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Abstract Performance analysis is vital for optimizing the execution of high per-
formance computing applications. Today different techniques for gathering, pro-
cessing, and analyzing application performance data exist. Application level in-
strumentation for example is a powerful method that provides detailed insight into
an application’s behavior. However, it is difficult to predict the instrumentation-
induced perturbation as it largely depends on the application and its input data.
Thus, sampling is a viable alternative to instrumentation for gathering information
about the execution of an application by recording its state at regular intervals. This
method provides a statistical overview of the application execution and its overhead
is more predictable than with instrumentation. Taking into account the specifics of
these techniques, this paper makes the following contributions: (I) A comprehensive
overview of existing techniques for application performance analysis. (II) A novel
tracing approach that combines instrumentation and sampling to offer the benefits of
complete information where needed with reduced perturbation. We provide exam-
ples using selected instrumentation and sampling methods to detail the advantage
of such mixed information and discuss arising challenges and prospects of this ap-
proach.

1 Introduction

Performance analysis tools allow users to gain insight into the run-time behavior of
applications and improve the efficient utilization of computational resources. Espe-
cially for complex parallel applications, the concurrent behavior of multiple tasks is
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not always obvious, which makes the analysis of communication and synchroniza-
tion primitives crucial to identify and eliminate performance bottlenecks.

Different techniques for conducting performance analyses have been established,
each with their specific set of distinct advantages and shortcomings. These tech-
niques differ in the type and amount of information they provide, e.g., about the
behavior of one process or thread and the interaction between these parallel entities,
the amount of data that is generated and stored, as well as the level of detail that
is contained within the data. One contribution of this paper is to give a structured
overview on these techniques to help users understand their nature. However, most
of these approaches suffer from significant peculiarities or even profound disadvan-
tages that limit their applicability for real-life performance optimization tasks:

e Full application instrumentation provides exhaustive information but comes with
unpredictable program perturbation that can easily conceal the performance char-
acteristics that need to be analyzed. Extensive event filtering may reduce the
overhead, but this does require additional effort.

e Pure MPI instrumentation mostly comes with low overhead, but it provides only
very limited information as the lack of application context for communication
patterns complicates the performance analysis and optimization.

e Pure sampling approaches create very predictable program perturbation, but they
lack communication and I/O information. Moreover, the classical combination
with profiling for performance data presentation squanders important temporal
correlations.

e Instrumentation-based approaches can only access performance counters at ap-
plication events, thereby hiding potentially important information from in be-
tween these events.

A combination of techniques can often leverage the combined advantages and
mitigate the weaknesses of individual approaches. We present such a combined ap-
proach that features low overhead and a high level of detail to significantly improve
the usability and effectiveness of the performance analysis process.

2 Performance Analysis Techniques: Classification and
Related Work

The process of performance analysis can be divided into three general steps: data
acquisition, data recording, and data presentation [10]. These steps as well as com-
mon techniques for each step are depicted in Figure 1. Data acquisition reveals rel-
evant performance information of the application execution for further processing
and recording. This information is aggregated for storage in memory or persistent
media in the data recording layer. The data presentation layer defines how the in-
formation is presented to the user to create insight for further optimization. In this
section we present an overview of the often ambiguously used terminology and the
state of the art of performance analysis tools.
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2.1 Data Acquisition

2.1.1 Event-based instrumentation

Event-based instrumentation refers to a modification of the application execution in
order to record and present certain intrinsic events of the execution, e.g., function
entry and exit events. After the modification, these events trigger the data recording
by the measurement environment at run-time. More specific events with additional
semantics, such as communication or I/O operations, can often be derived from the
execution of an API function.

The modification of the application can be applied on different levels. Source
code instrumentation APIs used for a manual instrumentation, source-to-source
transformation tools like PDT [14] and Opari [16], and compiler instrumentation
require analysts to recompile the application under investigation after inserting in-
strumentation points manually or automatically. Thus, they can only be used for
applications whose source code is available. Common ways to instrument appli-
cations without recompilation are library wrapping (5], binary rewriting (e.g., via
DYNINST [3] or PEBIL [13]), and virtual machines [2].

All of these techniques are often referred to as event-based instrumentation, di-
rect instrumentation [23], event trigger [11], probe-based measurement [17] or sim-
ply instrumentation and it is common to combine several of them in order to gather
information on different aspects of an application run.

2.1.2 Sampling

Another common technique to obtain performance data is sampling, which de-
scribes the periodic interruption of a running program and inspection of its state.
Sampling is realized by using timers (e.g., set it imer) or an overflow trigger of

‘ ‘ Profiling Tracing

Timelines

Data Presentation Profiles

Data Recording Summarization

Data Acquisition Sampling

Event-based
Instrumentation

Performance Analysis Layer ‘ ‘ Performance Analysis Technique

Fig. 1 Classification of performance analysis techniques (based on [11]). Valid combinations of
techniques are connected with an arrow. Presenting data recorded by logging as a profile requires
a post-processing summarization step.
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hardware counters (e.g., using PAPI [6]). The most important aspects of inspecting
the state of execution are the call-path and hardware performance counters. The call-
path provides information about all functions (and regions) that are currently being
executed. This information roughly corresponds to the enter/exit function events
from event-based instrumentation. Additionally, the instruction pointer can be ob-
tained, allowing sampling to narrow down hot-spots even within functions. How-
ever, the semantic interpretation of specific API calls is limited and can prevent the
reconstruction of process interaction or I/O due to missing information. Moreover,
the state of the application between two sampling points is unavailable for analysis.

In contrast to event-based instrumentation, sampling has a much more pre-
dictable overhead that mainly depends on the sampling rate rather than the event
frequency. The user specifies the sampling rate and thereby controls the trade-off
between measurement accuracy and overhead. While the complete information on
specific events is not guaranteed with sampling, the recorded data can provide a sta-
tistical basis for analysis. For this reason, sampling is sometimes also referred to as
statistical sampling or profiling.

2.2 Data Recording

2.2.1 Logging

Logging is the most elaborate technique for recording performance data. A time-
stamp is added to the information from the acquisition layer and all the information
is retained in the recorded data. It can apply to both data from sampling and event-
based instrumentation. Logging requires a substantial amount of memory and can
cause perturbation and overhead during the measurement due to the I/O operations
for writing a log-file to persistent storage. The term tracing is often used synony-
mously to logging and the data created by logging is a trace.

2.2.2 Summarization

By summarizing the information from the acquisition layer, the memory require-
ments and overhead of data recording are minimized at the cost of discarding the
temporal context. For event-based instrumentation, values like sum of event dura-
tion, event count, or average message size can be recorded. Summarization of sam-
ples mainly involves counting how often a specific function is on the call-path, but
performance metrics can also be summarized. This technique is also called profil-
ing, because the data presentation of a summarized recording is a profile. A special
hybrid case is the phase profile [15] or time-series profile [24], for which the in-
formation is summarized separately for successive phases (e.g., iterations) of the
application. This provides some insight into the temporal behavior, but not to the
extent of logging.
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2.3 Data Presentation

2.3.1 Timelines

A timeline is a visual display of an application execution over time and represents
the temporal relationship between events of a single or different parallel entities.
This gives a detailed understanding of how the application is executed on a specific
machine. In addition to the time dimension, the second dimension of the display
can depict the call-path, parallel execution, or metric values. An example is given
in Figure 2. Necessarily, timelines can only be created from logged data, not from
summarized data.

2.3.2 Profiles

In a profile, the performance metrics are presented in a summary that is grouped by
a factor such as the name of the function (or region). A typical profile is provided in
Listing 1 and shows the distribution of the majority of time spent among functions.
In such a flat profile the information is grouped by function name. It is also possible
to group the information based on the call-path resulting in a call-path profile [24]
(or call graph profile [8]). For performance metrics, the grouping can be done by
metric or a combination of call-path and metric. Profiles can be created from either
summarized data or logs.

2.4 Event Types

2.4.1 Code Regions

Several event types are of interest for application analysis. By far the most com-
monly used event types are code regions, which can be function calls either inside
the application code or to a specific library, or more generally be any type of region
such as loop bodies and other code structures. Therefore, code regions within the
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2 INIT_MODULES | time  seconds seconds calls ms/call ms/call name
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Fig. 2 A process timeline displaying the

; Listing 1 Example output of gprof taken from
call-path and event annotations

its manual [19]
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application are in the focus of this work. The knowledge of the execution time of
an application function and its corresponding call-path is imperative for the analysis
of application behavior. However, function calls can be extremely frequent and thus
yield a high rate of trace events. This is especially true for C++ applications, where
short methods are very common, making it difficult to keep the run-time overhead
of instrumentation and tracing low.

2.4.2 Communication and I/O Operations

The exchange of data between tasks (communication) is essential for parallel ap-
plications and highly influential on the overall performance. Communication events
can contain information about the sender/receiver, message size, and further context
such as MPI tags. File I/O is a form of data transfer between a task and persistent
storage. It is another important aspect for application performance. Typical file I/O
events include information about the active task, direction (read/write), size, and file
name.

2.4.3 Performance Metrics

The recording of the above mentioned events only gives limited information on
the usage efficiency of shared and exclusive resources. Additional metrics describ-
ing the utilization of these resources are therefore important performance measures.
The set of metrics consists of (but is not limited to) hardware performance counter
(as provided by PAPI), operating system metrics (e.g., via rusage), and energy and
power measurements.

2.4.4 Task Management

The management of tasks (processes and threads) is also of interest for application
developers. This set of events includes task creation (fork), shutdown (join), and the
mapping from application tasks to OS threads.

2.5 Established Performance Analysis Tools

Several tools support the different techniques mentioned in Section 2 and in parts
combine some of them.

The Scalasca [7] package focuses on displaying profiles, but logged data is used
for a special post-processing analysis step. VampirTrace [18] mainly focuses on re-
fined tracing techniques but comes with a basic profiling mode and external tools
for extracting profile information from trace data. These two software packages rely
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mostly on different methods of event-based instrumentation. The Tuning and Anal-
ysis Utilities (TAU) [22] implement a measurement system specialized for profiling
with some functionality for tracing. TAU supports a wide range of instrumentation
methods but a hybrid mode that uses call-path sampling in combination with instru-
mentation is also possible [17]. The performance measurement infrastructure Score-
P [12] has both sophisticated tracing and profiling capabilities. It mainly acquires
data from event-based instrumentation, but recent work [23] introduced call-path
sampling for profiling. The graphical tool Vampir [18] can visualize traces created
with Score-P, VampirTrace or TAU in the form of timelines or profiles. Similar to the
above mentioned, the Extrae software records traces based on various instrumenta-
tion mechanisms. Sampling in Extrae is supported by interval timers and hardware
performance counter overflow triggers. The sampling data of multiple executions
of a single code region can be combined into a single detailed view using fold-
ing [21]. This combined approach provides increased information about repetitive
code regions. HPCToolkit [1] implements sampling based performance recording. It
provides sophisticated techniques for stack unwinding and call-path profiling. The
data can also be recorded in a trace and displayed in a timeline trace viewer. All pre-
viously mentioned tools have a strong HPC background and are therefore designed
to analyze large scale programs. For example Scalasca and VampirTrace/Vampir can
handle applications running on more than 200,000 cores [25, 9].

Similar combinations of techniques can also be seen in tools without a special-
ization for HPC. The Linux’ perf infrastructure [4] consists of a user space tool and
a kernel part that allows for application-specific and system-wide sampling based
on both hardware events and events related to the operating system itself. Support
for instrumentation-based analysis is added through kprobes, uprobes, and trace-
point events. The infrastructure part of perf is also used by many other tools as it
provides the basis to read hardware performance counters on Linux with PAPI. The
GNU profiler (gprof) [8] provides a statistical profile of function run-times, but also
employs instrumentation by the compiler to derive accurate number-of-calls figures.

3 Combining Multiple Performance Analysis Techniques:
Concept and Experiences

As discussed in Section 2, sampling and event-based instrumentation have different
strengths and weaknesses. A combined performance analysis approach can use in-
strumentation for aspects of the application execution for which full information is
desired and sampling to complement the performance information with limited per-
turbation. We discuss two new approaches and evaluate them based on prototype im-
plementations for the VampirTrace plugin counter interface [20]: (I) Instrumenting
MPI calls and sampling call-paths; and (II) Instrumenting application regions but
sampling hardware performance counters.
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3.1 MPI Instrumentation and Call-Path Sampling

Performance analysis of parallel applications is often centered around messages and
synchronization between processes. In the case of applications using MPI, it is com-
mon practice to instrument the API calls to get information about every message
during application execution [12, 22, 7, 18]. The MPI profiling interface (PMPI) al-
lows for a convenient and reliable instrumentation that only requires re-linking and
can even be done dynamically when using shared libraries. Using sampling for mes-
sage passing information would significantly limit the analysis, e.g., since reliable
message matching requires information about each message. However, only record-
ing message events lacks context for a holistic analysis, as for example the root
cause of inefficient communication or load imbalances cannot be determined. Call-
path sampling is a viable option to complement message recording, as it provides
rich context information but—unlike compiler instrumentation—does not require re-
compilation. The projected run-time perturbation and overhead of this approach is
very promising: On the one hand, the overhead can be controlled by adjusting the
sampling rate. On the other hand, MPI calls for communication can be assumed to
have a certain minimum run-time, thereby limiting the event frequency as well as
the overhead caused by this instrumentation. Some applications that make excessive
use of many small messages, especially when using non-blocking MPI functions,
are still difficult to analyze efficiently with this approach, but this also applies to
MPI only instrumentation.

3.1.1 Implementation

We implemented a prototypical sampling support for VampirTrace as a plugin.
Whenever VampirTrace registers a task for performance analysis, the plugin is ac-
tivated and initializes a performance counter based interrupt, e.g., every 1 million
cycles. Whenever such a counter overflow occurs, the plugin checks whether the
current functions on the stack belong to the main application, i.e., are not part of
a library, and adds function events for all functions on the call-path. MPI library
calls and communication events are recorded using the instrumented MPI library of
VampirTrace. The application does not have to be recompiled to create a trace.

3.1.2 Results

Figure 3 shows the visualization of a trace using an unmodified version of Vam-
pir [18], i.e., without specific support for sampled events. The MPI function calls
and messages are clearly visible due to the instrumented MPI library. The applica-
tion functions, and thus the context of the communication operation, are visible as
samples. This already allows users to analyze the communication, possible bottle-
necks, and imbalances. Containing the complete call stack in the trace remains as
future work.
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Fig. 3 Vampir visualization of a trace of the NPB BT MPI benchmark created using an instru-
mented MPI library (MPI functions displayed red and messages as black lines) and sampling for
application functions (x_solve colored pink, y_solve yellow, z_solve blue). Stack view of
one process shown below the master timeline.

Figure 4 shows the measured overhead for recording traces of the analyzed NPB
benchmark. The overhead is very high for the fully instrumented version, while
sampling application functions in addition to the instrumented MPI library only
adds a marginal overhead. Thus, while providing all necessary information on com-
munication events and still allowing the analysis of the application’s call-paths, the
overhead can be decreased significantly. These results demonstrate the advantage of
combining call-path sampling and library instrumentation.

3.2 Sampling Hardware Counters and Instrumenting Function
Calls and MPI Messages

As a second example, we demonstrate the sampling of hardware counter values
while tracing function calls and MPI events with traditional instrumentation. In
contrast to the traditional approach of recording hardware counter values on every
application event, this approach has two important advantages: First, in long run-
ning code regions with filtered or no subroutine calls, the sampling approach still
provides intermediate data points that allow users to estimate the application per-
formance for smaller parts of this region. Second, for very short code regions, the
overhead of the traditional approach can cause significant program perturbation and
recorded performance data that does not necessarily contain valuable information
for the optimization process. Moreover, reading hardware counter values in short
running functions can cause misleading results due to measurement perturbation.
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Fig. 4 Run-time of different performance measurement methods for NPB BT CLASS B, SIZE 16
on a dual socket Sandy Bridge system. Median of 10 repeated runs with minimum/maximum
bars. * Filtered functions: matmul_sub, matvec_sub, binvrhs, binvcrhs, lhsinit,
exact_solution; ** Sampling rate of 2.6 kSals.

3.2.1 Implementation

For each application thread, the plugin creates a monitoring thread that wakes up in
in certain intervals intervals to query and record the hardware counters and sleeps
the rest of the time.

3.2.2 Results

Figure 5 shows the visualization of a trace of NPB FT that was acquired using
compiler instrumentation and an instrumented MPI library. The trace contains two
different versions of the same counter (retired instructions), one recorded on every
enter/exit event (middle part) and the second sampled every 1 ms (bottom). On the
one hand, the instrumented counter shows peaks in regions with a high event rate
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Fig. 5 Vampir visualization of a trace of the NPB FT benchmark acquired through compiler instru-
mentation and instrumented MPI library (master timeline, top) including an event-triggered (mid-
dle) and a sampled (bottom) counter for retired instructions. Colors: MPI red, FFT blue, evolve
yellow, transpose light blue
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Fig. 6 Normalized trace sizes of NPB CLASS B benchmarks containing hardware performance
counters either triggered by instrumentation events or asynchronously sampled (1 kSa/s). Base-
line: trace without counters. * Filtered functions: matmul_sub, matvec_sub, binvcrhs,
exact_solution.

due to very short-running functions. This large amount of information is usually of
limited use except for analyzing these specific function calls. The sampled counter
does not provide this wealth of information but still reflects the average application
performance in these regions correctly. On the other hand, the sampled counter pro-
vides additional information for long running regions, e.g., MPI functions and the
evolve_ function. This information is useful for having a more fine-grained esti-
mation of the hardware resource usage of these code areas. Furthermore, Figure 6
demonstrates that sampling counter values can be used to significantly reduce trace
sizes compared to recording counter values through instrumentation. After all, com-
bining the approaches outlined in this section and in Section 3.1 is feasible and will
remain as future work.

4 Conclusions and Future Work

In this paper, we presented a comprehensive overview of existing performance anal-
ysis techniques and the tools employing them, taking into account their specific ad-
vantages and disadvantages. In addition, we discussed the general approach of com-
bining the existing techniques of instrumentation and sampling to leverage each of
their potential. We demonstrated this with two practical examples, showing results
of prototype implementations for (I) sampling application function call-paths while
instrumenting MPI library calls; and (II) sampling hardware performance counter
values in addition to traditional application instrumentation. The results confirm
that this combined approach has unique advantages over the individual techniques.

Based on the work presented here, we will continue to explore ways of combining
instrumentation and sampling for performance analysis by integrating and extend-
ing open-source tools available for both strategies. Taking more event types into
consideration is another important aspect. For instance, I/O operations and CUDA
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API calls are viable targets for instrumentation while resource usage (e.g. memory)
can be sampled.

Another interesting aspect is the visualization of traces based on call-path sam-
ples in a close-up view. It is challenging to present this non-continuous information
in an intuitively understandable fashion. We will also further investigate the scalabil-
ity of our combined approach. The effects of asynchronously sampling in large scale
systems that require a very low OS noise to operate efficiently needs to be studied.
Our goal is a seamless integration of instrumentation and sampling for gathering
trace data to be used in a scalable and holistic performance analysis technique.
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