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Abstract—The energy efficiency of computer systems is influ-
enced by many interdependent aspects. To asses the efficiency,
typical benchmarks characterized the total power consumption
of a computer system under certain domain specific workloads.
For example, in case of the SPECPower benchmark the
workload is a typical web server specific Java application.
The contribution of individual components is usually not
considered in this class of benchmarks. The CPU makes
the most significant contribution due to both its high peak
power consumption and the high variability depending on the
workload. Correlations of workload and energy consumption
of parts of the processors are usually done with simulations
rather than actual measurements. This is mainly a consequence
of the limited time resolution of power meters that is usually
orders of magnitude too low to observe variations in the time
scale of microarchitectural events. Furthermore, it is usually
not possible to solely measure power consumption of processors
as they are supplied by multiple power lines that are not
easily accessible and are often shared with other components.
In this paper we present benchmarks and a measurement
methodology that compensate for the time resolution of our
power meter by applying a constant and well-defined workload
to the system. Using this experimental setup we analyze x86-
64 microarchitectures from AMD and Intel. We furthermore
characterize the contribution of individual operations and data
transfers to the total power consumption of the Intel system.

Keywords-energy efficiency; power consumption; data trans-
fers; caches;

I. INTRODUCTION

While the instruction set of x86 processors is well docu-
mented, details about the microarchitectural implementation
are hardly available. The different building blocks such as
cache levels with their individual size and organization as
well as processor pipelines, arithmetic logic units (ALU),
and floating point units (FPU) are generally known. How-
ever, there is usually no information available about the
contribution of individual units or typical operations to the
power consumption of the processor.
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In this paper we present an approach to isolate the energy
consumption characteristics of certain basic operations. We
show how data transfers and arithmetic operations contribute
to the total energy consumption. This is achieved by using
workloads that stress only selected processor parts. Further-
more, we control the location of the used data and thereby
investigate how expensive data transfers from different cache
levels or main memory are. Unlike other approaches this is
not limited to the cost in relation to the used time but also
to the consumed energy for moving data from a memory
location to a register. The microbenchmarks we are using
compensate the time resolution of our power meters which is
several orders of magnitude lower than is required to observe
effects of single instructions. They apply a constant load to
certain parts of the processor for sufficiently long runtimes
that can be captured with our power meter.

The data gathered for the energy consumption of our
workloads can for example be used to compare the energy
efficiency of different microarchitectures for certain opera-
tions. Re-evaluating the reasonableness of microarchitectural
features like simultaneous multithreading (HyperThreading)
for certain workloads is conceivable as well, not only with
respect to performance implications, but also with respect to
energy efficiency. Another possible use case is to create a
model for the energy consumption of processors that could
for example be used to estimate power consumption without
measurement. It may also be possible to help software
architects to decide whether it is more efficient to transfer
previously calculated results from a certain memory location
into the processor core or to recalculate the result.

This information is also crucial to develop well-founded
propositions for creating more energy efficient applications
and systems. A compiler for example could choose those
instructions that consume as little energy as possible, if
multiple options are available to correctly execute the given
algorithm. A system setup could be optimized in a way that
the used programs run at full speed but with some parts of
the processor, which would use additional power, deactivated
or throttled. Another option would be the avoidance of
speculative execution of instructions or the deactivation of
power inefficient processor features like prefetching.
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The paper is structured as follows: In Section II we
introduce our AMD and Intel based test systems, describe
our power measurement infrastructure and methodology, and
present the benchmarks we use. Section III shows the results
for the energy consumption of certain workloads on both
systems. In Section IV we use these results to create a model
of the power consumption for the Intel system. Section V
discusses related work and Section VI concludes this paper.

II. EXPERIMENTAL SETUP

A. Test Systems

In this work we examine two dual socket systems with
six-core processors from AMD and Intel. The AMD test
system is a Sun Fire X4140 with two Opteron 2435 pro-
cessors (Istanbul microarchitecture). The Intel test system
is a software evaluation system equipped with two Xeon
X5670 processors (Westmere-EP microarchitecture). Figure
1 shows the system architecture of both test systems, which
is very similar. The six cores of each processor have private
L1 and L2 caches, whereas the L3 cache is shared by
all cores. Point-to-Point interconnects are used for commu-
nication between the processors. The memory controllers
are integrated into the processors. However, the memory
bandwidth of the two systems differs significantly as the
Opteron system uses DDR2 memory, whereas the Xeon
system supports DDR3 memory.

Both our test systems are equipped with redundant power
supplies. However, we removed one power supply of each
system during our measurements in order to avoid the
additional power consumption of a second power supply.
Table I lists further details concerning processor properties
and other system components. Because of the many differ-
ences between the two systems, the total power consumption
should not be compared.

Due to stability problems we limited the QPI frequency of
our pre-production Intel machine to 4.8 GT/s. The reduced
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Figure 1. Test system overview

Table I
HARDWARE CONFIGURATION AND PROCESSOR DETAILS

Vendor Intel Sun

System
Software Evaluation Sun Fire X4140

System
Operating system Linux 2.6.26 Linux 2.6.33

Processor 2x Intel Xeon X5670 2x AMD Opteron 2435
Core clock 2.93 GHz 2.6 GHz

Uncore/NB clock 2.66 GHz 2.2 GHz
TDP 95 W 115 W (75 W ACP)

Interconnect
QPI 4.8 GT/s coherent HT3 2.2 GHz
(19.2 GB/s) (17.6 GB/s)

Codename Westmere-EP Istanbul
Technology 32 nm HKMG 45 nm SOI

SSE extensions
SSE, SSE2, SSE3,

SSSE3,SSE4.1,SSE4.2 SSE4A
L1 cache 2x 32 KiB per core 2x 64 KiB per core
L2 cache 256 KiB per core 512 KiB per core
L3 cache 12 MiB per chip 6 MiB per chip

IMC channels 3x RDDR3 2x RDDR2
Memory type PC3-10600R PC2-5300R
Memory size 12 GiB (6x 2 GiB) 16 GiB (8x 2 GiB)

Chipset Intel 5520 nVidia MCP55

Disk
500 GB 2x 147 GB, RAID 0

3.5” SATA 7200 rpm 2.5” SAS 10k rpm

Power supply
Ablecom Delta Energy Systems

PWS-801P-1R 885W A221 658W

bandwidth between the cores is not relevant for our measure-
ments as threads are pinned to certain cores and all data is
allocated at the local NUMA node. Based on the results of
our bandwidth measurements the reduced QPI clock only
slightly affects the available bandwidth to local memory.
Aside from that both systems use default BIOS settings.
This includes enabled HyperThreading on the Intel system
and disabled HyperTransport Assist on the AMD system as
well as default prefetcher settings on both systems.

We run Linux on both test systems and use the sysfs
interface of cpufreq to control power management and
ensure a fixed clock rate. The userspace governor is activated
to obtain manual frequency control and deliberately disable
software guided dynamic frequency scaling. Before starting
any benchmark a fixed frequency is enforced by selecting the
lowest P-state (P0) on the AMD system and the second low-
est P-state (P1) on the Intel system. This effectively disables
the Intel Turbo Boost technology and therefore ensures that
our measurements are not influenced by hardware-controlled
dynamic frequency enhancements of individual cores.

B. Power Measurement Methodology

Figure 2 shows the design of our measurement infrastruc-
ture. Attached to the test systems is a ZES LMG450 power
meter that records the power consumption of both systems at
a rate of 10 Hz. A power measurement daemon on a separate
computer, the Collector, is used to configure the power
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Figure 2. System setup for power measurements using the Dataheap

meter and record the power consumption. The Collector for-
wards the recorded power values to the so called Dataheap
Server which stores all measurement data along with their
individual timestamps for later analysis. A command line
client is used to query the average power consumption for
a certain interval from the Dataheap. This client may for
example run on the analysts desktop computer to perform
an (automated) post mortem merging of benchmark results
and power measurement data.

Among the advantages of this setup is that there is
no need for a software modification of the workload that
runs on the test system besides providing start and end
timestamps that are used to retrieve the corresponding power
consumption from the Dataheap. Our setup only requires a
tight (ntp) time synchronization of the test system and the
Collector host. Most importantly, the power measurement
does not affect the runtime behavior of the workload on
the test system. Moreover, unlike for example the power
measurement tool-chain of SPECPower [6], our approach
does not require a special network setup to allow the test
system to communicate with other hosts that are involved
in the power measurement process. The absence of network
communication between test system and measurement host
makes the process of application specific energy efficiency
benchmarking less error-prone.

Our measurement approach does not require any hardware
modification of the test system. On systems with redundant
power supplies, the power meter can easily be planted with-
out interrupting the operation of the test system. However,
the power consumption of the system fans as well as the pro-
cessor itself depends on the temperature [7] and our coarse-
grained approach does not allow to inhibit these effects. We
therefore ensure that the power consumption has reached a
stable value by running each benchmark for 15 minutes. The
power consumption is then determined as the average of a
one minute interval starting 90 seconds before the end of
each individual benchmark. Our power meter samples at a
rate of 10 Hz and we therefore have 600 samples that need
to be within a small range. Measurements that include any

runaway values within the 60 second interval are repeated
in order to eliminate random errors that may be generated
by the power meter or by peripherals like network interfaces
or hard disks.

We use the benchmarks described in Section II-C to gen-
erate specific workloads that allow us to measure the energy
consumption of arithmetic operations and data transfers. The
benchmarks can be configured to selectively stress certain
units of the processor and record the bandwidth of the data
transfers during the benchmark as a measure of throughput.
The units that can be examined are the processor’s ALUs and
FPUs as well as the different cache levels and main memory.
The contribution of the workload to the energy consumption
of the CPU is determined by using the estimated baseline
power consumption that we describe in Section II-D. The
baseline power compensates for the power consumption of
other system components as well as the power required to
have the processors in active state (i.e. C0, not power or
clock gated). Only the additional power consumed when
actually executing instructions is attributed to the respective
execution unit.

C. Workloads

In order to characterize certain processor parts with
respect to their power consumption we need to apply a
constant workload that generates a specific processor load.
On today’s general purpose processors and their instruction
sets it is not possible to stress single units without also
using other processor parts. However, it is possible to create
different workloads that generate varying pressure for some
units while keeping the utilization of all other units constant.
This can be done for the ALUs and FPUs by substituting
the performed operation on the same chunk of data. Data
transfers can be examined by performing the same operation
on data from different locations.

The data transfer benchmarks are based on existing open
source memory bandwidth benchmarks[9]. They allow to
measure the available bandwidth for each cache level and
main memory by carefully placing data in the desired
location. In principle they work as follows:

1) start one thread on each core
2) for all data set sizes
3) all threads: access data sequentially
4) all threads: synchronize
5) all threads: measure t_begin
6) all threads: access data sequentially
7) all threads: measure t_end
8) duration = max(t_end) - min(t_begin)

Each thread is restricted to a certain core (line 1)
using the sched_setaffinity() function in or-
der to avoid thread migration. Furthermore, numactl
--localalloc is used to start the benchmarks in order
to ensure that all threads work on physical memory attached
to their home node. Memory for the data is allocated using
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2 MiB pages in order to reduce TLB misses. The bandwidth
is measured for a configurable number of data set sizes
(line 2). The first access to the buffer (line 3) is used to bring
data into the desired cache level. Thread synchronization,
time measurement, and the whole data access (lines 4-7) are
implemented in assembly language to rule out any compiler
influence and to achieve precise time measurements. We use
the movdqa instruction to transfer 16 Bytes from memory
into an 128 Bit SSE register. The read bandwidth is then
derived from the data set size and the measured duration.

For data set sizes that fit into the L3 caches of our test
systems the sequential buffer access has a runtime of around
150 microseconds. This is several orders of magnitude below
the resolution of our power meters, not to mention our
target runtime of 15 minutes. Simply repeating the whole
measurement for a certain data set size has the disadvantage
that the outer loop iterations interrupt the otherwise constant
workload. Increasing the data set size is also not an option
as we would only be able to measure main memory accesses
in this case. Therefore, the runtime of the measurement
routine itself (line 6) has to be increased. This can be
achieved by repeatedly accessing the same data. The least
recently used (LRU) replacement strategy of the caches
ensures that data is already evicted back to the original
cache level when it is accessed again. However, this “ring
buffer” style memory access destroys the coherency state
control of the original benchmarks. Therefore, corner cases
like writing to exclusive cache lines can not be investigated
with the modified benchmarks. After reaching the runtime
limit of 15 minutes the benchmark will terminate itself after
receiving a SIGTERM signal from an additional thread that
sleeps until the time limit expires.

In order to investigate how arithmetic operations con-
tribute to the energy consumption of the CPU we have
implemented additional measurement routines. In these rou-
tines, the movdqa instruction that was originally used for
loading data is replaced by instructions that additionally per-
form arithmetic operations. All these instructions use a two
address format and we use them with one memory operand
and one register operand. This combines the original load
operation and an arithmetic operation without significantly
changing the code size. Integer operations as well as single
and double precision floating point operations are used to
generate varying load for the ALUs and FPUs while keeping
the utilization of other units constant. We use packed SSE
instructions that perform multiple 32 or 64 Bit operations
on each 16 Byte element and also consider alternative load
instructions such as movaps and movapd. Table II lists the
names and properties of all the benchmarks.

The three load variants move data from a cache or main
memory location into registers but perform no operation
on it. The add, and, and mul benchmarks perform one
operation on each operand. Single precision floating point
instructions execute four 32 Bit operations per 16 Byte,

Table II
BENCHMARK NOMENCLATURE

notation instruction data type / operation
load pi movdqa packed integer load
load ps movaps packed single load
load pd movapd packed double load
and pi pand packed integer and
and pd andpd packed double and
add pi paddq packed integer add
add ps addps packed single add
add pd addpd packed double add
mul pi pmuldq packed integer mul
mul ps mulps packed single mul
mul pd mulpd packed double mul
m+a pd mulpd+addpd packed double sequent mul and add

integer and double precision floating point instructions per-
form two 64 Bit operations per 16 Byte. The m+a_pd
consists of a multiply instruction using a memory operand
and a subsequent addition using the result from the register.
Thus four 64 Bit floating point operations are performed per
16 Byte. The results of the calculations are not stored back
to memory. Therefore, the difference in power consumption
between e.g. the movapd and the mulpd workload can
be solely attributed to the double precision floating point
multiplication.

On Istanbul, floating point SSE multiplication and addi-
tion each can only be performed by one of the SIMD units,
which is not enough to fully utilize the two 128 Bit loads
per cycle that the L1 can handle. The throughput of these
operations therefore differs by a factor of two compared to
the load operations that fully utilize the L1 interface. This
has to be taken into account for the power consumption com-
parison of the different workloads. Moreover, the mul_pi
benchmark does not work on the Opteron test system as it
does not support SSE4.1.

Special care has to be taken to avoid overflows as the
same registers are used repeatedly. This is not an issue for
logic operations. For integer operations it can be ignored as
execution will continue normally after overflows. However,
for floating point addition and multiplication the occurrence
of the value NAN (not a number) has to be avoided.
We achieve this by carefully initializing the buffer with
alternating value and −value in case of addition or value
and value−1 for the multiplication benchmark. Registers are
initialized with value. This results in the registers altering
between value and value + value or value ∗ value. We
thereby avoid the values 0.0 and 1.0 in the registers at any
time as well.

D. Baseline Power Consumption

In Section IV we want to use our results to determine
the energy consumption of certain operations, for example
memory accesses (measured e.g. in picojoule per byte). We
obviously cannot attribute the power consumption of the
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whole system to these small operations. Instead we have to
specify a baseline power consumption. This baseline is de-
fined in our sense as the lowest possible power consumption
of the whole system with all processor cores being in C0
state (operating state, CPU fully turned on). This specifically
forbids to use the idle power as baseline, as the operating
system sends processor cores into deep sleep states during
idle phases. On the other hand, deactivating the C-states in
the system BIOS lets the operating system run a certain idle
loop during phases of inactivity. The power consumption of
that loop may not be the lowest achievable baseline.

One way to approximate the baseline power is to imple-
ment idle loops that do not perform any data movement
and arithmetic operations. We tested empty loops, loops
containing only nop instructions, loops containing only
pause instructions, and a loop that uses the rep prefix to
repeatedly execute the nop instruction. The nop, pause,
and rep nop loops were measured for different numbers of
instructions within a loop (different start values for register
ECX in case of rep nop). Different jump instructions at
the end of the loops were tested as well (unconditional jmp
and conditional jne). OpenMP is used to execute the loops
simultaneously on all cores using GOMP CPU AFFINITY
to avoid unnecessary thread migrations.

Our second approach to estimate the baseline power
consumption is to use instructions with a high latency that
stall the processor while executing. The sqrtpd instruction
performed on register operands turned out to result in
an energy consumption below all our idle loops on both
test systems. Unfortunately, this includes a certain amount
of energy required for performing the calculations. The
baseline power is therefore assumed to be slightly lower
than what was actually measured for the sqrtpd loop (see
Section III-A).

A disadvantage of using a baseline power consumption
is that it can only be estimated. The differences between
total power consumption and the baseline are therefore
error-prone. Furthermore, the baseline approach does not

compensate temperature effects like fan speed and leakage
power. The effect of fan-speeds and other components could
be compensated by measuring processor power separately at
the dedicated 12 V power connector. However, the processor
leakage would still influence the power estimates and it
would still require an estimated baseline for the proces-
sor being active idle. Moreover, current platforms use the
dedicated 12 V power connector only to supply a part of
the processor [10]. Measurements of the 12 V rail would
therefore have to be combined with the 3.3 and 5 V rails
in order to include all processor components. An isolated
power analysis of the CPU is not possible with standard lab
equipment.

III. RESULTS

A. Idle loops

The power consumption of idle loops (see Section II-D)
is slightly higher if conditional jumps are used. However,
the differences are not significant and we only discuss the
results using unconditional jumps. Figure 3 shows the results
for both test systems. Depending on the implementation of
the idle loop its power consumption varies by 14 Watts on
the Intel system and by 50 Watts on the AMD system.

The most notable effect on the Intel Xeon processor is
the power saving induced by the loop stream detector. This
feature allows the processor to disable parts of the pipeline
like fetch and decode if it detects a loop. The 9 Watts
lower power consumption of small nop loops compared
to loops with more instructions (see Figure 3b) can be
solely attributed to the loop stream detector. The power
consumption of the rep nop loop is independent of the
number of instructions per loop as it uses the value in
ECX to adjust the number of iterations and therefore has
a fixed code size that can be handled by the loop stream
detector. This results in a fairly constant power consumption
of 236 Watt for the rep nop loop, slightly more than the
nop loop (233 Watt if only few instructions are in the loop).
The pause operation within the loop uses about 231 Watt,

(a) AMD Opteron 2435 (Istanbul) (b) Intel Xeon X5670 (Westmere-EP)

Figure 3. Comparison of the power consumption of different idle loops on our test systems
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Table III
IDLE POWER CONSUMPTION OF THE TEST SYSTEMS

System Intel Xeon X5670 AMD Opteron 2435
Low frequency 133 W (1600 MHz) 156 W (800 MHz)
High frequency 133 W (2933 MHz) 166 W (2600 MHz)

Idle loops 226-242 W 227-279 W
Register sqrtpd loop 223 W (2933 MHz) 221 W (2600 MHz)

Estimated baseline 220 W (2933 MHz) 218 W (2600 MHz)

less then any of the nop based idle loops. An “empty” loop
(containing only the jump instruction) has the lowest power
consumption (226 Watts).

The results of our AMD Istanbul test system are very
different (see Figure 3a). The nop loop uses less power the
more the loop is unrolled. In our experiments, the power
consumption drops from 256 to 227 Watts. Unlike on the
Intel system, the nop loop can be more efficient than an
empty loop that consumes 247 Watts. We do not observe
a similar effect for the rep nop and pause loops that
consume 279 Watt and 267 Watts, respectively, and show
only low fluctuation. It is particularly interesting to note that
the AMD system does not use the pause hint efficiently.
In contrast to the definition provided by AMD [1], the
pause instruction apparently does not reduce the power
consumption of a spinning loop.

Table III compares the power consumption of the idle
loops with the operating system’s idle implementation that
utilizes C-states in order to be more energy efficient. The
most surprising effect is that the AMD system consumes
11 Watts less if the processor cores are forced into highest
P-state (lowest frequency) prior to entering the C-state. On
the Intel system this makes no difference. If C-state support
is disabled in the BIOS, Linux uses a rep nop loop. The
power consumption in this case is equal to the results of
our rep nop implementation. Table III also shows the
workload with the lowest power consumption that we were

able to measure, a loop that uses the sqrtpd instruction to
perform calculations on register operands only. We use this
loop for our baseline power estimation (see Section III-A)
and subtract a small value that accounts for the energy
consumed by the FPU and register file activity caused by
this operation.

B. Intel Xeon X5670

Figure 4 shows the power consumption of the workloads
described in Section II-C on our dual socket Intel Xeon
X5670 test system. The bars depicting the bandwidth clearly
show the four levels of the memory hierarchy, namely L1,
L2, and L3 cache, and main memory. The respective accu-
mulated bandwidth of all 12 cores of the system is 561, 372,
170, and 40 GB/s. There is only one noticeable deviation in
case of the and_pd instruction that only reaches 528 GB/s
in the L1 cache for an unknown reason. Still, the results
demonstrate that our workloads can achieve a constant
throughput for different instructions that either only transfer
data into the processor registers or do a combination of data
transfer and double precision floating point arithmetic. All
results are well reproducible, the deviation between multiple
runs is typically less than 2%.

The power consumption shows a regular pattern that is
mostly consistent with our initial assumptions. For each
memory location, the load instruction is the one with the
lowest power consumption, as it only transfers data into the
processor registers. The and, add, and mul instructions are
increasingly more demanding (in this order). The combina-
tion of an add and a mul instruction (mulpd+addpd), that
doubles the number of calculations done during a given time
or for a given amount of data, has a surprisingly high impact
on the power consumption. To put the power consumption
into perspective, the lowest value on the secondary vertical
axis (220 Watt) is the baseline power that we estimated in
Section III-A.

Figure 4. Power consumption and data throughput for different packed double instructions when accessing different memory locations of our Intel Xeon
X5670 (Westmere-EP) test system
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Figure 5 includes only a subset of the previously shown
instructions, namely load, add, and mul. However, in this
plot we compare the power consumption of three different
data types: packed integer, packed double, and packed single.
With one exception, the bandwidth that our workloads
achieve is independent from the data type and Figure 5
therefore only shows the results that have been measured
with the packed double version. The packed integer version
only achieves 528 GB/s in the L1 cache for the add and mul
instructions, similar to what we measured in the and_pd
case. The L1 load_pi bandwidth of 561 GB/s as well as
the bandwidth in all other cache levels is identical to what is
achieved with packed double and packed single instructions.

The results in Figure 5 consistently show that integer
instructions require the most power followed by double and
single. The only exception is the L1 mul case due to the
reduced integer bandwidth. The fact that integer operations
consume more power is somewhat unexpected. This might
be caused by the chip layout, e.g. longer distance between
ALU and register file that results in additional energy needed
for transferring data between registers and execution units.
It should also be noted that the power consumption of the
single precision case is lower than for double precision,
although our workload performs calculations on the full SSE
register in both cases (either two double precision or four
single precision operations).

C. The Impact of HyperThreading on the CPU Power Con-
sumption

In our highly optimized benchmarks, one thread per core
can fully utilize the available bandwidth of all cache levels
and main memory. The bandwidth can not be improved by
using all logical cores of the system (24 threads instead of
12). This allows us to study how HyperThreading affects
the power consumption of the processor for cases where the
overall throughput is not increased by the additional threads.
Figure 6 shows that the power consumption is significantly
higher if two threads are used per core. The difference can

Figure 5. Comparison of the power consumption of SSE instructions
(packed integer, double and single) on our Intel Xeon X5670 (Westmere-
EP) test system

be as high as 25 Watts in our test system. This indicates that
the use of HyperThreading should be reconsidered from an
energy efficiency viewpoint as the benefit for the application
performance should exceed 10% in order to compensate the
additional power consumption. However, we have verified
that enabling or disabling HyperThreading in the BIOS of
our Intel test system does not have a measurable effect on
the system’s power consumption as long as only one thread
per core is used. Only the system’s idle power increases
slightly as the scheduler has to manage more CPUs. It is
currently not clear if other implementations of simultaneous
multi-threading (such as IBM POWER7) suffer from similar
power efficiency issues.

D. Comparing AMD Opteron 2435 and Intel Xeon X5670

Figure 7a shows a comparison of the power consumption
of our AMD and Intel test systems. The first thing to note
in Figure 7a is that the L1 bandwidth on the AMD Opteron
differs significantly depending on the workload. The Opteron
microarchitecture achieves twice the L1 bandwidth when
only loading data (load_pd) compared to the add_pd and
mul_pd workload. This explains that the power consump-
tion of the load_pd workload exceeds that of add_pd
and mul_pd. The L2, L3, and main memory bandwidth do
not depend on the workload. Unlike on the Intel system (see
Figure 7b), the load_pd workload does not consume less
power than add_pd and mul_pd. Instead, loading data into
the registers is apparently the most expensive operation. This
unexpected behavior should not be attributed to measuring
inaccuracies, as we observe the same trend (load_pd
highest, add_pd lowest, mul_pd in between) for L2, L3,
and main memory. We suspect that this effect is caused by
the same microarchitectural property that also causes the
different L1 bandwidths, namely that load instructions can
be handled by all floating-point pipelines while add and
mul only use one pipeline.

Figure 6. Power consumption of different instructions on our Intel Xeon
X5670 test system with HyperThreading enabled and disabled; the data
throughput is identical for both cases, only the number of threads differs
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(a) AMD Opteron 2435 (Istanbul) (b) Intel Xeon X5670 (Westmere-EP)

Figure 7. Comparison of the power consumption and data throughput of our AMD and Intel test systems

IV. MODELING ENERGY CONSUMPTION

Besides the general evaluation presented in Section III,
our results can be used as a basis to model a CPU’s
energy consumption. For example, the cost for data transfers
from different locations in the memory subsystem into
the processor registers can be very interesting, especially
when combined with the cost for arithmetic operations. In
this Section we therefore describe a simple, strictly linear
model that characterizes the energy consumption of the
Intel Westmere-EP processor for basic data transfers and
arithmetic operations.

One property of the Istanbul microarchitecture is that
loads consume more power than arithmetic operations on
the same data (see Figure 7a). In order to determine the
energy needed for arithmetic operations we would need to
subtract the energy required for loading data from the energy
consumed during the execution of the arithmetic instructions.
This would result in negative values for the energy per
operation and thus prevents us from assessing the energy
requirements of arithmetic operations for the AMD platform.

A. Data Transfer

Our results show that the single precision load instruction
(movaps) has the lowest average power consumption for
data transfers independent of the memory location (see
Figure 5). We therefore use this operation to determine the
energy consumption of data transfers from the L1, L2, L3
cache or main memory. The energy consumed per Byte
of transferred data (Etrans) is derived from the baseline
power (Pbase = 220 W , see Section II-D), the measured
power consumption (Ptotal), and the data throughput for the
load_ps benchmark:

Etrans [
nJ

Byte
] =

Ptotal [W ]− Pbase [W ]

bandwidth [GB
s ]

.

Table IV shows that transfers from the L2 or L3 cache
are about twice as expensive as from the L1 or L2 cache,

respectively. Transferring data from main memory consumes
five times as much energy as a L3 cache access. This clearly
demonstrates the disadvantage of main memory accesses, not
only due to the limited bandwidth, but also with respect to
the high energy demand.

Table V compares our two test systems with respect
to the energy consumption of data transfers. Due to the
limitations of our measurement methodology, these numbers
can only be considered to be estimates. However, they do
allow to draw some conclusions. The 1.6-fold difference for
L1 accesses can most likely be attributed to the different
dynamic power consumption properties of the technology
nodes used to build the processors (32 nm HKMG for
Intel, 45 nm SOI for AMD). Both microarchitectures do
not require write-backs when data is loaded from the L1
data cache into the processor registers. However, the dif-
ferent size of the L1 cache as well as other properties
like the dual-ported load interface from the core to the

Table IV
BANDWIDTH AND ENERGY CONSUMPTION OF DATA TRANSFERS (USING
THE MOVAPS INSTRUCTION) FROM DIFFERENT MEMORY LOCATIONS ON

THE INTEL XEON X5670 TEST SYSTEM

Location Ptotal Bandwidth Etrans

L1 256.1 W 561.6 GB/s 64 pJ/Byte
L2 265.2 W 372.2 GB/s 121 pJ/Byte
L3 263.6 W 171.6 GB/s 254 pJ/Byte

RAM 269.9 W 39.9 GB/s 1250 pJ/Byte

Table V
COMPARISON OF THE ENERGY CONSUMPTION OF DATA TRANSFERS

(MOVAPS), AMD OPTERON 2435 AND INTEL XEON X5670

Location Etrans AMD Etrans Intel Factor
L1 105 pJ/Byte 64 pJ/Byte 1.6
L2 357 pJ/Byte 121 pJ/Byte 2.9
L3 654 pJ/Byte 254 pJ/Byte 2.6

RAM 3590 pJ/Byte 1250 pJ/Byte 2.8
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L1 cache can also influence the result. The L2 and L3
cache show a 2.9-fold and 2.6-fold difference, respectively.
The increased difference compared to the L1 case is likely
to be an effect of the different cache architectures. Intel’s
inclusive caches allow accesses to the L2 cache with old
L1 cache lines being evicted silently (without write-backs).
The same holds true for L3 accesses and silent L1 and L2
evictions. In contrast, AMD’s exclusive/non-inclusive design
always requires write-backs when unmodified exclusive data
needs to be evicted from the L1 or L2 cache. The 2.8-
fold difference for main memory accesses is dominated by
different bandwidth with the Opteron’s DDR2 providing half
the throughput compared to the Xeon’s DDR3 with a similar
power envelope. It allows no further conclusion with respect
to the efficiency of both architectures.

B. Arithmetic Operations

We derive a estimate of the energy consumption of
arithmetic operations (Ecalc) based on the baseline power
(Pbase), the measured power consumption (Ptotal) for a cer-
tain workload, the data throughput (bandwidth), the number
of bytes per arithmetic operation (ωop, see Table VI) for this
benchmark, and the energy consumption of data transfers
(Etrans, see Section IV-A).

Ecalc[
nJ

op
] =(

Ptotal [W ]− Pbase [W ]

bandwidth[GB
s ]

− Etrans [
nJ

Byte
])

∗ ωop[
Byte

op
]

Table VI presents the energy consumption for different
arithmetic operations. Again, these numbers can only be seen
as an estimation that allows a comparison of individual op-
erations as well as a comparison of the energy requirements
of calculations and the data transfer estimations presented
in Section IV-A. It is interesting to note that a single
precision calculation consumes less than half the energy
of a double precision calculation. Moreover, the combined
double precision addition and multiplication operation turns
out to be fairly expensive.

Table VI
ENERGY CONSUMPTION OF ARITHMETIC OPERATIONS ON THE INTEL

XEON X5670 TEST SYSTEM

Workload operations per 16 Byte ωop Ecalc

add_pi 2 (64 Bit) 8 Byte/op 428 pJ/op
mul_pi 2 (64 Bit) 8 Byte/op 476 pJ/op
add_pd 2 (64 Bit) 8 Byte/op 319 pJ/op
mul_pd 2 (64 Bit) 8 Byte/op 387 pJ/op

mul+add_pd 4 (64 Bit) 4 Byte/op 464 pJ/op
add_ps 4 (32 Bit) 4 Byte/op 111 pJ/op
mul_ps 4 (32 Bit) 4 Byte/op 164 pJ/op

C. Limitations

One limitation of the presented approach is the lack of
an efficiency estimation of the power supply. As the power
supply’s efficiency depends on its operating point, it cer-
tainly affects the correlation between throughput and energy
consumption. Although done carefully, our estimation of
the baseline power of the system (power consumption of
the system with all cores being idle but not in a C-state)
significantly affects all assumptions presented in Section IV.
Other systematic errors of our model may be caused by the
non-consideration of the branch predictors or other processor
features. Another weakness is the missing correlation to the
processor temperature.

More importantly, our data initialization routine currently
does not consider that the power consumption of data
transfers as well as arithmetic operations may be influenced
by the data initialization. However, multiple initialization
values have been tested for all operations and the one with
the highest observed power consumption has been used. A
systematic investigation with respect to the population count
of the used operands as well as the hamming distance be-
tween a value within a register and a new value overwriting
may be required to identify the actual worst case.

V. RELATED WORK

Several papers [5][11][14] topic the usage of performance
counters to estimate the power consumption for a specific
load on x86 processors. This approach, however, is not
precise enough to distinguish between all different types of
operations. As was described in Section III-B, the type of
operation is as important as the used datatype or memory
level. These three factors can be hardly measured using
performance counters. Other publications focus on the per-
formance for transfers from different memory levels[4], but
do not topic the influence on the power consumption.

Tiwari et al. measure the power consumption of the
system and the current for CPU and DRAM to estimate
the power consumption of single instructions for an Intel
486 DX and a Fujitsu SPARClite 934 [13]. Steinke et al.
measure the power consumption for different operations on
an ARM7TDMI processor, including predictions about the
influence of the set bits in moved data [12]. Chang et al.
analyzed the power consumption of the very same processor
with respect to the different pipeline stages [2]. The less
complex architecture and the option to measure only parts
of the system lead to much more accurate conclusions about
the used energy for different instructions.

McIntire et. al. present an embedded network sensor
system for energy monitoring and management [8]. The
proposed platform LEAP allows to monitor the energy
consumption of different subsystems. This work monitors
the energy consumption of different components (e.g. the
processor) per task while we approximate the energy con-
sumption of data transfers and single instructions. Another
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approach to determine the application’s influence on the
power consumption of different components like CPU, mem-
ory, disk, and fans has been presented by Ge et al. [3].

VI. CONCLUSION

We have developed a set of multi-threaded x86-64 specific
workloads that specifically stress certain CPU components.
The innermost routines have been implemented using assem-
bly to allow complete control over the instruction stream that
is executed by the processor cores. Moreover, our workloads
allow us to strictly control the location of all data, most
importantly in which level of the memory hierarchy source
operands are located.

The potential of the presented approach is demonstrated
with an in-depth comparison of two state-of-the-art six-
core processors from AMD (Istanbul microarchitecture)
and Intel (Westmere-EP microarchitecture). We reveal that
for example the power consumption of different types of
idle loops (e.g. using nop or pause instructions) differs
strongly on the two processors. We can also analyze en-
ergy efficiency ramifications of features like Intel’s loop
stream detector. HyperThreading is another feature that is
typically analyzed with respect to its impact on application
performance. Our results allow us to quantify the impact
of HyperThreading with respect to the power consumption,
especially for workloads that do not show any throughput
improvements. Fortunately, there is no need to disable the
feature completely as it is sufficient to restrict an application
that does not benefit from HT to one thread per core using
taskset or other affinity control mechanisms.

Our detailed analysis of the power consumption of differ-
ent workloads that either only transfer data into the processor
registers or combine this with arithmetic operations also
reveals significant differences between our two test systems.
We use a basic model to approximate and compare the
energy consumption of data transfers from different cache
levels and main memory on both microarchitectures. Based
on our different ALU and FPU workloads on the Westmere-
EP based Intel test system we characterize the energy
consumption of arithmetic operations. Moreover, this allows
us to compare data transfers and computations with respect
to their energy consumption.

In future work we plan to extend our approach in order to
measure the energy consumption of data transfers between
cores, processors, or even nodes. Adding more sophisticated
instructions to our analysis and the energy model may be of
interest as well. Moreover, minor hardware modifications of
our test systems are needed in order to remove unwanted
power consumption influences that are e.g. caused by the
system fans. The power consumption model may also be
used to make a substantiated selection of hardware perfor-
mance counters that can be used to estimate the total power
consumption of processors in software.
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