mea-
surements in Sections V and VI, respectively. Section VII
concludes this paper and sketches future work.

II. RELATED WORK

The use of performance measurements is a common
technique to determine details about the design and im-
plementation of a processor’s memory subsystem. Babka
and Tůma presented their work in [1], focusing mainly
on translation lookaside buffers and cache associativity.
Peng et al. compare the memory performance of dual-
core processors including a ping-pong implementation to
analyze the latency of cache-to-cache transfers [2]. Other
benchmarks measure the memory bandwidth but disregard
most architectural details. One example is the well-know
STREAM benchmark [3], [4]. To the best of the authors
knowledge, our memory benchmarks are the first to consider
the cache coherency protocol.
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The Nehalem microarchitecture implements the MESIF
cache coherency protocol, an extended version of the well-
known MESI protocol [5, p. 213]. Due to the novelty of
this microarchitecture, we can only refer to a very limited
number of publications that are relevant for our test system.
Some information can be gathered from Intel documents [6],
[7]. However, none of them describe the architecture in much
detail.

We use BenchIT [8] to develop and run our memory
benchmarks as well as for the results evaluation. This
performance measurement suite is designed to run micro-
benchmarks on every POSIX 1.003 compliant system in a
user-friendly way. It helps to compare different algorithms,
implementations of algorithms, properties of the software
stack, and hardware details of whole systems. The software
is available as Open Source.

III. SYSTEM ARCHITECTURE

Previous generation quad-core Xeon processors (Harper-
town) are composed of two dual-core dies each with a shared
L2 cache. In contrast, the Xeon 5500 series processors
(Nehalem-EP) are a native quad-core design. Similar to
quad-core AMD Opteron processors (Shanghai), the L1 and
L2 caches are implemented per core, while the L3 cache is
shared among all cores of one processor. The Front Side Bus
used in previous Intel CPUs is replaced by point-to-point
links called Quick Path Interconnect (QPI). Moreover, each
processor contains its own integrated memory controller
(IMC). The basic design of a two-socket Nehalem system is
depicted in Figure 1.

The Intel Nehalem microarchitecture supports simulta-
neous multithreading (SMT) that allows each core to ex-
ecute two threads in parallel. This technique is well-known
from the Pentium 4 processors based on Intel’s Netburst
microarchitecture. Furthermore, processors based on the
Nehalem microarchitecture feature a dynamic overclocking
mechanism (Intel Turbo Boost Technology) that allows the
processor to raise core frequencies as long as the thermal
limit is not exceeded. Table I shows the key differences
between the Nehalem microarchitecture and other common
x86 64 server CPUs.
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Figure 1. System overview

Although the basic structure of the memory hierarchy
is similar for Nehalem and Shanghai based processors, the
implementation details differ. While AMD processors use a
“non-inclusive” L3 cache, Intel implements an inclusive last
level cache. “core valid bits” within the L3 cache indicate
that a cache line may be present in a certain core. If a bit is
not set, the associated core certainly does not hold a copy
of the cache line, thus reducing snoop traffic to that core.
However, unmodified cache lines may be evicted from a
core’s cache without notification of the L3 cache. Therefore,
a set core valid bit does not guarantee the presence of
the cache line in a higher level cache. Generally speaking,
the shared last level cache with its core valid bits has the
potential to strongly improve the performance of on-chip
data transfers between cores while filtering most unnecessary
snoop traffic.

Nehalem is the first microarchitecture that uses the MESIF
cache coherency protocol. It extends the MESI protocol used
in previous Xeon generations by a fifth state called forward-
ing. This state allows unmodified data that is shared by two
processors to be forwarded to a third one. We therefore
expect the MESIF improvements to be limited to systems
with more than two processors. The benchmark results of
our dual-processor test system configuration should not be
influenced.

Table I
COMPARISON OF DIFFERENT X86 64 MICROARCHITECTURES

Processor AMD Opteron 238* Intel Xeon 54** Intel Xeon 55**

Microarchitecture Shanghai Harpertown Nehalem-EP
Cache organization non-inclusive inclusive inclusive

Cache coherency protocol MOESI MESI MESIF
Shared last level cache yes no yes

Integrated memory controller yes no yes
Point-to-point processor interconnect yes no yes

Native quad-core design yes no yes
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IV. TEST SYSTEM AND BENCHMARK DESIGN

The configuration of our test system is detailed in Table II.
We disabled dynamic overclocking to exclude potential
interference factors. Our benchmarks use only one thread per
core. We therefore disabled the SMT feature. The “adjacent
line prefetcher” was always enabled in the BIOS of our test
system, whereas the “hardware prefetcher” was disabled if
not noted otherwise.

Table II
TEST SYSTEM CONFIGURATION

Processors 2x Intel Xeon X5570

Core arrangement Processor 0: core 0-3
Processor 1: core 4-7

Core frequency 2.933 GHz

Uncore frequency 2.666 GHz

QPI bandwidth 25.6 GB/s per link

L1 cache size 32 KiB/32 KiB

L2 cache size 256 KiB

L3 cache size 8 MiB

Cache line size 64 Bytes

Page size 4 KiB/2 MiB (small/huge pages)

L1 data TLB 48/32 entries for small/huge pages

L2 TLB 512 entries for small pages

Memory type 6x 2 GiB DDR3-1333, registered, ECC
3 channels per processor, 10.66 GB/s each

Operating System Debian 5.0, Kernel 2.6.28.1

Compiler gcc 4.3.2 and icc 11.0

We used two kinds of benchmarks to measure the perfor-
mance of the memory subsystem. Hand optimized assem-
bler benchmarks (see Section IV-A) are used to determine
minimal read latency and the maximal read and write band-
width. Additionally, a modified version of the STREAM [4]
benchmark (see Section IV-B) is used to verify the results
from the assembler benchmarks and examine more complex
memory access patterns. The benchmarks are available as
Open Source on the BenchIT website (www.benchit.org).

A. Assembler Benchmarks
Our compiler independent assembler benchmarks are de-

signed to run on 64 Bit x86 processors (Intel and AMD).
They use instruction sequences that can not be generated
using C, e.g. transfer data into registers without computing
on it. Only the measurement routine itself is programmed in
assembler, the rest (e.g. memory allocation) is written in C.
Our timer is the high resolution Time Stamp Counter. How-
ever, a small overhead exists that is noticeable especially
in the L1 results. Each thread of the benchmark program
is pinned to a certain core. In the following description,
thread N will always run on core N. We ensure that all
memory pages of each thread are physically allocated in the
corresponding memory DIMMs, allowing us to reveal effects
caused by the NUMA architecture.

Prior to the measurement, data is placed in the caches
in a certain coherency state. These states are generated as
follows:

• Modified state in caches of core N is generated by:
Thread N writing the data, which also invalidates all
copies that may exist in other cores.

• Exclusive state in caches of core N is generated by:
1) Thread N writing to the memory to invalidate copies
in other caches, 2) Thread N invalidating its cache using
the clflush instruction, 3) Thread N reading the data

• Shared state in caches of core N is generated by:
1) Thread N caching data in exclusive state, 2) Reading
the data from another core

Memory benchmarks and especially latency measure-
ments often show a mixture of effects from different cache
levels rather than just one. If appropriate, we use a special
cache flush routine to explicitly measure the performance of
a certain cache level. If the dataset used for the measurement
does not fit into a certain cache level, the cache flush
routine completely replaces the data in this (and higher)
cache levels with dummy data that is not accessed during
the measurement. Translation lookaside buffer (TLB) misses
are another effect that can strongly influence the results of
memory benchmarks. We use “huge pages” to prevent TLB
misses up to a dataset size of 64 MiB of contiguous memory.
The dummy data for our cache flushes is allocated using
small pages. The Nehalem microarchitecture implements
separated TLB entries for small and huge pages. Therefore,
the cache flushes do not affect the TLB entries needed for
the measurement.

The latency benchmark (see Section V) uses pointer-
chasing to determine the latency for accesses to main
memory and different cache levels (local and other cores),
respectively. The following implementation model describes
a latency measurement of core 0 accessing memory associ-
ated with core N:

1) thread 0: warm-up TLB
2) if (N>0): sync of thread 0 and N
3) thread N: access data (-> E/M/S)
4) if (N>0): sync of thread 0 and N
5) all threads: flush caches (optional)
6) thread 0: measure latency

Step 1 ensures that TLB entries needed for the measurement
are always present in core 0. Step 3 places data in the
caches of core N in one of the coherency states described
earlier. Step 5 optionally performs the cache flush routine
described earlier. Step 6 is the final latency measurement
and always runs on core 0. The number of accesses during
the latency measurement is constant, the access pattern is
pseudo-random. Every cache line is accessed only once
to avoid reuse of cache lines. No consecutive cache lines
are accessed to eliminate the influence of the adjacent line
prefetcher.
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The single-core bandwidth benchmark (see Sec-
tion VI-A) has a similar structure as the latency benchmark
and performs steps 1 to 5 identically. We again control the
coherency state of the accessed cache lines to unveil how
the coherency protocol affects the memory performance.
Moreover, the measurement routine can access different
locations of the memory subsystem, including other cores’
caches. We are therefore able to determine local, inter-core,
and inter-processor bandwidths.

The measurement routine that runs on core 0 (step 6)
differs from the latency benchmark. It consecutively accesses
a variable amount of data to determine the read or write
bandwidth that is available for a single core. We solely use
transport instructions to load (MOVDQA) or store (MOVDQA,
MOVNTDQ) data in order to avoid being limited by arithmetic
operations.

With respect to the write bandwidth, it is important to note
that current x86 64 microarchitectures do not allow one core
to write explicitly into another core’s cache. Therefore, the
results of this benchmark are always a combination of two
effects: first, the read-for-ownership that is performed prior
to the write, and second, the write access to the local cache.
This has to be considered in the interpretation of the results.

The multicore bandwidth benchmark (see Section VI-B)
uses multiple threads concurrently to determine the ag-
gregate bandwidth for a variable number of cores. This
is particularly helpful to determine the characteristics of
the shared L3 cache and the integrated memory controller
for simultaneous accesses of multiple cores. The memory
access routine is similar to the previous benchmark and
consecutively accesses a variable amount of data that is
privately allocated by each thread.

For this benchmark it is very important that all parallel
threads are tightly synchronized. We use the Time Stamp
Counter (TSC) for this purpose. This requires system-wide
synchronous TSCs, which is the case in our test system.
All cores increment the TSC at a constant rate set to a
fixed multiple of an external reference clock. The latter is
received from an external clock source jointly used by both
processors. To ensure that all accesses occur between two
timestamps, we use the minimal start time and maximal end
time of all threads to calculate the accumulated bandwidth.
The implementation model of the benchmark looks as fol-
lows:

1) all threads: access data (-> E/M)
2) all threads: flush caches (optional)
3) all threads: barrier synchronization
4) thread 0: define start_time in future
5) all threads: wait for start_time
6) all threads: measure t_begin
7) all threads: access data (read/write)
8) all threads: measure t_end
9) duration = max(t_end) - min(t_begin)

B. Modified STREAM Benchmarks

The last benchmark presented in this paper resembles
STREAM, a well-know and frequently used set of band-
width benchmarks [4]. We mainly use it to crosscheck
the results of our assembler routines and find potential
weaknesses of either the C or the assembler implementation.
Additionally, it is used to investigate the performance of
more complex memory access patterns that involve reads
and writes.

The original STREAM benchmark uses four different
memory access patterns which implement calculations on
one-dimensional arrays of double precision floating point
numbers. The second version, called STREAM2, also de-
fined memory accesses for read-only and write-only opera-
tions.

Our C benchmarks are comparable to STREAM(2) as they
use the same access patterns. However, there are several
differences compared to the original version:

• Every OpenMP thread is bound to a specific core and
allocates its own memory.

• Time measurement uses the Time Stamp Counter and
is done within the parallel region to remove thread
creation overhead from the measurement.

• The best results of multiple runs are chosen to reduce
interferences.

• Use of vector pragmas to improve compiler optimiza-
tions: #pragma vector aligned for fast aligned
memory access, #pragma vector nontemporal
for explicit write-back of data to main memory without
polluting the caches.

The Intel C++ Compiler 11.0 (-O3) was used to generate
optimal code for the underlying architecture and maximize
the performance.

V. LATENCY RESULTS

In this Section we present the results of our latency mea-
surements on the Intel Nehalem test system. We determine
the latency for accesses to cache lines in variable coherency
states that are placed in different locations of the memory
subsystem. The benchmark implementation is detailed in
Section IV. The results for exclusive and modified cache
lines are presented in Figure 2. Table III summarizes these
results and additionally includes results for shared cache
lines. A variety of conclusions can be drawn from these
results and we describe most of them below.

The latencies to local caches are independent of the
coherency state since the data can be read directly in all
states. In agreement with [6] we measure a latency of
4 and 10 cycles for the L1 and L2 cache, respectively.
The L3 cache latency (38 cycles) is 3 cycles higher than
Intel specifies for processors with identical core and uncore
frequency, likely caused by the differing clock speeds in our
test system.
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(a) Exclusive cache lines (b) Modified cache lines

Figure 2. Read latencies of core 0 accessing cache lines of core 0 (local), core 1 (on die) or core 4 (via QPI)

The latencies to other cores on the same processor
strongly depend on the cache line’s coherency state. The
latency for unmodified cache lines in other cores is inde-
pendent of the cache level since the inclusive L3 cache can
answer all requests. Shared cache lines (two or more core
valid bits set) can be accessed within 13 ns. The L3 cache
contains a valid copy and will immediately respond to a
request without snooping other cores. In contrast, exclusive
cache lines (one core valid bit set) may have been modified
in a higher level cache, forcing the L3 cache to check the
coherency state in the core. This snoop results in a 9.2 ns
penalty that increases the latency to 22.2 ns. Due to the silent
eviction from higher level caches, this penalty even occurs
for cache lines only present in the L3 cache.

For requests to modified cache lines (see Figure 2b), the
data has to be gathered from the cache that contains the
latest copy. The eviction of modified cache lines from a
higher level requires a write-back to the L3 cache that will
also update the core valid bits. Therefore, the L3 cache can
deliver these cache lines with the lowest latency (13 ns).
Data that are still present in higher cache levels (indicated
by the core valid bit) are requested from the L2 or L1 cache,
thus resulting in a higher latency (25.5 or 28.3 ns). Evidently
the shared L3 cache serves as the central and single unit for
on-chip inter-core data transfers.

The latencies to the other processor include an addi-
tional penalty for the data transfer via QPI. For exclusive
cache lines the whole access includes a snoop of one core
in the other processor and requires 63 ns. This is a penalty
of 41 ns compared to the local access (22.2 ns). The latency
for shared cache lines is slightly lower (58 ns). Again, the
L3 cache can directly answer request for shared cache lines.
However, the QPI penalty of 45 ns compared to the local
access (13 ns) is 4 ns higher than for exclusive cache lines.
The latency for modified cache lines exceeds 100 ns. This
occurs due to write-backs to main memory that are required
by the cache coherency protocol.

The latency to main memory is 65 ns for local accesses.
The QPI penalty of 41 ns increases the total latency to 106 ns
when remote memory is accessed. A slowly increasing
latency for memory sizes that exceed 64 MiB shows the
effect of insufficient L1 data TLB entries.

In general, the main memory latency is:

lram = lL3miss (+lQPI) + lIMC/DIMM .

The absolute values strongly depend on the actual test
system, e.g. the processor’s core and uncore frequency. In
our case, the formula looks as follows:

lram = 13ns (+41ns) + 52ns.

Table III
READ LATENCIES OF CORE 0, ALL RESULTS IN NANOSECONDS (CYCLES)

Exclusive cache lines Modified cache lines Shared cache lines
Source L1 L2 L3 L1 L2 L3 L1 L2 L3 RAM

Local 1.3 (4) 3.4 (10) 13.0 (38) 1.3 (4) 3.4 (10)
13.0 (38)

1.3 (4) 3.4 (10) 13.0 (38)
65.1

Core1 (on die) 22.2 (65) 28.3 (83) 25.5 (75) 13.0 (38)

Core4 (QPI) 63.4 (186) 102 - 109 58.0 (170) 106.0
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(a) Exclusive cache lines (b) Modified cache lines

Figure 3. Read bandwidth of core 0 accessing cache lines of core 0 (local), core 1 (on die) or core 4 (via QPI)

VI. BANDWIDTH RESULTS

Each core of an Intel Nehalem processor has one 128 bit
write port and one 128 bit read port [6] to the L1 cache.
At a core clock rate of 2.933 GHz, this limits the available
L1 bandwidth to 46.9 GB/s per direction (read/write). The
L2 caches have 256 bit interfaces used for both reading and
writing, as has the L3 cache. However, the latter is shared
between all four cores of one processor.

All cache lines accessed by a core are placed in its
L1 cache. Moreover, the Nehalem microarchitecture imple-
ments a write-allocate cache policy (except for non-temporal
stores [6]). Any write access to a cache line that is not
present in a local cache triggers a read for ownership before
actually writing the cache line.

Main memory is the lowest level of the memory sub-
system that we analyze with our benchmarks. Each triple-
channel integrated memory controller (IMC) has a theoreti-
cal peak bandwidth of 32 GB/s when equipped with DDR3-
1333 DIMMs.

The following Sections demonstrate the single- and mul-
ticore bandwidths that can be achieved practically.

A. Single-core Bandwidth

The results of our single-core bandwidth benchmarks
show the available transfer rate when accessing data located

Table IV
CORE 0 READ BANDWIDTH IN GB/S

Exclusive Modified
L1 L2 L3 L1 L2 L3 RAM

Local 45.6 31.1 26.2 45.6 31.1
26.2 10.1

Core1 19.3 19.7 9.4 13.2

Core4 9.0 9.2 5.6 6.3

in certain cache levels of different cores. Section VI-B
discusses the main memory in more detail. We use our
designated cache flush routines (see Section IV) to ensure
that data is fetched or written back solely to the intended
cache level or main memory.

In Figure 3 we plot the read bandwidth over the memory
size for both exclusive and modified cache lines. Table IV
summarizes the data. The results for write bandwidths are
presented in Figure 4 and Table V.

The bandwidth to local caches is independent from
the coherency state of the accessed data. This is consistent
with our latency results. We measure an L1 bandwidth of
45.6 GB/s, nearly reaching theoretical peak performance.
Read and write bandwidth for L2 cache (31.1/28.8 GB/s)
and L3 cache (26.2/19.9 GB/s) cannot be derived from the
available documentation. We conclude that the non-optimal
bandwidths of lower cache levels mainly originate from
conflicts caused by simultaneous L1 accesses (Core accesses
L1, transfers between L1 and other caches/memory).

The write bandwidth is lower than the read bandwidth
as data is actually read before it can be written, effectively
doubling the amount of transferred data. However, the write
performance only suffers a minor penalty, especially in the
L2 cache. The 256 bit interfaces of both the L2 and L3 cache
clearly pay off and prevent larger write penalties.

Table V
CORE 0 WRITE BANDWIDTH IN GB/S

Exclusive Modified
L1 L2 L3 L1 L2 L3 RAM

Local 45.6 28.8 19.9 45.6 28.8
19.9 8.4

Core1 23.4 22.2 17.6 9.4 13.0

Core4 9.0 8.3 9.6 5.5
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(a) Exclusive cache lines (b) Modified cache lines

Figure 4. Write bandwidth of core 0 accessing cache lines of core 0 (local), core 1 (on die) or core 4 (via QPI)

The bandwidth to other cores on the same processor
strongly depends on the coherency state of the accessed
data. Reading and writing modified data in the L3 cache
again achieves 26.2 GB/s or 19.9 GB/s, respectively. If the
latest copy is in the local caches of the remote core, read
bandwidth decreases to 13.2 GB/s in the L2 and 9.4 GB/s in
the L1 cache. This picture fully corresponds with our latency
results (see Figure 2b). The L1 and L2 write bandwidth
results resemble the corresponding read bandwidths. The
limiting factor for this case is the read for ownership of the
remote cache lines rather than writing to the local caches.

Read accesses to exclusive cache lines can be served by
the inclusive L3 cache. However, the L3 cache is not aware
whether the data has been modified in the higher cache
levels or not. The snooping overhead limits the bandwidth
to 19.7 GB/s for all cache levels, including the L3 cache.
The latter is an effect of the silent eviction from higher level
caches and again very much in accordance with our latency
results.

Write accesses to exclusive cache lines from another
core of the same processor achieve 23.4 and 22.2 GB/s
for the L1 and L2 cache respectively. This means that
the write bandwidth for L1/L2 data is actually higher than
the corresponding read bandwidth. This effect is surprising
and difficult to explain with the available documentation.
However, the difference is not large.

The bandwidth to the other processor is mainly limited
by the Quick Path Interconnect. Our benchmarks could
not achieve its theoretical peak bandwidth of 12.8 GB/s
per direction. We measure about 9 GB/s for reading and
writing exclusive cache lines. The bandwidth for writing
data modified by a core of the second processor is very
similar. However, the bandwidth significantly decreases to
5.6 GB/s when reading modified cache lines. In this case,

data is written back to main memory as required by the
coherency protocol for cache lines that are shared between
both processors. In contrast, write accesses to modified cache
lines do not require writing back data as the cache lines
remain in a modified state. Therefore, higher bandwidths
can be achieved.

The bandwidth with enabled prefetcher reflects the
performance of the default processor configuration. Table VI
summarizes our results. The absolute bandwidth difference
compared to the case with disabled prefetcher is listed as
second value in each cell (+/- refers to a bandwidth improve-
ment/degradation due to the activation of the prefetcher).

The prefetcher improves the bandwidth in most cases.
Only the L3 performance slightly drops by 2.7 GB/s in
some situations. It is interesting to note that this only occurs
in cases where the L3 cache bandwidth with deactivated
prefetcher is at its limit of 26.2 GB/s. In contrast, the
prefetcher is beneficial if snoops of other cores limit the L3
bandwidth. The main memory bandwidth and the bandwidth
to the second processor via QPI improve significantly when
prefetchers are enabled.

Table VI
CORE 0 READ BANDWIDTHS WITH PREFETCHER (IN GB/S) AND

DIFFERENCE COMPARED TO RESULTS WITHOUT PREFETCHER (IN GB/S)

Exclusive Modified
L1 L2 L3 L1 L2 L3 RAM

Local
45.6 31.1 23.5 45.6 31.1 23.5 13.8
±0 ±0 -2.7 ±0 ±0 -2.7 +3.7

Core1
22.5 23.8 23.8 9.4 13.2 23.5 13.8
+3.2 +3.1 +3.1 ±0 ±0 -2.7 +3.7

Core4
9.6 10.0 10.0 8.1 8.1 8.5 9.0

+0.6 +0.8 +0.8 +2.5 +2.5 +2.9 +2.7
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(a) Exclusive cache lines (b) Modified cache lines

Figure 5. Accumulated read bandwidth using multiple threads

B. Multicore Bandwidth

In this Section we discuss the available bandwidth when
multiple cores access memory concurrently. This test is
primarily targeted at the shared L3 cache and the integrated
memory controller. All threads work on disjoint data, assur-
ing that data streams are independent from each other. Cache
flushes have not been used as they hide interesting effects.
The results for read and write bandwidth are depicted in
Figure 5 and 6, respectively.

Any access to a cache line that is not present in the L1
cache causes its transfer into this cache. Consequently, the
eviction of older cache lines is required. This occurs silently
for exclusive cache lines, while the write-back of modified
lines requires additional bandwidth. The read bandwidth
for exclusive cache lines as depicted in Figure 5a allows
to estimate the performance for concurrent read accesses
to certain cache levels. In contrast, reading modified data
is influenced by additional write-backs, especially for data
sizes that exceed the local caches (see Figure 5b). For
exclusive cache lines, the silent evictions prevent selective
writes to certain cache levels. For example, writing 64 KiB
results in writing 32 KiB into L1 and 32 KiB into L2 cache.
Write bandwidths to modified data are more comprehensible.
Writing 64 KiB results in writing 64 KiB into L2 cache,
32 KiB of new data and 32 KiB of evicted older data.

As expected, the bandwidth of the L1 and L2 caches scale
well with the number of cores used. Therefore, the rest of
this Section concentrates on the L3 cache and the main
memory. Our intention is to determine bandwidths of the
individual cache levels. Therefore, reading exclusive cache
lines and writing to modified lines are the most interesting
cases for us. The results are summarized in Table VII, which
also includes the bandwidth of non-temporal stores.

The L3 bandwidth for reading exclusive cache lines
only scales well for up to three cores with 26 GB/s each as
depicted in in Figure 5a. The performance with four cores is
limited to 85.3 GB/s by the L3 cache (2.66 GHz, 32 Bytes
per cycle). In contrast, the bandwidth for multiple cores
writing to the L3 cache (as depicted in Figure 6b) scales
weakly. Two cores can saturate the L3 write bandwidth.

The read bandwidth of modified data (see Figure 5b)
reveals a potential bottleneck. In this case, all cores write-
back their modified L1 and L2 cache content concurrently
while reading from the L3 cache. Therefore, the L3 write
bandwidth limits the L3 read bandwidth in this situation. The
read performance increases with growing data sets. This can
be explained with the growing amount of read data, whereas
the number of write-backs is determined by the size of the
higher level caches and therefore constant.

The memory bandwidth of a single reading core
is limited by the number of transactions in flight. The
theoretical maximum can be estimated using Littles Law [9]:

bandwidth =
Bytes/Trans. ∗ Trans. in flight

latency

Table VII
L3 AND MAIN MEMORY BANDWIDTH IN GB/S

Cores
L3 Cache RAM

(Sockets) read write read write
non-temporal write

w/o pref. w/ pref.

1 (1) 26.2 19.9 10.1 8.4 8.5 8.5

2 (1) 52.2 27.2 19.3 12.0 12.3 10.7

3 (1) 77.3 26.5 22.7 12.0 13 11.5

4 (1) 85.0 26.0 23.0 12.0 14.1 11.5

8 (2) 170.0 52.0 41.9 22.3 28.2 23.2
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(a) Exclusive cache lines (b) Modified cache lines

Figure 6. Accumulated write bandwidth using multiple threads

In our case, a single core’s fill buffers [6] allow a max-
imum of 10 concurrent memory requests of 64 Bytes each
(cache line size). With a latency of 61.7 ns (memory latency
minus L2 cache latency), the peak bandwidth calculates as
follows:

bandwidth =
64 Bytes ∗ 10

61.7 ns
= 10.4 GB/s

Our measurement result of 10.1 GB/s is only slightly
below the theoretical peak. The bandwidth scales well when
using two cores. However, only minor improvements can
be achieved with three and four cores. The maximum
of 23 GB/s does not meet the expectations. Considering
the three channel memory interface with a bandwidth of
10.6 GB/s per channel, a theoretical peak bandwidth of
32 GB/s can be expected. It is interesting to note that
we achieve a bandwidth of 10.1 GB/s when only one
memory channel is populated. Two channels scale well, as
a bandwidth of 19 GB/s can be achieved.

The write bandwidth to main memory is limited to
12 GB/s per processor and can be reached using two cores.
This is significantly slower than the read bandwidth but can
be explained with the write-allocate mechanism: data needs
to be read before writing, effectively doubling the required
bandwidth. Non-temporal stores slightly improve the write
bandwidth unless the hardware prefetcher is enabled.

C. Modified STREAM Benchmarks

This Section discusses the results of our STREAM de-
rived benchmarks, mainly used to verify our assembler
benchmarks and investigate properties of alternating reads
and writes (Copy, Triad). The STREAM bandwidths are
strongly influenced by the use of non-temporal stores and
the prefetcher settings. Only the best results of several
configurations are presented in Table VIII.

Compared to our assembler results, read bandwidths
(DDOT) tend to be slightly lower in all levels of the memory
subsystem. Generally the bandwidths are similar to our
assembler results with enabled hardware prefetchers. The
highest deviation is measured for the L2 cache, presumably
due to memory access patterns of DDOT that cause more
conflicts than our assembler routine.

The results for writing (Fill) almost perfectly match
the assembler results for all three cache levels. The main
memory bandwidth is close to the assembler result using
non-temporal stores, which are generated by the used Intel
C++ compiler (11.0) as well.

For Triad and Copy, the L1 bandwidth exceeds those
for solely reading or writing. In case of Copy, read and
write accesses can be done in parallel, effectively doubling
the achievable bandwidth. The Triad bandwidth can be
explained with a read/write-ratio of 2:1 that prevents the
use of half of the available write bandwidth. The results for
the L2 cache slightly improve as well. However, the 256 bit
interfaces are not fully utilized.

Table VIII
STREAM(2) BANDWIDTH IN GB/S

Kernel Threads L1 L2 L3 RAM

Triad
1 67.71 34.6 24.0 12.72

4 270.01 134.4 50.9 19.02

Copy
1 89.2 35.8 23.8 11.21

4 353.7 143.6 41.1 18.81

Fill
1 45.2 28.8 20.3 8.52

4 168.8 113.9 25.7 13.92

DDOT
1 45.2 27.8 23.01 13.31

4 168.2 109.7 79.3 20.81

1prefetcher enabled
2using #pragma vector nontemporal
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VII. CONCLUSIONS AND FUTURE WORK

Understanding the properties and performance of the
hierarchical memory system of today’s computers is a key
factor to obtain good application performance. In this work
we have presented a new set of latency and bandwidth
benchmarks for multicore x86 64 architectures. Two major
novelties characterize our approach: First, the explicit con-
trol of the data’s cache coherency state. Second, the well-
defined data placement in every available cache and memory
location of a multi-core and multi-processor ccNUMA sys-
tem. Our benchmark software is publicly available as Open
Source.

We have demonstrated the potential of our approach
with a detailed analysis of the memory hierarchy of a two
socket, quad-core Intel Nehalem test system. The Nehalem
microarchitecture features an integrated memory controller,
an extended cache coherency protocol and a ccNUMA
architecture. Our results reveal a fast and well-designed
memory subsystem. It performs particularly well in most
scenarios that involve on-chip cache-to-cache data transfers.
However, we have also disclosed some potential bottlenecks.

The L1 and L2 caches are implemented per core and
we find the multicore cache bandwidth to scale accordingly.
The L3 bandwidth is shared, scaling well up to three cores
for simultaneous accesses. With concurrent accesses from
all four cores, the per-core read bandwidth decreases from
26 GB/s to about 21 GB/s. The accumulated bandwidth of
85 GB/s currently forms no major limitation, though it will
hopefully be improved for future eight-core implementa-
tions. On the contrary, the write performance of the L3 cache
is more limited. An aggregated bandwidth of about 27 GB/s
is available for all four cores. This can also reduce the read
bandwidth if modified cache lines have to be written back
from the core’s local caches.

Our observations indicate that the shared L3 cache per-
forms well as the central connection between all cores of
one processor. Most unnecessary core snoops are filtered.
Requests to shared cache lines are not forwarded to the
cores. For modified cache lines, requests are only forwarded
to one core or handled by the L3 if the core already evicted
the data. Only request to exclusive cache lines always have
to be forwarded to one core, which is the trade-off for silent
eviction.

We have not been able to fully utilize all three memory
channels of our test system. This may be an architectural
limit or a problem of our test hardware. Apart from that,
a main memory bandwidth of 23 GB/s per processor is
significantly higher than for any other x86 system to date.
However, single cores can not fully utilize this bandwidth.
With respect to the QPI point-to-point interconnect, our
benchmarks show that a bandwidth of up to 10 GB/s can be
achieved per direction. This limits the inter-processor mem-
ory bandwidth for both cache and main memory accesses.

A detailed comparison with other cache coherency proto-
cols and architectures is beyond the scope of this paper and
subject to future work. We have disclosed some effects of the
hardware prefetchers that for example decrease the through-
put of non-temporal stores and need to be investigated
further. Our benchmarks are perfectly suitable to analyze
the ccNUMA implementation of large, Nehalem-EX based
shared memory systems. In addition we will study future
multi- and many-core microarchitectures that are likely to
implement even more complex cache architectures. We also
plan to incorporate performance counters into our bench-
marks in order to identify indicators for bad performance.
This may allow the correlation of performance anomalies in
applications to properties of the underlying hardware.
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