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Abstract—In this paper we present MetricQ, a novel infrastruc-
ture for collecting, archiving, and analyzing sensor data. Core
components of MetricQ are a scalable message broker based on
the Advanced Message Queuing Protocol, and a newly developed
Hierarchical Timeline Aggregation (HTA) storage concept that is
specifically designed for timeseries data. HTA requires moderate
data processing during data collection and a storage space
overhead of about 10%, and in turn reduces the complexity of
typical timeline request from O(N) to O(1). This enables access
to very large metric timelines spanning years and billions of data
points at a performance level that is sufficient for interactive use
cases. In contrast to existing solutions in this domain, no relevant
information such as very short peaks in the data is discarded.
We demonstrate how we use MetricQ with few metrics at very
high update rates, e.g., for energy efficiency research, and for
a very large number of metrics at moderate update rates, e.g.,
monitoring data from the electrical and cooling infrastructure of
our data center.

I. INTRODUCTION

Modern data centers are abuzz with sensors producing an
abundance of measurement data at an ever-increasing rate. This
large amount of metric time series data can overwhelm existing
monitoring solutions. A scalable and reliable monitoring
infrastructure is indispensable to exploit the full potential of
this data. A particular challenge is a responsive, yet correct
analysis and visualization of the data collected over months or
years of operation.

In this paper, we present MetricQ, a novel infrastructure
for collecting and storing high-resolution time series data. We
combine established high-available message broker software
with efficient storage and analysis components specifically
designed for large scale, high-resolution time series data.
Our production instance of MetricQ is already being used
at our local data center facility providing real-time monitoring,
diagnostics, and accounting.

The remainder of the paper is structured as follows: Section II
provides a short introduction to the infrastructure. Our storage
solution is discussed in Section III. In Section IV, we present
our deployment and unique use cases not achievable with other
solutions. This is followed by Section V, which introduces
and compares related concepts. And finally, we summarize our
work in Section VI and give an outlook into future work.

II. SCALABLE MESSAGING: CONCEPT AND
IMPLEMENTATION

In order to tackle the complex communication between
different kinds of metric data sources and analysis components,
we leverage contemporary message-oriented middleware. This
approach has several distinct advantages:

1) modularity: Components (agents) operate independently.
2) transparency: Consumers can utilize metrics from differ-

ent kinds of sources with a single interface.
3) robustness: The highly available message broker can

temporarily buffer messages to avoid data loss.
4) simplicity: All components in the system only need to

open a connection to the message broker.

A. Concept: Using Message-Brokers for Metric Data

Specifically, we chose the Advanced Message Queuing
Protocol (AMQP) v0.9 [1] as implemented by RabbitMQ [2].
In AMQP, software clients called publishers send messages
to one of several exchanges, which are hosted by the AMQP
broker. The exchange further routes the messages to queues
(also provided by the broker), where the messages are buffered
until a consumer (software client) retrieves them.

MetricQ encodes metric data with Protocol Buffers (protobuf)
into space-efficient AMQP messages. These data messages
contain one or more timestamp-value pairs from exactly one
measurement point and are routed using the metric name as
topic routing key / queue binding key. Accordingly, consumers
can freely choose the set of metrics they will receive. RabbitMQ
guarantees the ordering of messages, which serves as an
important assumption for further processing.

Requests and responses for persistently stored data also use
protobuf-encoded AMQP messages. Further, MetricQ uses
JSON-encoded remote procedure call (RPC) messages to
facilitate configuration and other metadata management. Using
multiple exchanges with flexible routing possibilities allows us
to utilize the same messaging infrastructure for the different
kinds of functionality (live measurements, persistent requests,
management RPCs).

Message Queuing Telemetry Transport (MQTT) [3] is an
alternative protocol commonly used in monitoring systems [4],
[5]. While it uses publish/subscribe similar to AMQP, MQTT
does not support the concepts of exchanges and queues.
Therefore, the broker cannot buffer any temporary data, which
restricts possible use cases and can lead to data loss.
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Figure 1: Overview of agents and message-based communication within the MetricQ infrastructure.

B. Implementation: Agents in MetricQ

Figure 1 gives an overview over the types and examples of
agents in a MetricQ system. All agents in MetricQ exclusively
communicate over AMQP. They only need a RabbitMQ server
address and identification token as locally stored configuration.
All additional configuration is provided by a MetricQ manager
via RPCs. This manager provides access to centralized config-
uration and metadata access in MetricQ stored in a CouchDB.
It also manages the configuration of the message broker, i.e.,
creating queues and routes, but is never involved in any actual
metric data transfer.

The entry points for data in the MetricQ system are data
sources. They implement a simple interface to publish metric
data and the respective metadata to the message broker.
Consequently, they are oblivious of how this information is
processed any further.

Metric data published to MetricQ is consumed by different
kinds of sinks. For example, the WebSocket endpoint is a sink
which provides live data for web-based dashboards. Queues
can also act as temporary storage, e.g., collecting measurement
samples for an experiment, which is merged with an application
trace in post-processing. While this use case is important for
research, it is not in the focus for data center monitoring.

Transformers act as both sinks and data sources and thus
allow refinement of metric data. Two specific kinds are
currently implemented: On the one hand, combinators generate
compound metrics as a combination of multiple input metrics,
e.g., summaries. On the other hand, aggregators can accurately
down-sample high-resolution metrics, e.g., for reducing storage
requirements.

A special type of sinks is used to persistently store metric
data. It also provide access to the stored data by answering
requests for persistent data. A prominent example that uses
such a sink is the Grafana endpoint, which hands data to a
Grafana instance, providing versatile charts and dashboards.

The details of the protocol and message encoding is
encapsulated by the MetricQ core library. This library allows
the rapid development of new agents in C++ and Python.

III. STORAGE CONCEPT

The large amounts of monitoring data processed by MetricQ
present major challenges for the storage back-end. On the
one hand, there is a continuously high insertion rate of new
data. On the other hand, displaying a long-term timeline chart
can require information from millions or even billions of
stored measurement samples. Classical timeseries database
systems offer two choices: First, traditional aggregate queries
can be computed in the database, but require processing of all
underlying data, which impairs performance and responsiveness.
Second, sampling-based timelines use only a subset of the
collected data points, which offers better performance, but
represents less information (cf. [6]). However, when presenting
a large amount of data in a reduced form for visualization or
analysis, it is important to actually retain statistical properties,
i.e., minimum, maximum, and mean, as described in the use
cases in Section IV. In the following, we describe a concept
which exploits the specific properties of metric monitoring data,
i.e., append only, monotonic timestamps, and regular insertion
rates.

Conventional databases typically use B-trees or Hash-indexes
to enable sub-linear seek [7, Chapter 5]. Timeseries database
benefit from the order of the collected data and can use Log-
Structured Merge-Trees [8, Chapter 4]. However, we chose a
flat file and exploit the ordered append-only property of the
data. Binary search yields logarithmic complexity without the
memory and insertion overhead of a tree. The actual retrieval
of data uses a single linear read. Each entry in this file consists
of a signed 64 bit POSIX timestamp and a double precision
floating point value.

Requests for long-term timeline charts only require statistical
aggregations of the raw values, which can be performed in the
database server. While this can reduce the network transfer time,
the overall cost is still dominated by reading large amounts
of data from disk. To overcome this limitation, we define a
storage scheme that allows statistical information to be retrieved
more efficiently. In addition to the raw values, we store typical
aggregation functions, e.g., minimum, maximum, sum, integral,
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Figure 2: The HTA storage scheme provides precise aggregate values (orange) for arbitrary request intervals and efficient
timeline values for a given resolution (blue). In the former case, the algorithm may use all aggregation levels in order to
minimize the resource usage to process the query. In the latter case, the choice of aggregation level depends on the number of
requested data points, which in typical visualization use cases often depends on the screen resolution.

and count. These can be directly computed from either the
raw data or by recursively applying the function on a subset
of the data. Therefore, the minimum of any time interval can
be computed by using the minimum of the minima of its sub-
intervals. This works similarly for other aggregation functions
and is done during the insertion of new data.

We now define a time-based profile that aligns with the
partitioned time intervals. A single entry in this aggregated
timeline holds the statistical information relating to the raw
samples within the respective time interval. We further utilize
multiple aggregation levels in an approach called Hierarchical
Timeline Aggregation (HTA): Based on a number of successive
aggregates k in a specific level l ≥ 0, we generate a new entry
at the more coarse-grained timeline level l + 1. The lowest
aggregation level l0, which build directly on raw samples,
has a constant interval duration of I0. The interval duration
of the different aggregation levels scales with Il = I0 ∗ kl.
Furthermore, we set a maximum level lmax to avoid small,
seldom updated, and almost empty aggregation levels.

Our storage scheme limits the amount of data necessary to
compute statistical values over given time intervals. The aligned
time intervals have an important advantage: The aggregated
values can be indexed with constant effort when stored in
simple flat files. In Figure 2, we use four aggregation levels
and the raw samples for computing a statistical value for the
given time interval. Leveraging the pre-computed aggregations
reduces the number of retrieved values from 110 to 10.

The HTA enables efficient statistical timelines as visualized
with the second request in Figure 2. Such a request includes a
third parameter in addition to start and end time: The minimal
required temporal resolution can, for example, correspond to
the number of pixels which displays the data. Based on the
requested resolution, either a level in the HTA is selected,
or the raw samples are used. Hence, the number of accessed
data now depends on the resolution. Therefore, the request
can be answered in O(1) with respect to the given time
frame. All requests to the flat files of HTA levels use efficient
indexing and linear reads. Seeking within the raw sample file
is further improved by using the count statistic within the HTA.

Computing the offset this way, rather than a binary search,
also has O(logN), but uses more efficient access patterns in
practice.

Since the requested resolution doesn’t necessarily match
an actual aggregation interval, it can be overmatched. This
is limited by k for aggregation intervals or the number of
samples within I0 for accessing raw samples. Tuning k and I0
controls the required storage overhead on the one, and practical
performance on the other hand. In practice we use k = 10
and I0 = 40 × the average sampling rate of the metric. This
configuration has a HTA storage overhead of < 10%. I0 is
chosen this way, because aggregation records are larger than
raw samples (56B vs 16B).

IV. A DATA CENTER MONITORING TEST CASE

A. The TU Dresden Data Center and its MetricQ Setup

The main TU Dresden data center LZR was inaugurated in
2015. Designed for up to 5MW IT load, it houses all central
IT and HPC systems of the TU Dresden on 1200m2 of IT
floor space. We use MetricQ to collect and store data from
a variety of sources, including the BACnet based Building
Automation System (BAS) and a large variety of IPMI, SNMP
and OpenBMC/HTTP devices (see Table I). Update rates
usually range from 1 Sa/s to 1 Sa/min, with few sources
reporting less frequently. The HPC system Taurus features the
scalable node-level power measurement solution HDEEM [9],

Table I: Metric Sources used at current LZR installation

Source Provided Metrics Aggregated Sample Rate

Power (LMG)* 32 1.21MSa/s
Power (HDEEM) 4464 4464Sa/s
PDUs 7308 1736Sa/s
IPMI 6934 505Sa/s
BACnet 1792 431Sa/s
SNMP 1564 307Sa/s
Combined/Aggregated 599 1087Sa/s
Others 245 152Sa/s

Total 22 938 1.221MSa/s

*:Forwarded to aggregator before stored in HTA



which currently reports three measurements for each of the 1488
compute nodes at 1 Sa/s. For less scalable energy efficiency
research at much higher temporal resolution we use several
ZES LMG power analyzers with rates up to 151 kSa/s. An
aggregator reduces this rate to 100 Sa/s for persistent storage.

Our MetricQ deployment uses two virtual machines, each
with 16 hardware threads and 32GiB memory. The data sources
are distributed to measurement-specific systems as they often
require specific network access or a physical connection to
monitoring devices. Today, a total of 34 agents are continuously
connected to the message broker. This includes 23 data sources,
three transformers, one aggregator, six HTA storage agents, and
the manager. Overall, the system manages ≈ 23 000 metrics,
most of which are recorded in long-term storage. The rate
of incoming data is about 1.22MSa/s. Currently, 13TiB are
used for persistent storage across three NFS-mounted volumes.
This includes collected data from up to ten years that was
imported from the previous measurement infrastructure.

MetricQ provides a unified interface to this large variety of
monitoring data, demonstrating both high cardinality and very
high update rates. This enables a range of holistic analysis
scenarios from data center monitoring, to HPC system power
consumption measurements, to energy-efficiency research.

B. General Data Center Monitoring Use Cases

The requirements for a data center monitoring infrastructure
include many processes and workflows that are common for
most typical IT facilities. This necessitates to support a wide
range of data sources across system domains for IT equipment
(network, servers, storage, VM hypervisors, batch systems...)
and facility equipment (PDUs, cooling towers, chillers, UPS
systems, CRAHs, ...). These sources may provide many
different measured quantities, e.g., network usage, temperature,
power consumption, or HPC node counts. While most of these
metrics yield moderate temporal resolution, research projects
often require fewer metrics at a much higher sampling rate. All
this collected monitoring data needs to be accessed by different
stakeholders such as HPC operators, HPC vendors, data center
technicians (electrical, cooling), managers, and scientists. Other
common tasks based on this data include the creation of regular

reports as well as facility planning. A feedback channel from
sensors within the IT domain (e.g., the HPC system) into the
facility/BAS domain can create an opportunity for advanced
system optimization. Some of these use cases have been covered
in great detail in other publications, for example [10, Section
4]. With MetricQ, we built a solution to all these cases and
additionally support previously impossible usage scenarios.

The regular work of data center technicians includes frequent
monitoring of BAS data for irregularities or abnormal behavior.
Compared to the standard tools provided by BAS vendors,
dashboards (e.g., from Grafana) provide significant advantages:
a highly flexible web-based interface that allows technicians
to create arbitrary collections of charts in a common view
without vendor support. This enables new usage scenarios for
all matters that require timeline displays of time series data
because live value displays are insufficient. Such dashboards
are not only used for day-to-day monitoring of the data center
infrastructure, but also to support temporary work, such as
installation of new IT resources or changes/extensions of the
electrical/cooling support infrastructure.

The usage model for such dashboards is interactive, i.e.,
scrolling and zooming through arbitrary timelines. This requires
short and constant response times [11, Chapter 5], which in turn
requires limiting the amount of data that needs to be accessed
per request. Section V describes how this is typically achieved
through some form of limiting the temporal granularity of the
data collection, or accessing only a subset of the available
data points for the requested timeframe (sampling). Either
way, in order to meet the given performance requirements
such compromises are prone to discarding information that is
actually required by the user.

C. MetricQ Advantages for Data Center Monitoring

MetricQ does not require the previously described compro-
mises. The following examples showcase usage scenarios that
are highly common in BAS in general and in data center
monitoring in particular. Figure 3 shows the volume flow
of a badly tuned cooling system during the commissioning
phase of a new HPC system. Figure 3a conveys a very
different impression than Figure 3b throughout the whole time

(a) classical view (b) MetricQ view (c) MetricQ view, zoomed

Figure 3: Volume flow of a badly tuned cooling system during the commissioning phase of a new HPC system.



(a) classical view (b) MetricQ maximum view (mean and minimum not depicted)

Figure 4: 46-month data recording of two cooling system temperature probes.

frame. For the highlighted section, chart Figure 3a depicts
misleading information about intervals with a steady high
or low volume flow, while Figure 3b correctly suggests the
fluctuations and even the differing portions of high/low flow
depicted in Figure 3c.

While Figure 3b only shows a time frame of about 50 hours,
the example depicted in Figure 4 covers a 46-month period.
Figure 4a was generated using sampling and therefore hides
most of the short temperature fluctuations that usually result
from load swings or transitions between free cooling and
mechanical chillers. Use cases such as determining the stability
of the cooling system or identifying suitable threshold values
for alerting purposes require the best- and worst-case values,
provided natively by MetricQ as shown in Figure 4b.

The HTA storage concept delivers roughly constant response
times, regardless of whether the use case requires looking at
small data sets over short time periods, or billions of data points,
e.g., multiple metrics at 1 Sa/s over several years. In data
centers, the electrical grid infrastructure is a typical use case that
benefits from high sampling rates. Figure 5 shows a MetricQ
view that enables a quick assessment of the power quality
in an electrical subsystem in terms of voltage fluctuations.
Voltages of about 240V typically occur during maintenance
of the UPS system. In late 2015, a short circuit on a power
bus bar occurred while new racks were installed. Exactly one
of the > 100 million data points (> 1.6GB) in the depicted
time frame covered this incident as voltage drop to 210V.

MetricQ enables this kind of analysis through a previously
impossible combination of nearly constant response times, and
retaining and displaying the full level of detail within the data.

Figure 5: MetricQ view of voltage fluctuations.

V. RELATED WORK

Our previous data center monitoring solution was Data-
heap [12]. Its monolithic service for connecting data sources
and consumers decreases reliability, and the MariaDB storage
agent limits performance, leading to the development of
MetricQ.

A. Timeseries Storage

RRDtool [13] is an established tool-set for performance data
logging and graphing. It aggregates multiple data points into
circular buffers with a fixed number of entries. This limits
the necessary storage but discards information that would be
relevant to precisely answer aggregate queries.

InfluxDB [14] supports downsampling with custom retention
policies. However, these have to be configured manually for
each aggregation level and aggregate queries must specifically
address a retention policy or aggregate view rather than
benefiting from them transparently. TimescaleDB [15] describes
continuous aggregates to improve performance of queries on
long periods of time, but suffers from similar constraints.

BTrDB [16] is used for synchrophasor measurements and
supports out-of-order delivery and compression. It employs a
time-partitioned copy-on-write tree, which stores aggregates in
intermediate nodes. This approach enables efficient aggregate
queries, aggregate insertion rates of up to 53MSa/s, and
statistical queries in under 200ms. BTrDB lacks functionality
for data center monitoring, e.g., centralized configuration of
heterogeneous data sources.

B. HPC and Data Center Monitoring

The Lightweight Distributed Metric Service (LDMS) [17]
provides monitoring for large scale systems. Its layered
infrastructure allows hierarchical scaling. While the overhead
is demonstrated for sampling rates up to 1 Sa/s, the two pro-
duction deployments sample only at 3 Sa/min and 1 Sa/min
respectively. The deployed data storage uses CSV files.

The Data Center Data Base (DCDB) [5] combines mea-
surements from both facility and compute nodes. MQTT is
used for the messaging backend, and Apache Cassandra as
storage backend. The authors demonstrate a performance of
up to 500 kSa/s total.



The D.A.V.I.D.E. HPC system uses a framework for fine-
grained power and performance monitoring [4]. Embedded
computers are attached to each node and publish sensor
readings via MQTT. Data is stored in the KairosDB timeseries
database and visualized with Grafana. They showcase a total
of 47 kSa/s and individual sensor rates up to 1 kSa/s. With
DiG [18], the embedded components can be used for local
processing at higher temporal resolution up to 50 kSa/s.

The Operations Monitoring and Notification Infrastructure
(OMNI) [10] uses RabbitMQ, Logstash, Elasticsearch, and
Grafana to process and visualize metric data from a heteroge-
neous set of distributed sources. The authors describe that the
system can currently ingest up to 25 kSa/s.

Similar goals are addressed by the Grand Unified Information
Directory Environment (GUIDE) [19]. GUIDE collects data
from storage systems, schedulers, interconnect, and compute
nodes of an HPC system and processes it with Splunk.

Overall, none of the existing monitoring solutions are suitable
for our use case. While cardinality is generally well-supported,
it is not clear whether the existing solutions could handle
individual measurements well beyond 1 Sa/s. No full-stack
monitoring solution supports efficient aggregate queries for
plotting and analyzing years of data at high-resolution. Of
the described solutions, DiG offers flexible local analysis
and GUIDE supports post-processing and analysis within
the unified data streams. Other solutions perform analysis
only on stored data. In contrast, MetricQ leverages a single
interface to access high-resolution live data, temporarily stored
data for experiments, and aggregated persistent measurements.
Easily manageable configuration is another challenge not
addressed by existing solutions: For most infrastructures,
measurement configuration is done locally. DCDB provides
remote configuration at the cost of requiring a inbound network
connection to all Pushers. Contrary, MetricQ offers a central
(re)configuration for components of the system.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented MetricQ, a modular infrastructure
for collecting and storing high-resolution time series data.
MetricQ leverages an established message broker to connect
data sources, storage, and analysis components. It integrates a
novel storage concept that drastically improves the latency for
typical metric timeline requests. We demonstrate how we use
the MetricQ infrastructure to generate previously unachievable
insights into the operation of our data center. By collecting high
resolution power measurements up to 151 kSa/s and storing
them at reduced resolution we demonstrate that MetricQ is
fit for the increasing fidelity of sensors in data center and
elsewhere. All components of MetricQ are provided as open
source at https://github.com/metricq.

In future work, we want to measure the performance capa-
bilities of MetricQ in a controlled benchmarking environment.
Further, we plan to extend the analysis capabilities, e.g. by
offering an integration with Python or R (cf. [20]). We also
plan to significantly improve the integration of BACnet-based
metrics in terms of automation and administration.
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