
Bridging the Gap between Application Performance
Analysis and System Monitoring

Thomas Ilsche, Mario Bielert, Christian von Elm
Center for Information Services and High Performance Computing (ZIH)

Technische Universität Dresden, 01062 Dresden, Germany
thomas.ilsche@tu-dresden, mario.bielert@tu-dresden.de, christian.von_elm@tu-dresden.de

Abstract—Performance analysis has a long history in the
high-performance computing community. On the one hand, the
traditional application analysis focuses on scalable yet detailed
instrumentation of parallel execution. On the other hand, per-
node or cluster-wide monitoring solutions are used in data center
operation. However, performance anomalies resulting from the
interaction between applications, background processes and the
operating system, are difficult to analyze with tools that reveal only
part of the issue. In this paper, we present a novel approach that
covers all aspects of individual nodes. We extend a monitoring tool
to combine call stack sampling, process monitoring, and syscall
recording into a symbiotic view of the application execution,
background activity, and the operating system.

I . I N T R O D U C T I O N

Performance analysis is an important pillar for the efficient
operation of high performance computing clusters. A deep
understanding of practical execution is the foundation for
performance optimization of applications and an energy-
efficient configuration. Classical application analysis focuses
on the activity within the threads and processes of one parallel
application. This approach works well under the assumption
that one application has exclusive access to the underlying
hardware resources, at least on each individual node. In practice,
however, the influence of factors outside of the application, such
as operating system services, can lead to substantial variability
as well as sustained performance degradation (see [1]).

Understanding and resolving such complex performance
issues requires performance monitoring tools that observe
applications in the context of the system and its hardware.
Existing tools struggle to expose details of application execution
at the same time as monitoring system events and the interaction
between the application and the operating system.

In this paper, we describe improvements to the existing node-
level performance monitoring tool lo2s to allow sampling
of functions of multiple applications and their mapping to the
system. Moreover, we enrich the existing information with
improved monitoring of system calls (syscalls).

The remainder of this paper is structured as follows. The
following section summarizes the contemporary approaches and
tools for performance analysis. In Section III, we present the
combination of application and per-node monitoring in lo2s.
Further, we describe how lo2s can monitor the interactions
between the application and the operating system through
syscalls. We discuss the overhead in Section V. The last section
sums up our progress and sketches future directions.

I I . R E L AT E D W O R K A N D B A C K G R O U N D

A broad range of performance monitoring tools covers gen-
eral as well as HPC-specific use-cases. For this discussion, we
focus on tools that support collecting event traces and present
timelines rather than exclusively summarizing information into
profiles. One of the most versatile and widely available general-
purpose Linux tool suites is perf [2, Chapter 13]. With perf
record, it is possible to collect information about a specific
application, all running processes, as well as various system
information. This includes syscalls in the form of tracepoints
at the beginning and end of syscall invocations. However, it is
limited by a serial and very general trace file format. With the
perf tool suite, the result can be shown as an aggregated text
profile (perf report) or a full-text listing of events (perf
script). Hotspot [3] offers a graphical presentation of a
limited subset of traces recorded with perf with some support
for timelines. The growing support for eBPF, a technology that
enables sandboxed programs within the Linux kernel, allows
profiling tools to collect specific monitoring data with reduced
runtime overhead. For example, bpftrace [2, Chapter 15]
can collect specific data from various probe types. However, it
is tailored to answer concrete questions with simple outputs
rather than providing a comprehensive overview of the activity.

These tools are capable of collecting data from both
application execution and system events, including syscalls.
However, they lack scalable recording and comprehensive visual
analysis of large amounts of trace data that are inevitably
generated from observing parallel applications.

In contrast, tools for HPC performance analysis specialize
in scalable data recording and presentation. For example,
Score-P [4] is used to collect information from large-scale
OpenMP and MPI applications. Nevertheless, it is limited to
the application perspective and always requires instrumentation
during the build step. Score-P writes information as OTF2
traces [5], which can be visualized with Vampir [6]. HPC-
Toolkit [7] focuses on sampling rather than instrumentation and
can work on unmodified parallel applications. Both Score-P
and HPCToolkit can use the perf_event interface1 as a
sampling interrupt source and to collect hardware performance
counters. The Tuning and Analysis Utilities (TAU) [8] are
primarily used to instrument parallel applications and generate

1The interface defined in linux/perf_event.h around the
perf_event_open syscall is also the foundation for the perf suite.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work

in other works. This document is the accepted versions provided by the authors. The IEEE publication is available in IEEE Xplore. DOI: 10.1109/CLUSTER51413.2022.00080.

https://ieeexplore.ieee.org/document/9912731
https://doi.org/10.1109/CLUSTER51413.2022.00080


profiles or traces. Morris et al. [9] demonstrate an experimental
combination of instrumentation and sampling based on TAU
that leverages sampling techniques from HPCToolkit. These
three tools perform their sampling event handling in userspace
code and are limited to monitoring a single parallel application.

Ilsche et. al [10] presented the node-level performance
analysis tool lo2s. This versatile tool is also built on top
of perf_event and writes traces as OTF2, enabling scalable
performance visualization with Vampir. Lo2s can monitor
applications in the process monitoring mode or all scheduled
processes in the system monitoring mode. While the two
monitoring modes already cover a large range of use-cases, the
sampling of application call stacks was previously only possible
in the process monitoring mode. In this work, we extended
the capabilities of lo2s with the system-wide sampling of
application call stacks, combining the advantages of both modes.
Moreover, recording syscalls was only possible as metric events,
making it difficult to highlight the individual syscall phases
within the timeline. We improve this by adding native syscall
support as individually identifiable execution regions.

I I I . S A M P L I N G I N S Y S T E M - M O N I T O R I N G

Sampling, as a technique for obtaining performance infor-
mation, uses a periodic collection of the state of an application
or the system (see also [11, Section 2.1.2]). In the process
monitoring mode of lo2s, this periodic interruption is triggered
by an overflow of an event counter, by default a certain number
of instructions. On such an interrupt, lo2s will collect either
the current instruction pointer or the call stack, and optionally
additional performance metrics [12, Section III]. By leveraging
the perf_event infrastructure, the Linux kernel performs
the interrupt-based read-out and writes the data into a ring
buffer. This approach minimizes the performance overhead
compared to custom user-space interrupt handlers. The collected
instruction pointers or call stacks yield a trace of the application
execution. Compared to function instrumentation, sampling
allows better control over perturbation, but the resulting traces
are noisy. When observing threads with perf_event, the
Linux kernel tracks the hardware performance counters even
when the thread is suspended or migrated.

In the system monitoring mode of lo2s, perf_event is
used to track all scheduling events of the operating system
individually. This means, that the resulting trace contains accu-
rate information on which processes were running during what
time interval on which hardware thread. Besides application
threads, the tracked processes include operating system services
and lo2s’ internal monitoring threads. Additional node-global
events and metrics can be included: Kernel tracepoints cover a
variety of system events (see [13, Section 2.9]) and are mapped
to metric information in the trace. Moreover, metrics from
hardware performance counters as well as various external
sources can be included. As an example, Ilsche et. al [12] use
tracepoints to monitor C-state transitions. They then correlate
the recorded tracepoints with external high-resolution power
measurements into a thorough trace file.

While both modes are individually powerful, we present
an enhanced system monitoring mode that combines their
advantages: Through our modification to lo2s, it is now
possible to record instruction pointers and call stacks in the
system monitoring mode.

Implementing Sampling in System Monitoring Mode

The implementation of the enhanced system monitor-
ing mode leverages the context_switch option of
perf_event_open. This newer option (since Linux 4.3)
requires fewer privileges2 to monitor scheduling events than
using the sched_switch tracepoint. Together with re-
placing the sched_process_exit tracepoint with the
PERF_RECORD_COMM event, our changes enable the system
monitoring mode without special permissions or configuration.
Moreover, scheduling events can be collected in the same buffer
as sampling events, which is crucial for the presented enhance-
ment. However, due to race conditions during scheduling in the
kernel, it is still possible that a sample of a thread is recorded
at a time when it appears to not be scheduled. In such cases,
lo2s drops the sample in order to avoid an inconsistent stack
state in the trace. Since the samples represent only statistical
information, this is not a significant issue.
Lo2s needs to know the location of each process’ binary and

its dynamic libraries to extract the debug information for the
trace. Furthermore, information about the actual process names
(as opposed to the name of the binary) should be collected.
In the process monitoring mode, this information is extracted
from the PERF_RECORD_MMAP and PERF_RECORD_COMM
events, which are generated on process start-up. However, those
events are not available for processes already running before
monitoring was started and are thus not sufficient for the system
monitoring mode. To alleviate this limitation, lo2s parses
/proc/[pid]/maps and /proc/[pid]/comm for every
running process, given that it has adequate permissions.

An Example of Comprehensive Sampling

The following showcases the monitoring enhancement with
instruction points (flat function) sampling through an exemplary
performance anomaly. We run the well-known LU benchmark
from the NAS parallel benchmark suite [14] in class C on
one node comprising two Intel Xeon E5-2690 processors. Our
configuration uses OpenMP on all of the 32 available hardware
threads, i.e., CPU 0 to CPU 31.

Figure 1 shows a Vampir screenshot of the described situation:
As expected, the OpenMP threads are scheduled on each
hardware thread. The timeline shows both, functions but also
the scheduled threads without function information when no
instruction sample is available. For instance, the light green
sections denote the threads of the lu.C.x process. These
processes are overlayed with sections representing samples.
Darker green and brown colored sections represent computation
phases and synchronization phases use blue colors. During
benchmark execution, the computation phases are interleaved
with synchronization phases. Idle times of a CPU are visible

2Setting the sysctl perf_event_paranoid to 0 or −1 suffices



Figure 1: Vampir screenshot of an OpenMP benchmark. The top shows the timeline of the function samples, if available,
otherwise the scheduled process on each CPU. The bottom shows the scheduled process (1) and samples (2) for CPU 7.

in white. After ∼7.8 s, we artificially schedule a disrupting
process on CPU 7. The rogue process, highlighted in red,
can be identified with interactive exploration in Vampir. Until
that point, the synchronization phases are barely noticeable.
But, the interrupting process displaces one thread of lu.C.x
causing a delay for all threads in the following synchronization
phase of the benchmark. Additionally, lo2s reveals that in this
scenario, the threads are busy waiting rather than going into an
idle state. The provided source code locations for samples of
sync_left_ and sync_right_ show, that these functions
use loops on atomics for inter-thread communication.

With classical analysis tools, users would need to choose
between an application view and a process-focused view. The
application view only highlights the effect on the application
but lacks the cause of the degradation. While a node-level
view can hint at the culprit, it lacks detailed information
about the application behavior. We closed that gap with the
comprehensive event sampling introduced to lo2s.

I V. M O N I T O R I N G O F S Y S T E M C A L L S

System calls, or short syscalls, are the interface between the
applications and the operating system. They allow switching
the control flow from the user space to the privileged kernel
space. This switching allows guarding critical tasks against
and sharing hardware resources between untrusted applications.
This important separation, however, introduces costly context
switches from user space to kernel space and back. Depending
on the nature of the syscall, the control flow might even be
blocked in kernel space until the correlated task gets finished.
In performance analysis, syscall activity can be correlated with
a lot of problems, e.g., file I/O, thread synchronization, and
network communication. Hence, analyzing the syscalls can give
an orthogonal view of performance problems in an application.

Implementing Syscall Recording

We extend lo2s to record syscall events using the raw_-
syscalls:sys_enter/exit tracepoints. Of course, a

typical application uses different syscalls and not all are of
interest, thus, we use Ftrace [2, Chapter 14] to enable filtering.

In order to record both enter and exit of syscalls,
lo2s needs to set up two independent perf record-
ings for the two tracepoints. For a more efficient imple-
mentation, the events should be collected into the same
buffer. Unfortunately, the flag PERF_FLAG_FD_OUTPUT
is “broken since Linux 2.6.35” [15]. Instead, we set
PERF_EVENT_IOC_SET_OUTPUT. This method, however,
has the disadvantage, that it only works for events that occur
on the same CPU. Consequently, our current implementation
only supports syscall recording in the system monitoring mode.

This limitation has two major implications. Firstly, while the
recording of syscalls per CPU has its value for some use cases,
analyzing the behavior of a specific application is challenging,
as syscalls are hard to correlate to their originating thread.
Especially syscalls that lead to a de-scheduling of the process,
e.g. futex and poll, interfere with this correlation. Secondly,
when a thread calling a blocking syscall is preempted, a second
process can be scheduled and execute a syscall. As OTF2 does
not allow overlapping region calls, lo2s cannot map the true
sequence of events to region enter/leave events in the trace. To
mitigate this problem, lo2s writes an exit event for any syscall
that is still in-flight right before another syscall is entered.

Another note-worthy implementation detail is the translation
of syscall names. perf_event only provides the id of syscalls
and there is no readily available look-up table. Therefore, during
build, a script parses the unistd.h header file containing
__NR_syscall_[name] macros with the id as value.

Given these limitations, we want to expand the implementa-
tion in the future to allow syscall recording per process. This
would alleviate both problems, as one thread can only call one
syscall at a time. However, to achieve this, we need to go back
to two separate event buffers and merge during buffer flushes
in lo2s. For this implementation, it is important to ensure
that the introduced perturbation is minimal.



Figure 2: Vampir screenshot of the LU benchmark running on a 16C/32T machine. Compute phases are colored in shades of
green and brown, synchronization in blue. The recorded syscall futex is red.

A Syscall Timeline Example

Likewise to the node-wide sampling, we use the LU bench-
mark as a synthetic example for syscall recording. In this
case, we enable the recording of syscalls and zoom into one
complete iteration of the benchmark. Figure 2 depicts the
Vampir screenshot of the resulting situation. The upper half of
the timeline is again the samples of the hardware threads. It
shows the three computational phases, i.e., rhs, jacld/blts,
and jacu/buts. The lower half shows the syscall events;
in this case, only futex syscalls are present. In particular,
the aligned futex calls are present between different phases,
which hints at a global synchronization. And indeed, the source
code of the LU benchmark uses OpenMP barriers. Also, during
the futex syscalls, the lu.C.x process gets de-scheduled as
opposed to the busy waiting functions discussed in Section III.

This shows how enriching the traces with syscall information
can yield additional insight into the application and its interac-
tion with the operating system. Even more so, together with
the comprehensive sampling, the syscall events allow inferring
implementation details of the application and its libraries and
runtimes. Hence, not only the presence of syscall events can
provide more context, but also the lack thereof.

V. OV E R H E A D D I S C U S S I O N

A critical aspect of a performance analysis tool is its impact
on the observed workload, i.e., the perturbation. Given that
lo2s utilizes the data collection provided by the kernel rather
than a user-space interrupt handler, we expect a low perturbation.
As a metric, we use the mean core runtime reported by the
benchmark, which does not include the cost of setup and post-
processing. We compare LU running unmonitored with lo2s
in the system monitoring mode and with lo2s also recording
all syscalls, each repeated for 200 times. Due to the increased
variances, no rogue process was injected for this measurement.
With the default of one sample every 11 010 113 instructions,
the perturbation is just barely statistically detectable at 0.3%
without and with syscall recording. Hence, we reduce the
sampling interval to ∼500 µs but increase the kernel buffer size

to allow it to hold all samples of one run3. In this configuration,
the perturbation is 3.3% without and with syscall recording.

For a rough comparison, Morris et al. [9, Table I] report 7.7%
and 7.2% overhead for TAU and HPCToolkit, respectively.
While these numbers refer to the same sampling rate of 500 µs,
they are limited to the application threads but use a full call
stack and a different application.

V I . C O N C L U S I O N A N D F U T U R E W O R K

In this paper, we presented two major extensions to the
node-level performance analysis tool lo2s. First, the novel
combination of application sampling and per-CPU monitoring
allows pinpointing the culprit and impact of performance
degradations in complex setups. We presented an exemplary
scenario where the introduced method reveals the cause and
effect of a rogue process disturbing an application run. Second,
we added an improved recording of syscalls. The resulting
timeline shows syscalls similarly to functions with a type,
begin, and end, but at separate locations for each CPU. The
presented changes are part of the v1.6.0 release4 of lo2s and
are publicly available under the open-source license GPLv3.

As a next step, we will make syscall recording available
for application monitoring since it can be challenging to track
blocking system calls across wait phases and process migrations.
Moreover, we want to leverage syscall recording to monitor
file-descriptor-based I/O operations in applications.

With these enhancements, lo2s is becoming a compre-
hensive node-level performance analysis tool. The unique
combination of application, operating system, and hardware
perspective facilitates complex use-cases while retaining the
lightweight approach with low perturbation and no separate
instrumentation phase.

A C K N O W L E D G M E N T S

This work is supported in part by the German Research
Foundation (DFG) within the CRC 912 - HAEC and the german
National High Performance Computing (NHR@TUD).

3lo2s -m 2048 -e cpu/cpu-cycles -c 1450000 -A
4https://github.com/tud-zih-energy/lo2s/releases/tag/v1.6.0

https://github.com/tud-zih-energy/lo2s/releases/tag/v1.6.0


R E F E R E N C E S

[1] S. Chunduri, K. Harms, S. Parker, V. Morozov, S. Oshin, N. Cherukuri, and
K. Kumaran, “Run-to-run variability on xeon phi based cray XC systems,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, nov 2017.

[2] B. Gregg, Systems Performance. Pearson Academic, 2020.
[3] M. Wolff, “hotspot – a gui for the linux perf profiler.” [Online].

Available: https://www.kdab.com/hotspot-gui-linux-perf-profiler/
[4] A. Knüpfer, C. Rössel, D. a. Mey, S. Biersdorff, K. Diethelm, D. Es-

chweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E. Nagel,
Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. Shende, R. Tschüter,
M. Wagner, B. Wesarg, and F. Wolf, “Score-P: A joint performance
measurement run-time infrastructure for Periscope, Scalasca, TAU, and
Vampir,” in Tools for High Performance Computing 2011, H. Brunst,
M. S. Müller, W. E. Nagel, and M. M. Resch, Eds. Springer Berlin
Heidelberg, 2012, pp. 79–91.

[5] D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W. E. Nagel, and
F. Wolf, “Open trace format 2: The next generation of scalable trace
formats and support libraries,” in Applications, Tools and Techniques on
the Road to Exascale Computing, ser. Advances in Parallel Computing,
vol. 22, 2012, pp. 481 – 490.

[6] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach,
“VAMPIR: Visualization and analysis of MPI resources,” Supercomputer
63, vol. XII, no. 1, pp. 69–80, 1996.

[7] L. Adhianto, S. Banerjee, M. W. Fagan, M. W. Krentel, G. Marin,
J. Mellor-Crummey, and N. R. Tallent, “HPCToolkit: Tools for per-
formance analysis of optimized parallel programs,” Concurrency and
Computation: Practice and Experience, 2009.

[8] S. S. Shende and A. D. Malony, “The tau parallel performance system,”
The International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, 5 2006.

[9] A. Morris, A. D. Malony, S. Shende, and K. Huck, “Design and
implementation of a hybrid parallel performance measurement system,”
in 2010 39th International Conference on Parallel Processing. IEEE, 9
2010.

[10] T. Ilsche, R. Schöne, M. Bielert, A. Gocht, and D. Hackenberg,
“lo2s—multi-core system and application performance analysis for Linux,”
in Cluster Computing (CLUSTER), 2017 IEEE International Conference
on. IEEE, 2017, pp. 801–804.

[11] T. Ilsche, J. Schuchart, R. Schöne, and D. Hackenberg, “Combining
instrumentation and sampling for trace-based application performance
analysis,” in Tools for High Performance Computing 2014. Springer
International Publishing, 2015, pp. 123–136.

[12] T. Ilsche, R. Schöne, P. Joram, M. Bielert, and A. Gocht, “System
monitoring with lo2s: Power and runtime impact of c-state transitions,” in
2018 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), May 2018, pp. 712–715.

[13] B. Gregg, BPF Performance Tools. Addison-Wesley Professional, 2019.
[14] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The NAS parallel benchmarks summary and preliminary
results,” in Supercomputing’91: Proceedings of the 1991 ACM/IEEE
conference on Supercomputing. IEEE, 1991, pp. 158–165.

[15] perf_event_open(2) – Linux Programmer’s Manual, 4th ed., September
2017.

https://www.kdab.com/hotspot-gui-linux-perf-profiler/

	Introduction
	Related work and Background
	Sampling in System-Monitoring
	Monitoring of system calls
	Overhead Discussion
	Conclusion and Future Work
	References

