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Abstract—Energy costs are a critical consideration for operating
High-Performance Computing (HPC) systems, with significant
efforts dedicated to reducing the energy expenditure of active
computations. However, compute nodes of HPC systems also spend
a non-negligible amount of time idling, i.e., without performing
any useful work. Optimizing idle power consumption presents
an impactful and potentially more accessible opportunity for
practical energy savings. This paper surveys factors that influence
the idle power consumption of HPC systems. We employed
various monitoring tools and power measurements in a structured
practical approach to optimize idle power consumption during
the installation phase of an HPC system. The results highlight
the effectiveness of targeted idle power management strategies,
demonstrating compound savings of approximately 90 W per node,
and 57 kW for the full system in idle. This thoroughly discussed
example can serve as a blueprint for similar optimizations in
other HPC environments.

Index Terms—High-Performance Computing, Idle power, En-
ergy efficiency, Power management

I. INTRODUCTION

Improving energy efficiency has been a primary target
for High-Performance Computing (HPC) systems research
over the recent years. This is driven by the cost of energy,
environmental impact, and limited supply of power. Much of
the research is focused on reducing the energy costs associated
with computation, which represents the most significant portion
of the overall energy expenditure. However, idle times, often
overlooked in HPC systems, also contribute substantially to
overall cost. Idle periods occur during transitions to more
capable systems or simply over holidays when user job
submissions decrease, reducing system utilization. Additionally,
resource management systems need to reserve compute nodes
for jobs spanning large parts of a system, leaving the nodes
idle until the large job starts. While backfilling — scheduling
smaller jobs to use these idle periods — is commonly used
to improve utilization, it has practical limitations and remains
an active topic of research [1], [2]. Moreover, planned and
unplanned maintenance phases can leave compute nodes idle.
For example, an inaccessible parallel file system can prevent the
execution of jobs even when the compute nodes are functional.

Conventional server systems, e.g., web or database servers,
operate on continuous utilization levels. During phases of low
utilization, they process fewer requests, but rarely none at all.
In contrast, nodes of HPC systems can be completely idle,
perform no effective work at all during periods that may last
from minutes to hours. This distinction in operational behavior

influences the potential energy savings that are achievable by
optimized configuration.

Compute jobs within HPC systems often include blocking
communication phases, in particular due to load imbalances,
that can be implemented as idle [3]. However, there is a
latency/power trace-off when using idle mechanisms during
communication phases. Moreover, this does not always apply
to full compute nodes. On systems that allow node-sharing,
nodes may also be partially utilized by jobs.

This paper focuses on effectively using processor idle states
(C-states) rather than system suspend states (S-states) for
managing power consumption of fully idle HPC system nodes.
C-states, which manage power at the processor level, can be
controlled transparently by the operating system. In contrast, S-
states, which affect the entire node, require explicit control and
external triggers or timers for resuming. The Slurm workload
manager provides integrated mechanisms for suspending and
resuming idle nodes [4]. Due to the substantial latencies, this
is performed with certain delays and at configurable rates.
While suspend has much higher energy saving potential than
idle states, it can impose operational issues. Resuming a node
reliably can be a practical challenge, e.g., due to network drivers
and connections to parallel file systems resuming unreliably.
In addition, due to the transition costs for suspend strategies,
utilizing C-states efficiency is still relevant.

While it is unfeasible to generalize HPC operation, the
aforementioned arguments motivate out focus on idle-power
optimization. This paper discusses methods to analyze and
optimize the use of C-states on fully-idle compute nodes to
achieve optimal energy savings. This follows the optimizations
performed on a 630-node CPU cluster at TU Dresden.

II. RELATED WORK

Sundriyal et al. [5] leverage Linux suspend states to reduce
the power consumption of idle nodes. They implement a
strategy based on measuring the power consumption and
using timed suspends and are therefore independent of a
batch system. While they report energy savings of up to
87 %, the impact on computation efficiency from wake-up
latencies is not described. Mämmelä et al. [6] describe energy
aware scheduling approaches that combine different general
scheduling algorithms with shutting down nodes for extended
idle duration. They report a reduction of energy consumption
by 6 % to 16 % with no significant increase in wait times.
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Minartz et al. [7] discuss power saving modes for HPC
systems and report that “For performance (measurement)
reasons C-states are disabled on most HPC installations.” We
believe that now, 13 years after this publication, using C-states
is common practice for HPC systems, but could not find a
survey to confirm this. Minartz et al. also report energy savings
from reducing the core frequency between 6 % and 11 %.

Gobriel et al. [8] describe an approach to increase idle
times in the presence of background network traffic. They
implement a prototype in a wireless network card that buffers
broadcast messages, dispatching them in bursts. This strategy
mitigates the impact of background noise, facilitating longer
uninterrupted idle phases. They focus on mobile devices and
report an achieved energy gain of 23 % and 41 % for wired
and wireless environments respectively. To avoid introducing
latency to critical communication, e.g., VoIP sessions, they use
a heuristic to differentiate background traffic from active traffic,
ensuring that the latter is not delayed by bulk processing.

III. IMPACTING FACTORS ON IDLE POWER CONSUMPTION

ACPI [9] describes several measures to lower power con-
sumption on idling systems. They can be implemented on
processor level and still guarantee the system to be responsive
to interrupts. On the one hand, performance states (P-states)
slow down computation via Dynamic Voltage and Frequency
Scaling (DVFS). On the other hand, power states (C-states) stop
the execution of instructions to lower the power consumption
until a certain event (e.g., timer, interrupt) occurs. To do so, the
operating system calls a privileged instruction (e.g., HLT and
MWAIT on x86). Depending on the definition of the requested
state, the hardware disables (parts of) the core (if all threads
of said core request a state). On Intel systems, typical core C-
states are C1, C1E, and C6 [10, Table 2-12], which imply clock
gating, clock gating+DVFS, and power gating, respectively.
Please note, while C1E is usually requested per core, it is

“generally achieved at the package granularity” [10].
When all cores reside in a deep C-state, there is almost no

activity on the whole processor, e.g., no core requests data from
the shared last level cache or the integrated memory controller
iMC. Hence, non-core components can be disabled as well in
this scenario. This is called a package C-state. Typical package
C-states on Intel processors include PC2 and PC6 [10, Table 2-
13]. PC6 can power gate non-core components or take them to
retention voltage, or disable the iMC, setting the main memory
to self-refresh. Since disabled processors cannot participate in
communication with external devices or other processors, Intel
introduced the PC2 state where external requests are handled,
but still offcore-components can be disabled as well as cores.

Whenever a single core awakes, the non-core resources of
its processor have to be enabled in addition to said core and,
moreover, other processors might switch to PC2 in order to
answer cache coherence requests. Therefore, the number of
interrupts on any core defines the activity of all processors and
consequently the power consumption on an idling system. To
limit the number of interrupts of the operating system, Linux
offers several configuration options. In the past, the regular

scheduling-clock interrupts, that allow the scheduler to switch
between processes running on a CPU, was a major source of
interrupts that prevented efficient long-term idling. Nowadays,
the default of CONFIG_NO_HZ_IDLE [11, Timers, NO_HZ]
disables the scheduler ticks on idle CPUs. In addition Linux also
provides options to lower reasons for regular kernel interrupts
(e.g., kcompactd [11, Physical Memory], khugepaged[11,
Transparent Hugepage Support], and rcu [12]). These enable
administrators to extend potential idle phases of cores and
processors, reducing idle power consumption.

On HPC systems there is another benefit of reducing
interrupts: OS noise. In bulk synchronous parallel appli-
cations, a short interrupt of one local computation may
slow down the entire parallel computation at synchroniza-
tion points [13]. Therefore interrupts can have an ampli-
fied performance impact. The performance variations from
non-deterministic interrupts are also problematic for per-
formance measurements. Hence, processor cores used for
computation should not be preempted while other (ded-
icated) cores handle interrupts. Linux supports this with
the CONFIG_NO_HZ_FULL and CONFIG_RCU_NOCB_CPU
flags [14] and the irqaffinity and isolcpus boot
parameters [11, The kernel’s command-line parameters]. While
the methods to investigate and optimize OS noise and idle
interrupts overlap, this work focuses on the latter.

We can distinguish two categories: software-visible noise and
hardware noise. A specific infrastructure in the Linux Kernel
can monitor software-visible noise. However, this osnoise
tracer [13] uses an active workload rather than idle to detect
software-visible noise caused by “NMIs, IRQs, SoftIRQs, and
any other system thread” [11, OSNOISE Tracer]. In the
context of idling systems, interrupts will have a CPU exit
its idle state and work on a given task before it can return
to idle. The occurrence of such work can be monitored with
ftrace [11, Function Tracer] and tracepoints that provide a
default instrumentation of the kernel [11, Event Tracing].
With this infrastructure, analysts can use different events, e.g.,
nmi:nmi_handler and irq:irq_handler_entry, to
locate their occurrence and relate them to tasks. Several tools
use tracepoint events, e.g., powertop via libtracefs or
lo2s [15], to gather information on interrupts that indicate
software visible noise. Hardware noise is handled by hardware
components without the participation of the OS. This can be
found, for example, in loosing cycles when the hardware serves
System Management Interrupts, or when a PCIe device would
use direct memory access to read data from main memory
without the participation of a CPU. While the former could be
detected with a tight computation loop as done by the hwlat
tracer [11, Hardware Latency Detector], the latter is even
harder to detect since no CPU is involved. Nevertheless, model
specific registers [16, 15.5.4.2][17] and hardware performance
monitoring units [16, 20.3.1.2] can be used to count the number
of cycles package C-states were used or whether PCIe devices
were actively communicating with the processor1.

1e.g., UNC_IIO_* events on https://perfmon-events.intel.com/spxeon.html
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IV. IDLE POWER OPTIMIZATION ON A CPU CLUSTER

The CPU cluster Barnard at TU Dresden consists of 630
compute nodes, each equipped with two Intel Xeon Platinum
8470 “Sapphire Rapids” processors. Each node contains 104
processor cores and 512 GiB DRAM. Hyper-Threading is
enabled for a total of 208 hardware threads (logical CPUs
as per the OS). The processor has a base frequency of
2.0 GHz, a maximum turbo frequency of 3.8 GHz, and a
minimum frequency of 0.8 GHz. The operating system is
configured to use the two available core C-states, C1 and C6 as
per /sys/devices/system/cpu/cpu0/cpuidle. The
compute nodes use the acpi-cpufreq idle driver. At
the time of investigation, the system was running Red Hat
Enterprise Linux release 8.7 with a Linux kernel version 4.18.0-
425.19.2.el8_7.x86_64.

A. Power Measurement Capabilities

Barnard uses continuous power monitoring at two levels.
For each node, the Baseboard Management Controllers (BMC)
provide instantaneous power readouts via Redfish at a 1 Sa/s
rate. Additionally, the data center infrastructure measures the
input power for pairs of racks and one individual rack. This
measurement uses Janitza UMG 96RM power analyzers and is
read at 5 Sa/s using Modbus. The devices internally samples at
a much higher rate to achieve the accuracy class of 0.5 %. Both
measurements are processed by MetricQ infrastructure [18]
and stored at full resolution.

While the processors also provide RAPL energy coun-
ters [19], they are of limited use for idle optimizations. Their
accuracy at the idle point is not well understood. Non-linear
effects due to interactions among energy saving mechanisms
of the processor, voltage regulators, and other components in
the system limit the meaningfulness of the CPU measurement
domain. The actual optimization goal is to reduce the system
power consumption. Moreover, on this system, RAPL is only
available in-band and therefore requires active measurements
that can perturb the idle nodes.

B. Quantifying Power Consumption for different C-States

To characterize the range of node power consumption, we
consider a single Barnard node in several scenarios:

• FIRESTARTER, a tool designed to maximize power
consumption [20], running on all hardware threads,

• FIRESTARTER running on a single hardware thread, with
the rest of the hardware threads idle, all C-states enabled,

• the node runs in its normal idle configuration, except that
for one CPU the core C-state C6 is disabled, which also
prevents the system from entering deep package C-states,

• the normal idle configuration, core C6 enabled for all
CPUs with no workload.

We run the four scenarios at the highest frequency pos-
sible using the performance governor and enabled turbo
boost as well as the lowest frequency (800 MHz) using the
powersave governor with disabled turbo boost. Note that
these measurement were taken after the optimizations described
in Section IV-E and on a single node.

turbo powersave
Frequency Setting

0

100

200

300

400

500

600

700

800

N
od

e 
Po

w
er

 C
on

su
m

pt
io

n 
[W

]

810

494
442

261

308

258

271

174

2 x Intel Xeon Platinum 8470 (Sapphire Rapids)

scenario
FIRESTARTER on all threads
FIRESTARTER on one thread
idle, one core C1, rest C6
idle, all cores C6

Figure 1: Power consumption on one node for different
workload, C-state, and frequency configurations. Bars and
labels show average power over a duration of 10 min, whiskers
show the 5 and 95 percentiles.

Figure 1 shows the node power consumption in those
configurations. Notably, with only a single active thread —
one core out of 104 — the system consumes more than half
of its maximum power. This high consumption for a single
active thread applies to both frequency settings individually.
Despite these numbers, and the only active core running at the
highest possible turbo frequency, the power consumption of
the core itself is likely relatively small. The large differences
between the configurations where all but one thread are idle —
ranging from 174 W to 442 W — can only be explained with
the consumption of shared (non-core) resources. For instance,
at turbo frequencies, a single active thread increases the node
power consumption by 134 W compared to the configuration
with a single core in a shallow idle state (C1). We suspect
this difference to originate from the automatically regulated
uncore frequency, which can be reduced even at shallow
core/package C-states. Contrary, at the manually enforced
lowest core frequency, the power consumption with a single
active thread is almost equal to one thread in C1. This hints to
a clockdown of the uncore frequency, which could be regulated
based on workload demands [21] or core frequencies [22].

For all scenarios, including full idle, the power consumption
is reduced when applying the powersave governor. This is
unusual insofar as package C-states C1E and above automati-
cally reduce frequency and voltage in addition to clock/power
gating the cores. However, even though in the idle configuration
C6 is enabled on all cores, the cores are waking up regularly
and performing short bursts of work. In this configuration, the
active times, where the frequency governor is relevant, are
significant enough to cause this impact on power consumption.
This observation is consistent with the high variance in power
samples for the fully idle case especially with turbo frequencies,
but also with the powersave governor.



On earlier systems, i.e., Intel’s Skylake processor generation,
we observe better package C-state residency and our measure-
ments indicate that the full idle configuration is independent of
the frequency governor. However, other, even earlier, related
work [7] reported the idle power consumption to depend on
the core frequency.

C. Core Frequency in Idle

In a first step to reduce the power consumption of fully
idle nodes, the vendor installed Slurm epilog/prolog scripts.
Whenever a job is scheduled on a node, the performance
governor is activated as well as turbo frequencies. When the
job finishes, turbo is disabled and the powersave governor is
applied. Since nodes can be shared by multiple jobs, the prolog
script uses a lock-file to detect whether another job is still
running on the node.

With these scripts, the long-term average node power in
idle decreased from 262.1 W to 184.0 W. Please note that the
numbers differ from Figure 1, because here the average over
all nodes are presented as opposed to a single node; Values
vary significantly across nodes.

The ondemand and schedutil governors2 select frequen-
cies based on the current load. Using them independent of the
job state of a node would also reduce the power consumption
in idle. However, their use implies a latency to increase the
frequency for full utilization and comes with an additional per-
CPU overhead for calculating the desired frequency regularly,
both undesirable in an HPC context.

D. Further Analysis

By observing idle power consumption of the racks, we
noticed repetitive patterns in the power consumption as shown
in Figure 2. Even at the sub-second level, the power of different
rack-pairs showed a very strong correlation. To some extend,
the node-level measurements also exhibited these patterns, but
with a high degree over of overlapping noise from the less
accurate instantaneous power measurements. This observation
shows that there is still substantial potential for reducing idle
power. The highly synchronized nature of the pattern indicated
a cause that is either driven by local interrupts based on a
global time or a interrupt to all nodes from an external event.

For a local investigation of idle activity on the node, we
used PowerTOP. While the results presented here give hints
for further optimization, please note that due to variations and
limitation to a single node there is a significant degree of
uncertainty in the values. PowerTOP reports package C-state
utilizations of 60.9 % PC6 and 14.7 % PC2 with the exact same
values for both processor packages. Figure 3 shows that, with
few exceptions, the core C6 residencies are reported as 100.0 %
or very close to it. Core residencies for C3 and C7 are listed,
but always exactly 0 %.

Table I lists the most impactful sources of wake-ups. The
tick_sched_timer has the highest event rate, but repre-
sents generic scheduling activity that offers no direct leverage

2https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
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Figure 2: Power consumption of Barnard measured at rack
input, averaged to 5 s bins.
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Figure 3: Boxplot with outliers of core C6 residency according
to PowerTOP on Barnard before further optimization.

for optimization. The [rcu_sched] process could possibly
be optimized by tuning the RCU kernel boot parameters [12],
but due to the complexity of this configuration and the
possibility of side-effects, we did not follow up on this.

Arithmetically, the other sources each account only for a
small fraction of <4 % of the total wake-ups. Nevertheless,
net_rx(softirq) and ipoib_reap_ah (related to in-
finiband) indicate an impact of network activity, which is
consistent with the observation of synchronized power patterns.

Table I: ”Top 10 Power Consumers” as per PowerTOP, collected
for 12 min. Total 131.4 wakeup/s.

Usage Events/s Category Description

0.1 % 32.0 Timer tick_sched_timer

0.0 % 8.7 Process [rcu_sched]

0.0 % 4.8 Interrupt net_rx(softirq)

0.0 % 4.8 kWork fb_flashcursor

0.0 % 4.1 Process [xfsaild/dm-0]

0.1 % 2.3 kWork ipoib_reap_ah

0.0 % 2.3 Interrupt tasklet(softirq)

0.2 % 1.0 Process powertop

0.0 % 1.5 Process NetworkManager -no-daemon

0.0 % 1.4 Interrupt mlx5_async63@pci

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
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Figure 4: Packet rates exported from Wireshark, 10 s bins.

E. Optimizing Background Network Traffic

Following up on the suspicion of network activity having
an impact on idle power consumption, we first confirmed that
the nodes received ≈40 packets/s3 on the Ethernet device. For
further analysis, we captured a packet trace using tcpdump,
which contained mainly ARP and DHCP broadcast packets4.
The rate of ARP packets, shown in Figure 4, follows a pattern
with a period of 270 s, matching the power consumption pattern
revealed in Figure 2. However, the DHCP packet rate appears
to be relatively constant with some noise. A cross-correlation
between the packet rates and rack power consumption (both
resampled on 1 s intervals) show a clear temporal connection
with no delay for both ARP and DHCP packet rates.

These observations justified further analysis of packet sources
and optimization in order to reduce idle power consumption.
The DHCP packets were identified as discover queries originat-
ing from the Baseboard Management Controllers (BMC). The
BMCs tried to configure an unused network interface as a result
of a regression introduced during the early deployment stages.
Since no answer was given, the requests were repeated every
64 s. After disabling DHCP on this BMC network interface, the
idle power consumption was reduced from 184.0 W to 177.6 W
per node.

In general, large layer 2 networks can experience significant
background ARP (Address Resolution Protocol) traffic due
to the need for nodes to resolve IP addresses to MAC
addresses [23]. ARP uses Ethernet broadcasts that need to
be processed by all nodes of a broadcast domain.5 First, we
reduced the amount of clients by fully deactivating unnecessary
interfaces on the BMC. Secondly, we identified our Cumulus
Linux based routers as the source of the periodic ARP packets.

3by evaluating /sys/class/net/*/statistics/rx_packets
4The initial tcpdump trace was created with the default promiscuous mode

that includes packets not normally received by the node — in this case ad-
ditional ICMPv6ND_NS packets. To avoid that -no-promiscuous-mode
should be used for such an analysis.

5The IPv6 Neighbor Discovery Protocol (NDP) does not suffer from this
problem due its use of solicited node multicast addresses instead of broadcasts.

Cumulus Linux employs a neighmgrd daemon that tries to
continuously refresh all neighbor entries within 1/4 of the
Linux kernel’s base neighbor timeout We change the timeout6

to drastically increase the interval from 270 s to 3570 s. Other
network operating systems have similar mechanisms. When
increasing the ARP/NDP timeout, the MAC aging-time on
switches should also be adapted to ensure that is greater than
the ARP/NDP timeout, in our case to 6 h. Since the HPC
network changes less often than classical data center networks,
the long timeouts have a low potential for problems. However, it
does require some effort to consistently reconfigure a complex
network with different generations of network components.
Deactivating several interfaces reduced the node idle-power
from 177.1 W7 to 173.3 W, increasing the interval further
reduced it to 172.2 W.

ARP/NDP traffic could be further reduced by leverag-
ing the ARP/NDP suppression capability of Ethernet VPN
(EVPN) [24]. Currently we employ EVPN only at our core
routers at the top of a fat-tree topology. Extending the EVPN
domain to more switches towards the edge of the network would
limit the scope of the neighbor entry refresh to locally attached
nodes instead of the whole network and allow suppressing
ARP/NDP requests by end hosts directly by the closest switch.
Unfortunately this was not feasible in our case.

F. Node Health Check
To further identify sources of activity on the idle compute

nodes, we used lo2s [15]. This monitoring tool creates a
timeline of various events, samples, and metrics in an OTF2
trace, which can be visualized with Vampir. In the system
monitoring mode, lo2s records all scheduled activity on all
CPUs, i.e, which task was executed at what time on which
hardware thread. In addition, lo2s collects OS tracepoint
events, in particular at power::cpu_idle. This tracepoint
is triggered whenever the operating systems tells a hardware
thread to enter an idle state, which idle state was selected by
the idle governor, and when the idle state exited. Finally, the
power measurements that have been collected externally via
MetricQ are embedded in the trace (see Section IV-A). This
trace comprises extensive information of idle activity while
retaining the time dynamics.

To enable effective monitoring of idle with minimal perturba-
tion, lo2s uses the perf_event monitoring infrastructure.
The Linux kernel itself collects all events, without expensive
switches to userspace monitoring code. There is also the
possibility to include RAPL counters in the trace, however that
requires to regularly read them with a userspace monitoring
thread, imposing perturbation.

With lo2s we were able to immediately identify the activity
running in 5 min intervals that first appeared in Figure 2 as
the Node Health Check (NHC)8 scripts. They are triggered by

6net.ipv[4,6].neigh.default.base_reachable_time_ms
= 14280000

7The optimization described in Section IV-F was applied after DHCP and
before ARP optimization. However, for readability reasons we continue with
network related optimizations in this paper.

8https://github.com/mej/nhc
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Table II: Average idle power consumption per node in various stages of optimization.

Initial State powersave Governor Disabled DHCP NHC 15 min ARP Reduction Further ARP Reduction

262.1 W 184.0 W 177.6 W 177.1 W 173.3 W 172.2 W

Slurm in regular intervals for idle nodes to identify and mark
faulty nodes. The runtime of each invocation varies, but can take
up to 2.5 s. Note that the NHC processes were also included in
the full PowerTOP “Software Info”, but since each invocation
has a different PID and it has very few “Wakeup/s”, it is not
listed in the top 10 power consumers. Instead of the effort to
optimize the bash scripts, we chose to increase the interval to
15 min. As a trade-off this setting retains the functionality but
further reduces the long-term idle power consumption from
177.6 W to 177.1 W per node.

G. Final State and Outlook

After the optimizations discussed in Section IV-E and Sec-
tion IV-F, the package C6 residency increased from ≈60.9 %
to ≈74.3 %9 corresponding to an 11.8 W decrease of average
idle node power. The nodes still show a significant number of
intermittently scheduled kernel tasks across all cores as well as
additional wake-up events on CPU 0 and 1. While this indicates,
that there is still substantial potential for improvement, we
could not identify further feasible worthwhile optimizations.
Based on the PowerTOP descriptions fb_flashcursor and
NetworkManager -no-daemon, we tried disabling the
blinking of the framebuffer cursor10 and the NetworkManager
daemon, respectively. Neither led to a measurable change in
power consumption on a single node test, thus no further change
was deployed. Table II summarizes the power consumption
after each optimization step. Since the optimizations affect
each other, the relative improvements of each step depends on
the order.

V. CONCLUSION AND FUTURE WORK

This paper covers idle power of compute nodes: It discusses
general factors and follows a exemplary optimization of HPC
nodes. For the analysis, we show how tools such as PowerTOP
and lo2s provide a structured way to identify opportunities
for optimization. We identified three significant optimizations:

1) Reducing the core frequency explicitly in idle had a
substantial impact on this system, contrary to previous
experiences.

2) Reducing background network broadcasts lowered the
rate of interrupts and extended sleep times.

3) Increasing the interval between idle maintenance tasks
(Node Health Checks) further reduced average node idle
power consumption.

In total, the three optimizations reduced the idle power by
89.9 W per node or 34 % overall. This constitutes a significant
saving in operational costs of the system.

9Residency values according to two PowerTOP samples collected over
12 min on one node each.

10echo 0 > /sys/class/graphics/fbcon/cursor_blink

Besides the monitoring tools, we utilized external power
measurements at node and rack level both for identifying
disruptive activity and quantifying the impact of optimizations.
The analysis of correlation between rack power and network
event rates has shown, that a high temporal resolution, even
beyond 1 Sa/s, can be useful in practice. During the installation
phase, we were able to regularly observe the entire cluster
in idle. For optimizations during production, where usually
only individual nodes are idle, high-quality node-level power
measurements would be beneficial.

While performing idle power analyses and optimizations
during the acceptance test phase of an HPC system is a strong
foundation for efficient operation, there is a substantial risk
of regressions: Network and software configuration changes
as well as system software or firmware updates can introduce
regressions in idle power consumption. Due to variations and
noise in measurements, it is much more challenging to detect
inefficiencies of individual idle nodes. Possible opportunities
for full-system idle analysis could be maintenance phases or
partial outages, e.g. file system is unavailable but compute
nodes are functional.

Overall, we argue, that monitoring, analyzing, and optimizing
idle power consumption is an important part of the energy-
efficient operation of HPC systems, alongside improving system
utilization and application energy-efficiency. By incorporating
these optimizations and maintaining vigilant monitoring, HPC
system operators can achieve substantial energy savings,
ensuring both operational cost-effectiveness and sustainability.
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