
Vampir 10

User Manual

Copyright

© 1991-2025 Forschungszentrum Jülich GmbH
Technische Universität Dresden
GWT-TUD GmbH

Address
GWT-TUD GmbH
Freiberger Str. 33
01067 Dresden, Germany

https://g-wt.de

Support / Feedback / Bug Reports
Please provide us feedback! We are very interested to hear what people like, dislike,
or what features they are interested in.

If you experience problems or have suggestions about this application or manual,
please contact service@vampir.eu.

When reporting a bug, please include as much detail as possible in order to reproduce
it. Please send the version number of your copy of Vampir along with the bug report.
The version is stated in the About Vampir dialog accessible from the main menu under
Help → About Vampir.

Please visit https://vampir.eu for updates.

service@vampir.eu
https://vampir.eu

Manual Version
Vampir 10.6 / January 2025

2

https://g-wt.de
mailto:service@vampir.eu
https://vampir.eu
mailto:service@vampir.eu
https://vampir.eu

Contents

1 Introduction 5
1.1 Event-based Performance Tracing and Profiling 5
1.2 The Open Trace Formats OTF and OTF2 6
1.3 The Chrome Trace Event Format . 7
1.4 Vampir and Windows HPC Server 2008 7

2 Getting Started 9
2.1 Installation of Vampir . 9

2.1.1 Linux, Unix . 9
2.1.2 macOS . 10
2.1.3 Windows . 10

2.2 Generation of Performance Data . 10
2.2.1 Score-P . 11
2.2.2 Event Tracing for Windows (ETW) 12

2.3 Starting Vampir and Loading Performance Data 14
2.3.1 Loading a Trace File . 14
2.3.2 Command Line Parameters . 16
2.3.3 Loading a Trace File Subset . 16

3 Basics 19
3.1 Chart Arrangement . 20
3.2 Context Menus . 22
3.3 Zooming . 24
3.4 The Zoom Toolbar . 26
3.5 The Charts Toolbar . 27
3.6 Properties of the Trace File . 27
3.7 Understanding the Differences Between Sampling and Instrumentation 29

4 Performance Data Visualization 32
4.1 Timeline Charts . 32

4.1.1 Master Timeline and Process Timeline 32
4.1.2 Summary Timelines . 40
4.1.3 Counter Data Timeline . 41
4.1.4 Performance Radar . 44
4.1.5 Shared Resource Timeline . 52

4.2 Statistical Charts . 56
4.2.1 Function Summary . 56

3

CONTENTS

4.2.2 Process Summary . 57
4.2.3 Message Summary . 58
4.2.4 Communication Matrix View . 59
4.2.5 Collective Operation Summary 61
4.2.6 I/O Summary . 63
4.2.7 Call Tree . 64
4.2.8 System Tree . 65

4.3 Informational Charts . 68
4.3.1 Function Legend . 68
4.3.2 Marker View . 68
4.3.3 Context View . 69

4.4 Customizable Performance Metrics . 72
4.4.1 Metric Editor . 73
4.4.2 Examples . 75

5 Information Filtering and Reduction 79
5.1 General Filter Dialog Design . 80
5.2 Filter Rules . 81
5.3 Process Filter Specifics . 83
5.4 Function Filter Specifics . 84
5.5 Filter Examples . 86

6 Comparison of Trace Files 96
6.1 Starting and Saving a Comparison Session 97
6.2 Usage of Charts . 100
6.3 Alignment of Multiple Trace Files . 102
6.4 Usage of Predefined Markers . 104

7 Customization 106
7.1 General Preferences . 106
7.2 Appearance . 107
7.3 Function Group Definitions File . 109
7.4 Saving Policy . 110

8 A Use Case 112
8.1 Introduction . 112
8.2 Identified Problems and Solutions . 113

8.2.1 Computational Imbalance . 113
8.2.2 Serial Optimization . 115
8.2.3 High Cache Miss Rate . 116

8.3 Conclusion . 118

4

1 Introduction

Performance optimization is a key issue for the development of efficient parallel soft-
ware applications. Vampir provides a manageable framework for analysis, which en-
ables developers to quickly display program behavior at any level of detail. Detailed
performance data obtained from a parallel program execution can be analyzed with a
collection of different performance views. Intuitive navigation and zooming are the key
features of the tool, which help to quickly identify inefficient or faulty parts of a pro-
gram code. Vampir implements optimized event analysis algorithms and customizable
displays which enable a fast and interactive rendering of very complex performance
monitoring data. Ultra large data volumes can be analyzed with a parallel version of
Vampir, which is available on request.

Vampir has a product history of more than 15 years and is well established on Unix
based HPC systems. This tool experience is also available for HPC systems that are
based on Microsoft Windows HPC Server 2008.

1.1 Event-based Performance Tracing and Profiling

In software analysis, the term profiling refers to the creation of tables, which summarize
the runtime behavior of programs by means of accumulated performance measure-
ments. Its simplest variant lists all program functions in combination with the number
of invocations and the time that was consumed. This type of profiling is also called
inclusive profiling, as the time spent in subroutines is included in the statistics compu-
tation.

A commonly applied method for analyzing details of parallel program runs is to record
so-called trace log files during runtime. The data collection process itself is also re-
ferred to as tracing a program. Unlike profiling, the tracing approach records timed
application events like function calls and message communication as a combination
of timestamp, event type, and event specific data. This creates a stream of events,
which allows very detailed observations of parallel programs. With this technology,
synchronization and communication patterns of parallel program runs can be traced
and analyzed in terms of performance and correctness. The analysis is usually carried
out in a postmortem step, i.e., after completion of the program. It is needless to say

5

1 INTRODUCTION

that program traces can also be used to calculate the profiles mentioned above. Com-
puting profiles from trace data allows arbitrary time intervals and process groups to be
specified. This is in contrast to profiles accumulated during runtime.

1.2 The Open Trace Formats OTF and OTF2

The Open Trace Formats have been designed as well-defined trace formats with open,
public domain libraries for writing and reading. This open specification of the trace
information enables analysis and visualization tools like Vampir to operate efficiently at
large scale. The formats address large applications written in an arbitrary combination
of Fortran77, Fortran (90/95/etc.), C, and C++.

Figure 1.1: Representation of Streams by Multiple Files

The original OTF format uses a special ASCII data representation to encode its data
items with numbers and tokens in hexadecimal code without special prefixes. This
allows for a very powerful format with respect to storage size, human readability, and
search capabilities on timed event records. In contrast to that, its OTF2 successor
relies on a binary representation of the data, which simplifies and accelerates parsing.

In order to support fast and selective access to large amounts of performance trace
data, OTF is based on a stream-model, i.e. single separate units representing seg-
ments of the overall data. OTF streams may contain multiple independent processes
whereas a process belongs to a single stream exclusively. As shown in Figure 1.1,
each stream is represented by multiple files which store definition records, performance

6

1.3 THE CHROME TRACE EVENT FORMAT

events, status information, and event summaries separately. A single global master file
holds the necessary information for the process to stream mappings. The master file
is always named {name}.otf[2].

Note: Open the master file (*.otf[2]) to load a trace. When copying, moving or deleting
traces it is important to include all files with the same name prefix. If not, Vampir will
render the whole trace invalid! Good practice is to hold all files belonging to one trace
in a dedicated directory.

Detailed information can be found in the Open Trace Format documentation for OTF1

and OTF22.

1.3 The Chrome Trace Event Format

Google developed its own event trace format to be used for Android and browser per-
formance analysis. This trace format is JSON-based and hence very easily writable.
This ease of use led to the adoption of the trace format by other monitoring software.
The fact that the Chrome browser provided a convenient way to visualize these traces
accelerated this adoption. Though in recent years such traces are also produced
by widespread frameworks which are now common in HPC environments too. Such
frameworks are AI-focused like PyTorch and TensorFlow, but also vendor-specific tools
for performance analysis of accelerator-based programming. The trace format is not
well suited for parallel processing, but the event data might nevertheless exceed the
usual resources of a browser-based visualization. Vampir can load such traces in both
uncompressed (*.json) and compressed (*.json.gz) forms. Though, as the format is
rather loosely specified, not all features from all known producers are supported. Cur-
rently supported are function (B, E, X), counter (C), and flow (s, t, f) events.

Detailed information can be found in the Trace Event Format3 documentation.

1.4 Vampir and Windows HPC Server 2008

The Vampir performance visualization tool usually consists of a performance monitor
(e.g., Score-P, see Section 2.2.1) that records performance data and a performance
GUI, which is responsible for the graphical representation of the data. In Windows
HPC Server 2008, the performance monitor is fully integrated into the operating sys-
tem, which simplifies its employment and provides access to a wide range of system
metrics. A simple execution flag controls the generation of performance data. This

1http://www.tu-dresden.de/zih/otf
2https://perftools.pages.jsc.fz-juelich.de/cicd/otf2/tags/latest/html/
3https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview

7

http://www.tu-dresden.de/zih/otf
https://perftools.pages.jsc.fz-juelich.de/cicd/otf2/tags/latest/html/
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview

1 INTRODUCTION

is very convenient and an important difference to solutions based on explicit source,
object, or binary modifications. Windows HPC Server 2008 is shipped with a translator,
which produces trace log files in Vampir’s Open Trace Format (OTF). The resulting files
can be visualized with the Vampir performance data browser.

8

2 Getting Started

2.1 Installation of Vampir

Vampir is available for all major platforms. Its installation process depends on the
target operation system. The following sections explain the particular installation steps
for each system.

2.1.1 Linux, Unix

An installer package is provided for Linux/Unix systems. To install Vampir run the
installer from the command line.

./vampir-10.6.0-linux-x86 64-setup.sh

Additional instructions are provided during installation. For an overview of all available
options run the installer package with the option --help.

It is possible to run the installer in silent (unattended) mode with the -s command line
option. In this case the installer assumes default values for all options.

By default, the installer associates Vampir with OTF and OTF2 files (*.otf, *.otf2). This
allows to quickly open a trace file by double-clicking its master file. Furthermore, a
desktop icon and a desktop dependent menu items are generated.

During the first start of Vampir the license installation is completed.

The activation of Vampir can also be done programmatically by putting the vampir.license
and vampir.activation files inside the Vampir installation directory and then call-
ing:

vampir --activate-license

Finally, Vampir can be launched via the respective desktop icon or by using the com-
mand line interface (see Section 2.3).

9

2 GETTING STARTED

2.1.2 macOS

Open the .dmg installation package and drag the Vampir icon into the applications
folder on your computer. You might need administrator rights to do so. Alternatively,
you can also drag the Vampir application to another directory that is writable for you.
After that, double click on the Vampir application and follow the instructions for license
installation.

2.1.3 Windows

On Windows platforms the provided Vampir installer makes the installation very simple
and straightforward. Just run the installer and follow the installation wizard. Install
Vampir in a folder of your choice, e.g.:

C:\Program Files

In order to run the installer in silent (unattended) mode use the /S option. It is also
possible to specify the output folder of the installation with /D=dir. An example of a
silent installation command is as follows:

Vampir-10.6.0-win64-setup.exe /S /D=C:\Program Files

You also have the option to associate Vampir with OTF and OTF2 files (*.otf, *.otf2)
during the installation process. This allows you to load a trace file quickly by double-
clicking its master file. Subsequently, Vampir can be launched by double-clicking its
icon or by using the command line interface (see Chapter 2.3).

At the first start Vampir will display instructions for license installation.

2.2 Generation of Performance Data

The generation of trace log files for the Vampir performance visualization tool requires
a working monitoring system to be attached to your parallel program. The following
software packages provide compatible monitoring systems with built-in support for the
Vampir performance data file format.

10

2.2 GENERATION OF PERFORMANCE DATA

2.2.1 Score-P

Score-P is the recommended code instrumentation and run-time measurement frame-
work for Vampir. The goal of Score-P is to simplify the analysis of the behavior of high
performance computing software and to allow the developers of such software to find
out where and why performance problems arise, where bottlenecks may be expected
and where their codes offer room for further improvements with respect to the run time.
A number of tools have been around to help in this respect, but typically each of these
tools has only handled a certain subset of the questions of interest. A crucial problem
in the traditional approach used to be the fact that each analysis tool had its own in-
strumentation system, so the user was commonly forced to repeat the instrumentation
procedure if more than one tool was to be employed. In this context, Score-P offers the
user a maximum of convenience by providing the Opari2 instrumentor as a common
infrastructure for a number of analysis tools like Periscope, Scalasca, Vampir, and Tau
that obviates the need for multiple repetitions of the instrumentation and thus substan-
tially reduces the amount of work required. It is open for other tools as well. Moreover,
Score-P provides the new Open Trace Format Version 2 (OTF2) for the tracing data
and the new CUBE4 profiling data format which allow a better scaling of the tools with
respect to both the run time of the process to be analyzed and the number of cores
to be used. Score-P supports the programming paradigms serial, OpenMP, MPI, and
hybrid (MPI combined with OpenMP).

Internally, the instrumentation itself will insert special measurement calls into the ap-
plication code at specific important points (events). This can be done in an almost
automatic way using corresponding features of typical compilers, but also semi-auto-
matically or in a fully manual way, thus giving the user complete control of the process.
In general, an automatic instrumentation is most convenient for the user. This is done
by using the scorep command that needs to be prefixed to all the compile and link
commands usually employed to build the application. Thus, an application executable
app that is normally generated from the two source files app1.f90 and app2.f90 via the
command:

mpif90 app1.f90 app2.f90 -o app

will now be built by:

scorep mpif90 app1.f90 app2.f90 -o app

using the Score-P instrumentor.

When makefiles are employed to build the application, it is convenient to define a place-
holder variable to indicate whether a preparation step like an instrumentation is desired
or only the pure compilation and linking. For example, if this variable is called PREP
then the lines defining the C compiler in the makefile can be changed from:

MPICC = mpicc

to

11

2 GETTING STARTED

MPICC = $(PREP) mpicc

(and analogously for linkers and other compilers). One can then use the same makefile
to either build an instrumented version with the

make PREP="scorep"

command or a fully optimized and not instrumented default build by simply using:

make

in the standard way, i.e. without specifying PREP on the command line.

Detailed information about the installation and usage of Score-P can be found in the
Score-P user manual1.

2.2.2 Event Tracing for Windows (ETW)

The Event Tracing for Windows (ETW) infrastructure of the Windows client and server
OS’s provides a powerful software monitor. Starting with Windows HPC Server 2008
MS-MPI has built-in support for this monitor. It enables application developers to
quickly produce traces in production environments by simply adding an extra mpiexec
flag (-trace). Trace files will be generated during the execution of your application.
The recorded trace log files include the following events: Any MS-MPI application call
and low-level communication within sockets, shared memory, and NetworkDirect im-
plementations. Each event includes a high-precision CPU clock timer for precise visu-
alization and analysis.

The steps necessary for monitoring the MPI performance of an MS-MPI application
are depicted in Figure 2.1. First the application needs to be available throughout all
compute nodes in the cluster and has to be started with tracing enabled. The Event
Tracing for Windows (ETW) infrastructure writes event logs (.etl files) containing the
respective MPI events of the application on each compute node. In order to achieve
consistent event data across all compute nodes clock corrections need to be applied.
This step is performed after the successful run of the application using the Microsoft
tool mpicsync. Now the event log files can be converted into OTF files with help of
the tool etl2otf. The last necessary step is to copy the generated OTF files from the
compute nodes into one shared directory. Then this directory includes all files needed
by Vampir. The application performance can be analyzed now.

The following commands illustrate the procedure described above and show, as a prac-
tical example, how to trace an application on the Windows HPC Server 2008. For
proper utilization and thus successful tracing, the file system of the cluster needs to
meet the following prerequisites:

• \\share\userHome is the shared user directory throughout the cluster

1https://score-p.org

12

https://score-p.org

2.2 GENERATION OF PERFORMANCE DATA

Figure 2.1: MS-MPI Tracing Overview

• MS-MPI executable myApp.exe is available in the shared directory

• \\share\userHome\Trace is the directory where the OTF files are collected

1. Launch application with tracing enabled (use of -tracefile option):

mpiexec -wdir \\share\userHome\
-tracefile %USERPROFILE%\trace.etl myApp.exe

• -wdir sets the working directory; myApp.exe has to be there

• %USERPROFILE% translates to the local home directory, e.g.
C:\Users\userHome; on each compute node the event log file (.etl) is stored
locally in this directory

2. Time-sync the event log files throughout all compute nodes:

mpiexec -cores 1 -wdir %USERPROFILE% mpicsync trace.etl

• -cores 1: run only one instance of mpicsync on each compute node

3. Format the event log files to OTF files:

mpiexec -cores 1 -wdir %USERPROFILE% etl2otf trace.etl

4. Copy all OTF files from compute nodes to trace directory on share:

13

2 GETTING STARTED

mpiexec -cores 1 -wdir %USERPROFILE% cmd /c copy /y
"* otf*" "\\share\userHome\Trace"

2.3 Starting Vampir and Loading Performance Data

Figure 2.2: List of recent trace files

Viewing performance data with the Vampir GUI is very easy. On Windows the tool can
be started by double clicking its desktop icon (if installed) or by using the Start Menu.
On a Linux-based machine run ./vampir in the directory where Vampir is installed. A
double click on the application icon opens Vampir on macOS systems.

At startup Vampir presents a list of recently loaded trace files as depicted in Figure 2.2.
Selecting a list entry and clicking the Open button loads the respective trace. The
recent list is empty when Vampir is started for the first time.

2.3.1 Loading a Trace File

To open an arbitrary trace file, click on Open Other. . . or select Open. . . in the File
menu, which provides the file open dialog depicted in Figure 2.3.

14

2.3 STARTING VAMPIR AND LOADING PERFORMANCE DATA

Figure 2.3: Loading a trace file in Vampir

It is possible to filter the files in the list. The file type input selector determines the
visible files. The default is All trace files (*.otf2, *.otf, *.json, *.json.gz), which only
shows trace files that can be processed by the tool. All file types can be displayed by
using All Files (*). Favorite directories can be added to Favorite Links on the left hand
side by clicking the plus button below. The five most recently visited directories will
automatically be listed.

After selection of the trace file the loading process is started by a click on the Open but-
ton. Alternatively, a command line invocation is possible. The following command line
sequence shows an example for a Windows system. Other platforms work accordingly.

C:\Program Files\Vampir\Vampir.exe [trace file]

To open multiple trace files at once you can give them one after another as command
line arguments:

C:\Program Files\Vampir\Vampir.exe [file 1]...[file n]

If Vampir was associated with *.otf/*.otf2 files during the installation process, it is also
possible to start the application by double-clicking an *.otf/*.otf2 file.

While Vampir is loading the trace file, an empty Trace View window with a progress bar
at the bottom opens. After Vampir loaded the trace data completely, a default set of

15

2 GETTING STARTED

charts will appear. The loading process can be interrupted at any time by clicking the
Stop & Show button in the lower right corner of the Trace View. The GUI will open and
show the information that has been loaded from the trace file so far.

The basic functionality and navigation elements of the GUI are described in Chapter 3.
The available charts and the information provided by them are explained in Chapter 4.

2.3.2 Command Line Parameters

The Vampir program can be started by clicking on its icon or by calling its program file
from the command line as follows:

vampir [options] [file ...]

Multiple files can be specified and Vampir will open them in separate windows. Files
can be local or remote files. In the case of the latter, the format is host:port:file.
To specify an IPv6 address as the host, enclose the host in brackets like so [host]:port:file.
Table 2.1 gives a brief overview of the options that are understood by the command line
interface.

Options Description

-h --help Show a brief command overview
--help=license Show further information about the license activation

process
--presentation Enable presentation mode, i.e., visualize mouse clicks
--no-dbus [Linux only] Start without connecting to D-Bus session
--dbus [Linux only] Start with D-Bus session even if the

environment variable DBUS SESSION BUS ADDRESS
is not set

-v --version Show program version

Table 2.1: Options of the Vampir command line interface

2.3.3 Loading a Trace File Subset

To handle large trace files and save time and memory resources, it is possible to load
only a performance data subset from a trace file. For this purpose the open dialog,
Figure 2.3, provides the button Open Subset. . . . Clicking on this button opens a trace
data pre-selection dialog as depicted in Figure 2.4.

16

2.3 STARTING VAMPIR AND LOADING PERFORMANCE DATA

Figure 2.4: Selecting a trace data subset to be loaded

An overview snapshot of the recorded application run is given at the top of the dialog.
The time range of interest can be set with the edge markers on the left and right of
the overview snapshot. Likewise, the time range to be loaded can be set explicitly in
the input fields From: and To:. If markers are available in the trace file, their timing
information can be used as reference points as well. Two markers need to be selected
first (use shift + mouse click for the second marker). Next, click on Zoom Between
Marker to set the respective time interval in the From: and To: input fields. The event
data to be loaded can also be restricted to certain processes or threads of execution by
disabling unwanted instances in the selection area entitled Processes (see Section 5.3
for further details). By using the selection areas Functions, Counter, and Other Events

17

2 GETTING STARTED

the loaded trace data can be further restricted to certain events and event types. Once
the data subset of interest is specified a click on the OK button starts the loading
process.

18

3 Basics

After loading has been completed, the Trace View window title displays the trace file’s
name as depicted in Figure 3.1. By default the Charts toolbar and the Zoom Toolbar
are available.

Figure 3.1: Trace View Window with Charts Toolbar (A) and Zoom Toolbar (B)

Furthermore, a default set of charts is opened automatically after loading has been
finished. The charts can be divided into three groups: timeline-, statistical-, and infor-
mational charts. Timeline charts show detailed event based information for arbitrary
time intervals while statistical charts reveal accumulated measures which were com-
puted from the corresponding event data. Informational charts provide additional or
explanatory information regarding timeline- and statistical charts. All available charts
can be opened with the Charts toolbar which is explained in Chapter 3.5.

In the following sections we will explain the basic functions of the Vampir GUI which
are generic to all charts. If you are already familiar with the fundamentals feel free to
skip this chapter. The details of the different charts are explained in Chapter 4.

19

3 BASICS

3.1 Chart Arrangement

Figure 3.2: A Custom Chart Arrangement in the Trace View Window

The utility of charts can be increased by correlating them and their provided informa-
tion. Vampir supports this mode of operation by allowing to display multiple charts at
the same time. All timeline charts, such as the Master Timeline and the Process Time-
line display a sequence of events. Those charts are therefore aligned vertically. This
alignment ensures that the temporal relationship of events is preserved across chart
boundaries.

The user can arrange the placement of the charts according to his preferences by
dragging them into the desired position. When the left mouse button is pressed while
the mouse pointer is located above a placement decoration, the layout engine will give
visual clues as to where the chart may be moved. As soon as the user releases the left
mouse button the chart arrangement will be changed according to his intentions. The
entire procedure is depicted in Figures 3.3 and 3.4.

The layout engine furthermore allows a flexible adjustment of the screen space that is
used by a chart. Charts of particular interest may get more space in order to render
information in more detail.

The Trace View window can host an arbitrary number of charts. Charts can be added
by clicking on the respective icon in the Charts toolbar or the corresponding Chart

20

3.1 CHART ARRANGEMENT

Figure 3.3: Moving and Arranging Charts in the Trace View Window (1)

Figure 3.4: Moving and Arranging Charts in the Trace View Window (2)

21

3 BASICS

menu entry. With a few more clicks, charts can be combined to a custom chart ar-
rangement as depicted in Figure 3.2. Customized layouts can be saved as described
in Chapter 7.4.

Every chart can be undocked or closed by clicking the dedicated icon in its upper right
corner as shown in Figure 3.5. Undocking a chart means to free the chart from the
current arrangement and present it in an own window. To dock/undock a chart follow
Figure 3.6, respectively Figure 3.7.

Figure 3.5: Closing (right) and Undocking (left) of a Chart

Considering that labels, e.g., those showing names or values of functions often need
more space to show its whole text, there is a further option of resizing. In order to
read labels completely, it might be useful to alter the distribution of space shared by
the labels and the graphical representation in a chart. When hovering the blank space
between labels and graphical representation, a movable separator appears. By drag-
ging the separator decoration with the left mouse button the chart space provided for
the labels can be resized. The whole process is illustrated in Figure 3.8.

3.2 Context Menus

All chart displays have their own context menu containing common as well as display
specific entries. In this section only the most common entries will be discussed. A
context menu can be accessed by right clicking anywhere in the chart window.

Common entries are:

• Reset Zoom: Go back to the initial state in horizontal zooming.

• Reset Vertical Zoom: Go back to the initial state in vertical zooming.

• Set Metric: Set the values which should be represented in the chart, e.g., change
from Exclusive Time to Inclusive Time.

• Sort By: Rearrange values or bars by a certain characteristic.

22

3.2 CONTEXT MENUS

Figure 3.6: Undocking of a Chart

Figure 3.7: Docking of a Chart

23

3 BASICS

Figure 3.8: Resizing Labels: (A) Hover a Separator Decoration; (B) Drag and Drop the
Separator

3.3 Zooming

Zooming is a key feature of Vampir. In most charts it is possible to zoom in and out to
get detailed or abstract views of the visualized data.

In the timeline charts zooming produces a more detailed view of a selected time interval
and therefore reveals new information that was previously hidden in the larger section.
Short function calls in the Master Timeline may not be visible unless an appropriate
zooming level has been reached. In other words, if the execution time of functions is
too short with respect to the available pixel resolution of your computer display, zooming
into a shorter time interval is required in order to make them visible.

Note: Other charts are affected by zooming in the timeline displays. The interval
chosen in a timeline chart, such as Master Timeline or Process Timeline also defines
the time interval for the calculation of accumulated measurements in the statistical
charts.

Statistical charts like the Function Summary provide zooming of statistic values. In
these cases zooming does not affect any other chart. Zooming is disabled in the Pie
Chart mode of the Function Summary accessible via the context menu under Set Chart
Mode → Pie Chart.

24

3.3 ZOOMING

Figure 3.9: Zooming within a Chart

To zoom into an area, click and hold the left mouse button and select the area as shown
in Figure 3.9. It is possible to zoom horizontally and in some charts also vertically. In the
Master Timeline horizontal zooming defines the time interval to be visualized whereas
vertical zooming selects a group of processes to be displayed. To scroll horizontally
move the slider at the bottom or use the mouse wheel. To get back to the initial state
of zooming select Reset Horizontal Zoom or Reset Vertical Zoom (see Section 3.2) in
the context menu of the respective performance chart.

Additionally the zoom can be accessed with help of the Zoom Toolbar by dragging the
borders of the selection rectangle or by scrolling of the mouse wheel as described in
Chapter 3.4.

In order to return to the previous zooming state an undo functionality, accessible via
the Edit menu, is provided. Alternatively, the key combination Ctrl+Z also reverts the
last zoom. Accordingly, a reverted zooming action can be redone by selecting Redo
in the Edit menu or by pressing Ctrl+Shift+Z. The undo functionality is not bound to
single performance charts but works across the entire application. The labels of the
Undo and Redo menu entries also state which kind of action will be undone/redone
next.

25

3 BASICS

3.4 The Zoom Toolbar

Vampir provides a Zoom Toolbar that can be used for zooming and navigation in the
trace data. It is located in the upper right corner of the Trace View window, shown in
Figure 3.1. It is possible to adjust its position via drag and drop. The Zoom Toolbar
offers an overview and summary of the loaded trace data. The currently zoomed area is
highlighted as a rectangle within the Zoom Toolbar. By dragging of the two boundaries
of the highlighted rectangle the horizontal zooming state can be adjusted.

Note: Instead of dragging boundaries it is also possible to use the mouse wheel for
zooming. Hover the Zoom Toolbar and scroll up and down to zoom in and out, respec-
tively.

Dragging the zoom area changes the section that is displayed without changing the
zoom factor. For dragging, click into the highlighted zoom area and drag and drop it to
the desired position. Zooming and dragging within the Zoom Toolbar is illustrated in
Figure 3.10. If the user double clicks in the Zoom Toolbar, the initial zooming state is
reverted.

Figure 3.10: Zooming and Navigation within the Zoom Toolbar: (A+B) Zooming in/out
with the Mouse Wheel; (C) Scrolling by Moving the Highlighted Zoom
Area; (D) Zooming by Selecting and Moving a Boundary of the Highlighted
Zoom Area

26

3.5 THE CHARTS TOOLBAR

The colors represent user-defined groups of functions or activities. Please note that
all charts added to the Trace View window will calculate their statistic information ac-
cording to the selected time interval (zooming state) in the Zoom Toolbar. The Zoom
Toolbar can be enabled and disabled with the toolbar’s context menu entry Zoom Tool-
bar.

3.5 The Charts Toolbar

The Charts Toolbar is used to open instances of the available performance charts. It is
located in the upper left corner of the Trace View window as shown in Figure 3.1. The
toolbar can be dragged and dropped to alternative positions. The Charts Toolbar can
be disabled with the toolbar’s context menu entry Charts.

Table 3.1 gives an overview of the available performance charts with their correspond-
ing icons. The icons are arranged in three groups, divided by small separators. The
first group represents timeline charts, whose zooming states affect all other charts. The
second group consists of statistical charts, providing special information and statistics
for a chosen interval. Vampir allows multiple instances for charts of these categories.
The last group comprises of informational charts, providing specific textual information
or legends. Only one instance of an informational chart can be opened at a time.

3.6 Properties of the Trace File

Vampir provides an info dialog containing important characteristics of the opened trace
file. This Trace Properties are displayed in the Context View dialog, Section 4.3.3, and
can be opened via the main menu under File → Get Info. The information originates
from the trace file and includes details such as file name, creator, or the OTF version.

27

3 BASICS

Icon Name Description

Master Timeline Section 4.1.1

Process Timeline Section 4.1.1

Shared Resource Timeline Section 4.1.5

Performance Radar Section 4.1.4

Counter Data Timeline Section 4.1.3

Function Summary Timeline Section 4.1.2

Message Summary Timeline Section 4.1.2

I/O Summary Timeline Section 4.1.2

Function Summary Section 4.2.1

Process Summary Section 4.2.2

Message Summary Section 4.2.3

Collective Operation Summary Section 4.2.5

I/O Summary Section 4.2.6

Communication Matrix View Section 4.2.4

Call Tree Section 4.2.7

System Tree Section 4.2.8

Function Legend Section 4.3.1

Marker View Section 4.3.2

Context View Section 4.3.3

Table 3.1: Icons of the Charts Toolbar

28

3.7 UNDERSTANDING THE DIFFERENCES BETWEEN SAMPLING AND
INSTRUMENTATION

3.7 Understanding the Differences Between Sampling
and Instrumentation

Vampir supports the visualization of traces containing events recorded using sampling
and instrumentation. Vampir is able to visualize each event type independently or both
types combined. Especially the combined visualization provides a coherent analysis
experience.

When analyzing traces that include sampling events, users should be aware of the
conceptional differences between sampling and instrumentation events. Both methods
differ primarily in the way the measurements are triggered.

Instrumentation:

Sampling:

t

Figure 3.12: Measurement points, indicated by black arrows, when using sampling and
instrumentation techniques

Colored timelines in Figure 3.12 indicate a series of executed functions. Black arrows
below the timelines indicate measurements. In case of sampling, measurements are
triggered by interrupt generators at periodic time intervals or at specific counter thresh-
olds. In case of instrumentation, measurement instructions are embedded into the
application control flow and are triggered at function begin and end points. Both meth-
ods have their own advantages and disadvantages. With sampling, for instance, the
measurement might miss important function invocations. Instrumentation, however,
has the potential to induce large measurement overheads.

For the analysis of traces based on sampling events, it is important to be aware, that the
resulting visualization only shows statistical information in the granularity of the sam-
pling frequency. Figure 3.11 demonstrates the differences in the visualization between
sampling and instrumentation events. Figure 3.11(a) shows a visualization of purely
sampling-based events. With sampling, individual measurements hit a function at some
point during its invocation. Additionally to that specific function, the complete call stack
leading to this function is recorded as well. Thus, in the Process Timeline, sampling
events appear visually as “blocks”, as shown in the bottom chart in Figure 3.11(a). The
duration of a block is essentially the interval between two sampling points. In order to
visually separate successive blocks, each block ends with a small white gap. The exact
time point of an individual measurement is indicated by a little black line above each

29

3 BASICS

(a) Pure sampling-based events

(b) Pure instrumentation-based events

(c) Combined visualization of sampling- and instrumentation-based events

Figure 3.11: Visualizations for different event types in Vampir’s Master Timeline and
Process Timeline.30

3.7 UNDERSTANDING THE DIFFERENCES BETWEEN SAMPLING AND
INSTRUMENTATION

sample block. Since only one single measurement is taken for each block, marked by
the black line, all other possible function enter and exit events during the block duration
are not known.

Visualization of traces based on instrumentation events shows function invocations
accurately as they execute in the application. There is no artificial segmentation as
caused by sampling. Figure 3.11(b) shows the same area as Figure 3.11(a) but with
instrumentation events. No block-like structure is visible. However, due to large mea-
surement overhead some functions are filtered out during the measurement. Thus,
Figure 3.11(b) shows less functions. Especially the highest call-level 6 is missing.

To combine the advantages of both approaches, Vampir can visualize traces including
both, sampling and instrumentation events. Figure 3.11(c) shows an example. High
call-level functions are visible. Black marks indicate sampling measurement points.
Functions recorded with instrumentation, usually on lower call-levels, are not seg-
mented and visualized according to their true execution behavior.

Figure 3.13: Control field for enabling and disabling event types

If a trace provides sampling as well as instrumentation events, Vampir allows to indi-
vidually en-/disable both event types. To adjust the visualized event types application-
wide, use the event type control field in Vampir’s Chart Toolbar, shown in Figure 3.13.
Clicking on the left or right icon globally en-/disables instrumentation and sampling
events, respectively. The visualized event types can also be adjusted in the prefer-
ences or in the context menu of the Zoom Toolbar. Black icons in the top right corner of
each performance chart indicate the active types of events for this chart. To change the
active event types for individual charts, use the Set Event Mode option in the context
menu of the respective chart.

31

4 Performance Data Visualization

This chapter deals with the different charts that can be used to analyze the behavior
of a program and the comparison between different function groups, e.g. MPI and
Calculation. Communication performance issues are regarded in this chapter as well.
Various charts address the visualization of data transfers between processes. The
following sections describe them in detail.

4.1 Timeline Charts

A very common chart type used in event-based performance analysis is the so-called
timeline chart. This chart type graphically presents the chain of events of monitored
processes or counters on a horizontal time axis. Multiple timeline chart instances can
be added to the Trace View window via the Chart menu or the Charts toolbar.

Note: To measure the duration between two events in a timeline chart Vampir provides
a tool called Ruler. The Ruler is enabled by default during every zoom operation in a
timeline chart. In order to use the Ruler for measurement only, i.e. without performing
any zoom, hold the Shift key pressed while clicking on any point of interest in a timeline
chart and moving the mouse while holding the left mouse button pressed. A ruler like
pattern appears in the timeline chart which provides the exact time between the start
point and the current mouse position.

4.1.1 Master Timeline and Process Timeline

In the Master Timeline and the Process Timeline detailed information about functions,
communication, and synchronization events is shown. Timeline charts are available for
individual processes (Process Timeline) as well as for a collection of processes (Master
Timeline). The Master Timeline consists of a collection of rows. Each row represents a
single process, as shown in Figure 4.1. A Process Timeline shows the different levels
of function calls in a stacked bar chart for a single process as depicted in Figure 4.2.

Every timeline row consists of a process name on the left and a colored sequence
of function calls or program phases on the right. The color of a function is defined
by its group membership, e.g., MPI Send() belonging to the function group MPI has
the same color, presumably red, as MPI Recv(), which also belongs to the function

32

4.1 TIMELINE CHARTS

Figure 4.1: Master Timeline

Figure 4.2: Process Timeline

33

4 PERFORMANCE DATA VISUALIZATION

group MPI. Clicking on a function highlights it and causes the Context View display to
show detailed information about that particular function, e.g., its corresponding func-
tion group name, time interval, and the complete name. The Context View display is
explained in Chapter 4.3.3.

By clicking on a process label additional information about the related process is shown
in the Context View. Process labels can also be used for quick process selection in
other charts. Just use the mouse to drag and drop the respective process label from
the Master Timeline to Process Timeline or Function Summary charts.

Process rows can be re-ordered by clicking and dragging the process label at the front
of each row. If a process has been recorded with subordinated information like threads,
this information can be hidden and exposed by clicking the black arrow shape in front
of the process label or by using the context menu entries Expand All and Collapse All.

Some function invocations are very short. Hence, these are not shown in the overall
view due to a lack of display pixels. A zooming mechanism is provided to inspect a
specific time interval in more detail. For further information on zooming see Section 3.3.
If zooming has been performed, scrolling in horizontal direction is possible with the
mouse wheel or the scroll bar at the bottom.

Group Processes The context menu entry Group Processes allows to collapse indi-
vidual timelines into one new summarized timeline. For the corresponding time interval
of each visualized pixel of the new summarized timeline, the most prominent activ-
ity (highest time share) across all individual timelines is identified. That way the new
timeline always shows the most important activities.

To control the collapsing of processes the submenu Group Processes provides the
following options:

• Group Threads: Activating this option collapses all threads of a process into one
new summarized timeline. The information of all individual threads of a process
is aggregated in the new timeline.

• Group CUDA Streams: Activating this option collapses all streams of a CUDA de-
vice into one new summarized timeline. The information of all individual streams
of the respective device is aggregated in the new timeline. Note, that idle times
are only visualized when all device streams are unused.

• Group by System Tree: This option allows to use the system hierarchy stored
in otf2 trace files as grouping criteria for the summarized timeline. That way, for
instance, it is possible to collapse all timelines of one node into a summarized
timeline.

• Advanced Selection...: Activating this option opens a new dialog that provides
additional grouping controls. Possible options are to Group by :

34

4.1 TIMELINE CHARTS

– Name: This option allows to define groups by using the process names.
The text input field for the process name supports wildcards and regular ex-
pressions. Corresponding options are shown when clicking on the magnifier
icon. The regular expressions have been enhanced with a numeric exten-
sion to better deal with process numbers. Numeric extensions are described
on Page 39. Besides generating several groups, it is also possible to merge
all defined processes into a single group.

– Threads: This option groups processes similarly like the option Group Pro-
cesses → Group Threads. However, it additionally provides the choice to
exclude the master process/thread from each group.

– System Tree: This option allows to use the system hierarchy stored in otf2
trace files as grouping criteria for the summarized timeline. In comparison to
Group Processes → Group by System Tree, this option provides the choice
to create subgroups that reflect the system hierarchy. The subgroups are
arranged in a tree-like fashion according to the system hierarchy.

– Process Group: This option allows to use the process groups defined in the
trace file as grouping criteria for the summarized timeline.

– Number: This option allows to manually define the number of groups. It
is possible to either set the number of groups, or to define the number of
processes in one group. Additionally a stride may be used when assigning
processes to groups. For instance, if four processes (1, 2, 3, 4) should be
assigned to two groups:
Without stride: (1,2)(3,4) vs. with stride: (1,3)(2,4).

• Ungroup: This option allows to partially disable the grouping functionality. This
option becomes active if one collapsed group is selected. Activating this option
ungroups the timelines of the selected group and removes the related summa-
rized timeline. All other groups remain unchanged and stay collapsed.

• Ungroup All: This option disables the grouping functionality. All summarized time-
lines are removed and trace streams are visualized as individual timelines again.

Additionally, the context menu of the Master Timeline also provides the option Reset
Process Order. This option disables the grouping functionality, restores the initial pro-
cess order, and visualizes all timelines the same way as before the grouping.

Besides the context menu, users can also use the mouse to re-arrange processes.
Via drag and drop, using the process name labels, processes can be moved freely
between groups.

35

4 PERFORMANCE DATA VISUALIZATION

Process Timeline The Process Timeline resembles the Master Timeline with some
differences. The chart’s timeline is divided into levels, which represent the different call
stack levels of function calls. The initial function begins at the first level, a sub-function
called by that function is located a level beneath and so forth. If a sub-function returns
to its caller, the graphical representation also returns to the level above. Depending
on the included event types in the trace file, visualization may differ for sampling and
instrumentation events, see Section 3.7 for details.

Communication Events In addition to the display of categorized function invoca-
tions, Vampir’s Master- and Process Timeline also provide information about commu-
nication events. Messages exchanged between two different processes are depicted
as black lines. In timeline charts, the progress in time is reproduced from left to right.
The leftmost (starting) point of a message line and its underlying process bar therefore
identify the sender of the message, whereas the rightmost position of the same line rep-
resents the receiver of the message. The corresponding function calls usually reflect
a pair of MPI communication directives like MPI Send() and MPI Recv(). Since the
Process Timeline reveals information of one process only, short black arrows are used
to indicate outgoing communication. Collective communication like MPI Gatherv() is
also displayed in the Master Timeline as shown in Figure 4.3.

Figure 4.3: Selected MPI Collective in Master Timeline

Furthermore, additional information like message bursts, markers and I/O events is
available. Table 4.1 shows the symbols and descriptions of these objects.

Clicking on message lines or arrows shows message details like sender process, re-
ceiver process, message length, message duration, and message tag in the Context
View display. Clicking on the outline of a collective operation shows details about the
whole collective operation, like the number of participants, the root, the overall start or
end time, and the overall amount of send or received bytes. Additionally, the individual
start and end time as well as the number of sent or received bytes for the selected
participant (by mouse click) are shown as well.

Search Functionality Both timeline charts also provides the possibility to search for
function and function group occurrences. In order to activate the search mode use the
context menu and select Find. . . . After activation an input field appears at the top of
the respective chart. A search string can be written in this field and all corresponding

36

4.1 TIMELINE CHARTS

Symbol Description

Message Bursts

Collective Bursts

Vampir depicts overlapping communication events like
messages and collective operations as so-called bursts.
Message bursts are depicted as circles and collective
bursts as rhombuses. The amount of aggregated events
is encoded in the visualization. The larger and darker the
shape, the more events are aggregated.
In this representation, it is not visible which processes send
or receive the aggregated messages or participated in the
collective operations of one burst. For message bursts, it
is however possible to click on a specific burst. Then, the
clicked burst is marked as a green circle and all sending or
receiving processes are marked with red circles.
Zooming into burst intervals eventually reveals the corre-
sponding single events.

Markers
multiple
single

To indicate particular points of interest during the run-
time of an application, like errors or warnings, markers can
be placed in a trace file. They are drawn as triangles which
are colored according to their types. To indicate that two
or more markers are located at the same pixel, a tricolored
triangle is drawn.

I/O Events Vampir highlights I/O operations if I/O performance data has
been recorded in the trace file. In general, I/O operations are
indicated by triangular icons (yellow by default). Clicking on
the icon provides details about the operation in the Context
View window. When selected, a second triangle to the right
indicates the completion of the given operation.
Icons can overlap when dealing with dense I/O activity (I/O
event burst). The size of an icon therefore relates to the num-
ber of represented I/O operations, i.e. the icon is big if many
operations are represented and small if only a few operations
take place. Individual I/O operations are clearly marked with
a dot in the center of the icon.
Zooming into I/O bursts eventually reveals the corresponding
individual I/O operations.

Table 4.1: Additional Information in the Master and Process Timeline

37

4 PERFORMANCE DATA VISUALIZATION

Figure 4.4: Search for MPI Bcast in the Master Timeline

Figure 4.5: Active overlay showing PAPI FP OPS in the Master Timeline

38

4.1 TIMELINE CHARTS

function and function group occurrences are highlighted in yellow. An example search
for the function MPI Bcast is depicted in Figure 4.4.

Performance Counter Data Overlay The Master Timeline also features an overlay
mode for performance counter data, Figure 4.5. In order to activate the overlay mode
use the context menu Options → Performance Data. When the overlay mode is active a
control window appears at the top of Master Timeline. It allows to select the displayed
counter data (metric). The counter data is displayed in a color coded fashion like in
the Performance Radar, Section 4.1.4. The color scale can be freely customized by
clicking on the wrench icon. The control window also provides an opacity control slider.
This slider allows to adjust the opacity of the overlay and thus makes the underlying
functions easily visible without the need to disable the overlay mode.

Numeric Extensions Regular or wildcard expressions have been designed for generic
text matching. The specification of numeric ranges is possible but cumbersome, which
is why the following extensions have been introduced.

Syntax

• [start..end:option] defines a numeric range from value start to value end.
The argument option (including the separating colon) is facultative and described
below. Please note that the arguments start and end can be left blank. Blanks
denote −∞ and ∞ respectively.

• [number1,number2,number3:option] defines an arbitrary set of numbers.

Options

The option parameter introduced above can be used to define:

• a parity for the given range or set. The characters e or o match even or odd
numbers respectively.

• a stride for the given range or set. The sequence sn matches every nth number in
the corresponding range or set. If no start value is given zero is used as reference
point.

It is possible to use options without a range or set specification, e. g. [:e] for all even
numbers.

39

4 PERFORMANCE DATA VISUALIZATION

Examples

The following examples are based on regular expressions. Use Regular Expressions
needs to be checked via the magnifier icon.

• Process [1..5] matches process 1 to 5

• Process [:o] matches odd processes

• Process [:s10]matches every tenth process. Zero is used as reference point.

• Process .*0{2} matches every hundredth process

• Process matches all process labels containing ’Process’

• ˆProcess 2$ matches exactly ’Process 2’. Labels like ’MPI Process 2’ or ’Pro-
cess 20’ will not be matched.

4.1.2 Summary Timelines

Summary Timeline charts divide the current zoom interval into equal-sized vertical
histograms and display a specific summary metric for each. This chart is useful for
studying changes in the behavior of the application over time or finding phases of
specific activities from a high-level perspective. Vampir provides summary timelines for
function activities 4.6, messages 4.7, and I/O events 4.8.

The context menu entry Set Step Size alters the width (represented duration) of the
histogram bars. This allows to adjust for finer-/coarser accumulation of values.

The Set Metric sub-menu of the context menu makes it possible to switch between the
available metrics depending on the chart:

• Function Summary Timeline Number of Invocations and Exclusive Time. The
metric Number of Hits relates to traces including sampling events. It tells how
often a function or function group was hit by the sampling during the given time
interval. The metric Number of Invocations is only available for instrumentation
events.

• Message Summary Timeline Number of Messages and Message Size

• I/O Summary Timeline Number of I/O Operations and I/O Transaction Size

The group base can be chosen via the menu entry Group By and sorting can be
selected via the context menu option Sort By.

For the Function Summary Timeline, the displayed colors represent corresponding
functions or function groups. The context menu entry Set Functions... specifies the
set of functions that is displayed in the chart. The context menu entry Options →
Group Functions aggregates functions and displays them as function groups.

40

4.1 TIMELINE CHARTS

Figure 4.6: Function Summary Timeline

For the Message and I/O Summary Timeline, the displayed colors depend on the se-
lected grouping and the coloring mode in the Appearance Settings (7.2).

Using the Process Filter, see Section 5.3, allows to restrict this chart to a freely se-
lectable set of processes. As a result, only the consumed time of these processes is
displayed for each function or function group. Instead of using the filter which affects
all other displays by hiding processes, it is possible to select a single process via Set
Process in the context menu. This does not have any effect on other charts.

4.1.3 Counter Data Timeline

Counters are values collected over time to count certain events like floating point op-
erations or cache misses. Counter values can be used to store not just hardware
performance counters but arbitrary sample values. There can be counters for different
statistical information as well, for instance counting the number of function calls or a
value in an iterative approximation of the final result. Counters are defined during the
instrumentation of the application and can be individually assigned to processes.

An example Counter Data Timeline chart is shown in Figure 4.9. The chart is re-
stricted to one counter at a time. It shows the selected counter for one measuring point

41

4 PERFORMANCE DATA VISUALIZATION

Figure 4.7: Message Summary Timeline

(e.g., process). Using multiple instances of the Counter Data Timeline, counters or
processes can be compared easily.

The displayed graph in the chart is constructed from actual measurements (data points).
Since display space is limited it is likely that there are more data points than display
pixels available. In that case multiple data points need to be displayed on one pixel
(width). Therefore the counter values are displayed in two graphs. A maximum line
(red) and an average line (yellow). When multiple data points need to be displayed
on one pixel width, the red line shows the data point with the highest value, and the
yellow line indicates the average of all data points lying on this pixel width. An optional
blue line shows the lowest value. When zooming into a smaller time range less data
points need to be displayed on the available pixel space. Eventually, when zooming
far enough only one data point needs to be display on one pixel. Then also the three
graphs will merge together. The actual measured data points can be displayed in the
chart by enabling them via the context menu under Options. . . .

The context menu entry Select Metric. . . opens the selection dialog depicted in Fig-
ure 4.10. This dialog allows to choose the displayed counter in the chart. Each counter
is defined by its metric and its measuring point. Note, depending on the measure-
ment not all metrics might be available on all measurement points. The two left buttons
in the dialog decide whether the counter should be selected by metric or by measur-
ing point first. In the case of Select by Metric there is also the option to Summarize
multiple measuring points available. This option allows to identify outliers by summa-

42

4.1 TIMELINE CHARTS

Figure 4.8: I/O Summary Timeline

rizing counters (e.g., PAPI FP OPS) over multiple measuring points (e.g., processes).
Hence, when this option is active multiple measuring points can be selected like in the
Process Filter (see Section 5.3 for further details). The counter for the selected metric
is then summarized over all selected measuring points. The displayed counter graphs
in the chart need then to be read as follows. The yellow average line in the middle
displays the average value (e.g., PAPI FP OPS) of all selected measuring points (e.g.,
processes) at a given time. The red maximum line shows the highest value that one
of the selected measuring points achieved at a given time. A click with the left mouse
button on any point in the chart reveals its details in the Context View display. Stated
are the minimum, maximum, and average values and the measurement points (e.g.,
processes) that achieved maximum and minimum values at the selected point in time.

The options dialog is depicted in Figure 4.11. It is accessible via the context menu
under Options. . . . It allows to enable and disable the display of the graph’s line, data
points, and filling. It is also possible to enable an average line showing the average
value of all data points in the visible area. Likewise, the chart’s caption and y-axis label
can turned on and off. The switch Show zero line disables the auto-scaling of the y-axis
for the lower bound and enforces a zero line in all situations. The option Adapt scale
to current value range automatically adjusts the y-axis minimum and maximum values
according to the min/max values of the current zoom level.

The creation of custom metrics is described in Section 4.1.4. Created custom metrics
become available in the Select Metric dialog.

43

4 PERFORMANCE DATA VISUALIZATION

Figure 4.9: Counter Data Timeline

4.1.4 Performance Radar

The Performance Radar chart, Figure 4.12, displays counter data and provides the
possibility to create custom metrics. In contrast to the Counter Data Timeline the Per-
formance Radar shows one counter for all processes at once. The values of the counter
are displayed in a color-coded fashion.

The displayed counter in the chart can be chosen via the context menu entry Set Metric.
Own created custom metrics are listed under this option as well.

The option Adjust Bar Height to allows to change the height of the displayed value bars
in the chart. This useful for traces with a large number of processes. Here the option
Adjust Bar Height to → Fit Chart Height tries to display all processes in the chart. This
provides an overview of the counter data across the entire application run.

Set Display Value allows to define whether minimum, maximum, or average values
should be shown. This setting comes into effect when multiple measured data points
need to be displayed on one pixel. If Maximum or Minimum is active, the data point with
the highest or lowest value is displayed, respectively. In case of Average the average
of all data points on the respective pixel width is displayed. This procedure is also
explained in section Counter Data Timeline 4.1.3.

The value range of the color scale can be easily adjusted with the left mouse button. To
adjust the color-coded value rage just drag the edges of the color scale to the desired

44

4.1 TIMELINE CHARTS

Figure 4.10: Select metric dialog

positions. Figure 4.13 depicts the Performance Radar chart shown in Figure 4.12 with
a smaller value range of 1 G - 3 G FLOPS. This allows to easily spot areas of high
or low performance in the trace file. The selected value range can also be dragged to
other positions in the color scale. A double-click with the left mouse button on the color
scale resets the selected value range.
The option Options → Color Scale. . . in the context menu of the chart allows to cus-
tomize the color scale to the own preferences.

Master Timeline Overlay Mode

Figure 4.14 shows an overview of the performance data overlay mode available in the
Master Timeline chart. The overlay is capable of displaying all metrics available in the
Performance Radar chart and the Counter Data Timeline chart. It is activated via the
chart’s context menu under Options → Performance Data. When the overlay mode
is active, a control window appears at the top of Master Timeline chart. It allows to
configure the overlay and to select the displayed performance data (metric).

The selected metric is shown in a color-coded fashion like in the Performance Radar
chart. Figure 4.15 depicts the Master Timeline chart (top) and the Performance Radar
chart (bottom), both displaying the same performance metric PAPI FP OPS (floating
point operations per second). As can be seen, the overlay mode provides the perfor-
mance data visualization capabilities of the Performance Radar for the Master Timeline.
To fully benefit from this combination the opacity slider of the overlay control window
should be used, see Figure 4.16. The slider allows to quickly manipulate the opacity of

45

4 PERFORMANCE DATA VISUALIZATION

Figure 4.11: Counter Timeline options dialog

the overlay and thus making underlying functions visible. This is particularly useful for
first pinpointing performance relevant areas and then directly analyzing the individual
identified functions in the Master Timeline.

The color scale of the performance data overlay is freely customizable. Clicking the
wrench icon in the overlay control window opens the color scale options dialog. The
color scale provides three modes: Default, Highlight, and Find. Additionally, the Cus-
tom mode allows to manually adapt the color scale to the own preferences.

46

4.1 TIMELINE CHARTS

Figure 4.12: Performance Radar

Figure 4.13: Adjusted value range in color scale

47

4 PERFORMANCE DATA VISUALIZATION

Figure 4.14: Master Timeline with active performance data overlay

Figure 4.15: Master Timeline (top chart) and Performance Radar (bottom chart) dis-
playing the same PAPI FP OPS counter

48

4.1 TIMELINE CHARTS

Figure 4.16: Image series showing different opacity settings for the performance data
overlay, going from zero opacity in the top image to full opacity in the
bottom image

49

4 PERFORMANCE DATA VISUALIZATION

Examples

This section illustrates the usage of the Performance Radar chart and the Master Time-
line overlay in a few examples. The trace file used for the examples shows a WRF
weather forecast code run. The timelines show the initialization in the beginning fol-
lowed by a number of compute iterations. Figure 4.16 depicts this trace file. The top
image shows the pure timelines of the Master Timeline chart, the bottom image shows
the values of the PAPI FP OPS counter superimposed on the timelines. Here, the red
areas indicate high computational activity and therefore mark the compute iterations.

High and Low FLOP Rate

Figure 4.17: Highlighted areas with a low FLOP rate

In order to analyze the FLOP rate, the overlay mode of the Master Timeline is config-
ured to show the performance counter PAPI FP OPS. To identify functions with a high
or low FLOP rate the value range of the color scale can be limited. This is done by
dragging the edges of the colored area of the scale to the desired minimum/maximum
values. That way only values inside the chosen range appear color-coded in the chart.
Outside values are visualized in gray.

Figure 4.17 and Figure 4.18 depict two examples. Functions with a low FLOP rate are
highlighted in Figure 4.17. The color scale is limited to a range between 100 M and

50

4.1 TIMELINE CHARTS

Figure 4.18: Highlighted areas with a high FLOP rate

1.6 G FLOPS. The minimum value is raised to 100 M in order to gray out non-computing
functions like MPI. In Figure 4.17 all areas with a low FLOP rate are highlighted in red.
In this example these areas represent functions in the beginning of each iteration.
Functions with a high FLOP rate are highlighted in Figure 4.18. Here the color scale
is set to highlight only areas with the highest FLOP rate. These areas are represented
by functions in the compute iterations.

51

4 PERFORMANCE DATA VISUALIZATION

Memory Allocation

Figure 4.19: Functions with 160 MB - 175 MB allocated memory

The performance data overlay can also be used to identify functions with a certain
amount of allocated memory. Figure 4.19 shows an example. Here functions that have
between 160 MB and 175 MB memory allocated are highlighted. The highlighted range
of allocated memory can be easily changed by adjusting the color scale value range.

4.1.5 Shared Resource Timeline

The Shared Resource Timeline, see Figure 4.20, groups timeline information by a
shared resource. The shared resource to be shown can be chosen in the context
menu item Set Shared Resource, top image in Figure 4.20.

Currently, the chart supports two types of shared resources:

• File I/O In this case the shared resource is files. They can be organized using a
hierarchical system tree or a flat file list view. The third mode exclusively shows
I/O events belonging to user-selected I/O handles. In this mode the events are
grouped by their initiating processes, bottom of Figure 4.20.

• Accelerator Devices In this case accelerator devices represent the shared re-
source. Devices are organized according to their position in the system tree.

52

4.1 TIMELINE CHARTS

Figure 4.20: The three different chart modes for the File I/O shared resource. From top
to bottom: I/O Tree, File Tree, and I/O Events of Selected Handles.

53

4 PERFORMANCE DATA VISUALIZATION

The File I/O mode provides an overview of all I/O activity of an application. This mode
shows timelines containing I/O operations accessing individual files or file handles.
For a better overview, individual timelines can be collapsed into summarized timelines
showing the aggregated I/O operations of all included sub-timelines.

For a more detailed analysis it is possible to focus the chart on I/O activities accessing
individual file handles. Therefore, select the file handles of interest by clicking their
labels. Hold the Ctrl key while clicking to add or remove labels to/from the selection.
Clicking one label and then pressing Shift while clicking on another label will select the
whole range between both labels. After selecting all labels of interest, choose the I/O
Events of ... entry from the Set Chart Mode submenu in the context menu, see the
bottom image in Figure 4.20. When no labels are selected, the menu entry can still
be clicked and will show a conventional dialog with check boxes for selecting handles,
Figure 4.21. After the selection is complete, the chart will exclusively show related
I/O events organized by their invoking processes. This allows a detailed analysis of
distributed access patterns to individual files.

Figure 4.21: Selection dialog shown when clicking the I/O Events of Selected Handles
entry in the Set Chart Mode context menu item.

The Accelerator Devices mode focuses on analysis of accelerator activities. The em-
ployed grouping collects streams and actives according to their accelerator device.
This facilitates easy visual analysis of the utilization of individual accelerator devices,
Figure 4.22.

54

4.1 TIMELINE CHARTS

Figure 4.22: The Shared Resource chart showing CUDA device activities in different
zoom levels.

55

4 PERFORMANCE DATA VISUALIZATION

4.2 Statistical Charts

4.2.1 Function Summary

The Function Summary chart, Figure 4.23, gives an overview of the accumulated time
consumption across all function groups and functions. For example every time a pro-
cess calls the MPI Send() function the elapsed time of that function is added to the
MPI function group time. The chart gives a condensed view of the execution of the
application. A comparison between the different function groups can be made and
dominant function groups can be distinguished easily.

Figure 4.23: Function Summary

It is possible to change the information displayed via the context menu entry Set Metric
that offers options like Average Exclusive Time, Number of Invocations, Accumulated
Inclusive Time, etc. The metric Number of Hits relates to traces including sampling
events. It tells how often a function or function group was hit by the sampling during the
given time interval. The metric Number of Invocations and metrics showing averages
are not available for sampling events.

Note: Inclusive means the amount of time spent in a function and all of its subroutines.
Exclusive means the amount of time spent in just this function.

The displayed colors represent corresponding functions or function groups. The con-
text menu entry Set Functions... specifies the set of functions that is displayed in the

56

4.2 STATISTICAL CHARTS

chart. The context menu entry Options → Group Functions aggregates functions and
displays them as function groups. Shown functions or function groups can be sorted
by name or by value via the context menu option Sort By.

It is possible to hide functions and function groups from the displayed information with
the context menu entry Filter. In order to mark the function or function group to be
filtered just click on the associated label or color representation in the chart. Using the
Process Filter (see Section 5.3) allows you to restrict this chart to a set of processes.
As a result, only the consumed time of these processes is displayed for each function
group or function. Instead of using the filter which affects all other displays by hiding
processes, it is possible to select a single process via Set Process in the context menu
of the Function Summary. This does not have any effect on other charts.

The Function Summary can be shown as Histogram (a bar chart, like in timeline charts)
or as Pie Chart. To switch between these representations use the Set Chart Mode entry
of the context menu.

4.2.2 Process Summary

The Process Summary, depicted in Figure 4.24, is similar to the Function Summary
but shows the information for every process independently. This is useful for analyzing
the balance between processes to reveal bottlenecks. For instance finding that one
process spends a significantly high time performing the calculations could indicate an
unbalanced distribution of work and therefore can slow down the whole application.

The chart calculates statistics based on Number of Invocations (instrumentation events
only), Number of Hits (sampling events only), Accumulated Inclusive Time, or Accumu-
lated Exclusive Time. To change between these three modes use the context menu
entry Set Metric.

The displayed colors represent corresponding functions or function groups. The con-
text menu entry Set Functions... specifies the set of functions that is displayed in the
chart. The context menu entry Options → Group Functions aggregates functions and
displays them as function groups.

The number of clustered profile bars is based on the chart height by default. You
can also disable the clustering or set a fixed number of clusters via the context menu
entry Clustering by selecting the corresponding value in the spin box. Located left of
the clustered profile bars is a graphical overview indicating the processes associated
to the cluster. Moving the cursor over the blue areas in the overview opens a tooltip
stating the respective process name.

It is possible to profile only one function or function group or to hide arbitrary functions
and function groups from the displayed information. To mark the function or function
group to be profiled or filtered just click on the associated color representation in the

57

4 PERFORMANCE DATA VISUALIZATION

Figure 4.24: Process Summary

chart. The context menu entries Profile of Selected Function/(Group) and Filter Se-
lected Function/(Group) will then provide the possibility to profile or filter the selected
function or function group. Using the Process Filter (see Section 5.3) allows you to
restrict this view to a set of processes.

The context menu entry Sort by allows you to order function profiles by Number of
Clusters. This option is only available if the chart is currently showing clusters. Other-
wise function profiles are sorted automatically by process. While profiling one function
the menu entry Sort by Value allows to order functions by their execution time.

The Process Summary can be shown as Histogram or as Kiviat Chart. To switch
between these representations use the Set Chart Mode entry of the context menu.

4.2.3 Message Summary

The Message Summary is a statistical chart showing an overview of all messages
grouped by certain characteristics, Figure 4.25.

All values are represented in a bar chart fashion. The number next to each bar is
the group base while the number inside a bar depicts the values depending on the
chosen metric. Therefore, the Set Metric sub-menu of the context menu can be used

58

4.2 STATISTICAL CHARTS

Figure 4.25: Message Summary Chart with metric set to Message Transfer Rate show-
ing the average transfer rate (A), and the minimal/maximal transfer rate (B)

to switch between Aggregated Message Volume, Message Size, Number of Messages,
and Message Transfer Rate.

The group base can be selected via the context menu entry Group By. Possible options
are Message Size, Message Tag, Communicator, and Source Code Location.

Note: There will be one bar for every occurring group. However, if the metric is set
to Message Transfer Rate, the minimal and the maximal transfer rate is given in an
additional small bar beneath the main bar showing the average transfer rate. The
additional bar starts at the minimal rate and ends at the maximal rate, see Figure 4.25.

In order to filter out messages click on the associated label or color representation in
the chart and then choose Filter from the context menu.

4.2.4 Communication Matrix View

The Communication Matrix View is another way of analyzing communication imbal-
ances. It shows information about messages sent between processes.

The chart, as shown in Figure 4.26, is figured as a table. Its rows represent the sending
processes whereas the columns represent the receivers. The color legend on the right

59

4 PERFORMANCE DATA VISUALIZATION

Figure 4.26: Communication Matrix View

indicates the displayed values. It adapts automatically to the currently shown value
range.

It is possible to change the type of displayed values. Different metrics like the aver-
age duration of messages passed from sender to recipient or minimum and maximum
bandwidth are offered. To change the type of value that is displayed use the context
menu option Set Metric.

Use the Process Filter to define which processes/groups should be displayed. (see
Section 5.3).

Like in the Master Timeline the context menu entries Expand All and Collapse All hide
and expose subordinated information of processes, e.g., threads or CUDA streams.

The context menu functionality Group Peers by System Tree aggregates matrix entries
according to their position in the system tree. Please note that the system tree is only
available in otf2 traces. Using this functionality communication between nodes or on
the machine level can be analyzed.

Note: A high duration is not automatically caused by a slow communication path be-
tween two processes, but can also be due to the fact that the time between starting
transmission and successful reception of the message can be increased by a recipient
that delays reception for some reason. This will cause the duration to increase (by this

60

4.2 STATISTICAL CHARTS

delay) and the message rate, which is the size of the message divided by the duration,
to decrease accordingly.

4.2.5 Collective Operation Summary

The Collective Operation Summary chart, Figure 4.27, provides statistical information
about different types of collective operations. Various metrics are available, which are
grouped by operation type or communicator. Details about metrics are stated below.
All displayed values always correspond to the selected zooming interval in Vampir.

Figure 4.27: Collective Operation Summary chart showing the aggregated duration of
various collective operation types.

As usual in Vampir, the chart can be opened from the main menu or by clicking its icon
in the toolbar.

Values are represented in a histogram like fashion, see Figure 4.27. The text labels at
the right indicate the grouping base while the numbers inside the bars represent the
metric value.

Available metrics of the chart are:

• Number of Collective Operations: The number of all collective operations that
are active inside the specified time interval. To be included in the count, it suffices
that at least one location of a collective operation is active in the time interval.

• Aggregated Duration: The aggregated time that all participants of the selected
collective operations spend executing the respective operation.

• Aggregated Bytes Sent: The aggregated number of bytes that are sent by all
participants of the selected collective operations.

61

4 PERFORMANCE DATA VISUALIZATION

• Aggregated Bytes Received: The aggregated number of bytes that are received
by all participants of the selected collective operations.

• Average Duration: The time spent on average by an collective operation. The
shown value represents the total time aggregated over all participants.

• Average Bytes Sent: The number of bytes that a collective operation sends on
average. The number of bytes is aggregated over all participants.

• Average Bytes Received: The number of bytes that a collective operation re-
ceives on average. The number of bytes is aggregated over all participants.

The Collective Operation Summary chart always includes an collective operation com-
pletely if at least some part of it occurs inside the selected zooming interval. This
means, that even if a collective operation is only partly inside a specified time interval
(e.g. only the beginning of the operation is visible in a timeline or some participants
may even start executing at a later time), all metrics like the aggregated duration or the
amount of bytes sent/received nevertheless report the whole operation (as if it would
be completely visible). Put in other words, an collective operation is either included
completely in the statistics or not at all.

The values for durations or bytes are always summarized over all participants of an col-
lective operation. Possible active filtering options of individual locations (e.g. processes
or threads) are ignored. Additionally, reported values for sent and received bytes as-
sume that data is communicated directly pair-wise between sender and receiver. This
corresponds to the programming or API view of collective operations. Therefore, Vam-
pir does not report the real amount of data that each participant transfers (over the
network). That number is implementation dependent (e.g. can differ between MPI
implementations) and might be different from shown values.

Chart customizations are controlled in the charts context menu, accessible via a right
mouse button click. The following options are provided.

The Set Metric sub-menu allows to switch between the available metrics.

The group base can be chosen via the menu entry Group By. Possible options are
grouping by Communicator or Operation.

Displayed statistics can be focused on different kinds of collective operations by using
the menu entries Set Paradigms and Set Collective Operations. The first option allows
to include/exclude collective operations of different programming paradigms, like MPI,
OpenMP or Pthreads. The second option allows to include/exclude certain types of
collective operations, like Scatter/Gather or Broadcast operations.

In order to filter out specific histogram bars, it is possible to first click on the desired
bar (i.e., select this bar) and then choose Filter Selected Operation or Filter Selected
Communicator from the context menu.

62

4.2 STATISTICAL CHARTS

4.2.6 I/O Summary

The I/O Summary, depicted in Figure 4.28, is a statistical chart giving an overview of
the input-/output operations recorded in the trace file.

Figure 4.28: I/O Summary

All values are represented in a histogram like fashion. The text label indicates the group
base while the number inside each bar represents the value of the chosen metric.
The Set Metric sub-menu of the context menu is used to switch between the available
metrics Number of I/O Operations, Aggregated I/O Transaction Size, Aggregated I/O
Transaction Time, and values of I/O Transaction Size, I/O Transaction Time, or I/O
Bandwidth with respect to their selected value type. Therefore, one has the opportunity
to switch between the value types Minimum, Average, Maximum, and Average & Range
via the context menu entry Set Display Value.

Note: There will be one bar for every occurring metric. Furthermore, the value type
Average & Range gives a quick and convenient overview and shows minimum, max-
imum, and average values at once. The minimum and maximum values are shown
in an additional, smaller bar beneath the main bar indicating the average value. The
additional bar starts at the minimum and ends at the maximum value of the metric, see
Figure 4.25.

The I/O operations can be grouped by the characteristics Transaction Size, File Name,
Operation Type, Handle, and Mount Source or Mount Point. The group base can be
changed via the context menu entry Group I/O Operations by.

In order to select the I/O paradigm and the operation types that should be considered
for the statistic calculation use the Set I/O Paradigm and Set I/O Operations sub-menus
of the context menu. Available options are Read, Sync, Write, All Data Operations, and
Apply Global I/O Operations Filter. The latter includes all selected operation types from
the I/O Events filter dialog, see Chapter 5.

63

4 PERFORMANCE DATA VISUALIZATION

4.2.7 Call Tree

The Call Tree, depicted in Figure 4.29, illustrates the invocation hierarchy of all mon-
itored functions in a tree representation. The display reveals information about the
number of invocations of a given function, the time spent in the different calls and the
caller-callee relationship.

Figure 4.29: Call Tree

The entries of the Call Tree can be sorted in various ways. Simply click on one header
of the tree representation to use its characteristic to re-sort the Call Tree. Please
note that not all available characteristics are enabled by default. To add or remove
characteristics use the Set Metric sub-menu of the context menu.

To leaf through the different function calls, it is possible to fold and unfold the levels of
the tree. This can be achieved by double clicking a level, by using the fold level buttons
next to the function name, or by using the provided options in the context menu.

Functions can be called by many different caller functions, what is hardly obvious in the
tree representation. Therefore, a relation view shows all callers and callees of the cur-
rently selected function in two separated lists, shown in the lower area in Figure 4.29.

In order to find a certain function by its name, Vampir provides a search bar at the
bottom of the chart. The entered keyword has to be confirmed by pressing the Return
key. The Previous and Next buttons can be used to flip through the results.

64

4.2 STATISTICAL CHARTS

4.2.8 System Tree

The System Tree chart depicted in Figure 4.30 provides a tree representation of the
system hierarchy stored in an OTF2 trace file. The system hierarchy of the respective
HPC machine is recorded by Score-P during the application run.

Along with the system hierarchy, this chart provides several summarized metrics. The
metrics available in this chart are similar to the metrics provided in the Performance
Radar and Counter Data Timeline charts.

Figure 4.30: System Tree

Summarized metrics are shown next to their respective system hierarchy level. Use
the Set Metric sub-menu of the context menu to change the displayed metric. The Set
Display Value sub-menu allows to change the statistical value of the displayed metric.
Supported statistical values are: Minimum, Average, and Maximum of the summarized
values. Care has to be taken when interpreting the average of higher hierarchy levels
like on the node level because it is calculated as the average over the average of all
locations belonging to it. E.g., in the above example of the Message Transfer Times,
this is generally different from an average over all messages processed on this node.

For easier comparison, all values are visualized in a color-coded style. The colorization
in general can be changed by opening the Color Scale... options in the Options sub-
menu of the context menu. The colored range can also be adjusted by drag-and-
dropping the color gradient borders to the desired subrange.

65

4 PERFORMANCE DATA VISUALIZATION

It is possible to fold and unfold individual levels of the tree in order to leaf through
the hierarchy levels. Folding can be done by clicking the fold level buttons next to the
level description, or by using the provided options in the context menu. This allows
to compare values between entries of a specific level. For instance, the system tree
in Figure 4.30 compares the maximum Message Transfer Times between MPI ranks.
In this example, messages sent from MPI Rank 1 need only about one third of the
maximum transfer time on any other rank.

GPU Idle Statistics The system tree can also display aggregated Accelerator Device
Idle Times and Accelerator Device Idle Percentage for physical graphics cards. These
two metrics are available from the Set Metrics sub-menu in the context menu. In con-
trast to the averages of higher levels, as explained above, these metrics will be exact
even if there are multiple locations using the same graphics card. For these two met-
rics, the Minimum, Average, and Maximum values are not derived from the displayed
values of locations belonging to one physical card. Instead, the exact calculation of idle
times involves an initial step that explicitly merges all events executed on a graphics
card.

The accelerator idle metrics can only be displayed in the Hardware Hierarchy, which
in addition to Software Hierarchy can also be changed in the Set Tree Hierarchy sub-
menu of the context menu. Figure 4.31 shows an example GPU trace to demonstrate
the Accelerator Device Idle Percentages metric. When looking on the left side in the
Shared Resource Timeline, the first impression would be that there is almost no idle
time because the timeline is almost completely filled with blue states indicating CUDA
kernels for this particular example. However, the idle percentages in the system tree
paint the exact opposite image. Most of the time the devices are idling. When zooming
to shorter time ranges, it would turn out that those CUDA kernels are very frequent but
only very short with large pauses between them, see Figure 4.32.

The Master Timeline and Shared Resource Timeline charts will always color a pixel if
there is an unfiltered function inside the time interval corresponding to that pixel even
if the duration of that function is negligibly short compared to the total pixel interval
length. This can lead to the observed distortion between the calculated idle time and
the one seemingly visible from the zoomed out timeline.

66

4.2 STATISTICAL CHARTS

Figure 4.31: System Tree and Shared Resource Timeline to demonstrate the Acceler-
ator Device Idle Percentage metric

Figure 4.32: System Tree and Shared Resource Timeline showing a zoomed range to
demonstrate the Accelerator Device Idle Percentage metric

67

4 PERFORMANCE DATA VISUALIZATION

4.3 Informational Charts

4.3.1 Function Legend

The Function Legend lists all visible function groups of the loaded trace file along with
their corresponding color.

Figure 4.33: The Function Legend is shown on the left side. The corresponding dialog
for changing function colors is shown in the middle.

If colors of functions are changed, they appear in a tree like fashion under their respec-
tive function group as well, see Figure 4.33. Clicking on a color box opens a color input
dialog, which allows to change the color of the respective function or function group.

4.3.2 Marker View

The Marker View, Figure 4.34, lists all marker events included in the trace file.

The display organizes the marker events based on their respective groups and types
in a tree like fashion. Additional information like the time of occurrence or descriptions
are provided for each marker.

68

4.3 INFORMATIONAL CHARTS

Figure 4.34: A chosen marker (A) and its representation in the Marker View (B)

By clicking on a marker event in the Marker View this event becomes selected in the
timeline displays. If this marker is located outside the visible area the zoom jumps to
this event automatically. It is possible to select marker events by their type as well.
Then all events belonging to that type are selected in the Master Timeline and the
Process Timeline. By holding the Ctrl or Shift key pressed multiple marker events can
be selected. If exactly two marker events are selected the zoom is set automatically to
the occurrence time of the markers.

4.3.3 Context View

As implied by its name, the Context View provides detailed information of a selected
object additional to its graphical representation.

An object, e.g., a function, function group, message, or message burst can be selected
directly in a chart by clicking its graphical representation. For different types of objects
different context information is provided in the Context View. For example the object
specific information for functions includes properties like Interval Begin, Interval End,
and Duration, shown in Figure 4.35. Objects may provide additional information for
some items. In that case such items are displayed as links. A click (double-click on
macOS systems) on the link opens a new tab containing the additional information.

69

4 PERFORMANCE DATA VISUALIZATION

Figure 4.35: Context View, showing context information (B) of a selected function (A)

The Context View may contain several tabs. A new empty tab can be added by clicking
the +-symbol on the right hand side. Information of new selected objects are always
displayed in the currently active tab.

The Context View offers a mode for the comparison of information between tabs. The
=-button on the left hand side allows to choose two objects for comparison. It is pos-
sible to compare different objects from different charts. This might be useful in some
analysis cases. The comparison shows a list of common properties along with the cor-
responding values. Differences are displayed as well. The first line always indicates
the names of the respective charts, see Figure 4.36.

70

4.3 INFORMATIONAL CHARTS

Figure 4.36: Comparison between Context Information

71

4 PERFORMANCE DATA VISUALIZATION

4.4 Customizable Performance Metrics

Vampir is shipped with a set of predefined customizable metrics that reflect known
sources for performance issues and can serve as starting point for application specific
customizations. Figure 4.37 shows the list of custom metrics that are predefined in
Vampir. The list is accessible via the context menu entry Customize Metrics. . . in the
Performance Radar or the Counter Data Timeline chart.

Figure 4.37: List of predefined customizable performance metrics

The following time dependent metrics are provided:

• FLOPS in User Defined Function: Floating point performance for a given function,
which can be set by the user (see Section 4.4.1)

• I/O Bandwidth: Aggregated file I/O bandwidth (requires that I/O events have been
recorded)

• I/O Volume in Transit: Aggregated number of bytes in transit to and from the I/O
system

72

4.4 CUSTOMIZABLE PERFORMANCE METRICS

• MPI Latencies: Duration of individual MPI calls

• Message Data Rate: Bytes per second exchanged with message passing direc-
tives

• Message Transfer Times: Latencies of individual message passing directives

• Message Volume in Transit: Aggregated number of bytes in transit via messages

• Simultaneous I/O Operations: Number of interleaved I/O directives

• Simultaneous Messages: Number of interleaved message passing directives

• Time Spent in MPI Wait: Times spent in MPI Wait routines

4.4.1 Metric Editor

The Custom Metrics Editor allows to define derived metrics based on existing coun-
ters and functions. This is particularly useful as the performance data overlay of the
Master Timeline, Section 4.1.4, is capable of displaying such custom metrics as well.
The editor is accessible via the list of customizable performance metrics explained in
the previous section by clicking on the Edit button. Figure 4.38 shows an example con-
struction of a custom metric Wait Time. This metric is an addition of the time spent in
the functions MPI Irecv and MPI Wait. Custom metrics are build from input metrics
that are linked together using a set of available operations. In the editor the context
menu, accessible via the right mouse button, allows to add new input metrics and op-
erations. All created custom metrics become available in the Set Metric selections
of the Performance Radar and Counter Data Timeline charts. They are available as
well in the overlay mode of the Master Timeline. Custom metrics can be exported and
imported in order to use them in multiple trace files.

73

4 PERFORMANCE DATA VISUALIZATION

Figure 4.38: Custom metrics editor showing the construction of a custom Wait Time
metric; The metric is defined by the addition of the duration of MPI Irecv
and MPI Wait functions

74

4.4 CUSTOMIZABLE PERFORMANCE METRICS

4.4.2 Examples

MPI Wait Duration

Figure 4.39: Construction of a custom metric showing the MPI Wait duration

In Vampir it is also possible to identify long running functions. In this example long
running invocations of the function MPI Wait are highlighted.

First step is to construct a custom metric showing the MPI Wait duration time. The
custom metric editor is described in more detail in Section 4.4. The constructed custom
metric is depicted in Figure 4.39.

Then the performance data overlay is used to show the own metric in the Master Time-
line, Figure 4.40. The color scale is configured to show only MPI Wait invocations
with a high duration. After identification of the areas with the highest duration (deep
red), zooming into such an area will eventually reveal the respective MPI Wait invoca-
tions. Using the opacity slider, Figure 4.41, the individual function occurrences become
visible in the Master Timeline.

75

4 PERFORMANCE DATA VISUALIZATION

Figure 4.40: MPI Wait invocations with longest duration

Figure 4.41: Using the opacity slider to reveal MPI Wait invocations in the timeline
together with the superimposed, color-coded duration

76

4.4 CUSTOMIZABLE PERFORMANCE METRICS

FLOPS of SOLVE EM

Figure 4.42: Custom metric showing FLOPS only for function SOLVE EM

Vampir also allows to search for invocations of individual functions below or above a
certain threshold. In this example invocations of the function SOLVE EM with a FLOP
rate above 150 M are searched.

Therefore the first step is to construct a custom metric showing the FLOP rate only for
the function SOLVE EM. The process of constructing a custom metric is described in
more detail in Section 4.4. The constructed custom metric is depicted in Figure 4.42.

Figure 4.43 shows the constructed metric in the overlay. The color scale is set to
highlight only functions above 150 M FLOPS. When zooming into an area of interest
the opacity slider can be used to reveal individual function invocations in the timeline,
Figure 4.44.

77

4 PERFORMANCE DATA VISUALIZATION

Figure 4.43: SOLVE EM invocations with highest FLOP rate

Figure 4.44: Using the opacity slider to investigate individual invocations of SOLVE EM

78

5 Information Filtering and Reduction

Due to the large amount of information that can be stored in trace files, it is usually nec-
essary to reduce the displayed information according to some filter criteria. In Vampir,
there are different ways of filtering. It is possible to limit the displayed information to a
certain choice of processes or to specific types of communication events, e.g., to cer-
tain types of messages or collective operations. Deselecting an item in a filter means
that this item is fully masked. In Vampir, filters are global. Therefore, masked items will
no longer show up in any chart. Filtering not only affects all performance charts, but
also the Zoom Toolbar. All filter can be accessed via the Filter entry in the main menu.

All available filter and their respective filter criteria are summarized in Table 5.1.

Filtered Object Filter Criteria

Processes Process Name
Communicator

Messages Message Communicator
Message Tag
Message Type

Functions Function Name
Call Level
Call Path
Cycle Number
Duration
Number of Invocations
Number of Invocations per Process

Collective Operations Communicator
Collective Operation

I/O Events Attribute
File Handle
File Name
Operation Flag
Operation Type
Paradigm

Table 5.1: Filtering options in Vampir

79

5 INFORMATION FILTERING AND REDUCTION

5.1 General Filter Dialog Design

Vampir provides for each object in Table 5.1 an own specific filter dialog. In general,
all filter dialogs work similarly. For each object to be filtered, multiple different filter rule
sets can be created and stored. Each rule set can consist of multiple rules or filter
criteria as shown in Table 5.1. In order for an object to be filtered, either all or any of
the rules belonging to the active filter rule set have to be matched.

The following will demonstrate the general workings of a filter dialog using the function
filter as example. Initially, a list of available filter rule sets is depicted as can be seen in
Figure 5.1. By default, the list only shows a None entry, which effectively disables filter-

Figure 5.1: Function filter dialog containing a list of rule sets

ing. If a trace containing older filter settings is loaded, then those filters are attempted
to be converted to the new settings and will be visible as an Converted Legacy Filter
entry. Only one filter can be active at a given time. To select the active filter use the
radio buttons on the left hand side of the list.

Clicking on the Add button creates a new filter set of rules and shows the input mask
depicted in Figure 5.2. Similarly, this dialog will be shown when clicking on the Edit
button while an existing filter is selected.

Figure 5.2 shows an example filter edit dialog for a function filter. The filter dialogs are
build on the concept of filter rules. The user can define a set of several individual rules.
The rules are explained in more detail in the following sections.

The header of the dialog defines how the specified rules are evaluated. One possibility
is to build up the filter in a way that combines the filter rules with an and relation. To
choose this mode all must be selected in the combo box in the header of the dialog.

80

5.2 FILTER RULES

This mode can also be selected by pressing the & key. This means that all rules must
evaluate to true in order to produce the filter output.

The other option is to combine the rules with an or relation. To choose this mode any
must be selected in the combo box in the header of the dialog. This mode can also be
selected by pressing the | key. In this case, at least one rule must evaluate to true in
order to produce the filter output. The examples in Section 5.5 illustrate both modes.

Figure 5.2: Function filter dialog showing one rule set

The input field on the top right with the label Filter Name allows to assign an individual
name to the created filter rule set. The name will be shown in the filter dialog list, see
Figure 5.1.

5.2 Filter Rules

Each individual rule of a rule set, as shown in Figure 5.2, consists of one row and
follows the same general scheme. The leftmost drop-down list in each row specifies
the criterion to be checked. The available criteria depends on what kind of filter is being
edited, see Table 5.1. Each rule’s criterion has various comparison options which are
chosen with the second drop-down list. Right of these two drop-down lists are input
fields for the arguments of the comparison. The available comparison options and input
fields depend on the criteria to be checked and are listed below.

String Comparisons

String criteria such as the process name, communicator name, function name, func-
tion call path, and the file name have one input field where the user can specify a

81

5 INFORMATION FILTERING AND REDUCTION

string. This input string is then used for the various case-insensitive string matching
operations:

• Contains: The given input string must occur, e.g., in the function name.

• Does not contain: The given input string must not occur, e.g., in the function
name.

• Is equal to: The given input string must be the same as, e.g., the function name.

• Is not equal to: The given input string must not be the same as, e.g., the function
name.

• Begins with: For instance the function name must start with the given input string.

• Ends with: For instance the function name must end with the given input string.

Number Comparisons

When numbers are to be compared, such as function duration, function call level, or
function invocations, then an input field to specify numbers will appear. There are two
comparisons available for numbers:

• Is greater than: For instance all functions whose duration time is longer than the
specified time are shown. Or, all functions whose number of invocations is greater
than the specified number are shown.

• Is less than: For instance all functions whose duration time is shorter than the
specified time are shown.

List Comparison

If the criterion to filter has only a finite set of entries, then the rule option to check
against user-checkable lists will be available. For example, the processes, file handles,
file names, collectives, and communicators can be chosen from lists. By offering two
list options, the custom user-input list can be easily inverted:

• Is in list: All, for example, file handles, which are checked in the handle list will be
shown.

• Is not in list: Only, for example, communicators, which are not checked in the list,
will be shown.

If the Is in list or Is not in list rule check is chosen, then an Edit List... button appears.
Clicking this buttong opens a new dialog for selecting, for example, functions from a list
as shown in Figure 5.3 to the left.

The list selection dialog behaves the same across all filter dialogs. The check box
Include/Exclude All either selects or deselects every item. Specific items can be se-
lected/deselected by clicking into the check box next to it.

82

5.3 PROCESS FILTER SPECIFICS

Figure 5.3: Function selection dialog for editing the list of functions used for the Func-
tion Name Is not in list rule as shown in Figure 5.2

Furthermore, it is possible to select/deselect multiple items at once. For this, mark the
desired entries by clicking their names while holding either the Shift or the Ctrl key. By
holding the Shift key every item between the two clicked items will be marked. Holding
the Ctrl key, on the other hand, enables you to add or remove specific items from/to
the marked ones. Clicking into the check box of one of the marked entries will cause
selection/deselection for all of them.

The input field labeled with Search can be used to find items in the above view easier.
For instance, when entering all only functions containing the substring all will be shown,
as depicted in Figure 5.3 to the right.

Expression Comparisons

Some criteria, such as Message Tags, have special expression matching options. The
message tags can be matched with a combination of range expressions separated by
a semicolon, which are evaluated from left to right. For example the input string 3 will
match messages which have the tag 3 associated to it and 1-5; !2-4; 3; 9-10
will match the messages which contain one of the tags 1, 3, 5, 9, 10.

5.3 Process Filter Specifics

The filtering of processes is controlled via the Process Filter dialog, Figure 5.4, which
is accessible via the main menu under Filter → Processes. . . . This dialog allows to
manage multiple user-created process filters. To globally apply a created filter to the

83

5 INFORMATION FILTERING AND REDUCTION

entire trace view, activate the respective filter using the radio buttons on the left side
of the list. Some performance charts also support to apply created filters locally to the
individual chart only. In such case, the process filter can be activated using the context
menu entry Set Process of the respective chart.

Figure 5.4: An example process filter rule set

Process lists can be grouped by the Hierarchy, Process Groups, and Representative
Processes. The latter is only available for traces supporting and using representative
processes. For example, OTF2 does not support this functionality. These grouping
methods are only a matter of presentation and switching between them will keep the
contents of the user-selected list.

Groupings Methods

• Hierarchy: In this representation, the processes are shown with their respective
parent-child relationship just as the Master Timeline shows by default.

• Process Groups: With this grouping, the processes are shown as children in the
system tree if available.

• Representative Processes: In this representation, the top-level shows all repre-
sentative processes, i.e., processes which contain actual data. The next level
shows the processes which are substituted, i.e., which have no data themselves
and instead show identical data of their representative parent process.

5.4 Function Filter Specifics

The filtering of functions is controlled via the Function Filter dialog, Figure 5.1, which
is accessible via the main menu under Filter → Functions. . . .

84

5.4 FUNCTION FILTER SPECIFICS

Functions can be filtered by their names, duration, number of invocations, call path,
and call level. The duration of a function refers to the time spent in this function from
the entry to the exit of the function. The number of invocations of a function can also
be used as filter rule. This criteria refers to how often a function is executed in an
application.

The Number of Invocations per Process shows functions based on their individual num-
ber of invocations per process. Hence, if the number of invocations of a function varies
over different processes, this function might be shown for some processes and filtered
for others.

The Call Path filter provides a string input field for a pattern. Depending on the options,
all functions and their related events, which satisfy a substring match against the given
pattern, are shown. This rule criterion provides two opposing options:

• Contains: The call path must contain a function where the given pattern must
occur in the function‘s name. This specifically means that functions that lead to
the matched function won’t be shown anymore. The matched function itself along
with its possibly called sub-functions is still shown. All other call paths that do not
contain a matched function are filtered out as well and won’t be shown.

• Does not contain: The call path must not contain a function where the given
pattern occurs in the function‘s name. This specifically means that only functions
that lead to the matched function will be shown, excluding the matched function
itself as well as its possibly called sub-functions. Call paths that do not contain a
matched function are still shown and remain unaffected by the filter.

The next section illustrates the use of the function filter with a few examples.

85

5 INFORMATION FILTERING AND REDUCTION

5.5 Filter Examples

This section explains the usage of the function filter with a few examples. This en-
ables the user to quickly understand the basic principles of filtering in Vampir. It also
illustrates a part of the available filter options provided by Vampir.

Unfiltered Trace File

This section introduces the example trace file in an unfiltered state. The timelines show
a part of the initialization of the WRF weather forecast code. The red color corresponds
to communication (MPI), whereas the purple areas represent some input functions of
the weather model.

Figure 5.5: Master Timeline and Process Timeline without filtering

86

5.5 FILTER EXAMPLES

Showing only MPI Functions

In this example only functions that contain the string mpi (not case sensitive) some-
where in their name are shown. Since only MPI functions start with MPI in their name
this filter setting shows all MPI functions and filters the others.

Figure 5.6: Showing only MPI

87

5 INFORMATION FILTERING AND REDUCTION

Showing only Functions with at least 250 ms Duration

This example demonstrates the filtering of functions by their duration. Here only long
function occurrences with a minimum duration time of 250 ms are shown. All other
functions are filtered.

Figure 5.7: Showing only functions with more than 250 ms duration

88

5.5 FILTER EXAMPLES

Combining Function Name and Duration Rules

This example combines the two previous rules. First the any relation is used. Thus,
the filter shows all functions that have at least 250 ms duration time and additionally
also all MPI functions.

Figure 5.8: Combining rules using any

89

5 INFORMATION FILTERING AND REDUCTION

The second example illustrates the usage of the all relation. Here all shown functions
have to satisfy both rules. Therefore the filter shows only MPI functions that have a
duration time of more than 250 ms.

Figure 5.9: Combining rules using all

90

5.5 FILTER EXAMPLES

Building Ranges with Number of Invocation Rules

The combination of rules also allows for the filtering of functions in a specified criteria
range. The following example filter setup shows all functions whose number of invoca-
tions lie inside the range between 2000 and 15000.

Figure 5.10: Show functions inside a specified range

91

5 INFORMATION FILTERING AND REDUCTION

This example demonstrates the opposite behavior of the previous example. Here all
functions whose number of invocations lie outside the range between 2000 and 15000
are shown, i.e., functions with less than 2000 invocations and functions with more than
15000 invocations.

Figure 5.11: Show functions outside a specified range

92

5.5 FILTER EXAMPLES

Call Path contains WRF INPUTIN

In this example only functions that are called, directly or indirectly, by WRF INPUTIN are
shown. As a consequence all call paths start with WRF INPUTIN. All other functions
are filtered.

Figure 5.12: Call path filter which contains WRF INPUTIN

93

5 INFORMATION FILTERING AND REDUCTION

Call Path does not contain WRF INPUTIN

This example demonstrates the opposite behavior of the previous example. In call
paths that contain the function WRF INPUTIN, only functions that lead to WRF INPUTIN
are shown. The function WRF INPUTIN itself and their, directly or indirectly, called
sub-functions are filtered. Other call paths remain unaffected by the filter and are still
shown.

Figure 5.13: Call path filter which does not contain WRF INPUTIN

94

5.5 FILTER EXAMPLES

Showing only Functions until a certain Call Level

This example demonstrates the filtering of functions by their call level. Here only func-
tions with an enter event less than call level five are shown. All other functions are
filtered.

Figure 5.14: Showing only functions with a call level less than five

95

6 Comparison of Trace Files

In Vampir the comparison of trace files seamlessly integrates with the functionality
explained in the previous chapters of this document. The user can benefit from already
gained experiences. For the comparison of performance characteristics all common
charts are provided. Additionally, in order to effectively compare multiple trace files,
their zoom is coupled and synchronized. For the comparison of areas of interest the
displayed trace regions are freely shiftable in time. This allows for arbitrary alignments
of the trace files, and thus, enables comparison of user selected areas in the trace
data.

Figure 6.1: Comparison View

The Comparison View window, depicted in Figure 6.1, provides all comparison fea-
tures. This chapter introduces its usage with the help of screenshots. For this purpose
the comparison of three trace files is demonstrated step by step. The example trace
files show one test application performing ten iterations of simple calculations. Each
trace, respectively, represents the run of this application on a different machine.

96

6.1 STARTING AND SAVING A COMPARISON SESSION

6.1 Starting and Saving a Comparison Session

Figure 6.2: Vampir start window

The fist step in order to compare trace files in Vampir is to start a comparison session.
A comparison session is setup using the Comparison Session Manager. This dialog is
accessible via the main menu entry File → New Comparison Session. . . or by clicking
the Open Other. . . button in the Vampir start window, Figure 6.2. The Comparison
Session Manager, depicted in Figure 6.3, holds a list of trace files to be compared in
the current session. The list is editable at any time using the plus and minus buttons.
Clicking the OK button will load the respective trace files and open the Comparison
View.

97

6 COMPARISON OF TRACE FILES

Figure 6.3: Comparison Session Manager listing three trace files for comparison

98

6.1 STARTING AND SAVING A COMPARISON SESSION

Figure 6.4 shows the resulting Comparison View. As indicated by the navigation tool-
bars at the top of the figure, all selected trace files are now included in a single Com-
parison View instance. The files in the view are sharing a coupled zoom. The usage of
charts and zooming in this view is described in the next section.

Figure 6.4: Open Comparison View

To save a comparison session use the menu entries File → Save or File → Save As. . . .
This will store a *.vcompare file containing the compared trace files, settings, and the
Comparison View layout. To restore a comparison session simply open the respective
*.vcompare file. Previous comparison sessions are also available in the recent open
files list of Vampir.

99

6 COMPARISON OF TRACE FILES

6.2 Usage of Charts

For the comparison of performance metrics the Comparison View provides all common
charts of Vampir. In contrast to the ordinary Trace View the Comparison View opens
one chart instance for each trace file, i.e., with three open trace files, one click on the
Master Timeline icon opens three Master Timeline charts. By using the icon menus,
accessible via the triangles next to the chart icons, it is also possible to open only one
chart instance for the selected trace. Also, in order to distinguish the same charts be-
tween the trace files, a dedicated background color is assigned to all charts belonging
to one trace. The background color can be changed by clicking the respective colored
rectangle next to the trace file path in the Navigation Toolbar.

Figure 6.5: Comparison View with open charts

Figure 6.5 depicts a Comparison View with open Master Timeline, Process Timeline,
and Function Summary charts.

All available charts work the same way as in the Trace View. Due to the fact that the
Comparison View couples the zoom of all trace files, the charts can be used to directly
compare performance characteristics between the traces.

100

6.2 USAGE OF CHARTS

Figure 6.6: Zoom to compute iterations of trace C

As shown in Figure 6.5, trace A has the biggest duration time. The duration of trace C
is so short that it is barely visible. Zooming into the compute iteration phase of trace
C makes them visible but, due to the coupled zoom, also displays only the MPI Init
phase of trace A and B, see Figure 6.6. In order to compare the compute iterations
between the traces they need to be aligned properly. This process is described in the
next section.

101

6 COMPARISON OF TRACE FILES

6.3 Alignment of Multiple Trace Files

The Comparison View functionality to shift individual trace files in time allows to com-
pare areas between traces that did not occur at the same time. For instance, in order to
compare the compute iterations of the three example trace files these areas need to be
aligned to each other. For the example traces this is required because the initialization
of the application took different times on the three machines.

Figure 6.7: Context menu (left) and dialog (right) for controlling the time offset

There are several ways to shift the trace files in time. One option is to use the context
menu of the Navigation Toolbar. A right click on the toolbar reveals the menu as shown
in Figure 6.7. The entry Set Zoom... opens a dialog in which the time offset for the
respective trace file can be manually set. The entry Reset Time Offset clears the
offset.

The easiest way to achieve a coarse alignment is to drag the trace file in the Navigation
Toolbar. While holding the Ctrl (Cmd on macOS) modifier key pressed the trace can be
dragged to the desired position with the left mouse button. In Figure 6.8 the compute
iterations of all example trace files are coarsely aligned.

After the coarse shifting a finer alignment can be achieved in the Master Timeline or
Process Timeline charts. Therefore the user needs to zoom into the area to compare.
Then, while keeping the Ctrl (Cmd on macOS) modifier key pressed, the trace can
be dragged with the left mouse button in the Master Timeline. Figure 6.9 depicts the
process of dragging trace C to the compute iterations of trace A and B. As shown in
the Figure 6.9, although the initialization of trace A took the longest, this machine was
the fastest in computing the calculations.

102

6.3 ALIGNMENT OF MULTIPLE TRACE FILES

Figure 6.8: Alignment in the Navigation Toolbar

Figure 6.9: Alignment in the Master Timeline

103

6 COMPARISON OF TRACE FILES

6.4 Usage of Predefined Markers

Markers in traces point to particular places of interest in the trace data. These markers
can be used to navigate in the trace files. For trace file comparison markers are inter-
esting due to their potential to quickly locate places in large trace data sets. With the
help of markers it is possible to find the same location in multiple trace files with just a
few clicks.

Figure 6.10: Open Marker View

First step in order to use markers is to open the Marker View. Figure 6.10 shows
a Comparison View with an open Marker View. The markers of all open traces are
shown combined in one Marker View. After a click on one marker in the Marker View
the respective marker is highlighted in the Master Timeline and the Process Timeline.

104

6.4 USAGE OF PREDEFINED MARKERS

Another way to navigate to a marker in the timeline charts is to use the Vampir zoom.
If the user zoomed in the Master Timeline or the Process Timeline into the desired
zooming level, then a click on a marker in the Marker View will shift the timeline zoom
to the marker position. Thus, the selected marker appears in the center of the timeline
chart, see Figure 6.11.

Figure 6.11: Jump to a marker in the Master Timeline

The Comparison View provides two additional ways of navigating with markers. If two
markers of one trace are selected in the Marker View the button Zoom Between Marker
sets the trace zoom to the according timestamps of the markers. If two markers of dif-
ferent traces are selected the button Align Traces at Marker adjusts the time offset
between the respective traces. The selected markers are shown next to each other in
the timeline charts, and consequently, both traces are aligned at the respective mark-
ers.

105

7 Customization

The appearance of the trace file and various other application settings can be altered
in the preferences accessible via the main menu entry File → Preferences. Settings
concerning the trace file itself, e.g. layout or function group colors are saved individually
next to the trace file in a file with the ending .vsettings. This way it is possible to adjust
the colors for individual trace files without interfering with others.

The options Import Preferences and Export Preferences provide the loading and sav-
ing of preferences of arbitrary trace files.

7.1 General Preferences

The General preferences allow to change application and trace specific values.

Show time as decides whether the time format for the trace analysis is based on sec-
onds or ticks.

With the Automatically open context view option disabled Vampir does not open the
context view after the selection of an item, like a message or function.

Use color gradient in charts allows to switch off the color gradient used in the perfor-
mance charts.

The next option allows to change the style and size of the font.

Show source code enables the internal source code viewer. This viewer shows the
source code corresponding to selected locations in the trace file. In order to open a
source file first click on the intended function in the Master Timeline and then on the
source code path in the Context View. For the source code location to work properly,
you need a trace file with source code location support. The path to the source file
can be adjusted in the Preferences dialog. A limit for the size of the source file to be
opened can be set, too.

In the Analysis section the number of analysis threads can be chosen. If this option
is disabled, Vampir determines the number automatically by the number of cores, e.g.
two analysis threads on a dual-core machine.

In the Miscellaneous section the user can activate the following functionality. Enable
an automatic check for newer versions of Vampir, activate the color blindness support

106

7.2 APPEARANCE

Figure 7.1: General preferences

mode, or enable the presentation mode. With the presentation mode active, the mouse
pointer is shown using a larger mouse icon that also animates mouse button clicks.

The Document layout option allows to change the application’s window behavior. If
this option is enabled, all open Trace View windows need to stay in one enclosing
main window. If it is disabled, the Trace View windows can be moved freely over the
Desktop.

7.2 Appearance

The Appearance settings of the Preferences dialog allow to change the application’s
color options. Available categories are functions/function groups, markers, counters,
collectives, messages, and I/O events. To modify an entry click on its color icon. A
color picker dialog will then allow to select the new color. A change of the line width is
also available for messages and collectives.

107

7 CUSTOMIZATION

The context menu offers options for setting the colors of all selected functions at once.
Set Random Colors will assign random colors to all selected functions. The typical
selection options are available. Set Colors From Gradient will let you create/choose a
custom color gradient and assign all selected functions with uniform distributed colors.
Press the Ctrl and A keys to select everything. Left click on a function to select only
that function. Hold the Shift key while clicking on another function to select the range
between the first clicked and the currently clicked function. Hold Ctrl while clicking to
select or deselect a function while keeping the rest of the selection unchanged.

Figure 7.2: Appearance preferences

In order to quickly find a particular item, a search box is provided at the bottom of the
dialog.

Additionally to color modification, the Function Groups dialog also allows regrouping
of functions. By using drag and drop, functions can be freely assigned to any function
group. To create new function groups use the context menu entry Add Group. Func-
tions can be grouped by the source code file name, where they are defined, by clicking
on Group by Source File in the context menu.

A custom grouping can be specified by clicking on Import Group Definitions... in the
context menu. The file format for these group definitions is described in Section 7.3.
The definition file can also be named function-groups.cfg and put in the OTF2 trace
folder, the one where the traces.otf2 file resides in. If such a function group definition

108

7.3 FUNCTION GROUP DEFINITIONS FILE

file is detected when loading the trace, the default function grouping will use these
definitions.

Custom color and grouping schemes can be stored/removed using the plus/minus but-
tons at the top of the dialog.

7.3 Function Group Definitions File

A custom function grouping can be specified by providing a function group definitions
file. If that file is named function-groups.cfg and put into the OTF2 trace folder, it will be
read automatically when opening the trace. Alternatively, the function group definitions
file can be loaded using the Import Group Definitions... context menu option in the
function group appearance settings, see section 7.2.

Each function group block may match functions by their name, their canonical mangled
name, or by the source code file in which the function was defined. Matching is case
sensitive by default. Option blocks can be used to set the matching case sensitivity for
all function groups following it.

Trailing and leading whitespaces will be ignored as well as empty lines. If a hashtag
(#) is encountered, the rest of the line will be ignored.

If a function matches two different function groups, then by default it will be grouped
to the one appearing later in the file. This matching strategy can be changed in the
options block.

Here is an example with annotations:
1 BEGIN_OPTIONS
2 # There must not be any whitespace around the equal sign
3 MATCHING_STRATEGY=LAST # FIRST, LAST (default)
4 CASE_SENSITIVE_FUNCTION_NAME=YES # YES (default), NO
5 CASE_SENSITIVE_MANGLED_NAME=YES # YES (default), NO
6 CASE_SENSITIVE_SOURCE_FILE_NAME=YES # YES (default), NO
7 END_OPTIONS
8

9 BEGIN_FUNCTION_GROUP optional custom function group name
10 # Multiple functions to match can be separated by comma
11 NAME=my_function_1,my_function_2
12 # Alternatively, multiple functions can be given on separate lines
13 MANGLED_NAME=canonical_fortran_name_to_match_
14 MANGLED_NAME=_ZN10NamespaceFoo7MangledCppFunctionNameEi
15 SOURCE_FILE_NAME=my_source.*
16 END_FUNCTION_GROUP
17

18 BEGIN_OPTIONS
19 CASE_SENSITIVE_FUNCTION_NAME=NO
20 CASE_SENSITIVE_MANGLED_NAME=NO
21 END_OPTIONS

109

7 CUSTOMIZATION

22 BEGIN_FUNCTION_GROUP MPI Functions
23 NAME=MPI_*
24 # By not specifying MANGLED_NAME and SOURCE_FILE_NAME,
25 # matching will be valid for any source file and mangled name
26 END_FUNCTION_GROUP
27

28 # It is possible to add multiple function group blocks for the same
29 # function group. This can be used to match name triples exactly.
30 BEGIN_FUNCTION_GROUP MPI Functions
31 NAME=MyMpiFunction
32 MANGLED_NAME=_ii3_MyMpiFunction
33 SOURCE_FILE_NAME=MpiHelpers.cpp
34 END_FUNCTION_GROUP

7.4 Saving Policy

Vampir detects whenever changes to the various settings are made. In the Saving
Policy dialog it is possible to adjust the saving behavior of the different components to
the own needs.

In the dialog Saving Behavior you tell Vampir what to do in the case of changed prefer-
ences. The user can choose the categories of settings, e.g., the layout, that should be
affected by the selected behavior. Possible options are that the application automati-
cally Always or Never saves changes. The default option is to have Vampir asking you
whether to save or discard changes.

Usually the settings are stored in the folder of the trace file. If the user has no write
access to it, it is possible to place them alternatively in the Application Data Folder. All
such stored settings are listed in the tab Locally Stored Preferences with creation and
modification date.

Note: When loading a trace file, Vampir always favors settings in the Application Data
Folder.

Default Preferences offers to save preferences of the current trace file as default set-
tings. Then they are used for trace files without settings. Another option is to restore
the default settings. Then the current preferences of the trace file are reverted.

110

7.4 SAVING POLICY

Figure 7.3: Saving policy preferences

111

8 A Use Case

This chapter explains by example how Vampir can be used to discover performance
problems in your code and how to correct them.

8.1 Introduction

In many cases the Vampir suite has been successfully applied to identify performance
bottlenecks and assist their correction. To show in which ways the provided toolset
can be used to find performance problems in program code, one optimization process
is illustrated in this chapter. The following example is a three-part optimization of a
weather forecast model including simulation of cloud microphysics. Every run of the
code has been performed on 100 cores with manual function instrumentation, MPI
communication instrumentation, and recording of the number of L2 cache misses.

Figure 8.1: Master Timeline and Function Summary showing an overview of the pro-
gram run

Getting a grasp of the program’s overall behavior is a reasonable first step. In Figure 8.1
Vampir has been set up to provide such a high-level overview of the model’s code.
This layout can be achieved through two simple manipulations. Set up the Master
Timeline to adjust the process bar height to fit the chart height. All 100 processes
are now arranged into one view. Likewise, change the event category in the Function

112

8.2 IDENTIFIED PROBLEMS AND SOLUTIONS

Summary to show function groups. This way the many functions are condensed into
fewer function groups.

One run of the instrumented program took 290 seconds to finish. The first half of
the trace (Figure 8.1 A) is the initialization part. Processes get started and synced,
input is read and distributed among these processes. The preparation of the cloud
microphysics (function group: MP) is done here as well.

The second half is the iteration part, where the actual weather forecasting takes place.
In a normal weather simulation this part would be much larger. But in order to keep
the recorded trace data and the overhead introduced by tracing as small as possible
only a few iterations have been recorded. This is sufficient since they are all doing the
same work anyway. Therefore the simulation has been configured to only forecast the
weather 20 seconds into the future. The iteration part consists of two “large” iterations
(Figure 8.1 B and C), each calculating 10 seconds of forecast. Each of these in turn is
partitioned into several “smaller” iterations.

For our observations we focus on only two of these small, inner iterations, since this
is the part of the program where most of the time is spent. The initialization work
does not increase with a higher forecast duration and would only take a relatively small
amount of time in a real world run. The constant part at the beginning of each large
iteration takes less than a tenth of the whole iteration time. Therefore, by far the most
time is spent in the small iterations. Thus they are the most promising candidates for
optimization.

All screenshots starting with Figure 8.2 are in a before-and-after fashion to point out
what changed by applying the specific improvements.

8.2 Identified Problems and Solutions

8.2.1 Computational Imbalance

A varying size of work packages (thus varying processing time of this work) means
waiting time in subsequent synchronization routines. This section points out two easy
ways to recognize this problem.

Problem

As can be seen in Figure 8.2 each occurrence of the MICROPHYSICS-routine (purple
color) starts at the same time on all processes inside one iteration, but takes between
1.7 and 1.3 seconds to finish. This imbalance leads to idle time in subsequent syn-
chronization calls on the processes 1 to 4, because they have to wait for process 0 to
finish its work (marked parts in Figure 8.2). This is wasted time which could be used for

113

8 A USE CASE

Figure 8.2: Before Tuning: Master Timeline and Function Summary identifying MICRO-
PHYSICS (purple color) as predominant and unbalanced

Figure 8.3: After Tuning: Timeline and Function Summary showing an improvement in
communication behavior

114

8.2 IDENTIFIED PROBLEMS AND SOLUTIONS

computational work, if all MICROPHYSICS-calls would have the same duration. An-
other hint at this overhead in synchronization is the fact that the MPI receive routine
uses 17.6% of the time of one iteration (Function Summary in Figure 8.2).

Solution

To even out this asymmetry the code which determines the size of the work packages
for each process had to be changed. To achieve the desired effect an improved ver-
sion of the domain decomposition has been implemented. Figure 8.3 shows that all
occurrences of the MICROPHYSICS-routine are vertically aligned, thus balanced. Ad-
ditionally the MPI receive routine calls are now clearly smaller than before. Comparing
the Function Summary of Figure 8.2 and Figure 8.3 shows that the relative time spent
in MPI receive has been decreased, and in turn the time spent inside MICROPHYSICS
has been increased greatly. This means that we now spend more time computing and
less time communicating, which is exactly what we want.

8.2.2 Serial Optimization

Inlining of frequently called functions and elimination of invariant calculations inside
loops are two ways to improve the serial performance. This section shows how to
detect candidate functions for serial optimization and suggests measures to speed
them up.

Problem

All performance charts in Vampir show information of the time span currently selected
in the timeline. Thus the most time-intensive routine of one iteration can be determined
by zooming into one or more iterations and having a look at the Function Summary.
The function with the largest bar takes up the most time. In this example (Figure 8.2)
the MICROPHYSICS-routine can be identified as the most costly part of an iteration.
Therefore it is a good candidate for gaining speedup through serial optimization tech-
niques.

Solution

In order to get a fine-grained view of the MICROPHYSICS-routine’s inner workings we
had to trace the program using full function instrumentation. Only then it was possible
to inspect and measure subroutines and subsubroutines of MICROPHYSICS. This way
the most time consuming subroutines have been spotted, and could be analyzed for
optimization potential.

115

8 A USE CASE

The review showed that there were a couple of small functions which were called a lot.
So we simply inlined them. With Vampir you can determine how often a functions is
called by changing the metric of the Function Summary to the number of invocations.

The second inefficiency we discovered had been invariant calculations being done in-
side loops. So we just moved them in front of the respective loops.

Figure 8.3 sums up the tuning of the computational imbalance and the serial optimiza-
tion. In the timeline you can see that the duration of the MICROPHYSICS-routine is
now equal among all processes. Through serial optimization the duration has been
decreased from about 1.5 to 1.0 second. A decrease in duration of about 33% is quite
good given the simplicity of the changes done.

8.2.3 High Cache Miss Rate

The latency gap between cache and main memory is about a factor of 8. Therefore
optimizing for cache usage is crucial for performance. If you don’t access your data
in a linear fashion as the cache expects, so called cache misses occur and the spe-
cific instructions have to suspend execution until the requested data arrives from main
memory. A high cache miss rate therefore indicates that performance might be im-
proved through reordering of the memory access pattern to match the cache layout of
the platform.

Problem

As can be seen in the Counter Data Timeline (Figure 8.4) the CLIPPING-routine (light
blue) causes a high amount of L2 cache misses. Also its duration is long enough to
make it a candidate for inspection. What caused these inefficiencies in cache usage
were nested loops, which accessed data in a very random, non-linear fashion. Data
access can only profit from cache if subsequent read calls access data in the vicinity
of the previously accessed data.

Solution

After reordering the nested loops to match the memory order, the tuned version of the
CLIPPING-routine now needs only a fraction of the original time. (Figure 8.5)

116

8.2 IDENTIFIED PROBLEMS AND SOLUTIONS

Figure 8.4: Before Tuning: Counter Data Timeline revealing a high amount of L2 cache
misses inside the CLIPPING-routine (light blue)

Figure 8.5: After Tuning: Visible improvement of the cache usage

117

8 A USE CASE

8.3 Conclusion

By using the Vampir toolkit, three problems have been identified. As a consequence of
addressing each problem, the duration of one iteration has been decreased from 3.5
seconds to 2.0 seconds.

Figure 8.6: Overview showing a significant overall improvement

As is shown by the Ruler, see Section 4.1, in Figure 8.6 two large iterations now take
84 seconds to finish. Whereas at first (Figure 8.1) it took roughly 140 seconds, making
a total speed gain of 40%.

This huge improvement has been achieved by using the insight into the program’s
runtime behavior, provided by the Vampir toolkit, to optimize the inefficient parts of the
code.

118

	Introduction
	Event-based Performance Tracing and Profiling
	The Open Trace Formats OTF and OTF2
	The Chrome Trace Event Format
	Vampir and Windows HPC Server 2008

	Getting Started
	Installation of Vampir
	Linux, Unix
	macOS
	Windows

	Generation of Performance Data
	Score-P
	Event Tracing for Windows (ETW)

	Starting Vampir and Loading Performance Data
	Loading a Trace File
	Command Line Parameters
	Loading a Trace File Subset

	Basics
	Chart Arrangement
	Context Menus
	Zooming
	The Zoom Toolbar
	The Charts Toolbar
	Properties of the Trace File
	Understanding the Differences Between Sampling and Instrumentation

	Performance Data Visualization
	Timeline Charts
	Master Timeline and Process Timeline
	Summary Timelines
	Counter Data Timeline
	Performance Radar
	Shared Resource Timeline

	Statistical Charts
	Function Summary
	Process Summary
	Message Summary
	Communication Matrix View
	Collective Operation Summary
	I/O Summary
	Call Tree
	System Tree

	Informational Charts
	Function Legend
	Marker View
	Context View

	Customizable Performance Metrics
	Metric Editor
	Examples

	Information Filtering and Reduction
	General Filter Dialog Design
	Filter Rules
	Process Filter Specifics
	Function Filter Specifics
	Filter Examples

	Comparison of Trace Files
	Starting and Saving a Comparison Session
	Usage of Charts
	Alignment of Multiple Trace Files
	Usage of Predefined Markers

	Customization
	General Preferences
	Appearance
	Function Group Definitions File
	Saving Policy

	A Use Case
	Introduction
	Identified Problems and Solutions
	Computational Imbalance
	Serial Optimization
	High Cache Miss Rate

	Conclusion

