## **Data storage concepts**

Optimally secured in every phase of the data lifecycle

RDM in HPC 22. September

Marcel Nellesen (RWTH Aachen University) <a href="mailto:nellesen@itc.rwth-aachen.de">nellesen@itc.rwth-aachen.de</a>

Katja Jansen (RWTH Aachen University) <a href="mailto:k.jansen@itc.rwth-aachen.de">k.jansen@itc.rwth-aachen.de</a>







## Research data life cycle

- Research projects are a long term commitment
- Data is constantly created
  - First draft / proposal
  - Setup
  - Measurement
  - Analysis
  - Reports
  - Reusage











#### **RDS Web**

#### Technology:

- RDS = Research Data Storage (object storage)
- S3

#### • Features:

- Enforces entering of metadata before data can be stored
- Interaction only through Coscine (Web-Interface)

#### Envisioned use:

Mostly useable for smaller files
for files > 2 GB REST-API or S3 should be used (reason: browser limitations)

#### Default:

25 GB for each project (can be adjusted up to 100 GB) → for RDS-qualified universities/UAS







#### RDS S3

#### Technology:

- RDS = Research Data Storage (object storage)
- S3

#### • Features:

- Easy transfer of data
- Interaction through Coscine and the S3

#### Envisioned use:

- Large files (> 2- 3 GB)
- Automization processes possible via REST-API

#### Default:

nothing → application needed via Jards







#### **RDS Worm**

- Technology:
  - RDS = Research Data Storage (object storage)
  - S3
- Features:
  - WORM (Write Once Read Many)
  - Interaction through Coscine and the S3
- Envisioned use:
  - used for data with very high secure standards
- Default:
  - nothing → application needed via Jards







#### **Linked Data**

- Technology:
  - RDF



- Referencing of external storage systems
- → Safety depends on the external storage system
- Providing of metadata

#### Envisioned use:

- Data which is stored in an external system, just adding metadata in Coscine





#### **GitLab**

- Technology:
  - GitLab
- Features:
  - Versioning of code
  - Interaction through Coscine or GitLab
  - Providing of metadata
- Envisioned use:
  - Data which is (already) stored in GitLab, just adding metadata in Coscine







#### **Cluster - Home**

- Technology:
  - NFS/CIFS
- Features:
  - Regular backups
  - Regular snapshots
- Envisioned use:
  - Source code
  - Configuration files
- Default:
  - 150 Gb (easily extendable to 200Gb)







#### **Cluster - Work**

- Technology:
  - NFS/CIFS
- Features:
  - Regular snapshots
- Envisioned use:
  - Output files
  - Working data
- Default:
  - 250 Gb (easily extendable to 350Gb)







#### **Cluster - HPC Work**

- Technology:
  - Lustre
- Features:
  - Suitable for ~ 50.000 files
  - Neither backups nor snapshots
- Envisioned use:
  - IO intensive jobs
  - Large files
- Default:
  - 1 Tb (easily extendable to 30 Tb)







#### **RWTH Publications**

#### Technology:

- S3

#### Features:

- Enforces entering of metadata before data can be stored
- Interaction only through Coscine

#### Envisioned use:

(cc) BY

- For data and metadata which can not be published in a specific repository
- Mostly for RWTH members





#### **Archive**

- Technology:
  - S3
- Features:
  - Long term archiving of data (10 years)
  - → Good scientific practice
- Envisioned use:
  - Enable reuse of data
  - FAIR data





## **Long Term Archive**

- Technology:
  - varies
- Features:
  - Long term archiving of data (more than years)
  - → Good scientific practice
- Envisioned use:
  - Long term storage of important data
- Remarks:
  - Currently not available at RWTH













## How to apply for storage

#### **HPC Systems**

- Applications for computation time
  - Scientific led review process (Jards)
- Availability: usually project end + 8 months
- Reviewed by the HPC-team and domain experts







0 characters (5000 remaining)

(cc) BY

## How to apply for storage

#### **RDS S3 Storage**

- Applications for storage space
  - Scientific led review process (Jards)
- Availability: usually project end + 10 years
- Reviewed by the RDM-team and domain experts
- Better Scaleability







#### Sounds nice, but...

#### **Encountered problems regarding storage**

- Users often don't know what they need
- → Which resources? RDS, LinkedData, GitLab etc.?
- Users tend to overprovision
- → Applications for too much storage space (see figure 1)
- What data is worth keeping? Everything?
- → Try to calculate before as accurate as possible
- Users often don't know how to transfer data
- → Automization processes useful/needed?
- → Transfer data via web interface, REST-API or S3?

#### Quota Usage By Resource Type







## Sounds nice, but...

#### **Encountered problems regarding metadata**

- Metadata handling
- → is easily promised but difficult to enforce
- → AIMS platform for application profiles
- What metadata is available, what metadata is useful?
- → save as much as needed and as little as possible
- Can metadata be directly transported from instruments?
- → save as much time/effort as possible
- Should metadata be publicity be available?
- → Enables other researches to find the project ( ≠ open data!)









# Thank you For your attention!

