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Abstract—Accurate and fine-grained power measurements of
computing systems are essential for energy-aware performance
optimizations of HPC systems and applications. Although cluster
wide instrumentation options are available, fine spatial granu-
larity and temporal resolution are not supported by the system
vendors and extra hardware is needed to capture the power con-
sumption information. We introduce the High Definition Energy
Efficiency Monitoring (HDEEM) infrastructure, a sophisticated
approach towards systemwide and fine-grained power measure-
ments that enable energy-aware performance optimizations of
parallel codes. Our approach is targeted at instrumenting multi-
ple HPC racks with power sensors that have a sampling rate of
about 8 kSa/s as well as finer spatial granularity, e.g., for per-CPU
measurements. We specifically focus on the correctness of power
measurement samples and energy consumption calculations based
on these power samples. We also discuss scalable and low-
overhead or overhead-free options for online and offline (post-
mortem) processing of power measurement data.

I. INTRODUCTION

Energy efficiency of systems and applications has been an
important research topic in recent years and its importance will
continue to grow as the operating cost of large systems steadily
increases. However, optimizing the properties of these systems
is infeasible without in-depth knowledge about their behavior
at run-time. A sophisticated measurement infrastructure is
required to gain insight into energy and power characteristics.
This includes both accurate and fine-grained measurements
that help to find hot spots in parallel applications and to enable
system optimizations at runtime to improve energy efficiency.

We define four criteria that describe the quality of a
power measurement infrastructure. Fine spatial granularity is
required to determine the components that consume the most
energy, thereby revealing worthwhile targets for optimization.
Fine temporal granularity is required for the analysis of
short code regions and fluctuations in system behavior as
they are crucial for the process of understanding these per-
formance characteristics. High scalability is required for col-
lecting system-wide information and enabling the analysis of
highly parallel applications. High accuracy allows for reliable
analyses, requiring both correctness and high measurement
resolution. As a special aspect of accuracy, we define energy
correctness. A series of power values for a certain time period
is energy-correct if a correct energy value for the time period
can be computed using these power values. Instantaneous

power readings can be accurate on their own, but energy-
incorrect as a series if they are not updated frequently enough.
In such a case, additional power information between two
updates would be required to compute the correct energy
consumption.

Designing a measurement infrastructure that fulfills these
requirements is a complex task. Previous power measurement
approaches have often focused on power measurements for
single nodes and small compound systems, with varying levels
of detail. They typically use sensors that already exist in power
supplies or on mainboards for power management purposes,
e.g., power capping. We present challenges for accurate and
fine-grained power and energy measurements before evaluat-
ing opportunities and limitations regarding cluster-wide per-
node power measurements based on these integrated sensors.
We also discuss our scalable data processing approach that
is necessary for per-node power measurements with a high
sampling rate when implemented at scale based on our current
infrastructure and present our approach for its validation. We
further provide an outlook on our planned setup that will
provide researchers with accurate, scalable, and fine-grained
measurements that help to analyze and optimize the energy
efficiency of parallel applications.

II. RELATED WORK

The four quality criteria for measuring power and energy
are limited by two different factors. While spatial granular-
ity is defined by the measurement implementation (physical
location of the sensors), scalability is limited by the data
processing infrastructure (e.g., how to store/process the amount
of data). Accuracy and temporal granularity are limited by
both, e.g., fine temporal granularity needs both capable sensors
and scalable data processing.

Most new high-performance computing (HPC) systems im-
plement ways to measure or estimate the energy consumption
of components or compute nodes. Power supply units (PSUs)
and power distribution units (PDUs) often provide energy
measurements that can be accessed via the Intelligent Platform
Management Interface (IPMI) [1]. These measurements are
designed to monitor the hardware for administration purposes,
energy-efficiency analysis is typically not a design target [2],
[3]. Thus, the temporal resolution is usually in the range of
0.01 to 1 Sa/s [4], [5], [6], [7]. A recent accuracy analysis of
two different PSU measurements is available in [8].
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The same spatial granularity at node level is provided
by external measurements using AC power meters. By using
professional devices, e.g. from ZES Zimmer [9] or Yoko-
gawa [10], high accuracy can be achieved [8]. They expose
an update rate of up to 20 Sa/s to the user. The internal
sampling rate is several orders of magnitude higher to capture
the curve shape of current and voltage and to provide accurate
averages for a given sampling interval instead of instantaneous
measurements. Less professional power meters are usually not
specified in such detail and may provide inaccurate data [11].

It is possible to measure internal voltage lanes in or-
der to improve spatial granularity. PowerMon2 [12], [13],
PowerPack [14], and PowerInsight [15] all use sensors to
instrument these lanes and provide measurements with up to
1 kSa/s. PowerMon2 and PowerInsight specify the accuracy of
their DC measurements with reference to the used sensors and
the number of available bits. The currently specified accuracies
are -6.6/+6.8 % and 1.8 %, respectively. They also specify
update rates of 1024 Sa/s and “greater than 1 kHz (from user
space)”, respectively. To the best of our knowledge, detailed
PowerPack specifications are not available.

Diouri et al. [11] and Hackenberg et al. [8] have analyzed
the accuracy of internal measurements. However, internal
instrumentation methods are intrusive and can possibly damage
the hardware, making vendor support an important factor. IBM
supports fine-grained spatial and temporal accuracy for power
measurements on POWER and x86 servers using the Amester
tool [7]. They use circuits that “place low impedance resistor
in series with a power rail”. The power information can be read
with up to 1 kSa/s via the proprietary interfaces of Amester.

As part of their current XC30 system series, Cray offers an
integrated power measurement infrastructure [16] that includes
blade and GPU measurements at 10 Sa/s. The measurements
are evaluated in detail in [17]. In addition to power and energy
values, a freshness counter helps to determine whether the
same value was read twice. However, the lack of information
about when a value was read or updated makes it difficult to
attribute readout values with correct time-stamps in order to
correlate power usage with application activity. Since power
readings are instantaneous values, aliasing is an issue if the
application power has regular 100 ms patterns.

Some devices like current x86 processors and NVIDIA
graphics cards [18] feature interfaces to read power and
energy information. New values are reported with a rate of
100 Sa/s (AMD APM [19]), or 1 kSa/s (Intel RAPL [20], [21]).
However, no timestamps are associated with power or energy
samples. The effects of the missing timestamp information and
the accuracy of the available information has been described
in [8]. For processors that do not provide information on
energy consumption, performance counter based models can
be used to calculate estimates [22], [23], [24], [25]. Such
measurements, however, have to be taken in-band and thus
possibly interfere with the workload.

In addition to accurate measurement devices, a scalable
software infrastructure is needed to store and process the power
information. The Powerpack authors describe their software
environment as scalable [14]. Its documentation does not men-
tion full-system measurements but instead instructs users to
select a single node for measurement. The Powerdam software

is capable of processing power information from hundreds of
nodes but with update rates of less than 1 Sa/s [26]. Laros et
al. used PowerInsight on 104 nodes of a cluster [15], though
with only one power sample per node and second.

While the PowerInsight approach is similar to ours, our
implementation benefits from several different design deci-
sions. On the hardware level, we use analog filters to overcome
aliasing issues and noise. Additionally, we combine an FPGA
and the existing BMC hardware instead of an autonomous
measurement board. This reduces the hardware costs and
complexity for the measurement equipment, removing an im-
portant obstacle on the path towards full-system measurement
on large-scale systems. We also support the IPMI standard
for gathering data at a low temporal granularity, allowing
administrators to use their existing tools for gathering correct
information. Our scalable measurement readout interface is
based on energy values, which allows us to read values with
different temporal granularity without losing information from
missed samples. For fine-grained measurements, we provide
the samples via the PCIe bus, which is faster then going over
10/100 MBit Ethernet or USB. Finally, we put much effort
into calibrating our sensors, which is according to [15, Section
IV.A] part of the future work on PowerInsight.

III. POWER AND ENERGY MEASUREMENT CHALLENGES

Multiple information losses can occur when measuring
power consumption. These deficits can originate from any
point of the measurement chain, ranging from the current
and voltage sensors, over the A/D conversion and potentially
several steps of data processing, to the data storage. The
correct interpretation of power measurement data can also
be challenging and may require a detailed knowledge of
the measurement approach and potential inaccuracies. Data
interpretation becomes even more challenging in the presence
of unknown or undocumented measurement errors.

Power measurements require current and voltage sensors
that are typically used to capture instantaneous information at
mostly regular intervals. Both sensor types exhibit a certain
measurement error, e.g., due to manufacturing tolerances. The
sensor signal will typically be subject to analog filtering to
reduce aliasing and noise. Moreover, the signal needs to be
sampled for conversion from the continuous time domain to
discrete time steps. This is typically done using an analog-to-
digital converter (ADC) that also performs the conversion from
continuous-amplitude to discrete-amplitude signals. The power
consumption of compute nodes (in particular CPUs) is highly
dynamic due to the high operating frequencies, while the power
measurement has far lower sampling rates. This means that
a low-pass filter on the input side of the ADC is essential
to satisfy the Nyquist-Shannon sampling criteria and to avoid
aliasing effects. Otherwise the measured power samples cannot
be used to compute energy consumption since they are not
energy-correct. Detailed information regarding these filtering
steps is usually not available for power measurement devices in
HPC systems, making profound estimations of the final power
measurement accuracy difficult.

The limited resolution of the ADC naturally results in
a quantization error. Moreover, the conversion to machine
processable data formats may introduce additional errors. The



IPMI standard is particularly prone to this type of error since
it only specifies one byte of data information for a sensor
reading [1, Chapter 35.14]. To overcome the limited range of
an unsigned byte data type, a scaling factor and an offset can be
defined [1, Chapter 36.3]. The introduction of a scaling factor
significantly reduces the resolution of the power values. In our
current installation, GPU nodes with high power requirements
expose measurement data only in multiples of 7 W due to
these limitations. To circumvent the reduced resolution, some
vendors (e.g., Dell and Hewlett Packard [27], [28]) implement
proprietary extensions to the IPMI protocol.

Without actually looking at energy measurements, we al-
ready identified a number of likely or even unavoidable sources
for power measurement inaccuracies:

• voltage and current sensors

• lowpass filters (e.g., non-linearities)

• ADC quantization errors

• conversion to target data format for processing

• multiplication of voltage and current values within the
limitations of the data format

• data processing, e.g., digital filters and calculation of
averages

Each power consumption sample is typically associated
with a timestamp. These timestamps are subject to the same
datatype limitations as the power values. It is also often unclear
how well the timestamp matches the exact time when the
power sample was taken. Moreover, the sample may refer to an
instantaneous power measurement or to an average over time
that has been computed, e.g., by the Baseboard Management
Controller (BMC). The resulting inaccuracies are depicted
in Figure 1a and Figure 1b. This information – particularly
internal sampling rates – is transparent to the user and most
often undocumented. However, it is of utmost importance for
assessing the correctness of the provided information.

Another important aspect is the calculation of energy-
correct average power values over a certain time, and in turn
energy consumption (product of average power and duration).
Important aspects are

• How well does the timestamp match the actual time
when the sample has been taken?

• Are the samples equidistant?

• Are the timestamps based on a different clock than
the clock of the compute node? If yes, how well are
these two clocks synchronized?

Furthermore, even though filters can improve the quality
of the measurements, they often also introduce a certain delay.
This means that the effect of load changes on a compute node
will be visible in the power consumption profile later than
they actually occurred. This delay has to be documented and
it needs to be constant (i.e., not change over time) so that it
can be accounted for during analysis.

IV. POWER AND ENERGY MEASUREMENTS ON A
SANDYBRIDGE CLUSTER IN PRODUCTION

We have a 270 node Intel Sandy Bridge based HPC cluster
in production that served as test vehicle to evaluate options
for scalable per-node power measurements using standard
techniques. Each node provides nine different power sensors.
Two power sensors are available per processor, one for the
system agent (un-core) and one for core power consumption.
Furthermore, four sensors measure the power consumption of
the four DRAM channels and one sensor is attached to the
54 V DC power inlet to measure the overall node.

The values of the node sensor are passed through a low-
pass filter (cutoff frequency of 0.16 Hz) before A/D conversion
to prevent aliasing. The BMCs read the updated values from
the sensors every ≈170 ms. So far, we have focused on the
node sensors since the other sensors do not provide much
value at this coarse temporal resolution. We query the values
from the BMCs via IPMI at a rate of 1 Sa/s. All nodes are
queried from only one management node via parallel FreeIPMI
requests. Higher rates are possible, but they show only little
dynamics due to the anti-aliasing filter and may cause perfor-
mance issues due to IPMI-latencies and throughput limitations.
However, for accurate energy consumption calculations, every
single instantaneous value is required.
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(b) External sampling with loss of timestamps and intermediate values in a
typical IPMI scenario. Red ticks on the time axis show IPMI request times.
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(c) Using the reported energy increase of the IPMI OEM extension to
reconstruct average power. Yellow ticks on the time-axis show the IPMI request
times, for which the last interval up to the most recent internal sampling
timestamp is used.

Fig. 1: Information processing of six sampling steps, com-
paring internal sampling, external sampling using IPMI, and
reconstruction of average power using the IPMI OEM exten-
sion.
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Fig. 2: Integration of IPMI measurements in SLURM accounting and other applications

Some of the limitations described in Section III also apply:
Even when reading the values via IPMI with 4 Sa/s or more,
some information is missing since it cannot be determined
when exactly the sensor readouts or updates occurred. It
is therefore impossible to distinguish two successive sensor
readings of identical value from no update. Furthermore, the
granularity of the measurements via IPMI is 3 W for the node
power consumption and 1 W for the other power sources due
to the limitation of one byte for sensor readings in IPMI.

To overcome the IPMI limitations, we have devised an
IPMI OEM extension and extended the BMC firmware to
perform energy computations. With each internal measurement
sample, the BMC will accumulate the energy consumption
from the instantaneous power consumption readings using
Equation 1.

E(t0 · · · tn) = En = En−1 +
P (tn) + P (tn−1)

2
(tn − tn−1)

(1)
This IPMI extension allows us to atomically read the consumed
energy En and the associated timestamp tn with high preci-
sion. From two successive reads, an energy-correct average
power over a well-defined time-period can be computed with
Equation 2.

Pavg(tn−i · · · tn) =
En − En−i

tn − tn−i
(2)

The user can freely choose a measurement rate, even if
intermediate internal samples are not read directly by the
user (interval i > 1). This allows for a tradeoff between
measurement overhead and fine temporal granularity, without
sacrificing energy correctness. The resulting view on dynamic
power consumption is shown in Figure 1c. Furthermore, it is
very convenient and efficient to retrieve the energy consumed
even over longer periods of time, e.g., the duration of a job,
without intermediate queries. Measurements can be started
and stopped using the IPMI extension. If used for multiple
purposes, e.g., accounting and monitoring at the same time, the
measurement should be running continuously. Statistics such as
minimum/maximum instantaneous power are also available for
each measurement. This information about power spikes can
be used for worst-case power calculations. If the measurement
runs for a long time, the energy values get very large in
comparison to the small incremental changes. Due to the
wide mantissa of double precision numbers, the introduced
rounding error is negligible even for years of measurements.
The granularity of values is only limited by the sensor itself.

In order to provide accurate temporal correlation, the BMC
clocks and compute node clocks synchronize locally with the
administrative nodes in regular intervals. Considering NTP
accuracy in local networks and clock drift during the NTP
refresh interval, the timestamps are accurate within 16 ms. This
is sufficient for power readings every 170 ms. In contrast to
the timestamps provided via the IPMI extension, the energy
calculation is done using a local non-NTP monotonous time
to avoid anomalous energy values in case of non-monotonous
timestamps due to larger NTP corrections. The effect of using
different clocks for computing average power is negligible
during normal operation, as the involved quartz are specified
for errors below 0.001 %. Figure 2 compares the standard
measurement implementation and the new BMC extension.

In summary, the main improvements of the BMC and IPMI
extension are threefold. First, the systematic 4 Sa/s internal
sampling is significantly higher than the frequency of the low-
pass filter and thus all power variation is integrated to provide
correct energy and average power values with negligible alias-
ing. Second, using a protocol extension, the data format does
not limit the accuracy. Third, accurate timestamps are provided
with the values via atomic reads to allow for correct correlation
of power readings with application phases or system events as
well as correct energy computations.

V. INTEGRATION INTO HPC ENVIRONMENT

Users can access the energy readings from the BMCs
through two different interfaces: (I) the resource and job
management system SLURM [29] and (II) the distributed data
collection and monitoring tool Dataheap [30].

A. Resource and Job Management System Integration

The Simple Linux Utility for Resource Management
(SLURM) is an open-source resource and job management
system specifically designed for the scalability requirements of

Listing 1: Sample output of the sacct utility showing the energy
consumed by a job running for 4 hours.

JobID NTasks S t a r t End ConsumedEnergy
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5876326 2014−04−02T08 : 4 0 : 2 0 2014−04−02T12 : 4 0 : 4 5
5876326 . b a t + 1 2014−04−02T08 : 4 0 : 2 0 2014−04−02T12 : 4 0 : 4 7 21
5876326 .0 2048 2014−04−02T08 : 4 0 : 2 1 2014−04−02T12 : 4 0 : 5 0 610 .66M
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Fig. 3: Dataheap and measurement infrastructure.

state-of-the-art supercomputers. SLURM provides functional-
ities that enable power monitoring per node as well as power
and energy accounting per job based on IPMI and RAPL
measurement interfaces [31]. These functionalities have been
extended to support the new BMC firmware for HDEEM using
the FreeIPMI library. The SLURM accounting utility sacct
provides users with an easy way to determine the energy
consumption of each job step. Listing 1 shows sample output of
this utility for a job with four hours of runtime and 610.66 MJ
energy consumption. By providing information about the en-
ergy required to run jobs, users can estimate the impact of
code optimizations with respect to energy consumption.

More detailed information can be gathered using the
SLURM profiling option --profile. Through a post-
mortem analysis of the generated file in HDF5 format, users
can get profiling information of their power usage with a
sampling frequency of 1 Sa/s. Other SLURM plugins feed
additional information into the same HDF5 file, e.g., about
the Lustre file-system and the network communication.

B. Data Collection and Monitoring Tool Integration

The Dataheap infrastructure was designed as a scalable
infrastructure for storing and processing continuous measure-
ment data. It is therefore suitable as a storage infrastructure for
the power measurements that are online regardless of running
jobs. This allows users and administrators to access the data
for online as well as post-mortem analysis and does not require
manual intervention to enable the recording.

The integration of the Dataheap infrastructure is depicted
in Figure 3. The power measurement data is collected from
the BMCs and pushed to the Dataheap by a management node.
From there, the data is accessible through a number of different
interfaces. Users can browse through the data using a web
interface that allows them to set arbitrary timeframes and to
combine the data from multiple measurement sources in one
display. This way, the system behavior can be analyzed and
compared over a long time period and the effects of changes
to the system can be tracked based on historical data.

The data can also be accessed through an API that enables
the use of automatic data evaluation tools. At the moment, the
interface is available for manual analysis via Python scripts and
as plugins for the performance measurement infrastructures
VampirTrace [32] and Score-P [33]. The plugins integrate the
power measurement data into application performance traces
and provides an easy way of correlating the behavior of a
parallel application with the power and energy measurements.
Figure 4a depicts a trace with integrated power measurements,
which shows repeating patterns of a Linpack run with power
consumption drops when all processes running on that node
exhibit long MPI wait states. After these long wait phases,
communication is still performed but the power consumption
of the node increases again.

(a) 64 s segment with a pattern correlating long MPI wait states with a drop
in power consumption of the node.

(b) 4 s segment demonstrating the lack of temporal resolution for fine-
grained analysis.

Fig. 4: Vampir visualizations of a trace of a Linpack run containing the application behavior (top, including MPI communication
in red and computation in green), power consumption of the node that ran processes 0-15, and a heatmap of the MPI wait states.



VI. VERIFICATION OF MEASUREMENTS

For our HPC cluster, we have performed an in-depth
verification of the energy measurement and energy accounting
capabilities. The setup for the verification of one chassis is
depicted in Figure 5. Reference measurements were conducted
using two calibrated ZES Zimmer LMG450 power analyzers
(four channels each). They were attached to the four 54 V
inputs (two channels per input) that provide power to the
entire chassis. In this configuration, the ZES power meters
are specified with a maximum relative error of 0.5 % of the
measured value plus 0.5 % of the measuring range. Since all
inputs form one internally connected lane, only the total sum
of power over all measurement channels was of interest. Each
of the eight measurement channels is limited to a maximum
current of 16 A, resulting in a theoretical limit of 6.9 kW
for all eight channels. The practical limit was lower due to
imbalanced channel loads, resulting in the use of only 12 out
of 18 available nodes in the chassis.

chassis

Infiniband switch

control module

auxiliary fans

...

LMG450 A

LMG450 B5
4

 V
 p

o
w

er
 in

p
u

t

?

?

?

? = internal measurement

node 0

node 1

node 17

Fig. 5: Measurement setup to verify vendor measurements with
precision power meters in the 54V DC power feed.

The main goal of the test was to verify the SLURM energy
accounting values using the reference measurements. In addi-
tion, we also compared them with the Dataheap recordings.
The test workloads for the compute nodes include:

• 5 minutes of idle (sleep, single nodes),
• 5 minutes of high load (Firestarter [34], single nodes),
• a regularly alternating synthetic high/low load code

with specific interval lengths to trigger aliasing,
• Linpack (single nodes, 12 nodes), and
• a user application (12 nodes).

The initial verification run revealed significant aliasing
issues within the SLURM accounting. Errors of up to 49 %
occurred when we deliberately created worst case scenarios
using our high/low load benchmark. The aliasing was caused
by the IPMI under-sampling effects described in Section III.
In this setup, the SLURM plugin used instantaneous power
samples every 3 s to compute energy. We therefore developed
the IPMI extension described in Section IV and integrated
it into SLURM. Furthermore, a few nodes exhibited strong
calibration issues of up to 15 W 1 (28 % for an idle node).
This was fixed by a cluster-wide calibration.

1Since energy values are compared, the actual absolute errors are in Joules.
We normalize those to average power in Watts.

In the final verification of the improved measurement and
integration, five nodes were studied in detail with only one
running at a time. The largest error found was 3.7 W (6.3 %)
for idle nodes and 9.9 W (2.6 %) under full load. While running
Linpack and the user application in parallel on 12 active
nodes in the chassis, the overall error was consistently below
0.5 %. Neither Linpack nor the user application measurement
suffered from aliasing effects and the remaining calibration
issues leveled each other out across all nodes. There was
no significant difference between the energy values reported
by SLURM and those computed from Dataheap recordings.
Table I lists the errors of all tested nodes.

Target Idle Firestarter Linpack
node 1 -2.9 % -0.4 % -0.6 %
node 2 -2.4 % 0.4 % 0.2 %
node 3 -6.3 % -1.3 % -1.2 %
node 4 -3.3 % 0.4 % 0.2 %
node 5 -1.1 % 2.6 % 2.3 %
12 nodes n/a n/a -0.2 %

TABLE I: Relative deviation of SLURM energy accounting
compared with reference measurement. For each entry, the
largest absolute error of all repeated runs is shown.

The default SLURM plugin for calculating the job en-
ergy consumption, acct_gather_energy/ipmi, collects
instantaneous power consumption values per node through the
FreeIPMI libipmimonitoring API [31]. The problem of that
plugin is that it cannot collect more than 1 Sa/s. Hence, in
order to consider the new IPMI extensions developed for the
firmware of the BMC (see Section IV), a new SLURM plugin
was implemented based on the FreeIPMI ipmi raw API. The
new acct_gather_energy/ipmi_raw plugin enables
the collection of the energy consumption values directly from
the BMC, including the advantage of the internal polling
rate of 4 Sa/s. We have performed experiments to compare
the accuracy and overhead between the different SLURM
monitoring modes. The experiments have been executed using
two nodes with Intel Ivy Bridge processors (dual socket, 12
cores per socket, 64 GB memory per node).

Listing 2 shows the energy consumed from Linpack execu-
tions using the two different energy accounting plugins. While
the reported overall energy is similar, Figure 6 shows that the
new ipmi raw plugin uses more accurate measurement values.
Those figures have been plotted with the measurements col-
lected through the profiling utility of SLURM with 1 Sa/s. Fig-
ure 6a reflects the power consumption of the job xhpl_ipmi
that uses the default energy accounting plugin while Figure 6b
depicts the power consumption of job xhpl_ipmi_raw that
makes use of the optimized plugin. In the optimized energy
accounting plugin, the power measurements are more accurate.

Listing 2: SLURM sacct utility showing the energy con-
sumed by Linpack executions, measured through two different
monitoring modes
JobName S t a t e E l a p s e d ConsumedEnergyRaw
−−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−−−−−−−−−
x h p l i p m i COMPLETED 0 0 : 2 2 : 3 9 1070894.000000
xhp l ipmi raw COMPLETED 0 0 : 2 2 : 4 2 1073068.000000
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(a) default ipmi plugin, resolution of 3 W, instantaneous values

Power consumption of 1 node during Linpack execution on 2 nodes

 measured through SLURM inband IPMI Raw using BMC optimization 
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Fig. 6: Visualization of SLURM Power Profiling of one node during a Linpack execution on 2 nodes

They reflect the average power consumption of at least 4
samples and are not limited by the IPMI 3 W granularity. This
explains the higher sensitivity of power values observed in
Figure 6b.

Figure 7 shows the overhead of the different monitoring
modes on the first compute node during the Linpack execu-
tions. A reference measurement without accounting/profiling
is compared to both plugins (ipmi and ipmi raw), each with
accounting only and with accounting+profiling enabled. Lin-
pack performance and execution times remain stable in all
cases. The CPU-time is significantly reduced with ipmi raw.
This is a result of the BMC-internal polling in contrast to
the default ipmi case where a SLURM thread is responsible
for the polling. The memory usage is only slightly reduced
using the ipmi raw plugin, which is expected since the pro-
filing mode always requires memory for logging the power
information for the node and for generating the hdf5 files. In
summary, the overhead of the improved ipmi raw plugin is
negligible when used with accounting only. Profiling provides
additional information at the cost of some performance (1s
runtime overhead for a >20 min application runtime using
the improved plugin). The measurement data processing is
decentralized on the compute nodes, therefore no scalability
bottleneck is introduced. We use ipmi raw energy accounting
on our full 270 nodes production system.
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Fig. 7: CPU and memory overhead for different SLURM
monitoring modes during a job with ≈1360 s duration.

VII. INCREASING GRANULARITY AND ACCURACY OF
POWER AND ENERGY MEASUREMENTS

For our two current installations – an AMD Opteron cluster
with 92 nodes and an Intel Sandy Bridge cluster with 270
nodes – we measure and store the power consumption at
node level with a sampling rate of 1 Sa/s. We extended our
performance analysis tools to be able to relate the power
information to application traces. As we show in Figure 4a, this
information can provide some insight, but a higher temporal
granularity will be beneficial for understanding and optimizing
power relevant application behavior. This shortcoming of the
current solution is demonstrated in Figure 4b, where the
temporal resolution of the power measurements is too low to
gain detailed insights for a 4 s execution phase. This makes
it impossible to distinguish power measurements for different
code regions of the application, e.g., computational functions
and communication. Moreover, a higher spatial granularity
would allow users to identify and target specific components
for optimization. Separating memory and processor power,
for example, enables users to target the processor for energy
tuning, which is the only component that is accessible for
optimizations from a software perspective. Nevertheless, gath-
ering information about the memory energy consumption can
provide insights into the impact of certain hardware settings on
the memory, e.g., changing the CPU and memory frequencies.
It also enables administrators to find power anomalies where
similar components differ in their power dissipation.

For our next (Intel Haswell based) installation we will
improve temporal and spatial granularity as well as accuracy
significantly. Each of the nodes will provide seven power
sensors that measure

• the total power consumption of the node,

• the two voltage lanes of the processors (VCCIN ), and

• the four lanes of the memory DIMMs.

Figure 8 shows the position of sensors in the node architecture.
The node power consumption is measured at the 54 V DC
input with a rate of 8 kSa/s. Processor and DIMM power are
measured at the level of the voltage regulators (VR) with a
rate of 1 kSa/s each. The obtained samples are smoothened
using a digital finite impulse response (FIR) filter. This digital
filter reduces the number of samples that need to be processed
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without compromising energy-correctness and the representa-
tion of dynamic behavior. It computes the weighted average of
the incoming samples, putting the highest weight on the values
in the middle of the pipe. This causes sharp variations of the
input signal to become visible in the output with a certain delay
that depends on the FIR’s pipe length and the frequency of
the incoming signal. As the raw data sampling frequency and
the filter pipe length differ (70 elements for voltage lanes, 90
elements for power input), two different but constant delays are
introduced that can be coped with in software during analysis.

The filtered values will be accessible for external software
through several interfaces. Some measurement data will still
be available through IPMI, including live power consumption
values and energy consumption through the extended OEM
interface, as described in Section IV. More detailed data will
be available via PCIe and a C library. This includes statistical
values containing minimum, average, and maximum power
consumption for each power source as well as time lines with
timestamped filtered samples for detailed analysis, e.g., for
integration into performance analysis tools and the Dataheap
infrastructure.

Besides the improved spatial and temporal resolution, we
also focused on achieving a high relative accuracy. Due to the
large range of measurement values from low to high load, a
high accuracy is hard to achieve. On the one hand, we targeted
a 2 % for the blade sensor, which was first obtained only
for measurement values larger than 300 W. Only by applying
a linear calibration to the measured value, we were able to
improve the accuracy to 1 % for all values above 50 W, which
includes the consumption of an active idle blade (powered
on, no load). The coefficients for this correction have to be
determined for each blade as they depend on the individual
sensor. On the other hand, the VR sensors have a lower
accuracy and their response curve is not linear. For the VR
sensor measuring the processor’s input power, the error can
be as much as 15 % for low values. By applying a linear
correction, we can achieve an accuracy of 3 % in the range
of 20 W to 175 W, which matches the power consumption of
a processor being idle or under load, respectively.

While the final measurement solution is not yet available,
a prototype version has already been deployed and evaluated.
The prototype differs from the final product in the following
ways: (I) Start and stop signals are sent through the BMC,
using IPMI commands. In the final version, the data will be
accessible via PCIe. (II) The fine-grained measurement data is

stored in FPGA memory. Due to limited memory, the prototype
is only capable of holding data for a 16 s time window. In
the future, the data will be buffered in the BMC, which
provides enough space for data of eight hours. (III) The FPGA
has exclusive access to the power sources, thus prohibiting
parallel access to the sensor data from the BMC during FPGA
measurement. In the final version, both the BMC and the
FPGA will be able to access that data concurrently. (IV) The
blade sensor signal is filtered by an analog low-pass, first-order
filter with a cutoff frequency of 400 Hz (20 dB/decade). The
final version will use a second-order filter at 500 Hz. (V) The
A/D converters in the final version will have a more fine-
grained resolution of 0.22 W.

To demonstrate the capabilities of the prototype, we have
created a high/low alternating workload with decreasing period
lengths using an artificial benchmark. The experiments were
conducted on a node equipped with two eight-core Intel Sandy
Bridge E5-2690 CPUs clocked at 2.90 GHz and 32 GB RAM
distributed over 4 DDR channels. Figure 9a shows the results
of this benchmark with period lengths ranging from 60 ms
down to 18 ms, including the overall blade consumption at
1 kSa/s together with one of the two CPU sockets and one
DRAM channel at 100 Sa/s each. The data demonstrates the
different temporal resolution of the measurements of the blade
and the VRs (CPU sockets and DRAM). The alternating load
is visible in the VR measurements up to a minimum period
length of approx. 30 ms (low and high load each 15 ms), which
is about three times the temporal resolution of the filtered VR
measurement data. For the blade measurement with 1 kSa/s,
a clear distinction between high and low load is possible for
period lengths as low as 5 ms (not depicted).

A measurement of a real-world application is shown in
Figure 9b with a trace of the NAS Parallel Benchmark BT-MZ
containing power measurement data from the prototype, again
for the blade, one CPU, and one DRAM channel. Both the VR
and the blade measurements reflect the lock-step properties of
the application execution, marking the communication phase
with a drop in power consumption due to MPI wait states.
However, this has only been a short class B run and it remains
as future work to measure longer application runs.

Both examples demonstrate the capabilities of our pro-
totype to deliver fine-grained measurements for a detailed
analysis of an application’s behavior with respect to power
and energy consumption. This now allows us to isolate the
energy consumption of shorter application phases and parallel
functions with runtimes in the order of a few millisecond,
e.g., to optimize the behavior of MPI wait states, thread
synchronization primitives, or certain computational kernels to
be more energy-efficient.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we discuss the state-of-the-art of power
and energy consumption measurement infrastructures for HPC
systems. For this evaluation, we define four quality criteria:
spatial granularity, temporal granularity, accuracy, and scala-
bility. We describe common issues regarding these criteria that
our existing power and energy measurement infrastructures
and all similar projects are facing. Furthermore, we present
first results of our approach to tackle these issues within the



(a) Synthetic benchmark with alternating high/low load periods ranging from
43 ms to 18 ms; high load phases colored green, low load phases in blue.

(b) NPB BT-MZ class B; computation phases in green, MPI functions in red,
messages as black lines.

Fig. 9: Visualization of traces containing energy measurements from the the HDEEM prototype, including the blade power
consumption, one CPU socket, and one DRAM channel.

HDEEM project. While spatial and temporal granularity are
defined mostly by the hardware implementation, many of the
accuracy issues that can be found upon closer evaluation stem
from drawbacks in the data processing software that can be
dealt with. In our existing 270-node cluster, we were able
to reduce the measurement error for multi-node real-world
application runs to less than 0.5 %.

Our plans for an improved measurement infrastructure
include a dedicated measurement FPGA that will be installed
on every blade. With this solution, we will be able to improve
spatial granularity to measure blade, CPU, and DRAM power
consumption separately. We will improve temporal granularity
to up to 1 kSa/s, and plan to showcase scalability up to
more than 500 nodes. Moreover, our accuracy target is 2 %
and explicitly includes not only power consumption but also
energy consumption, which requires a well-designed filtering
approach to deal with aliasing effects.

The evaluation of an early prototype solution shows
promising results in terms of temporal and spatial granularity.
While the hardware development is mostly finished with small
exceptions such as filter design, our future work will focus
on software advancements that should enable scalability for
cluster-wide measurements with negligible overhead due to
out-of-band data transfer and processing.
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