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Abstract—A major challenge in the design of contemporary
microprocessors is the increasing number of cores in conjunction
with the persevering need for cache coherence. To achieve
this, the memory subsystem steadily gains complexity that has
evolved to levels beyond comprehension of most application
performance analysts. The Intel Haswell-EP architecture is such
an example. It includes considerable advancements regarding
memory hierarchy, on-chip communication, and cache coherence
mechanisms compared to the previous generation. We have
developed sophisticated benchmarks that allow us to perform
in-depth investigations with full memory location and coherence
state control. Using these benchmarks we investigate performance
data and architectural properties of the Haswell-EP micro-
architecture, including important memory latency and bandwidth
characteristics as well as the cost of core-to-core transfers. This
allows us to further the understanding of such complex designs by
documenting implementation details the are either not publicly
available at all, or only indirectly documented through patents.

I. INTRODUCTION AND MOTIVATION

The driving force of processor development is the increasing
transistor budget which is enabled by Moore’s Law. Progress
on the core level is still being made. However, most of the
additional space is used to increase the core count of contem-
porary server processors. The peak performance scales linearly
with the increasing core count. However, some resources are
typically shared between all cores, for example the last level
cache and the integrated memory controllers. These shared
resources naturally limit scalability to some extend and can
create bottlenecks. A profound understanding of these effects
is required in order to efficiently use the cache hierarchy and
avoid limitations caused by memory accesses.

Contemporary multi-socket x86 servers use point-to-point
connections between the processors [1], [2]. The available
memory bandwidth scales with the number of processors as
each processor has an integrated memory controller. Unfortu-
nately, the distance between the requesting core and the mem-
ory controller influences the characteristics of memory ac-
cesses. Accesses to the local memory are generally faster than
remote memory accesses which require additional transfers via
the inter-processor connections. This Non-Uniform Memory
Access (NUMA) behavior also affects the performance of
parallel applications. Typically, each processor is a single
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NUMA node. However, processors with multiple NUMA
domains already exist in the form of multi-chip-modules, e.g.,
the AMD Opteron 6200 series. Haswell-EP supports a Cluster-
on-Die mode [3] that splits a single processor into two NUMA
domains.

The distributed caches in Haswell-EP based systems are
kept coherent using a snooping based protocol [2]. Two
snooping modes—source snooping and home snooping—are
available. An in-memory directory as well as directory caches
are used to mitigate the performance impact of the coherence
protocol. In this Paper we analyze the impact of the coherence
protocol on the latencies and bandwidths of core-to-core trans-
fers and memory accesses. We compare the three available
configurations in a dual socket Haswell-EP system using
micro-benchmarks. Furthermore, we investigate the influence
on the performance of parallel applications.

II. RELATED WORK

Kottapalli et al. [4] describe the directory assisted snoop
broadcast protocol (DAS)—an extension of the MESIF proto-
col [2]. The DAS protocol uses an in-memory directory to ac-
celerate memory accesses in multi-socket Intel systems. Moga
et al. [5] introduce an directory cache extension to the DAS
protocol which accelerates accesses to cache lines that are
forwarded from caches in other NUMA nodes. Both extensions
are implemented in the Haswell-EP micro-architecture [3].
Geetha et al. [6] describe a modified version of the forward
state in the MESIF protocol which increases the ratio of
requests the local caching agent (CA) can service without
snooping.

Synthetic benchmarks are an important tool to analyze
specific aspects of computer systems. In previous work [7],
[8] we presented micro-benchmarks to measure the character-
istics of distributed caches in NUMA systems with x86 64
processors. They use data placement and coherence state
control mechanisms to determine the core-to-core transfers and
memory accesses considering the coherence state of the data.

Application based benchmarks are often used to analyze the
performance of parallel architectures. Müller et al. introduce
SPEC OMP2012 [9]—a benchmark suite for shared memory
systems. It contains 14 OpenMP parallel applications from
different scientific fields and also covers OpenMP 3.0 features.
In [10] SPEC MPI2007 is introduced. It is based on 13
scientific applications that use MPI for parallelization. The
scope of SPEC MPI2007 extends to large scale distributed
memory systems. However, both suites can be used to evaluate
shared memory systems.
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III. HASWELL-EP ARCHITECTURE

A. ISA Extensions and Core Design

The Intel Haswell micro-architecture is the successor of
Sandy Bridge. Table I compares both architectures. The front-
end is similar to Sandy Bridge. Instructions are fetched
in 16 byte windows and decoded into micro-ops by four
decoders. The instruction set architecture (ISA) has been
extended to support AVX2 and FMA3 instructions. AVX—
which is available since Sandy Bridge—introduced 256 bit
floating point instructions. AVX2 increases the width of integer
SIMD instructions to 256 bit as well. The FMA3 instruction
set introduces fused multiply-add instructions.

As shown in Table I, the out-of-order execution is enhanced
significantly in the Haswell micro-architecture. There are more
scheduler and reorder buffer (ROB) entries, larger register
files, and more load/store buffers in order to extract more
instruction level parallelism. Haswell’s scheduler can issue
eight micro-ops each cycle. The two new issue ports provide
an additional ALU and add a third address generation unit.
The support of FMA instructions doubles the theoretical peak
performance. The data paths to the L1 and L2 cache are
widened as well to provide the execution units with more
data. However, if 256 bit instructions are detected, the base
frequency is reduced to the AVX base frequency and the
available turbo frequencies are restricted [11]. Furthermore,
the uncore frequency is adapted to the workload dynamically
by the hardware [12].

B. Uncore Design

Haswell-EP is available in three variants [16, Section 1.1]—
an eight-core die (4, 6, 8-core SKUs1), a 12-core die (10, 12-
core SKUs), and an 18-core die (14, 16, 18-core SKUs) [11].
The eight-core die uses a single bi-directional ring intercon-
nect. The 12- and 18-core dies use a partitioned design as
depicted in Figure 1. In that case, eight cores, eight L3 slices,

1stock keeping unit

TABLE I
COMPARISON OF SANDY BRIDGE AND HASWELL MICRO-ARCHITECTURE

Micro-architecture Sandy Bridge Haswell
References [13], [14, Section 2.2] [15], [14, Section 2.1]
Decode 4(+1) x86/cycle
Allocation queue 28/thread 56
Execute 6 micro-ops/cycle 8 micro-ops/cycle
Retire 4 micro-ops/cycle
Scheduler entries 54 60
ROB entries 168 192
INT/FP registers 160/144 168/168
SIMD ISA AVX AVX2
FPU width 2× 256 Bit (1× add, 1× mul) 2× 256 Bit FMA
FLOPS/cycle 16 single / 8 double 32 single / 16 double
Load/store buffers 64/36 72/42
L1D accesses 2× 16 byte load + 2× 32 Byte load +
per cycle 1× 16 byte store 1× 32 Byte store
L2 bytes/cycle 32 64
Memory 4× DDR3-1600 4× DDR4-2133
Channels up to 51.2 GB/s up to 68.2 GB/s
QPI speed 8 GT/s (32 GB/s) 9.6 GT/s (38.4 GB/s)

one memory controller, the QPI interface, and the PCIe con-
troller are connected to one bi-directional ring. The remaining
cores (4 or 10), L3 slices, and the second memory controller
are connected to another bi-directional ring. Both rings are
connected via two bi-directional queues. Some SKUs use
partially deactivated dies. We are unaware of a specification
which cores are deactivated in specific models. It is possible
that this is determined individually during the binning process
in order to improve yield. Thus, it can not be ruled out that
processors of the same model exhibit different characteristics
depending on how balanced the rings are populated.

The ring topology is hidden from the operating system in the
default configuration, which exposes all cores and resources in
a single NUMA domain. An optional Cluster-on-Die (COD)
mode can be enabled in the BIOS. This mode splits each
processor into two clusters as depicted in Figure 1. The
clusters contain an equal number of cores and are exposed
to the operating system as two NUMA nodes. However, the
software view on the NUMA topology actually does not match
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Fig. 1. Haswell-EP block diagram: There are two rings with one memory controller (IMC) each. QPI and PCIe links are connected to the first ring. The
rings are connected with bi-directional queues. In the default configuration all cores can access the whole L3 cache and memory is interleaved over all four
channels. The Cluster-on-Die mode splits the chip into two NUMA nodes which share one memory controller each.
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Fig. 2. Dual socket Xeon E5 v3 system: In the default configuration, the
partitioned chip design is not exposed to the operating system. Therefore, the
system presents itself as two NUMA nodes. If COD mode is enabled each
socket is divided into two nodes, thus four NUMA nodes are visible.

the hardware configuration. The 12 core chip (8-core + 4-core
ring) presents itself as two 6 core nodes. The 18 core chip (8-
core + 10-core ring) appears as two nodes with 9 cores each.
One additional level of complexity is added in dual socket
Haswell-EP systems as depicted in Figure 2. The topology
consists of two NUMA nodes if COD is disabled and four
NUMA nodes if the COD mode is used.

IV. HASWELL-EP CACHE COHERENCE MECHANISMS

A. MESIF Implementation

Cache coherence is maintained using the MESIF proto-
col [2]. It inherits the modified, exclusive, shared, and invalid
states from MESI and adds the state forward to enable cache-
to-cache transfers of shared cache lines. The forward state
designates one shared copy as being responsible to forward
the cache line upon requests. The protocol ensures that at most
one copy in the forward state exists at any one time. It does
not ensure that the data is provided by the closest available
copy.

The protocol is implemented by caching agents (CAs)
within each L3 slice and home agents (HAs) within each
memory controller as depicted in Figure 3. The cores send
requests to the caching agents in their node. The responsible
CA is derived from a requested physical address using a hash
function [16, Section 2.3]. It provides data from its appendent
L3 slice or obtains a copy from another core’s L1 or L2
cache as indicated by the core valid bits [7]. In case of an
L3 miss, the caching agent forwards the request to the home
agent which provides the data from memory. The caching
agents in other nodes need to be checked as well which can
be implemented using source snooping (see Section IV-B) or
home snooping (see Section IV-C).

The MESIF protocol can be augmented with directory
support [4]. The “directory assisted snoop broadcast protocol”
stores 2-bit of directory information for each cache line in
the memory ECC bits [17, Section 2.1.2]. They encode 3
states [5]. A cache line in the remote-invalid state is not
cached in other NUMA nodes. The snoop-all state indicates
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Fig. 3. The cores forward requests to the caching agents within their node.
If the request cannot be serviced locally, it is forwarded to the home agent.
Snoops of the CAs in the peer nodes are either handled by the CA or the HA
(see Section IV-B and Section IV-C)

that a potentially modified copy exists in another node. The
state shared indicates that multiple clean copies exist. This
information can be used to limit the amount of snoops sent.
This is particularly important in systems with several sockets,
since broadcasts quickly become expensive for an increasing
number of nodes. On the other hand, necessary snoops are
delayed until the directory lookup is completed. It is also
possible to send snoops to all caching agents in parallel to
the directory access. In that case the home agent can forward
the data from memory without waiting for the snoop responses
if the directory state allows it. However, the snoop traffic is
not decreased in that case. According to [16, Section 2.5], the
directory should not be used in typical two-socket systems.
Our test system does not expose a BIOS option to manually
enable directory support, but it is automatically enabled in
COD mode (see Section IV-D).

B. Source Snoop Mode

In the source snoop mode of the MESIF protocol [2], snoops
are sent by the caching agents. In case of an L3 miss, the
caching agent broadcasts a snoop requests to the appropriate
caching agents in all other nodes as well as to the home
agent in the home node. If another caching agent has a copy
of the cache line in state modified, exclusive, or forward
it will be forwarded directly to the requester. All caching
agents also notify the home agent about their caching status
of the requested cache line. The home agent collects all snoop
responses, resolves conflicts, provides data from memory if
necessary, and completes the transaction. This mode has the
lowest possible latency. However, it generates a lot of traffic
on the interconnect.

C. Home Snoop Mode

The MESIF protocol [2] also supports a home snoop mode
in which snoops are sent by the home agents. In that case, the
caching agent that requests a cache line does not broadcast
snoops. Instead it forwards the request to the home agent in the
home node which then sends snoops to other caching agents.
The transaction then continues as in the source snoop variant.
The forwarding to the home node adds latency. However, the
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home agent can implement a directory to improve performance
(see Section IV-A).

D. Cluster on Die Mode (COD)

In the COD mode each processor is partitioned as depicted
in Figure 1 resulting in a system with four NUMA nodes
as shown in Figure 2b. The coherence protocol then uses a
home snoop mechanism with directory support as described
in Section IV-A. Furthermore, Haswell-EP also includes direc-
tory caches to accelerate the directory lookup [3]. However,
with only 14 KiB per home agent these caches are very small.
Therefore, only highly contended cache lines are entered in
the so-called “HitME” cache [5]. These are also referred to as
migratory cache lines [3], i.e., cache lines that are frequently
transferred between nodes. Consequently, only accesses that
already require snoops result in allocations in the HitME cache
(see Fig 3. in [5]). Since cache lines that are in the state
remote-invalid do not require snoops, the first access to such
a line can transfer a cache line to a remote caching agent
without entering it in the directory cache in the home node.
An entry in the directory cache can only be allocated if cache
lines are forwarded between caching agents in different nodes
and the requesting caching agent is not in the home node.
If the directory cache contains an entry for a cache line,
the corresponding entry in the in-memory directory is in the
snoop-all state.

The directory cache stores 8-bit presence vectors that in-
dicate which nodes have copies of a cache line [3]. When
a request arrives at the home node, the directory cache is
checked first. If it contains an entry for the requested line,
snoops are sent as indicated by the directory cache. If the
request misses in the directory cache, the home agent reads
the status from the in-memory directory bits and sends snoops
accordingly, or directly sends the data from memory if no
snoops are required.

V. BENCHMARKING METHODOLOGY

A. Tests System

Our test system contains two 12-core Haswell-EP proces-
sors (see Table II). Each socket has four DDR4 memory
channels running at 2133 MHz. Thus, 68.3 GB/s of memory
bandwidth are available per socket. The sockets are connected
with two QPI links that operate at 9.6 GT/s. Each link provides
a bi-directional bandwidth of 38.4 GB/s. Both links combined
enable 76.8 GB/s of inter-socket communication (38.4 GB/s in
each direction).

The coherence protocol can be influenced by the Early
Snoop and COD mode settings in the BIOS2. The default
configuration is Early Snoop set to auto (enabled) and COD
mode set to disabled which results in a source snoop behavior.
If Early Snoop is disabled a home snoop mechanism is used.
If COD mode is enabled the newly introduced Cluster-on-Die
mode [3] is activated. In that case the setting for Early Snoop
has no influence.

2Advanced → Chipset Configuration → North Bridge → QPI Configura-
tion → QPI General Configuration

TABLE II
DUAL SOCKET HASWELL-EP TEST SYSTEMS

System Bull SAS bullx R421 E4 [18]
Processors 2x Intel Xeon E5-2680 v3

cpuid family 6, model 63 stepping 2
Cores/threads 2x12 / 2x24

Core clock 2.5 GHz3

Uncore/NB clock variable, up to 3.0 GHz4

L1/L2 cache 2x 32 KiB / 256 KiB per core
L3 cache 30 MiB per chip
Memory 128 GiB (8x 16 GiB) PC4-2133P-R

QPI speed 9.6 GT/s (38.4 GB/s)

Operating System Ubuntu 14.04.2 LTS,
kernel 3.19.1-031901-generic

BIOS version 1.0 build date 07/30/2014

B. Microbenchmark Design

We use an extended version of the synthetic micro-
benchmarks presented in [7]. They include data placement
and coherence state control mechanisms that place cache lines
in a fully specified combination of core id, cache level, and
coherence state. The data set size determines the cache level
in which the data is located. If the data set does not fit
into a certain cache level, optional cache flushes can be used
to evict all cache lines from higher cache levels into the
cache level that is large enough. The latency and bandwidth
measurements can be performed on the core that performed
the data placement to evaluate the local cache hierarchy.
The measurement can also be performed on another core in
order to estimate the performance of core-to-core transfers.
The bandwidth can also be measured for concurrent accesses
of multiple cores. Furthermore, the libnuma based memory
affinity control enables the analysis of NUMA characteristics
for main memory accesses.

The coherence state of the date can be controlled as well.
• State modified is enforced by: 1) writing to the data.
• State exclusive is generated by: 1) writing the data which

invalidates all other copies, 2) removing the modified
copy using clflush, 3) reading the data.

• State shared and forward are created by: 1) caching data
in state exclusive, 2) another core reading the data.

The order of accesses determines which core gets the forward
copy. It is also possible to define a list of cores that should
share the data in order to span multiple nodes.

The benchmarks are designed to operate in a stable envi-
ronment, i.e., at fixed frequencies. We therefore disable the
Turbo Boost feature and set the core frequency to the nominal
2.5 GHz. However, the uncore frequency scaling and frequency
reductions for AVX workloads can influence the results. Occa-
sionally the bandwidth benchmarks show better performance
than presented in this paper. The higher performance levels
are not reliably reproducible. We selected measurements for
the typical case, i.e., curves that do not show frequency related
jumps.

32.1 GHz base frequency for AVX workloads [11]
4Uncore frequency scaling automatically adjusts frequency [12]
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VI. LATENCY RESULTS

A. Source Snoop Mode

Latency measurements for the default configuration are
depicted in Figure 4. The access times of 1.6 ns (4 cycles),
4.8 ns (12 cycles), and 21.2 ns (53 cycles) for reads from the
local L1, L2, and L3 are independent of the coherence state.
In contrast, core-to-core transfers show noticeable differences
for modified, exclusive, and shared cache lines.

If another core contains a modified copy in the L1 or L2
cache, the corresponding core valid bit is set in the L3 cache.
Thus, the caching agent snoops the core which then forwards
the cache line to the requester. The latency is approximately
53 ns and 49 ns in that case for transfers from the L1 and
L2 cache, respectively. If the other core has already evicted
the modified cache lines, the inclusive L3 cache services the

(a) modified

(b) exclusive

(c) shared (two copies in one node)

Fig. 4. Memory read latency in default configuration (source snoop):
Comparison of accesses to a core’s local cache hierarchy (local) with accesses
to cache lines of another core in the same NUMA node (within NUMA node)
as well as accesses to the second processor (other NUMA node (1 hop QPI)).

requests without delay (21.2 ns). This is possible because the
write back to the L3 also clears the core valid bit.

Unmodified data is always delivered from the inclusive
L3 cache. However, accesses to exclusive cache lines have
a higher latency of 44.4 ns if they have been placed in the L3
cache by another core. This is because the caching agent has
to snoop the other core as the state could have changed to
modified. This also happens if the core does not have a copy
anymore as exclusive cache lines are evicted silently which
does not clear the core valid bit. If multiple core valid bits are
set, core snoops are not necessary as the cache line can only
be in the state shared. In that case the L3 cache forwards a
copy without delay (21.2 ns).

Accesses to cache lines in the other socket follow the same
pattern. Modified cache lines in a remote L1 or L2 cache have
to be forwarded from the core that has the only valid copy in
that case. The latency is 113 ns from the L1 and 109 ns from
the L2. If a valid copy exists in the L3 cache it is forwarded
from there with a latency of 86 ns for immediate replies or
104 ns if a core snoop is required. The memory latency is
96.4 ns for local and 146 ns for remote accesses.

B. Home Snoop Mode

Figure 5 depicts the difference between source snooping
(default) and home snooping (Early Snoop disabled). As
expected, all accesses that are handled by the L3’s caching
agents without any external requests are not affected by the
snoop behavior. However, the latency of remote cache access is
noticeably higher if home snooping is used. It increases from
104 ns to 115 ns (+10.5%). The local memory latency increases
from 96.4 ns to 108 ns (+12%). Both effects can be explained
by the delayed snoop broadcast in the home snoop protocol.
This also shows that directory support is not activated as the
local memory latency would not increase if it was enabled.
The remote memory latency of 146 ns is identical to source
snoop mode, as the request is sent from the requesting caching
agent directly to the remote home agent in both cases.

C. Cluster-on-Die Mode

Activating the COD mode doubles the amount of possible
distances. In addition to local accesses, core-to-core transfers
within the node, and transfers via QPI we also have to consider

Fig. 5. Memory read latency: Comparison of source snoop and home snoop,
cached data in state exclusive
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(a) modified (b) exclusive

Fig. 6. Memory read latency: Comparison of accesses to a core’s local cache hierarchy (local) with accesses to cache lines of other cores in the same NUMA
node (within NUMA node) and on-chip transfers between the clusters (other NUMA node (1 hop on-chip)) as well as transfers between the two sockets. This
includes connections between the two nodes that are coupled directly via QPI (other NUMA node (1 hop QPI)) as well as transfers that include additional
hops between the clusters within the sockets. (other NUMA node (2 hops) / other NUMA node (3 hops)). The measurements use the first core in every node
to perform the data placement.

transfers between the clusters in a socket as well as inter-
socket communication between nodes that are not directly
connected via QPI. Figure 6 shows the clearly distinguishable
performance levels. Transfers between on-chip clusters are
much faster than QPI transfers. The L3 forwards cache lines
slightly faster (18.0 or 37.2 ns compared to 21.2 or 44.4 ns
with COD disabled). However, the inclusive behavior of the
L3 cache is limited to the cores within a NUMA node. Core-
to-core transfers between the nodes involve the home node
of the data, with latencies increasing from 18.0 and 37.2 ns
to 57.2 and 73.6 ns if data is delivered from the L3 of the
second node. Remote L3 access latency increases from 86 ns
(modified) and 104 ns (exclusive) to 90 and 104 ns, 96 and
111 ns, or 103 and 118 ns depending on the number of hops.
In these measurements the home agent is in the same node as
the caching agents that forward the data. The latency further
increases if three nodes are involved.

The memory latency with COD drops from 96.4 to 89.6 ns
for local accesses. Accesses to memory attached to the second
node are slower but still slightly faster than local accesses
with COD disabled. If memory from the second processor is
used, the latency depends on the number of hops within the
nodes: 141 ns for 1-hop-connections (node0-node2), 147 ns for
two hops (node0-node3 and node1-node2) and 153 ns for three
hops (node1-node3).

The asymmetrical chip layout which is mapped to a bal-

anced NUMA topology causes performance variations. The six
cores in the first node (core 0-5 in Figure 1a) are connected to
the same ring, thus have similar performance characteristics.
The average distance to the individual L3 slices is almost
identical for all cores. Consequently, the average time for
forwarding the request from the core to the responsible caching
agent is almost independent of the location on the ring
(assuming data is distributed evenly). The distance from the
caching agent to the home agents also does not depend on
the requesting core’s location on the ring, as the location
of the agents is determined by the physical address (hash
function selects the CA, NUMA node determines HA). In
the second node however, the situation is different. Two
cores are connected to the first ring, but allocate memory
from the memory controller connected to the second ring by
default (assuming NUMA aware software). On average, two
thirds of the cores’ memory requests are serviced by the four
caching agents connected to the second ring. For the four cores
connected to the second ring, one third of their requests is
serviced by the two caching agents on the first ring.

Table III shows the different performance characteristics in
comparison to the source snooping and home snooping modes
on our test system. The latency reduction for local accesses
is substantial for the cores in the first node (-15% for L3 and
-7.1% for memory), slightly lower for the four cores in the
second node on the second ring (-13.2% and -6.2%), and only

TABLE III
LATENCY IN NANOSECONDS; RESULTS FOR L3 CACHE LINES ARE FOR STATE exclusive.

source default Early Snoop COD mode

configuration disabled first node second node
first ring (core 6 and 7) second ring (cores 8-11)

L3
local 21.2 18.0 (-15%) 20.0 (-5.6%) 18.4 (-13.2%)

remote first node 104 115 (+12%) 104 (+/-0) 108 (+3.8%) 111 (+6.7%)
remote 2nd node 113 (+8.7%) 118 (+13.5%) 120 (+15.4%)

memory
local 96.4 108 (+10.5%) 89.6 (-7.1%) 94.0 (-2.5%) 90.4 (-6.2%)

remote first node 146 148 (+1.3%) 141 (-3.4%) 145 (-0.7%) 148 (+1.3%)
remote 2nd node 147 (+0.7%) 151 (+3.4%) 153 (+4.8%)
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Fig. 7. Memory read latency: core in node0 accesses cache lines with forward
copies in another node (F:) which also have different home nodes (H:). The
home nodes also contain a copy which is in the shared state if the forward
copy is in another node. The sharing also affects the memory latency because
of stale state in the in-memory directory.

small for the two cores in the second node but on the first ring
(-5.6% and -2.5%). In contrast, remote cache accesses are up
to 15.4% slower. Remote memory latency varies between 3.4%
faster and 4.8% slower. These cases only cover transfers that
do not require broadcasts.

Figure 7 depicts measurements of accesses from node0
to data that has been used by two cores somewhere in the
system which also covers situations where broadcasts are
required. Small data set sizes show an unexpected behavior
if the data is cached in forward state outside the home node.
Surprisingly, the latency for L1 and L2 accesses is significantly
lower than for L3 accesses5. Performance counter readings6

show that data is in fact forwarded from the memory in
the home node for data set sizes up to 256 KiB7. According
to [6], this is possible if the in-memory directory indicates
that cache lines are in state shared. This explains why data is
delivered faster if node0 is the home node as no QPI transfer is
involved. However, if the in-memory directory state would be
responsible for this behavior, it would not depend on the data
set size. This suggests that the effect is caused by the directory
cache. For larger data set sizes an increasing number of cache
lines is forwarded by the other node8 as expected according to
the state specifications in the MESIF protocol [2]. For 2.5 MiB

5The behavior doesn’t change if hardware prefetchers are disabled in BIOS
6event MEM LOAD UOPS L3 MISS RETIRED:REMOTE DRAM
7the variation below 256 KiB also occurs if all caches are flushed and data

is read directly from local DRAM, thus it is apparently caused by DRAM
characteristics, e.g., the portion of accesses that read from already open pages

8indicated by MEM LOAD UOPS L3 MISS RETIRED:REMOTE FWD

TABLE IV
LATENCY IN NANOSECONDS FOR ACCESSES FROM A CORE IN NODE0 TO

L3 CACHE LINES WITH MULTIPLE SHARED COPIES.

node with home node (shared copy)
forward copy node0 node1 node2 node3

node0 18.0 18.0 18.0 18.0
node1 18.0 57.2 170 177
node2 18.0 166 90.0 166
node3 18.0 169 162 96.0

and above the percentage of DRAM responses are negligible.
The gradual decline matches the assumption that the directory
cache is involved and the hit rates diminish. We therefore
conclude that the AllocateShared policy [5] of the directory
cache is implemented and an entry is allocated if the cache
lines are transferred to another node in state forward. This
sets the in-memory directory to state snoop-all. However, the
presence vector in the directory cache indicates that the cache
line is shared and allows forwarding the valid memory copy
as long as the entry is not evicted.

Table IV details the L3 latencies for a core in node0 that
accesses shared cache lines with different distributions among
the nodes. The values express the performance for data set
sizes above 2.5 MiB, i.e., the divergent behavior for smaller
data sets is not considered here. If a valid copy is available
in node0, it is forwarded to the requesting core with the
same 18.0 ns latency discussed above (case COD, first node
in Table III). Interestingly, this also is the case for accesses to
shared cache lines in the local L1 or L2 cache if the forward
copy is in another node. This indicates, that in this case the
responsible caching agent is notified in order to reclaim the
forward state. In the cases on the diagonal, a forward copy
is found in the home node (the local snoop in the home
node is carried out independent of the directory state [5]).
The results are equal to the forwarding of modified lines from
the home node (see Figure 6a). The remaining cases show
the performance of forwarding cache lines from another node
which is snooped by the home node. The range from 162
to 177 ns is caused by the different distances between the
involved nodes. The worst case of 177 ns is more than twice
as high as the 86 ns in the default configuration.

Table V shows the impact of the directory protocol on
memory accesses. For data sets larger than 15 MiB data was
read by multiple cores but is already evicted from the L3
caches. The diagonal represents cases where data is only
shared within the home node. In that case no directory cache
entries are allocated and the in-memory directory remains in
state remote-invalid. Thus, the data is delivered by the home
node without a broadcast. All other cases apparently require a
broadcast. Thus, the directory state has to be snoop all. This
is another indication that the AllocateShared policy [5] of the
directory cache is implemented, i.e., directory cache entries
are allocated if a cache line is entered in state forward in
another node. Consequently, the in-memory state is changed
to snoop all instead of shared which would be used without the
directory cache [4]. Thus, the home node broadcasts a snoop
request which adds between 78 and 89 ns to the latency.

TABLE V
LATENCY IN NANOSECONDS FOR ACCESSES FROM A CORE IN NODE0 TO
DATA IN MAIN MEMORY THAT HAS BEEN SHARED BY MULTIPLE CORES.

node that had home node
forward copy node0 node1 node2 node3

node0 89.6 182 222 236
node1 168 96.0 222 236
node2 168 182 141 236
node3 168 182 222 147
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(a) exclusive, default configuration

(b) modified, default configuration

Fig. 8. Memory read bandwidth in default configuration (source snoop):
Comparison of accesses to a core’s local cache hierarchy (local) with accesses
to cache lines of another core in the same NUMA node (within NUMA node)
as well as accesses to the second processor (other NUMA node (1 hop QPI)).

VII. BANDWIDTH RESULTS

A. Single Threaded Bandwidths

Figure 8 shows the single threaded memory read bandwidth
in the default configuration. Using 256 bit wide load instruc-
tions, data can be read from the L1 and L2 cache with 127.2
and 69.1 GB/s from the local L1 and L2 cache, respectively.
The L1 and L2 measurements show unusually high variability
which is probably caused by frequency changes between the
nominal and the AVX base frequency. If 128 bit instructions
are used, the bandwidth is limited to 77.1 and 48.2 GB/s as
they do not fully utilize the width of the data paths. Accesses
beyond the local L2 cache show little differences between
AVX and SSE loads.

The core-to-core bandwidth reflect the behavior that has
already been observed in the latency measurements. Only
modified cache lines are actually forwarded from a core’s L1

Fig. 9. Memory read bandwidth in default configuration (source snoop):
Accesses to shared cache lines.

or L2 cache. The bandwidth is 7.8 and 10.6 GB/s for on-
chip transfers and 6.7 and 8.1 GB/s for transfers between
the sockets. If modified cache lines are evicted to the L3
cache, they can be read with 26.2 GB/s from the local and
9.1 GB/s remote L3. Accesses to exclusive cache lines are
always serviced by the L3. However, the bandwidth only
reaches 26.2 GB/s for accesses to cache lines in the local L3
that have been evicted by the requesting core. If another core
needs to be snooped, the bandwidth is limited to 15.0 GB/s for
the local L3 and 8.7 GB/s for the remote L3. Since exclusive
cache lines are evicted silently, the penalty also occurs if the
other core does not contain a copy anymore.

Figure 9 shows the read bandwidth of shared cache lines.
Local L1 and L2 accesses only achieve the performance
measured for modified or exclusive, if the forward copy is
in the requesting core’s node. If the forward copy is held
by the other processor, the L1 and L2 bandwidth are limited
to the L3 bandwidth of 26.2 GB/s. As already mentioned
in Section VI-C, this suggests that the L3 is notified of the
repeated access in order to reclaim the forward state. Shared
data can be read with 26.2 GB/s from the local L3 and 9.1 GB/s
from the remote L3 without snooping other cores, as the data
is guaranteed to be valid.

Bandwidths are also affected by the coherence protocol
configuration as detailed in Table VI. Deactivating Early
Snoop decreases the local memory bandwidth from 10.3 to
9.6 GB/s. On the other hand, there is a small increase in the
remote L3 and memory bandwidths. The COD mode again
shows significant performance variations between cores in the
different nodes within the chip. Local L3 and memory band-
width benefit from enabling COD mode. The L3 bandwidth

TABLE VI
SINGLE THREADED READ BANDWIDTH IN GB/S; RESULTS FOR L3 CACHE LINES ARE FOR STATE exclusive.

source default Early Snoop COD mode

configuration disabled first node second node
first ring (core 6 and 7) second ring (cores 8-11)

L3
local 26.2 29.0 27.2 27.6

remote first node 8.8 8.9 8.7 8.3 8.4
remote 2nd node 8.3 8.0 8.1

memory
local 10.3 9.5 12.6 12.4 12.6

remote first node 8.0 8.2 8.3 7.8 8.1
remote 2nd node 8.0 7.4 7.5
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TABLE VII
MEMORY BANDWIDTH DEPENDING ON EARLY SNOOP CONFIGURATION

source mode number of concurrently reading cores
1 2 3 4 5 6 7 8 9 10 11 12

local default 10.3 21.0 32.6 41.4 50.1 57.7 62.5 62.7 63.0 63.1 62.7
memory early snoop off 9.6 18.5 28.7 37.4 45.6 53.9 59.5 62.7
remote default 8.0 13.1 14.1 14.7 15.2 15.6 15.9 16.3 16.5 16.6 16.8

memory early snoop off 8.2 16.1 24.0 28.3 30.2 30.4 30.6

increases significantly in the first node (+10.6%). However, the
performance in the second node does not benefit that much
(+3.8%/+5.3% depending on the ring to which the core is
connected). The local memory bandwidth increases by more
than 20% in all cases. On the other hand, remote cache and
memory bandwidth are reduced in COD mode.

B. Aggregated Bandwidths

As in earlier ring based designs, the L3 cache scales well
with the number of cores. The performance is identical for
source snoop and home snoop mode. The read bandwidth
scales almost linearly from 26.2 GB/s for one core to 278 GB/s
with 12 cores (23.2 GB/s per core). While the measurements
using only a few cores are reproducible, the measured band-
width for 7 to 12 cores strongly differs between measurements.
Up to 343 GB/s have been reached in our experiments. We
attribute this unpredictable behavior to the uncore frequency
scaling that dynamically increases the L3 bandwidth. The write
bandwidths scale from 15 GB/s to 161 GB/s—with occasional
performance boosts up to 210 GB/s. In COD mode 154 GB/s
of read and 94 GB/s of write bandwidth are available per node.
The difference between the nodes on a chip is negligible.

Table VII shows the bandwidth scaling for the source
snoop and home snoop mode. The read bandwidth from local
memory is lower for up to seven concurrently reading cores
if Early Snoop is disabled. For eight and more cores the
effect is negligible. Approximately 63 GB/s are reached in
both configurations. The write bandwidth is 7.7 GB/s for a
single core. It increases up to 26.5 GB/s using five cores and
declines afterwards. Using all cores we measure 25.8 GB/s.
The read bandwidth from remote memory is much higher if
Early Snoop is disabled. It reaches 30.6 GB/s compared to
only 16.8 GB/s in the default configuration. The COD mode
bandwidths are detailed in Table VIII. The local bandwidth per
node is 32.5 GB/s. The bandwidth of node-to-node transfers is
18.8 GB/s within on chip and—depending on the number of
hops—15.6 or 14.7 GB/s for transfers between the sockets.

TABLE VIII
MEMORY READ BANDWIDTH (GB/S) SCALING IN COD MODE

source number of concurrently reading cores
1 2 3 4 5 6

local memory 12.6 24.3 30.6 32.5
node0-node1 7.0 15.2 18.6 18.8
node0-node2 5.9 12.8 15.4 15.6
node0-node3 5.5 12.2 14.4 14.7node1-node3

VIII. APPLICATION PERFORMANCE

We have selected the SPEC OMP2012 and SPEC MPI2007
application benchmarks in order to evaluate the influence of
the coherence protocol mode on the performance of shared
memory and message passing applications. Both suites have
been compiled using Intel Composer XE 2013 SP1 update
3. The results (median of 3 iterations) are depicted in Fig-
ure VIII. Threads or processes are pinned to individual cores
via KMP AFFINITY and –bind-to-core, respectively.

The SPEC OMP2012 results for the home snoop mode
(Early Snoop disabled) are almost identical to the default
configuration. 12 out of 14 benchmarks are within +/- 2%
of the original runtime. 362.fma3d and 371.applu331 show a
ca. 5% reduction of the runtime if Early Snoop is disabled. If
COD mode is enabled, the runtime of these two benchmarks
increases noticeably—up to 23% for 371.apply. They are
apparently influenced by the worst case latency penalties of
COD mode. No benchmark in the SPEC OMP2012 suite
benefits from enabling COD mode.

The SPEC MPI2007 results are very uniform. Disabling
Early Snoop has a tendency to slightly decrease the per-
formance while enabling COD mode mostly increases the
performance, i.e., the benchmarks reflect the changes in local
memory latency and bandwidth. This is to be expected, since
MPI programs primarily use local memory.
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Fig. 10. Coherence protocol configuration vs. application performance
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IX. CONCLUSION

Understanding the design and operation principles of micro-
processor memory hierarchy designs is paramount for most
application performance analysis and optimization tasks. In
this paper we have presented sophisticated memory bench-
marks along with an in-depth analysis of the memory and
cache design of the Intel Haswell-EP micro-architecture. The
increasing number of cores on a processor die strongly in-
creases the complexity of such systems, e.g. due to the use
of directory-based protocols that used to be applicable only
to large multi-chip-systems. Our work reveals that providing
cache coherence in such a system does have considerable
overhead and presents scalability challenges, in particular for
latency sensitive workloads. Furthermore, the performance
variations that have been introduced with the Haswell-EP ar-
chitecture due to complex and unpredictable frequency control
mechanisms may turn out to be equally challenging for any
optimization task.

The different coherence protocol modes have a significant
impact on the latencies and bandwidths of core-to-core trans-
fers as well as memory accesses on Haswell-EP. The default
source snoop mode is optimized for latency, which—according
to our application benchmarks—seems to be a good choice.
The home snooping mode enables higher bandwidth for inter-
socket transfers, creating significant advantages in our micro-
benchmarks. However, it does not have a large benefit in our
benchmark selection. On the other hand, the latency of the
local memory is increased which reduces the performance of
NUMA optimized workloads.

The optional COD mode reduces the local memory latency
and improves its bandwidth which slightly increases perfor-
mance in some cases. However, mapping the asymmetrical
chip layout to a balanced NUMA topology creates perfor-
mance variations between the cores with latency reductions
between 5 and 15% depending on the location of the core on
the chip. The benefit of COD mode would probably be more
substantial if the hardware topology would match the software
visible NUMA nodes. Moreover, the complex transactions in
the coherence protocol—especially those that involve three
nodes—can result in severe performance degradations. The
worst case latency of core-to-core transfers is doubled. Fur-
thermore, the memory latency increases significantly if the
directory information is outdated due to silent evictions from
the L3 cache. However, our measurements with shared mem-
ory parallel applications show that the performance impact is
mostly negligible. Only one of the SPEC OMP2012 bench-
marks shows a significant performance degradation.

Our conclusion is that processors with single-chip NUMA
and directory support may not yet be mandatory, but will
probably become standard in the near future. Our results–
both regarding fundamental operational principles and perfor-
mance impacts–are crucial to understand these systems, which
represents an important pre-requisite for most performance
optimization and performance modeling tasks.
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