System Monitoring with 102s:
Power and Runtime Impact of C-State Transitions

Thomas Ilsche, Robert Schone, Philipp Joram, Mario Bielert, Andreas Gocht
Center for Information Services and High Performance Computing (ZIH)
Technische Universitit Dresden, 01062 Dresden, Germany
{firstname.lastname } @tu-dresden.de

Abstract—In this paper, we present improvements to the low-
overhead performance monitoring tool lo2s. We combine a
detailed recording of system events with information from a
high-resolution power measurement, to record the scheduling
of applications and C-state transitions. These sub-millisecond
transitions are difficult to observe with traditional approaches.
Our methodology provides us with insights into the behavior
of the system before, during, and after C-state transitions of
processors cores.

I. INTRODUCTION

Power and energy optimizations in the software stack are
a widely discussed topic in the HPC community. Most of the
improvements are driven by processor features like dynamic
voltage and frequency scaling, which influence the power
characteristic of an HPC node. Some processor features are
accessible through kernel interfaces, but on other mechanisms,
like C-states, the user has no direct influence. Still, they interact
with the power characteristic of processors.

With the increasing complexity of energy efficiency tuning,
it becomes challenging to isolate the impact of a specific
optimization and to understand their interactions. However,
this insight is required to achieve optimal energy efficiency
and to implement new power-saving features. Moreover,
these optimizations affect the entire software and hardware
stack — including application, operating system, architecture
specification, and micro architecture implementation.

The low-overhead performance monitoring tool 1o2s ex-
poses various sources of monitoring data from all different
layers. This reveals the operation of opaque mechanisms like
C-states and their impact on software performance and hard-
ware power consumption. To achieve this, 102s uses kernel
tracepoints to record decisions made by the operating system.
Regular sampling of the instruction pointer and hardware event
counters give a dynamic picture of the application execution.
Moreover, 102s supports a plugin interface, which enables
users to record the power consumption or performance counters.

The goal is to give a holistic view on a system and expose
the complex interactions between application, operating system,
and hardware. By using features of modern Linux kernels to
perform the majority of the monitoring tasks, the perturbation
on the observed system is reduced to a minimum. Additional
fine-grained power measurements are recorded on a separate
system, and only integrated post-mortem with no impact on
the system under test.

This paper is structured as follows: Section [[] provides
an overview of related monitoring tools as well as C-state
analyses. We describe recent changes to 102s in Section
In Section [[V] we present an overhead analysis for 102s and
show how C-state behavior can be analyzed with 102s and
Vampir. Section [V] concludes this paper with a summary and
an outlook.

II. BACKGROUND AND RELATED WORK

Performance monitoring tools for High Performance Com-
puting often focus on applications. For example, Score-P [10]
uses compiler instrumentation, library interposition, and other
techniques to collect events from parallel applications. HPC-
Toolkit [4] primarily uses sampling, which provides a less
intrusive way to record application behavior. Both tools support
various parallelization paradigms for monitoring applications
that run on multiple compute nodes. On a single node, perf [2]
also provides versatile ways to monitor applications and, in
addition, the system as a whole. However, its scalability is
limited, particularly regarding the visualization and analysis of
extensive trace data.

ACPI C-states [3l Section 8.1] describe a hardware mecha-
nism that is used by operating systems to reduce the energy
consumption of processors. Based on hints from the operating
system, the processor can use voltage and frequency scaling,
clock gating, and power gating to lower the power consumption
of the processor. However, switching between different states
introduces a latency that can have performance implications.
Using C-states effectively is essential for the energy-efficient
operation of modern systems [9].

In [12], we presented a plugin for the VampirTrace perfor-
mance monitoring tool, in which kernel tracepoints were used to
record the C-state behavior of CPUs during the execution of an
application. We also included power consumption information
in the collected time lines. This enabled us a to verify the usage
of C-states and to describe the influence of workload, C-state
configuration, and frequency configuration to the system power
consumption. However, a fine-grained analysis of the transitions
themselves was not feasible. One of the reasons is that the
source of a C-state transition was not recorded. Furthermore,
the temporal resolution of the power measurement infrastructure
was too coarse-grained.

In [5], Barrachina et al. implemented a comparable approach
for Extrae/Paraver. However, they sampled C-state usage

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. The definite version is available at https://doi.org/10.1109/IPDPSW.2018.00114.



https://doi.org/10.1109/IPDPSW.2018.00114

instead of using kernel tracepoints. While this can reduce
overhead, the direct information when a C-state has changed
is now hidden and only statistical information is available.
Such an analysis is also possible with Score-P [14]. In [13],
we analyzed C-states by instrumenting the Linux kernel. The
instrumentation enabled users to measure how long it takes a
CPU to wake up from different C-states.

In this paper, we address the shortcomings of previous
work by introducing a measurement environment that collects
the related events using a standard Linux kernel. Further,
we enhance the monitoring with a high resolution power
measurement.

III. PERFORMANCE AND POWER MEASUREMENT
WITH L025s

lo2 s is a lightweight monitoring tool for Linux [8]. It uses
the Linux perf_event_open infrastructure which provides
versatile ways to get system and process performance data. The
collected data is recorded with timestamps and stored in the
Open Trace Format 2 [6]]. This leverages existing performance
analysis tools, in particular visualization with Vampir [11].
lo2s can operate in two modes focusing either on a particular
process and it’s children or on the system as a whole.

A. Reducing Measurement Overhead for Metric Recording

When measuring with 102s, one key goal is to keep its
impact on the measured system or process to a minimum. We
improved 102s to require less user-space monitoring code
execution and group metrics. Using an in-kernel based approach,
we were able to reduce our overhead when recording multiple
metrics at once.

The perf_event_open system call provides a mecha-
nism to collect a set of related events into a group that will be
scheduled onto the CPU as a unit [1]]. This allows a combined
read of all values and prevents the events to be multiplexed.
By default, the kernel will put each ungrouped event into
its own group and multiplex the groups if not all hardware
events can be recorded simultaneously. While multiplexing
allows recording more metrics than supported by hardware, it
will reduce the accuracy of the measurement data, particularly
for short measurement intervals, because the gaps have to be
interpolated. Multiplexing also uses a regular timer to switch
the scheduled events.

In addition to a collective metric readout, this enables the
recording of metrics entirely in the kernel. Typically, the group
leader is an event with an independent constant rate, e.g.
ref_cycles thatis set to overflow at a given rate. Whenever
this group leader event generates an overflow notification, the
counters for all events in its group are recorded in a buffer by
the kernel. The userspace monitoring code only needs to run
whenever the buffer reaches a watermark, which is indicated by
a poll event on a file descriptor. Ideally, the buffer is configured
such that it provides sufficient space for all measurement
samples that are recorded during the application execution.

Uhttps://github.com/tud-zih-energy/l02s

That way, the overhead of reading the buffer and writing the
events to the final trace format, only occurs at the end of the
monitoring. In Section we evaluate the implications of
this optimization on the measurement perturbation.

B. Integrating Energy Measurements

For the established Score-P [10] performance measurement
infrastructure, we have developed metric plugins [14] for
three different energy measurements presented in [7], i.e.,
processor integrated Intel RAPL, ZES Zimmer LMG 450
AC measurement, and a custom DC measurement based on
shunts read by National Instrument DAQ cards. For a seamless
integration in our infrastructure, we added support for a subset
of Score-P metric plugins in 102s. Due to its focus on low
system impact, 102s can only support asynchronous system-
wide metric plugins, which do not necessarily require regular
user-space metric measurement code execution. 102s can
natively utilize such Score-P plugins without any changes.
The metric measurement starts during the initialization, and
each used plugin provides the recorded metric data during the
finalization phase of 102s. All collected metric data is written
to the resulting trace and can be analyzed afterwards.

IV. MEASUREMENTS AND EVALUATION

Based on the previous description, in this section we evaluate
the effectiveness of the optimizations and use 102 s to analyze
C-state transitions.

A. System Description

For our experiments, we use a dual-socket workstation with
two 12-core Intel Xeon E5-2690 v3 (Haswell EP) processors
and 256 GiB memory. During all experiments, we fixed the
frequency of all CPUs to their nominal frequency of 2.6 GHz.
The system runs on Ubuntu 16.04 and Linux kernel version
4.13.0 with activated page table isolation.

We rely on a high temporal resolution of the power
measurements to accurately evaluate C-state transitions that
last only in the order of microseconds. Therefore, we used
our custom DC device, which provides a resolution of 2 us. A
separate system records the energy measurement and a metric
plugin receives the data from that system during the finalization.

B. Overhead Evaluation

In order to evaluate, whether the grouped in-kernel metric
measurements decreased perturbation, we compare 1o2s
kernel-space measurements to the previous implementation
in user-space and perf stat. Like l1o2s, the Linux tool
perf stat also provides a way to record metric data in
intervals of at least 10ms. For perf stat, we use two
different configurations, i.e., all events in the same group, and
each event within its own group.

All four configurations record metrics at 10 ms intervals. To
that end, the new implementation uses the ref-cycles event as
a group leader with an overflow count of 26 000 000, which
equals 10 ms at a nominal frequency of 2.6 GHz.

As a workload, we use a simple micro-benchmark that
increments a counter for 100s in a single thread. Based on


https://github.com/tud-zih-energy/lo2s

25
lo2s kernel-only, single group
lo2s userspace, multiple groups

E_ 20 perf single group
= perf multiple groups
e
9 15
£
@
o
- 10
©
9]
<
2
2 5
0

1 2 3 4
number of recorded hardware events
Figure 2: Overhead of metric readouts for different 102s
implementations and perf configurations with increasing
number of observed hardware events

a reference execution with no measurements, we determine
the effective computation time loss introduced by the measure-
ments.

Figure [2] shows that the new implementation has a sig-
nificantly smaller overhead per interval, i.e., ~2.5us com-
pared to >10ps for the previous 1o2s implementation and
perf stat. Furthermore, the overhead does not increase
notably with additional recorded metrics. These numbers
depend on a variety of factors, such as workload, frequency,
amount of threads involved, and sampling rate. To account for
this, we kept the environment consistent for the different tools
and implementations.

C. Analysis of C-State Transitions on Haswell-EP

The combination of low-overhead with well-integrated
measurements of kernel tracepoints, user-space application
sampling, and high-resolution energy measurements, allows us
to use 1o2s for investigating hardware and operating system
behavior. We show this by transferring and extending previous
work on C-state latencies [13]. In contrast to our previous
work, we now use an unmodified kernel and an external
power measurement infrastructure to record the hardware
behavior during the transitions. To trigger a C-state change,
we implemented a simple C program, shown in Listing [T} This
program sets up two threads, caller and callee, and pins
each of them to a given CPU. The remaining CPUs are kept in
an idle state. In an interval of 1 s, the caller thread sends a signal
using pthread_cond_signal to the callee. This invokes
a call to the Linux kernel, which triggers the callee’s CPU to
wake up and writes a sched_wake_idle_without_ipi event almost
immediately afterwards. The callee’s CPU returns from its idle
state, writes a power_idle event, and continues executing the
callee thread. To verify that the system uses the assumed idle
state, we use this power_idle event. However, after the callee
thread returns from its waiting state, it busy-waits for 200 s,
before going back to idle using pthread_cond_wait.

static pthread_cond_t cv; pthread_mutex_t lock;

/% callee %/

void =xcallee (void =*v) {

// ... initialize variables, set affinity
for (int i =0 i < number_measurements
// wait for wake up signal loop
pthread_cond_wait(&cv, &lock);

// ... busy wait for 200 microseconds

}

;i) |

}
/% main/caller w/
int main(int argc, char =x argv) {
// ... initialize variables, set affinity
pthread_create (t, NULL, callee, NULL);
for (int i = 0 ; i < number_measurements
// ... busy wait for 1 second
// send wakeup signal
pthread_cond_signal(&cv);
}

;i) |

}

Listing 1: Setup for triggering a C-state wakeup

Figure [3a] visualizes a single wake-up event of the described
workload with Vampir. The upper metric display shows that
CPU 0 triggers waking up CPU 1. After 17 s, CPU 1 switches
to an active mode (-1) as shown in the middle metric display.
It stays active for 220 ps, which includes the 200 ps busy-wait
and the overhead for locking the mutex and switches from
and to kernel-space. The active period can also be seen in the
power consumption of the socket, which increases from 44 W
to 48 W, as visualized in the bottom metric display. However,
even though CPU 1 is idling again after 220 ps, the power
consumption is still increased to 45-46 W for another 230-
240 ps. The same behavior can also be seen when multiple
CPUs are activated and deactivated simultaneously, as shown
in Figure The reason for this behavior is not documented.
However, within this time period, the core could possibly flush
its state. This option is unreasonable since only a small amount
of data is accessed within each wakeup of the callee, and even
less data is modified. Alternatively, the processor core could
apply power gating only after a certain grace period. At the
end of this period, the state is flushed, which could cover for
the power consumption increase shortly before the idle state is
applied. There are two supportive observations for this thesis.
First, the power consumption during the grace period, after
all cores were active, is similar to the power consumption
when all cores are in C1. Second, if the caller triggers another
wakeup within this grace period, the latency is significantly
lower (~1 ps). Furthermore, in such a scenario, the time the
callee resides in an active state is decreased to ~205 us and
therefore significantly closer to the expected 200 us busy wait
time. This can be attributed to caches, which are still warm
since the core has not been power gated. Another interesting
finding is that the second wake-up in such a scenario has almost
no initializing peek power. This can also be attributed to the
fact that used data still resides in the caches and does not have
to be transferred.




13.0133s +200 ps +400 ps +600 ps +800 us
cpu 0, Values of Metric "sched/sched_wake_idle_without_ipi::cpu” over Time
1.10
1.05
* 1.00-:
0.95
0.90
cpu 1, Values of Metric "power/cpu_idle::state" over Time

machine diana, Values of Metric "diana/s0-fast/watts" over Time

(a) CPUO triggering a wakeup on CPU 1. In the upper metric display, the
cross depicts the event that triggers CPU 1 to wake up. The second metric
display shows for how long CPU 1 remained active (/2220 ps). The power
consumption is increased for ~460 us.

6.75608 s +100 ps +200 ps
Values of Metric "power/cpu_idle::state" over Time in #
cpu 0
cpui
cpu 2
cpu3
cpu 4
cpub
cpu 6
cpu7
cpu8
cpu9
cpu 10
cpu 11

=il 0 1
machine diana, Values of Metric "diana/s0-fast/watts” over Time

+300 ps +400 ps +500 ps

N
©
~

(b) Aligned wake-up of all CPUs. In the upper metric display, the C-state
of all CPUs of the first socket is visualized (blue: active, red: C6). After
all CPUs switch to idle, the power consumption remains high for /=230 us

Figure 3: C-state observation illustrated with Vampir. The bottom display shows the power consumption of the first socket.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented new functionality and advanced
features, which we recently introduced in the monitoring tool
lo2s. Now, 102s can record metrics with significantly lower
overhead, while still being NUMA-aware and scalable, distin-
guishing it from alternative tools. With the new functionality,
it is possible to investigate hardware and system behavior at a
fine-grained level. Furthermore, the support for asynchronous
Score-P metric plugins enables users to perform advanced
analyses that include, for example, power measurements. In our
paper, we used these features to implement a new methodology
for measuring performance and power characteristics of C-
state changes. The analysis results are consistent with the
previous observations that used a specially patched kernel. A
new finding is that the power consumption is increased for
more than 200 ps after entering a deep C-state. We explained a
possible reason for this behavior, but the underlying mechanism
is unknown and needs further investigation. By combining the
low-overhead system monitoring with high resolution energy
measurements, we expose the dynamic power characteristics
of C-state transitions on a sub-millisecond level. The newly
gained insight provides the basis for further optimizations,
particularly regarding the delicate selection of C-states that are
have to balance the trade-off between energy consumption and
performance.

ACKNOWLEDGMENTS
This work is supported in part by the German Research
Foundation (DFG) within the CRC 912 - HAEC and by the
European Union’s Horizon 2020 program in the READEX
project (grant agreement number 671657).

[1

—

2

—

[3

=

[4

=

[5]

[6

—

[7

—

[8

[t

[9

—

[10]

(11]
[12]

[13]

[14]

REFERENCES

perf_event_open(2) — Linux Programmer’s Manual, 4.14 edition, Septem-
ber 2017.

perf: Linux profiling with performance counters, (accessed Februrary 2,
2018). https://pert.wiki.kernel.org/.

Advanced configuration and power interface (acpi) specification, revision
6.1, January 2016. online at uefi.org (accessed 2017-01-30).

Adhianto, L., et al. HPCTOOLKIT: tools for performance analysis of
optimized parallel programs. Concurrency and Computation: Practice
and Experience, 22(6):685-701, 2010. IDOI: 10.1002/cpe.1553|
Barrachina, S., et al. An integrated framework for power-performance
analysis of parallel scientific workloads. Int. Conf. on Smart Grids, Green
Communications and IT Energy-aware Technologies, pages 114-119,
2013.

Eschweiler, D., et al. Open trace format 2: The next generation of
scalable trace formats and support libraries. In Applications, Tools and
Techniques on the Road to Exascale Computing, volume 22 of Advances
in Parallel Computing, pages 481 — 490. 2012. ISBN 978-1-61499-040-6.
doi:10.3233/978-1-61499-041-3-481.

Ilsche, T., et al. Power measurements for compute nodes: Improving
sampling rates, granularity and accuracy. In 2015 Sixth International
Green Computing Conference and Sustainable Computing Conference
(IGSC). December 2015. doi:10.1109/IGCC.2015.7393710.

Ilsche, T., et al. lo2s—multi-core system and application performance
analysis for Linux. In Cluster Computing (CLUSTER), 2017 IEEE
International Conference on, pages 801-804. IEEE, 2017. doi:10.1109/
CLUSTER.2017.116.

Ilsche, T., et al. Powernightmares: The challenge of efficiently using
sleep states on multi-core systems. In Euro-Par 2017: Parallel Processing
Workshops. 2017.

Khniipfer, A., et al. Score-P: A joint performance measurement run-time
infrastructure for periscope, scalasca, tau, and vampir. In Tools for High
Performance Computing. 2012. DOI: 10.1007/978-3-642-31476-6_7.
Nagel, W. E., et al. VAMPIR: Visualization and analysis of MPI resources.
Supercomputer 63, X1I(1):69-80, 1996.

Schone, R., et al. The VampirTrace Plugin Counter Interface: Introduction
and Examples. In Euro-Par 2010 Parallel Processing Workshops,
volume 6586 of Lecture Notes in Computer Science (LNCS). Springer-
Verlag, 2011. ISBN 978-3-642-24877-4. ISSN 0302-9743. doi:
10.1007/978-3-642-21878-1_62. DOI: 10.1007/978-3-642-21878-1_62.
Schone, R., et al. Wake-up Latencies for Processor Idle States on Current
x86 Processors. Computer Science - Research and Development, 2014.
ISSN 1865-2034. doi:10.1007/s00450-014-0270-z. [DOI: 10.1007/s00450
014-0270-z!

Schone, R., et al. Extending the functionality of score-p through plugins:
Interfaces and use cases. In Tools for High Performance Computing
2016, pages 59-82. Springer, 2017.


https://perf.wiki.kernel.org/
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
http://dx.doi.org/10.1002/cpe.1553
http://dx.doi.org/10.1007/978-3-642-31476-6_7
http://dx.doi.org/10.1007/978-3-642-21878-1_62
http://dx.doi.org/10.1007/s00450-014-0270-z
http://dx.doi.org/10.1007/s00450-014-0270-z

	Introduction
	Background and Related Work
	Performance and Power Measurementwith lo2s
	Reducing Measurement Overhead for Metric Recording
	Integrating Energy Measurements

	Measurements and Evaluation
	System Description
	Overhead Evaluation
	Analysis of C-State Transitions on Haswell-EP

	Conclusion and Future Work
	References

