

Experience Report and Use Cases

Datamanagement on Distributed Storages

Stephan Bienek · Head of Hosting

Initial Situation

Initial Situation

How did backup and archiving work so far?

- Backups on storages of other locations
- Archiving on Tapes many Tapes
- MPLS connectivity between all locations

Initial Situation

Which challenges did arise?

- X Bandwidth shortage because of backups of other locations
- X Shortage of storage room capacity
- X How long to tapes last?
- × Long restore times
- X High effort during restores

Requirements

Secure and cost-effective long-term archiving

• Data has to be available 10-15 years

Fast restores

- Data of the last three month should be restores instantly
- Restores without "Turnschulogistics"

Possibility to Scale

• All locations worldwide should be able to integrate into the central solution

 X/Θ

Efficient usage of bandwidth and storage capacity

- No additional transfer of data, which is already existing in the archive
- Using existing connectivity

Datamanagement on Distributed Storages

Datenmanagement – Cost Savings

Restore of data from the last 3 month from the Cache Storage

Prevent de-hydration (restore) costs of the cloud

Caching restored data for 4 weeks

Data can be restored to any location without additional de-hydration from the cloud

Usage of existing redundandcy connectivity No additional connectivity costs

Long-Term archiving the the Cloud Deep Archive Cost efficient long-term archiving

Datenmanagement – Time Savings

Restore of data from the last 3 month from the Cache Storage Fast restore without waiting for the de-Hydration

No humand has to search for tapes in the storage room All data is available online

No copy over to new tapes Online long-term archive

Usage of existing redundancy paths No costs for additional connectivity

All locations communicate via the zentral Datacenter

Reduction of bandwidth usage in each location

SYSTEMS

We

Caching restored data for 4 weeks

No bandwidth usage of other location during a second restore

We SYSTEMS

Lessons Learned

LAN vs WAN

- Applications show different behaviour on short connectvitity interruptions
- Operating Systems show different behaviour based on parameters like letency and bandwidth

S3 is not a defined standard - each Object Storage Provider with their own specific implementation

- Writing directly to the Archive Tier
- (Automatic) Deletion of de-hyrated files after a restore
- (Automatic) Deletion of files of failed transfers

We SYSTEMS

STEPHAN BIENEK Head of Hosting

weSystems AG Baierbrunner Str. 25 81379 München

+49 89 244140-861 +49 160 2000 581 s.bienek@wesystems.ag www.wesystems.de