
1

A Statistical Approach to Power Estimation for x86
Processors

Mohak Chadha∗, Thomas Ilsche†, Mario Bielert†, Wolfgang E. Nagel†
†Technische Universität Dresden, Germany

Center for Information Services and High Performance Computing (ZIH)
Email: {firstname.lastname}@tu-dresden.de
∗BITS Pilani K.K. Birla Goa Campus

Department of Computer Science and Information Systems
Email: mohak.chadha08@gmail.com

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. The definite version is available at https://doi.org/10.1109/IPDPSW.2017.98.

Abstract—With the growing significance of green computing
and difficulty in obtaining accurate real time power measure-
ments, there is an increasing need for accurate and reliable power
estimation techniques for energy-aware performance optimiza-
tion. In this paper we present a statistical approach for building
accurate power models using Performance Monitoring Counters
(PMC) as effective proxies for x86 systems. The selection of PMC
events is based on statistical methods described in literature for
ARM systems. The models are trained and validated through
a synthetic workload generator as well as standardized bench-
marks, using k-fold cross validation technique. We demonstrate
the accuracy of the resultant models across different voltage
and frequency states using sophisticated reference measurements.
Furthermore, we analyze the significance of the chosen PMC
events, which form the framework for the regression based power
models.

I. INTRODUCTION

Modern HPC systems, ranging from the current petascale
to future exascale supercomputers, are constrained by power
and energy consumption. As such, to balance performance
and power consumption, there is a growing need for accurate
real-time power information for efficient power management.
Power usage information can be obtained either by using
power meters or through model-based power estimation tech-
niques implemented in hardware or software. While physical
power measurements are becoming more widely available,
they always present a trade-off between resolution, accuracy,
scalability and cost [1]. In particular, measurement sensors
need to be placed somewhere in the power distribution chain,
effectively limiting the possibility to observe components
with a common voltage source (e.g. multiple cores). Power
estimation models can complement measurements in terms
of general availability, component resolution and temporal
granularity.

The most common approach to estimating the power of
processors is using Performance Monitoring Counters (PMC)
and statistical regression methods. Walker et al. [2] have
presented an approach for statistical power modeling that
particularly focuses on the stability of the generated model.
While Walker et al. focus on embedded CPUs with the ARM
architecture, the key contribution of this paper is to adapt the
proposed modeling approach to high performance x86 CPUs.

In doing so, we highlight the practical differences to power
modeling arising from the different processor architectures. To
build power models using PMCs, we implemented a workflow
following the proposed steps data acquisition, post-processing,
PMC selection, and model formulation. We practically demon-
strate the approach and analyze the selected performance
counters, which form the framework for our power models
to quantify their significance. Furthermore, we validate our
power models for both, standardized benchmarks and synthetic
workloads, and emphasize additional limitations.

The rest of the paper is organized as follows. Section II
describes the existing techniques and methodologies for power
estimation. In Section III the implemented workflow and the
proposed statistical approach are outlined. The implementation
and experimental verification of our approach is described in
Section IV. In Section V we discuss the significance of the
selected performance counters. Section VI concludes the paper
and presents an outlook.

II. RELATED WORK

Power models for processors can be broadly classified
into two categories, namely bottom-up and top-down. While
bottom-up models use theoretical knowledge of each com-
ponent, top-down models characterize specific devices exper-
imentally. Top-down models commonly utilize performance
counters as a basis for statistical regression modeling. This
approach does not require any knowledge regarding the power
consumption of individual components. However, the estima-
tion accuracy and stability of the resultant regression model
highly depends upon the chosen hardware event counters and
the selected benchmarks used for the formulation of the model.

These techniques propose ways to formulate power models
to estimate power at various denominations ranging from the
entire CPUs [3], [4], [5] to individual micro architectural
components [6], [7]. Some of the initial contributions in top-
down CPU power estimation utilizing performance counters
is from Bellosa [8] and Bircher et. John [3]. Bellosa [8]
has proposed a Joule Watcher Energy Accounting framework
which utilizes hardware counters to register events which
indicate the consumption of a certain amount of energy. On
the other hand, Bircher et. John [3] employ a trickle down

https://doi.org/10.1109/IPDPSW.2017.98

2

approach for modeling complete system power as it allows
the creation of accurate, performance counter based models
using events native to a processor.

An important aspect of regression based modeling using
performance counters is the separation of dynamic and static
power components and the incorporation of Dynamic Voltage
and Frequency Scaling (DVFS) into the power model. Ac-
cording to Mair et al. [9], dynamic and static elements of a
processor-power model should be separated due to the fun-
damental differences in parameters and their behavior across
different DVFS states. While voltage and frequency influence
the dynamic power, static power is influenced by voltage and
leakage current. Towards this, Su et al. [10] distinguish static
and dynamic power and propose PPEP:Online Performance,
Power, and Energy Prediction Framework which can predict
performance, power, and energy across different DVFS states.
The PPEP framework comprises of a per core power model
and a cycles-per-instruction model based on hardware events.
Goel & Mckee [11] build on this and propose a functional
bottom-up power model for multicore processors. The power
model is divided into four components: uncore dynamic power,
core dynamic power, uncore static power and core static power
respectively. The static power models are developed using both
voltage and temperature as parameters.

Some interesting research has also been done on the selec-
tion of performance counters, which form the framework for
accurate regression based power models. As such, Rodrigues
et al. [12] propose a universal subset of performance counters
which can be used for formulating power models for differ-
ent underlying architectures within an average error of 5%.
The proposed subset of performance counters namely fetched
instructions, L1 hit and dispatch stalls were obtained by
analyzing the different regression models developed by using
different combinations of performance counters from a larger
set. However, the proposed approach does not account for
multicollinearity between the selected performance counters.

A more recent research on power modeling using per-
formance counters is done by Walker et al. [2]. They pro-
pose a modeling methodology for developing run-time power
models using performance counters and demonstrate it for
ARM processors. Their approach involves statistical analy-
sis for selection of performance counters and accounts for
multicollinearity between them, addresses heteroscedasticity in
power modeling in order to ensure the stability of formulated
models. In this paper, we adapt this approach for the Intel x86
architecture.

III. MODELING WORKFLOW

The methodology described in [2] suggests a four step
workflow comprising data acquisition, PMC event selection,
model formulation and validation, and CPU voltage model.
We use a slightly modified workflow with an additional post-
processing step after the actual data acquisition. Further there
is no need for a CPU voltage model, given that it is possible
to read actual core voltages during runtime on contemporary
Intel processors. The following section describes the adapted
workflow in detail, an overview is shown in Figure 1.

A. Data Acquistion & Post-Processing

The first step is concerned with the collection of data
required to build and validate the models. On x86 systems, per-
formance counter values can be obtained using several tools,
one of the most prominent being Performance Application
Programming Interface (PAPI) [13]. We use the available PAPI
counters on the experimental platform as PMCs for developing
the regression power models.

For collecting PAPI counter data along with CPU power
and voltage information for different workloads, we gener-
ate the application trace by utilizing the tracing infrastruc-
ture provided by Score-P [14]. Score-P is a tool suite for
tracing, profiling and online analysis of HPC applications.
The relevant information such as power values, PAPI data
and voltage values are added to the application trace by
using metric plugins [15]. A metric plugin is an external
dynamic linked library, which implements the Score-P metric
plugin interface. The metric plugins used in this work include
scorep x86 adapt1, scorep plugin apapi2 and scorep ni. The
plugin scorep x86 adapt supports per core metrics and is
used for obtaining core voltage values. scorep plugin apapi
is an asynchronous plugin used to sample and add PAPI
performance counter data to the application trace. The plugin
scorep ni is used for obtaining power information on our
measurement platform.

The format of the application trace generated by Score-P is
Open Trace Format 2 (OTF2) [16]. It consists of a stream of
events chronologically ordered by the time of their occurrence,
and information about the state and configuration of the target
system. The obtained application trace is used for generating
the subsequent phase profile. The phase profiles for the traces
from roco2 workload kernels (see Section IV) are generated
using a HAEC-SIM module introduced in [17]. On the other
hand, phase profiles for any standardized benchmarks are
generated by using a custom python OTF2 post-processing
tool. The resulting phase profile contains the start and end
time, the average over time for each async metric, the average
value of the recorded PMC values, the number of active
threads, and the identification of the application. Overall the
data acquisition with intermediate trace files is complex, but
it allows to reuse existing tools instead of building prototypes
only for the singular research effort. Further most of the used
tools are publicly available.

Multiple runs of the same application are required due to
the hardware limitation on simultaneous recording of multiple
PAPI counters. The operating frequency fclk is always fixed
to one particular value during one particular execution of a
workload. Following data acquisition, the data from multiple
runs is processed to calculate average power and voltage across
all runs. Furthermore, the phase profiles from multiple runs are
combined together for selecting optimal performance counters.

B. Performance Counter Selection

The method to select the PMC events is shown in Algo-
rithm 1. It is based on the proposed algorithm by Walker et

1https://github.com/score-p/scorep plugin x86 adapt
2https://github.com/score-p/scorep plugin apapi

3

Fig. 1: Overview of the Workflow for Power Estimation

Algorithm 1 Algorithm for selecting PMC events adapted
from [2]

1: function SELECT EVENTS(allEvents,#Events)
2: selectedEvents← ∅
3: while |selectedEvents| < #Events do
4: R̃2 ← 0

5: for event ∈ allEvents do
6: R2 ← model(selectedEvents ∪ {event})
7: if R2 > R̃2 then
8: ˜event← event

9: R̃2 ← R2

10: end if
11: end for
12: selectedEvents← selectedEvents ∪ { ˜event}
13: end while
14: return selectedEvents

15: end function

al. [2], with the notable difference that we do not initialize
the selectedEvents with a cycle counter. Preliminary tests
have shown, that initializing the events with the processor
cycle counter neither improves nor worsen the accuracy of
the resulting model significantly [18]. The set allEvents is

initialized with the standardized PAPI counters available on
the experimental platform as discussed in Section IV. The first
stage iteratively selects events that give the most information
regarding the power consumption. This is done by building
a regression model with power as the dependent variable for
each additional PMC event with the existing selected PMC
events as additional independent variables. The PMC event
that results in the highest R2 value is then added to the
selectedEvents.

To quantify multicollinearity between the chosen PMC
events and to ensure stability of the model, the Variance
Inflation Factor (VIF) is calculated. The VIF for a particular
PMC event, is calculated using an ordinary least squares (OLS)
based linear regression model, which predicts this variable
using the other variables. A lower mean VIF for a chosen
set of PMC events, ensures the stability of the coefficients of
a regression based model, when different sets of workloads
are considered. A VIF of 1 indicates no correlation between
the independent and the dependent variables, while a VIF
value greater than 10 generally indicates multicollinearity
problems [19], [20].

The second stage of the PMC event selection proposed by
Walker et al. involves identifying events which are correlated
with each other, resulting in a high mean VIF. To accord for

4

such cases, the authors suggest a mathematical transformation
for the selected event with respect to the event with which it
is highly correlated so as to reduce the mean VIF and improve
the stability of the model. In our case, such a transformation
was not practically applicable as discussed in Section IV.

C. Model Formulation

PTotal = (
N−1∑
n=0

αnEnV
2
DDfclk) + βV 2

DDfclk︸ ︷︷ ︸
dynamic power

+ γVDD + δZ︸ ︷︷ ︸
static power

(1)

We adapt the power model proposed by Walker et al. [2] for
x86 Processors. The proposed model (see Equation 1) includes
static and dynamic power. Total power Ptotal is chosen as
the dependent variable and is modeled with respect to rate
of chosen PMC events (En), core operating voltage (VDD)
and operating frequency (fclk). Whereas Walker et al. suggest
a general function f(VDD, fclk) for static and background
dynamic power, we add three specific terms: Dynamic power
that is not represented by captured events (βV 2

DDfclk), static
processor power (γVDD), and system power that is indepen-
dent of the processor core voltage (δZ). All of those are
assumed to be constant for a given voltage and frequency. The
coefficients of the model are calculated using Ordinary Least
Squares (OLS) regression using python3 statsmodel [21].

Walker et al. also suggest the use of heteroscedasticity
consistent standard error (HCSE) estimator as a parameter
for regression using OLS to overcome the problem of het-
eroscedasticity, which is common in regression models. Het-
eroscedasticity refers to a situation in which size of the error
term differs across values of independent variables. It leads
to reduction in accuracy of the coefficients (αn), the standard
error of the coefficients and confidence intervals [22], [23].
We use a HC3 estimator provided by the python3 statsmodel
as HCSE.

In order to reduce the multicollinearity of the model, which
in turn reduces VIF, making the model more stable, we are
not using the obtained PMC event value, i.e., the number of
events per second. Instead, since the value of the PMC events
are related to the operating frequency fclk, the PMC event rate
En, i.e., the number of events per cpu cycle, is used.

IV. EXPERIMENTAL RESULTS

To validate the models experimentally, we use a set of small
synthetic workload kernels (roco2 [17]) as well as the SPEC
OMP2012 benchmark suite [24]. We excluded the bench-
marks kdtree, imagick, smithwa, and botsspar
from SPEC OMP2012 because they failed to build or crashed
on our test system.

We run the test on a dual socket Intel Xeon E5-2690v3
(Haswell-EP) system with a total of 24 cores. As possible input
to the power model, we use 54 PAPI counters that are available
on the system. The selection of the used counters is done
by the proposed algorithm (Algorithm 1). Note that there are
even more native counters (162), each of with many possible
configuration. We focus on the standardized PAPI conters to

TABLE I: Selected performance counters based on all work-
loads.

Counter R2 Adj.R2 VIF
PRF DM 0.735 0.730 n/a

TOT CYC 0.897 0.893 1.062

TLB IM 0.933 0.930 1.405

FUL CCY 0.962 0.959 1.472

STL ICY 0.979 0.976 1.573

BR MSP 0.984 0.982 1.787

keep the amount of measurements needed feasible. Also the
standardized PAPI counters represent a more generic view of
the processor architecture. Hyper-Threading and Turbo Boost
is disabled on the system.

A custom-built energy measurement instrumentation is used
for selection of PMC events, model parameter training, and
verification. The system under test is instrumented with cali-
brated high resolution power sensors at the 12 V inputs to each
socket. During the experimentation, the power measurements
are collected on a separate system, avoiding perturbation on
the measurement itself. The power measurement system is
described in detail in [1].

The SPEC OMP2012 benchmarks are built using a custom
configuration file with Score-P compiler instrumentation and
use the Intel compiler suite3. Power, voltage, and performance
trace are added to the benchmark trace by using the appropriate
Score-P metric plugins.

A. PMC Event Selection

For selecting the PMC events, we run all roco2 and SPEC
benchmarks at a fixed operating frequency fclk of 2400 MHz
with all available counters. Table I show the performance
counter events in the order they were selected by Algorithm 1,
along with the corresponding mean VIF values. It is notable
that the VIF for six counters is consistently low, and no
additional transformation is required. However, if we let the
algorithm select one more performance counter, it chooses the
event CA_SNP which denotes the number of snoop requests.
Although, the R2 value rises to a value of 0.989 the mean
VIF increases to 26.42, signifying high collinearity between
the selected events. Since CA_SNP is a non-derived event and
there is no direct mathematical relationship between CA_SNP
and previously selected events in Table I, such a transformation
to reduce the VIF is not applicable. This scenario acts as a
limitation to the modeling approach, since selecting the event
CA_SNP will make the model less stable and not selecting the
event will prevent the model from utilizing all the available
information for estimating power. For the following, we utilize
the 6 events in Table I.

Figure 2 portrays the changing R2 and Adj.R2 when the
proposed algorithm is used. Adj.R2 is a modified version of
R2 that has been adjusted for the number of predictors in the
model. The Adj.R2 value increases only if the new predictor
variable improves the model more than that would be expected
by chance.

3Compiler flags: -openmp -O3 -ipo1 -xAVX

5

1 2 3 4 5 6
Number of PMCs

0.70

0.75

0.80

0.85

0.90

0.95

1.00
C
o
ef

fi
ci

en
t

o
f

D
et

er
m

in
at

io
n

PMCs

Adjusted R2
R2

Fig. 2: Changes in R2 and Adj.R2 values with selection of
performance counters.

TABLE II: Summary of results for 10-fold cross validation

Metric Min Max Mean
R2 0.9904 0.9913 0.9910

Adj.R2 0.9900 0.9910 0.9906

MAPE 6.6114 8.3198 7.5452

In Table I PRF_DM describes the number of data prefetch
misses, TOT_CYC describes the total number of cycles,
TLB_IM describes the instruction translation look aside buffer
misses, FUL_CCY describes the cycles with maximum in-
structions completed, STL_ICY describes the cycle with no
instruction completed and BR_MSP describes the total number
of mispredicted branch instructions. The selected performance
counters are analyzed in detail in Section V.

B. Model Parameter Training

To verify that our model estimates power accurately across
different voltage-frequency steps and, for the short-running
roco2 kernels, different thread counts. The values of the
selected performance counters along with power and voltage
data are obtained at 5 distinct operating frequencies between
1200 and 2600 MHz. Following this, the model (Equation 1) is
trained and validated using 10-fold cross validation with ran-
dom indexing. Figure 3 shows the Mean Absolute Percentage
Error (MAPE) of all workloads across the five DVFS states.
The maximum error is observed for the SPEC benchmark
ilbdc, while the minimum is observed for the roco2 square
root workload sqrt. The formulated model achieves an R2

value greater than 0.99 with a MAPE of 7.54 across all DVFS
states for multi-threaded benchmarks (see Table II). The mean
Adj.R2 for the formulated model is only 0.0004 lower than
the respective R2 value, indicating that the present predictor
variables (Equation 1) in the model add relevant information
to it and don’t inflate the value of R2.

To analyze the effect of unseen workloads on the power
model and assess it’s stability we consider four scenarios in

which we choose different training and validation sets for
formulating our model. The scenarios considered are:

1) The model is trained using four random workloads from
roco2 and SPEC OMP2012 and validated using the rest.

2) The model is trained using all workloads from roco2 and
validated using all workloads from SPEC OMP2012.

3) The model is trained and validated using 10 fold cross
validation for roco2 and SPEC OMP2012 workloads
(Table II). Due to separate frequencies, the training set
includes most workloads.

4) The model is trained and validated using 10 fold cross
validation for roco2 workloads. Due to separate frequen-
cies, the training set includes most workloads.

Note that the selected performance counters are fixed for
those scenarios due to practical considerations on the total
amount of measurements. We discuss the impact of selected
training workloads on counter selection later in this section.

Figure 4 compares the mean absolute percentage error for
the different scenarios. Although the MAPE obtained across
all DVFS states in the considered scenarios remain relatively
close to the value obtained from 10 fold cross validation (see
Table II), a considerable increase is seen in scenario 2 (see
Figure 4). The highest error of 15.10 % occurs in scenario 2
where only synthetic workloads are used for training the model
parameters. The synthetic workloads are not diverse enough
to create a stable model that can be applied to more realistic
benchmarks. Using random workloads, both synthetic and
closer to applications (scenario 1), results in a better MAPE.
Scenario 4, where training and validation is done on only syn-
thetic benchmarks, shows the best accuracy. However that is
the least realistic use case. This shows the need to use diverse
and large number of workloads with varying characteristics
such as remote NUMA memory accesses, different memory
accesses patterns, but also instruction cache usage for training
in power modeling. Compared to the implementation on ARM,
which has a MAPE of 2.8 % and 3.8 % our results on Intel
with the comparable scenario 3 turn out to be less accurate
(7.54 %).

The mean absolute percentage error is commonly used
in literature to describe the accuracy of power and energy
models. We also use it for a single metric comparison of the
different scenarios. However, the MAPE can hide information
about the particular accuracy of a model across a variety
workloads. To reveal more detail about the accuracy of the
model prediction across different workloads and value ranges,
Figure 5a and 5b compare the actual and estimated average
power for the scenarios 2 and 3 respectively. Each data point in
the charts show the average power for one specific experiment
as a combination of workload, core frequency, and for the
synthetic workload kernels, thread count. Figure 5a reveals
that the estimated power has a systematic bias for certain
workloads, that is often independent from frequency or used
thread count. For example, the average power for benchmarks
md and nab are consistently overestimated, when trained only
with synthetic workloads. Figure 5b shows similar errors for
both the synthetic kernels that the model was trained with,
and the more realistic SPEC OMP2012 workloads. On the

6

Fig. 3: Mean absolute percentage error for 16 workloads across all DVFS states.

Fig. 4: Mean absolute percentage error for scenarios: 1) train-
ing on four random workloads, validation on rest, 2) training
on synthetic workloads, validation on SPEC OMP2012, 3) 10-
fold CV on all experiments, 4) 10-fold CV on all synthetic
workload experiments.

one hand, the synthetic kernels can be estimated more easily
considering that they were part of the training set. On the other
hand, the SPEC workloads have more internal variability that
can even out the error on overall average power estimation. In
general the model exhibits no strong tendency towards over-
or underestimation and it’s residuals show heteroscedasticity,
i.e. the absolute error grows with increasing power values.

V. ANALYSIS OF THE SELECTED PERFORMANCE
COUNTERS

To quantify the significance of the selected performance
counters shown in Table I, we calculate the Pearson Correla-
tion Coefficient (PCC) between the supported PAPI counters
and power. The PCC represents the degree of linear correlation
between two variables and can have values in the range be-

TABLE III: Pearson correlation coefficient of selected perfor-
mance counters with power

Counter PCC
PRF DM 0.85

TOT CYC 0.59

TLB IM 0.33

FUL CCY 0.57

STL ICY 0.38

BR MSP −0.01

tween +1 and −1. +1 denotes total positive linear correlation
and −1 signifies total negative linear correlation. A value of
0 indicates no correlation. To calculate the PCC, we use the
python3 module scipy [25].

P (x, y) =

∑
i(xi − x̄) ∗ (yi − ȳ)√∑
i(xi − x̄)2

∑
i(yi − ȳ)2

(2)

Figure 6 displays the PCC of the supported PAPI counters
for our experimental platform and Table III lists the ones
selected by Algorithm 1. Interestingly, statistically chosen
counters do not show a particularly strong correlation with
power, except for the very first one. This signifies that the
model will be provided with unique information from the
selected performance counters, since those with similar corre-
lation with power will tend to be correlated with each other,
which would lead to increased multicollinearity and a less
stable model.

Even though BR_MSP has negligible negative correlation
with power, it is selected as performance counter. It appears to
offer relevant information for the workload kernels compute
and md, since it has relatively high values. Therefore, this
performance counter does improve the regression model the
most, given the already selected PMC events.

7

(a) Scenario 2, training with synthetic workloads, verification with
SPEC.

(b) Scenario 3, training on random samples of all work-
load/frequency combination.

Fig. 5: Comparison of actual and modeled power values for different workloads and frequencies. The diagonal dotted line
represents a perfect agreement of model and measurement.

Fig. 6: PCC Values of PAPI Counters for our experimental platform

TABLE IV: Selected performance counters based on small
synthetic workloads

Counter R2 Adj.R2 mean VIF
L1 LDM 0.839 0.836 n/a

REF CYC 0.941 0.938 1.084

BR PRC 0.973 0.971 1.340

L3 LDM 0.990 0.989 1.341

FUL CCY 0.993 0.993 8.982

STL ICY 0.995 0.994 13.617

If the counter selection of Algorithm 1 is performed on
a subset of the training data that includes only the synthetic
workloads, the resulting counters are different as shown in
Table IV. In our case, it also leads to a significantly higher
VIF from the fifth added counter. Again while there is a
strong correlation, there is no clear transformation for the
added counters FUL_CCY (cycles with maximum instructions
completed) and STL_ICY (cycles with no instruction issue).

In [18], we have shown when counter selection and training
is done on a limited set of benchmark kernels, the stability (as

in accuracy on unseen workloads) can suffer. A low VIF does
not prevent overfitting in cases where the counter values during
the training are very low compared to counter values of unseen
workloads. Once the model gets input of counter values that
are order of magnitude higher than the ones during training,
the result becomes unstable and inaccurate.

VI. SUMMARY

In this paper, we adapted a statistically rigorous CPU power
modeling approach by Walker et al. [2]. While originally
described on an embedded ARM system, we demonstrate
how it can be used on a high performance Intel systems.
There are several practical differences in power modeling in
our implementation. First, extracting performance counter data
and real-time voltage measurements for x86 CPUs is well-
supported by existing software libraries and tools such as
PAPI [13] and Score-P [26]. Hence it was not necessary to
develop a separate voltage model. In general it was possible
to apply the suggested counter selection algorithm, However,
it was not possible to transform the selected performance
counters in order to reduce the VIF, because there is no

8

clear relationship between the correlating selected counters.
Together with the high intricacy of the x86 CISC architecture
and PMCs, this likely contributes to a reduced accuracy on
our x86 system compared with the original implementation
on ARM. The formulated models are able to estimate power
with a mean absolute percentage error of 7.54 across all DVFS
states for multi-threaded synthetic kernels and standardized
benchmarks from SPEC OMP2012.

Vastly different accuracies for different training scenarios
show, that the selection of model training workloads has
considerable impact on the accuracy and stability of the model.
In particular, only using a limited set of micro workloads is
not sufficient for either selecting good performance counters
or calibrating the model parameters. Such limited workloads
do not cover the vast range of states a complex modern
architecture comprises. In our experiments a low VIF was no
guarantee for a stable model.

Building reliable power models for complex architectures
remains an ongoing research challenge. Statistically sound
modeling approaches are a key contribution towards this goal.
Nevertheless our work shows that even statistical black box
techniques, which use little architecture specific knowledge,
require an extensive evaluation when applied to different
architectures or workloads.

The future work of this project will focus on analyzing
different statistical algorithms and heuristic criterion’s for se-
lecting PMC events as variables for the regression based power
models. To strengthen the general validity of the approach,
more experiments should be performed on different genera-
tions of x86 processors. Further investigation also includes
the adaptation of the model to a larger scale such that it can
be applied to peta- or exa-scale systems instead of individual
nodes.

ACKNOWLEDGMENT

This work has been funded in part by the German Re-
search Foundation (DFG) in the Collaborative Research Center
“Highly Adaptive Energy-Efficient Computing” (HAEC, SFB
912). We thank the reviewers for their exceptionally construc-
tive reviews to improve this work and inspire future work.

REFERENCES

[1] T. Ilsche, D. Hackenberg, S. Graul, J. Schuchart, and R. Schöne,
“Power measurements for compute nodes: Improving sampling rates,
granularity and accuracy,” ser. THE Sixth INTERNATIONAL GREEN
and SUSTAINABLE COMPUTING CONFERENCE, Dec. 2015.

[2] M. J. Walker, S. Diestelhorst, A. Hansson, A. K. Das, S. Yang,
B. M. Al-Hashimi, and G. V. Merrett, “Accurate and stable run-time
power modeling for mobile and embedded cpus,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. PP,
no. 99, pp. 1–1, 2016.

[3] W. L. Bircher and L. K. John, “Complete system power estimation using
processor performance events,” IEEE Trans. Comput., vol. 61, no. 4, pp.
563–577, Apr. 2012.

[4] G. Contreras and M. Martonosi, “Power prediction for intel
xscale R©processors using performance monitoring unit events,” in Pro-
ceedings of the 2005 International Symposium on Low Power Electronics
and Design, ser. ISLPED ’05. New York, NY, USA: ACM, 2005, pp.
221–226.

[5] D. Economou, S. Rivoire, and C. Kozyrakis, “Full-system power analysis
and modeling for server environments,” in In Workshop on Modeling
Benchmarking and Simulation (MOBS, 2006.

[6] R. Joseph and M. Martonosi, “Run-time power estimation in high
performance microprocessors,” in Proceedings of the 2001 International
Symposium on Low Power Electronics and Design, ser. ISLPED ’01.
New York, NY, USA: ACM, 2001, pp. 135–140.

[7] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade,
“Decomposable and responsive power models for multicore processors
using performance counters,” in Proceedings of the 24th ACM Interna-
tional Conference on Supercomputing, ser. ICS ’10. New York, NY,
USA: ACM, 2010, pp. 147–158.

[8] F. Bellosa, “The benefits of event-driven energy accounting in power-
sensitive systems,” in Proceedings of the 9th Workshop on ACM SIGOPS
European Workshop: Beyond the PC: New Challenges for the Operating
System, ser. EW 9. New York, NY, USA: ACM, 2000, pp. 37–42.

[9] J. Mair, Z. Huang, D. Eyers, and H. Zhang, “Myths in pmc-based power
estimation,” in Revised Selected Papers of the COST IC0804 European
Conference on Energy Efficiency in Large Scale Distributed Systems -
Volume 8046, ser. EE-LSDS 2013. New York, NY, USA: Springer-
Verlag New York, Inc., 2013, pp. 35–50.

[10] B. Su, J. Gu, L. Shen, W. Huang, J. L. Greathouse, and Z. Wang, “Ppep:
Online performance, power, and energy prediction framework and dvfs
space exploration,” in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-47. Wash-
ington, DC, USA: IEEE Computer Society, 2014, pp. 445–457.

[11] B. Goel and S. A. McKee, “A methodology for modeling dynamic
and static power consumption for multicore processors,” in 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2016, pp. 273–282.

[12] R. Rodrigues, A. Annamalai, I. Koren, and S. Kundu, “A study on the use
of performance counters to estimate power in microprocessors,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 12,
pp. 882–886, Dec 2013.

[13] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface
to hardware performance counters,” in In Proceedings of the Department
of Defense HPCMP Users Group Conference, 1999, pp. 7–10.

[14] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm, D. Es-
chweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony et al., “Score-p:
A joint performance measurement run-time infrastructure for periscope,
scalasca, tau, and vampir,” in Tools for High Performance Computing
2011. Springer, 2012, pp. 79–91.

[15] R. Schöne, R. Tschüter, T. Ilsche, J. Schuchart, D. Hackenberg, and
W. E. Nagel, “Extending the functionality of score-p through plugins:
Interfaces and use cases,” in Tools for High Performance Computing
2016 (accepted for publication). Springer, 2017.

[16] M. Wagner, A. Knüpfer, and W. E. Nagel, “Enhanced encoding tech-
niques for the open trace format 2,” Procedia Computer Science, vol. 9,
no. Complete, pp. 1979–1987, 2012.

[17] M. Bielert, “Evaluating power estimation techniques: A methodological
approach,” Master’s thesis, Technische Universitat Dresden, 2015.

[18] M. Chadha, “A statistical approach to power estimation for x86 proces-
sors,” Bachelor’s Thesis, Technische Universitat Dresden, 2016.

[19] M. Kutner, Applied linear regression models. Boston New York:
McGraw-Hill/Irwin, 2004.

[20] J. Hair, Multivariate data analysis. Upper Saddle River, NJ: Prentice
Hall, 2010.

[21] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical
modeling with python,” in Proceedings of the 9th Python in Science
Conference, S. van der Walt and J. Millman, Eds., 2010, pp. 57 – 61.

[22] J. S. Long and L. H. Ervin, “Using Heteroscedasticity Consistent Stan-
dard Errors in the Linear Regression Model,” The American Statistician,
vol. 54, no. 3, pp. 217–224, 2000.

[23] R. C. Dorf, The Technology Management Handbook. CRC Press, 1998.
[24] M. S. Müller, J. Baron, W. C. Brantley, H. Feng, D. Hackenberg,

R. Henschel, G. Jost, D. Molka, C. Parrott, J. Robichaux, P. Shelepugin,
M. van Waveren, B. Whitney, and K. Kumaran, “Spec omp2012 –
an application benchmark suite for parallel systems using openmp,”
in Proceedings of the 8th International Conference on OpenMP in a
Heterogeneous World, ser. IWOMP’12. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 223–236.

[25] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001–. [Online]. Available: http://www.scipy.org/

[26] A. Knüpfer, C. Rössel, D. a. Mey, S. Biersdorff, K. Diethelm, D. Es-
chweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E.
Nagel, Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. Shende,
R. Tschüter, M. Wagner, B. Wesarg, and F. Wolf, Score-P: A Joint Per-
formance Measurement Run-Time Infrastructure for Periscope,Scalasca,
TAU, and Vampir. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 79–91.

http://www.scipy.org/

	Introduction
	Related Work
	Modeling Workflow
	Data Acquistion & Post-Processing
	Performance Counter Selection
	Model Formulation

	Experimental Results
	PMC Event Selection
	Model Parameter Training

	Analysis of the Selected Performance Counters
	Summary
	References

