
Tivoli® Tivoli Storage Manager
Version 6.2

Using the Application Programming
Interface

SC23-9793-01

����

Tivoli® Tivoli Storage Manager
Version 6.2

Using the Application Programming
Interface

SC23-9793-01

����

Note:
Before using this information and the product it supports, read the information in “Notices” on page 219.

This edition applies to Version 6.2 of IBM Tivoli Storage Manager (5608–E01), IBM Tivoli Storage Manager Extended
Edition (5608–E02), IBM Tivoli Storage Manager for Space Management (5608–E12), IBM Tivoli Storage Manager for
Storage Area Networks (5608–E07), and to all subsequent releases and modifications until otherwise indicated in
new editions or technical newsletters. This edition replaces SC23-9793-00.

© Copyright IBM Corporation 1993, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface v
Who should read this publication v
Publications v

Tivoli Storage Manager publications vi
Support information vii

Getting technical training vii
Searching knowledge bases viii
Contacting IBM Software Support ix

Conventions used in this publication xi

New for IBM Tivoli Storage Manager
Version 6.2. xiii

Chapter 1. API overview 1
Understanding configuration and options files . . . 2
Setting up the API environment 4

Chapter 2. Building and running the
sample API application 5
OS/400 operating system sample application source
files 5

Installing the API on OS/400 or i5/OS 6
Building the OS/400 sample application from the
QShell 7
Building the OS/400 sample application from the
command line 7

UNIX or Linux sample application source files . . . 8
Building the UNIX or Linux sample application . 9

Windows 32-bit sample application 10
Windows 64-bit sample application 11

Chapter 3. API design
recommendations and considerations . 13
Determining size limits 16
Maintaining API version control 16
Using multithreading 18
Using signals 18
Starting or ending a session 19

Session security 20
Using passwordaccess generate without TCA . . 23
Creating an administrative user with client
owner authority 24

Object names and IDs 24
File space name 25
High-level and low-level names 26
Object type 26

Accessing objects as session owner 26
Accessing objects across nodes and owners 27
Managing file spaces 28
Associating objects with management classes . . . 30

Query management classes 31
Expiration/deletion hold and release 32

Archive data retention protection 33
Querying the Tivoli Storage Manager system . . . 35

Example of querying the system 36
Server efficiency 37
Sending data to a server 38

The transaction model 38
File aggregation 39
LAN-free data transfer 39
Simultaneous-write operations 39
API performance considerations 40

Sending objects to the server 40
Understanding backup and archive objects . . . 41
Compression 42
Buffer copy elimination 42
API encryption 44

Data deduplication 48
API client-side data deduplication 49
Server-side data deduplication 53

Example flow diagrams for backup and archive . . 53
Code example of API functions that send data to
Tivoli Storage Manager storage 56

File grouping 57
Receiving data from a server 60

Partial object restore or retrieve. 60
Restoring or retrieving data 61
Example flow diagrams for restore and retrieve 65
Code example of receiving data from a server . . 66

Updating and deleting objects on the server . . . 67
Deleting objects from the server 68

Logging events 68
Putting it all together - a summary diagram . . . 69

Chapter 4. Understanding
interoperability 71
Backup-archive client interoperability. 71

Naming your API objects 71
Backup-archive client commands you can use
with the API 72

Operating system interoperability 73
Backing up multiple nodes with client node proxy
support. 73

Chapter 5. Using the API with Unicode 75
When you should use Unicode 75
Setting up Unicode 75

Chapter 6. API function calls 77
dsmBeginGetData 79
dsmBeginQuery 81
dsmBeginTxn. 84
dsmBindMC 85
dsmChangePW 86
dsmCleanUp 87
dsmDeleteAccess 87
dsmDeleteFS 88
dsmDeleteObj 89
dsmEndGetData 90

© Copyright IBM Corp. 1993, 2010 iii

||

||

||
||
||

dsmEndGetDataEx 91
dsmEndGetObj 91
dsmEndQuery 92
dsmEndSendObj. 92
dsmEndSendObjEx 93
dsmEndTxn 93
dsmEndTxnEx 95
dsmGetData 96
dsmGetBufferData 97
dsmGetNextQObj 98
dsmGetObj 100
dsmGroupHandler 101
dsmInit 102
dsmInitEx 105
dsmLogEvent 109
dsmLogEventEx 109
dsmQueryAccess 111
dsmQueryApiVersion 111
dsmQueryApiVersionEx 112
dsmQueryCliOptions 113
dsmQuerySessInfo. 113
dsmQuerySessOptions 114
dsmRCMsg 115
dsmRegisterFS 116
dsmReleaseBuffer 117
dsmRenameObj. 118
dsmRequestBuffer 119
dsmRetentionEvent 120
dsmSendBufferData 121
dsmSendData 122
dsmSendObj. 123
dsmSetAccess 126
dsmSetUp 128
dsmTerminate 129
dsmUpdateFS 129
dsmUpdateObj 130
dsmUpdateObjEx 132

Appendix A. API return codes source
file dsmrc.h 135

Appendix B. API type definitions
source files 147

Appendix C. API function definitions
source file. 187

Appendix D. The X/Open Backup
Services API 195
Setting up X/Open API options files 196
Building the X/Open API sample application . . 196
Tivoli Storage Manager X/Open API design
considerations 198

X/Open to Tivoli Storage Manager data field
mapping 198
Maintaining version control in the X/Open API 199
Starting or ending a session 199
Session security 201
Determining the session parameters using
X/Open API. 201
Associating a management class with objects
using X/Open API 202
The transaction model 203
Querying the Tivoli Storage Manager system 203
Sending data to a server using X/Open API . . 205
Receiving data from a server using the X/Open
API. 208
Deleting objects from the server using X/Open
API. 210
Identifying the object using X/Open API . . . 211
Setting the owner name 213

Using X/Open functions with Tivoli Storage
Manager 213
Tivoli Storage Manager changes to the XBSA
header files 215

Changes to custom.h 216
Changes to policy.h 216
Changes to xbsa.h 216

Appendix E. Accessibility features for
Tivoli Storage Manager 217

Notices 219
Trademarks 221

Glossary 223

Index 245

iv IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
||

Preface

This publication provides information to help you perform the following tasks:
v Add IBM® Tivoli® Storage Manager application program interface calls to an

existing application
v Write programs with general-use program interfaces that obtain the services of

Tivoli Storage Manager.

The terms hierarchical storage management and space management mean the same
throughout this information.

In addition to the application programming interface (API), the following
programs are included on several operating systems:
v A backup-archive client program that backs up and archives files from your

workstation or file server to storage, and restores and retrieves backup versions
and archived copies of files to your local file systems.

v A hierarchical storage management program that automatically migrates eligible
files to storage to maintain specific levels of free space on local file systems. It
automatically recalls migrated files when they are accessed, and permits users to
migrate and recall specific files.

v A Web backup-archive client that an authorized administrator, support person,
or end user can use to perform backup, restore, archive, and retrieve services
using a Web browser on a remote machine.

v An administrative client program that you can access from a Web browser or
from the command line. An administrator controls and monitors server
activities, defines storage management policies for backup, archive, and space
management services, and sets up schedules to perform these services at regular
intervals.

Who should read this publication

This publication provides instructions for you to add API calls to an existing
application. You should be familiar with C programming language and Tivoli
Storage Manager functions.

Publications
IBM Tivoli Storage Manager publications and other related publications are
available online.

You can search all publications in the Tivoli Storage Manager Information Center:
http://publib.boulder.ibm.com/infocenter/tsminfo/v6r2.

You can download PDF versions of publications from the Tivoli Storage Manager
Information Center or from the IBM Publications Center at http://www.ibm.com/
shop/publications/order/.

Go to Tivoli Documentation Central to find information centers that contain official
product documentation for current and previous versions of Tivoli products,
including Tivoli Storage Manager products at http://www.ibm.com/
developerworks/wikis/display/tivolidoccentral/Tivoli+Storage+Manager.

© Copyright IBM Corp. 1993, 2010 v

|
|
|
|

http://publib.boulder.ibm.com/infocenter/tsminfo/v6r2
http://www.ibm.com/shop/publications/order/
http://www.ibm.com/shop/publications/order/
http://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Storage+Manager
http://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Storage+Manager

You can also order some related publications from the IBM Publications Center
Web site. The Web site provides information about ordering publications from
countries other than the United States. In the United States, you can order
publications by calling 1-800-879-2755.

Tivoli Storage Manager publications
Publications are available for the server, storage agent, client, and Data Protection.

Table 1. IBM Tivoli Storage Manager troubleshooting and tuning publications

Publication title Order number

IBM Tivoli Storage Manager Client Messages and Application
Programming Interface Return Codes

SC27-2877

IBM Tivoli Storage Manager Server Messages and Error Codes SC27-2878

IBM Tivoli Storage Manager Performance Tuning Guide GC23-9788

IBM Tivoli Storage Manager Problem Determination Guide GC23-9789

Table 2. Tivoli Storage Manager server publications

Publication title Order number

IBM Tivoli Storage Manager for AIX Installation Guide GC23-9781

IBM Tivoli Storage Manager for AIX Administrator's Guide SC23-9769

IBM Tivoli Storage Manager for AIX Administrator's Reference SC23-9775

IBM Tivoli Storage Manager for HP-UX Installation Guide GC23-9782

IBM Tivoli Storage Manager for HP-UX Administrator's Guide SC23-9770

IBM Tivoli Storage Manager for HP-UX Administrator's Reference SC23-9776

IBM Tivoli Storage Manager for Linux Installation Guide GC23-9783

IBM Tivoli Storage Manager for Linux Administrator's Guide SC23-9771

IBM Tivoli Storage Manager for Linux Administrator's Reference SC23-9777

IBM Tivoli Storage Manager for Sun Solaris Installation Guide GC23-9784

IBM Tivoli Storage Manager for Sun Solaris Administrator's Guide SC23-9772

IBM Tivoli Storage Manager for Sun Solaris Administrator's Reference SC23-9778

IBM Tivoli Storage Manager for Windows Installation Guide GC23-9785

IBM Tivoli Storage Manager for Windows Administrator's Guide SC23-9773

IBM Tivoli Storage Manager for Windows Administrator's Reference SC23-9779

IBM Tivoli Storage Manager Server Upgrade Guide SC23-9554

IBM Tivoli Storage Manager Integration Guide for Tivoli Storage
Manager FastBack

SC27-2828

Table 3. Tivoli Storage Manager storage agent publications

Publication title Order number

IBM Tivoli Storage Manager for SAN for AIX Storage Agent User's
Guide

SC23-9797

IBM Tivoli Storage Manager for SAN for HP-UX Storage Agent User's
Guide

SC23-9798

IBM Tivoli Storage Manager for SAN for Linux Storage Agent User's
Guide

SC23-9799

vi IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|

||

||

|
|
|

||

||

||
|

Table 3. Tivoli Storage Manager storage agent publications (continued)

Publication title Order number

IBM Tivoli Storage Manager for SAN for Sun Solaris Storage Agent
User's Guide

SC23-9800

IBM Tivoli Storage Manager for SAN for Windows Storage Agent User's
Guide

SC23-9553

Table 4. Tivoli Storage Manager client publications

Publication title Order number

IBM Tivoli Storage Manager for UNIX and Linux: Backup-Archive
Clients Installation and User's Guide

SC23-9791

IBM Tivoli Storage Manager for Windows: Backup-Archive Clients
Installation and User's Guide

SC23-9792

IBM Tivoli Storage Manager for Space Management for UNIX and Linux:
User's Guide

SC23-9794

IBM Tivoli Storage Manager Using the Application Programming
Interface

SC23-9793

Table 5. Tivoli Storage Manager Data Protection publications

Publication title Order number

IBM Tivoli Storage Manager for Enterprise Resource Planning: Data
Protection for SAP Installation and User's Guide for DB2

SC33-6341

IBM Tivoli Storage Manager for Enterprise Resource Planning: Data
Protection for SAP Installation and User's Guide for Oracle

SC33-6340

Support information
You can find support information for IBM products from various sources.

Start at the IBM Support Portal: http://www.ibm.com/support/entry/portal/. You
can select the products that you are interested in, and search for a wide variety of
relevant information.

Getting technical training
Information about Tivoli technical training courses is available online.

Go to these Web sites for training information:

Tivoli software training and certification
Choose from instructor led, online classroom training, self-paced Web
classes, Tivoli certification preparation, and other training options at this
site: http://www.ibm.com/software/tivoli/education/

Tivoli Support Technical Exchange
Technical experts share their knowledge and answer your questions in
these webcasts: http://www.ibm.com/software/sysmgmt/products/
support/supp_tech_exch.html

Preface vii

|
|

|

|

|

|
|
|
|

|
|
|
|

http://www.ibm.com/support/entry/portal/
http://www.ibm.com/software/tivoli/education/
http://www.ibm.com/software/sysmgmt/products/support/supp_tech_exch.html
http://www.ibm.com/software/sysmgmt/products/support/supp_tech_exch.html

Searching knowledge bases
If you have a problem with IBM Tivoli Storage Manager, there are several
knowledge bases that you can search.

Begin by searching the Tivoli Storage Manager Information Center at
http://publib.boulder.ibm.com/infocenter/tsminfo/v6r2. From this Web site, you
can search the current Tivoli Storage Manager documentation.

Searching the Internet
If you cannot find an answer to your question in the Tivoli Storage Manager
Information Center, search the Internet for the information that might help you
resolve your problem.

To search multiple Internet resources, go to the support Web site for Tivoli Storage
Manager at http://www.ibm.com/support/entry/portal/Overview/Software/
Tivoli/Tivoli_Storage_Manager.

You can search for information without signing in. Sign in using your IBM ID and
password, if you want to customize the site based on your product usage and
information needs. If you do not already have an IBM ID and password, click Sign
in at the top of the page and follow the instructions to register.

From the Support Web site, you can search various resources including:
v IBM technotes
v IBM downloads
v IBM Redbooks® publications
v IBM Authorized Program Analysis Reports (APARs)

Select the product and click Downloads to search the APAR list.

If you still cannot find a solution to the problem, you can search forums and
newsgroups on the Internet for the latest information that might help you resolve
your problem.

An independent user discussion list, ADSM-L, is hosted by Marist College. You can
subscribe by sending an e-mail to listserv@vm.marist.edu. The body of the message
must contain the following text: SUBSCRIBE ADSM-L your_first_name
your_family_name.

To share your experiences and learn from others in the Tivoli Storage Manager
user community, go to the Tivoli Storage Manager wiki at http://www.ibm.com/
developerworks/wikis/display/tivolistoragemanager.

Using IBM Support Assistant

IBM Support Assistant is a complimentary software product that helps you with
problem determination. You can install the stand-alone IBM Support Assistant
application on any workstation. You can then enhance the application by installing
product-specific plug-in modules for the IBM products that you use.

IBM Support Assistant helps you gather support information when you need to
open a problem management record (PMR), which you can then use to track the
problem. For more information, see the IBM Support Assistant Web site at
http://www.ibm.com/software/support/isa/.

viii IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|

|
|
|
|

|

|

|

|

|
|
|
|

|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/tsminfo/v6r2
http://www.ibm.com/support/entry/portal/Overview/Software/Tivoli/Tivoli_Storage_Manager
http://www.ibm.com/support/entry/portal/Overview/Software/Tivoli/Tivoli_Storage_Manager
http://www.ibm.com/developerworks/wikis/display/tivolistoragemanager
http://www.ibm.com/developerworks/wikis/display/tivolistoragemanager
http://www.ibm.com/software/support/isa/

The product-specific plug-in modules provide you with the following resources:
v Support links
v Education links
v Ability to submit problem management reports

Find add-ons for specific products here: http://www.ibm.com/support/
docview.wss?&uid=swg27012689.

Finding product fixes
A product fix to resolve your problem might be available from the IBM Software
Support Web site.

You can determine what fixes are available by checking the IBM Software Support
Web site at http://www.ibm.com/support/entry/portal/.
v If you previously customized the site based on your product usage:

1. Click the link for your Tivoli Storage Manager product, or one of the other
Tivoli Storage Manager components that you want to find a fix for.

2. Click Downloads, and then click Fixes by version.
v If you have not customized the site based on your product usage, click

Downloads and search for your product.

Receiving notification of product fixes
You can receive notifications about fixes, flashes, upgrades, and other news about
IBM products.

To sign up to receive notifications about IBM products, follow these steps:
1. From the support page at http://www.ibm.com/support/entry/portal/, click

My notifications in the notifications module.
2. Sign in using your IBM ID and password. If you do not have an ID and

password, click register now above the IBM ID and password.
3. Click the Subscribe tab to select your product family and click Continue.
4. Select the type of information that you want to receive, and add your personal

preferences. You can specify how you want to be notified, how often, and you
can also optionally select a folder for the notifications.

5. Click Submit.
6. For notifications for other products, repeat steps 4 and 5.

Tip: You can also pick a product first, from the main support portal site, and
then click in the Notifications section to create or update your subscription for
that product.

Contacting IBM Software Support

You can contact IBM Software Support if you have an active IBM subscription and
support contract and if you are authorized to submit problems to IBM.

Before you contact IBM Software Support, follow these steps:
1. Set up a subscription and support contract.
2. Determine the business impact of your problem.
3. Describe your problem and gather background information.

Preface ix

|
|

|
|

|

|
|

|

|
|

|
|
|

|

|
|

|
|

|

|
|
|

|

|

|
|
|

|

|
|

http://www.ibm.com/support/docview.wss?&uid=swg27012689
http://www.ibm.com/support/docview.wss?&uid=swg27012689
http://www.ibm.com/support/entry/portal/
http://www.ibm.com/support/entry/portal/

Then see “Submitting the problem to IBM Software Support” on page xi for
information on contacting IBM Software Support.

Setting up a subscription and support contract

Set up a subscription and support contract. The type of contract that you need
depends on the type of product you have.

For IBM distributed software products (including, but not limited to, IBM Tivoli,
Lotus®, and Rational® products, as well as IBM DB2® and IBM WebSphere®

products that run on Microsoft® Windows® or UNIX® operating systems), enroll in
IBM Passport Advantage® in one of the following ways:
v Online: Go to the Passport Advantage Web page at http://www.ibm.com/

software/lotus/passportadvantage/, click How to enroll, and follow the
instructions.

v By Phone: You can call 1-800-IBMSERV (1-800-426-7378) in the United States, or
for the phone number to call in your country, go to the IBM Software Support
Handbook Web page at http://www14.software.ibm.com/webapp/set2/sas/f/
handbook/home.html and click Contacts.

Determining the business impact
When you report a problem to IBM, you are asked to supply a severity level.
Therefore, you must understand and assess the business impact of the problem
you are reporting.

Severity 1 Critical business impact: You are unable to use the program,
resulting in a critical impact on operations. This condition
requires an immediate solution.

Severity 2 Significant business impact: The program is usable but is
severely limited.

Severity 3 Some business impact: The program is usable with less
significant features (not critical to operations) unavailable.

Severity 4 Minimal business impact: The problem causes little impact on
operations, or a reasonable circumvention to the problem has
been implemented.

Describing the problem and gather background information
When explaining a problem to IBM, it is helpful to be as specific as possible.
Include all relevant background information so that IBM Software Support
specialists can help you solve the problem efficiently.

To save time, know the answers to these questions:
v What software versions were you running when the problem occurred?
v Do you have logs, traces, and messages that are related to the problem

symptoms? IBM Software Support is likely to ask for this information.
v Can the problem be recreated? If so, what steps led to the failure?
v Have any changes been made to the system? For example, hardware, operating

system, networking software, and so on.
v Are you using a workaround for this problem? If so, be prepared to explain it

when you report the problem.

x IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

http://www.ibm.com/software/lotus/passportadvantage/
http://www.ibm.com/software/lotus/passportadvantage/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Submitting the problem to IBM Software Support
You can submit the problem to IBM Software Support online or by phone.

Online
Go to the IBM Software Support Web site at http://www.ibm.com/
support/entry/portal/Open_service_request/Software/
Software_support_(general). Sign in to access IBM Service Requests, and
enter your information into the problem submission tool.

By phone
For the phone number to call in your country, go to the contacts page of
the IBM Software Support Handbook at http://www14.software.ibm.com/
webapp/set2/sas/f/handbook/home.html.

Conventions used in this publication

This publication uses the following typographical conventions:

Example Description

autoexec.ncf
hsmgui.exe

A series of lowercase letters with an extension indicates program file
names.

DSMI_DIR A series of uppercase letters indicates return codes and other values.

dsmQuerySessInfo Boldface type indicates a command that you type on a command line,
the name of a function call, the name of a structure, a field within a
structure, or a parameter.

timeformat Boldface italic type indicates a Tivoli Storage Manager option. The
bold type is used to introduce the option, or used in an example.

dateformat Italic type indicates an option, the value of an option, a new term, a
placeholder for information you provide, or for special emphasis in the
text.

maxcmdretries Monospace type indicates fragments of a program or information as it
might appear on a display screen, such a command example.

plus sign (+) A plus sign between two keys indicates that you press both keys at the
same time.

Preface xi

|
|
|
|

http://www.ibm.com/support/entry/portal/Open_service_request/Software/Software_support_(general)
http://www.ibm.com/support/entry/portal/Open_service_request/Software/Software_support_(general)
http://www.ibm.com/support/entry/portal/Open_service_request/Software/Software_support_(general)
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

xii IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

New for IBM Tivoli Storage Manager Version 6.2

Several features in IBM Tivoli Storage Manager Version 6.2 are new for previous
Tivoli Storage Manager users.

The following features are new for Tivoli Storage Manager in Version 6.2:

Deduplication
Client-side data deduplication is available through the API. Data
deduplication reduces storage needs by eliminating redundant data.
Client-side data deduplication reduces the amount of data sent over the
LAN. The processing required to remove duplicate data on the server is
eliminated. Space savings occur immediately. Client-side data
deduplication requires a Tivoli Storage Manager Version 6.2 or later server.

Structure changes
The objAttr structure has been enhanced to include a new field that lets the
application force no data deduplication on that specific object.

The archDetailCG structure has been enhanced to include a new field that
indicates whether the archive copy group has a deduplication-enabled
storage pool destination.

The backupDetailCG structure has been enhanced to include a new field
that indicates whether the backup copy group has a deduplication-enabled
storage pool destination.

The qryRespArchiveData structure has been enhanced to include a new
field that indicates whether this object has been deduplicated during
archive.

The qryRespBackupData structure has been enhanced to include a new
field that indicates whether this object has been deduplicated during
backup.

The ApiSessInfo structure has been enhanced to include a new field that
indicates whether this node is enabled for client-side data deduplication.
The possible values are:

dedupServerOnly - deduplication is only done on server.
dedupClientorServer - deduplication is done by client and or server.

The dsmEndSendObjExOut_t structure has been enhanced to include two
new fields. Objdeduplicated indicates whether the object was
deduplicated by the client during a send operation. TotalDedupSize
indicates the number of bytes sent to the server after data deduplication.

i5/OS API support
The Tivoli Storage Manager i5/OS API client in Version 6.2 is at the
Version 6.1 functional level.

For information about the i5/OS API client, see http://
publib.boulder.ibm.com/infocenter/tsminfo/v6.

© Copyright IBM Corp. 1993, 2010 xiii

http://publib.boulder.ibm.com/infocenter/tsminfo/v6
http://publib.boulder.ibm.com/infocenter/tsminfo/v6

Related concepts

“Data deduplication” on page 48
“API client-side data deduplication” on page 49
“Exclude files from data deduplication” on page 52
“Include files for data deduplication” on page 52
“Server-side data deduplication” on page 53

xiv IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Chapter 1. API overview

The Tivoli Storage Manager application program interface (API) enables an
application client to use storage management functions.

The API includes function calls that you can use in an application to perform the
following operations:
v Start or end a session
v Assign management classes to objects before they are stored on a server
v Back up or archive objects to a server
v Restore or retrieve objects from a server
v Query the server for information about stored objects
v Manage file spaces
v Send retention events

When you, as an application developer, install the API, you receive the files that an
end user of an application needs:
v The API shared library
v The messages file
v The sample client options files
v The source code for the API header files that your application needs.
v The source code for a sample application, and the makefile to build it.
v The dsmtca file (UNIX and Linux® only)

Note: References to OS/400® include both OS/400 and i5/OS®.

For 64-bit applications, all compiles should be performed using compiler options
that enable 64-bit support. For example, '-q64' should be used when building API
applications on AIX®, and '-m64' should be used on Linux. See the sample make
files for more information.

The only communication method supported under 64-bit is TCP/IP. There is no
64-bit version of the server and shared memory is not supported. Clio/s and APPC
are not supported, since there are currently no 64-bit libraries.

Note: When you install the API, ensure that all files are at the same level.

For information about installing the API, see the installation procedures in the
Tivoli Storage Manager Installing and Using the Backup-Archive Client for your
operating system.

References to UNIX and Linux include Mac OS X, OS/400, HP-UX, Solaris, and
z/OS®.

© Copyright IBM Corp. 1993, 2010 1

Understanding configuration and options files
Configuration and options files set the conditions and boundaries under which
your session runs.

You, an administrator, or an end user can set option values to:
v Set up the connection to a server
v Control which objects are sent to the server and the management class to which

they are associated

You define options in one or two files when you install the API on your
workstation.

On UNIX and Linux operating systems, the options reside in two options files:
v dsm.opt - the client options file
v dsm.sys - the client system options file

On other operating systems, the client options file (dsm.opt) contains all of the
options.

Note: The API does not support these backup-archive client options:
v autofsrename
v changingretries
v domain
v eventlogging
v groups
v subdir
v users
v virtualmountpoint

You also can specify options on the dsmInitEx function call. Use the option string
parameter or the API configuration file parameter.

The same option can derive from more than one configuration source. When this
happens, the source with the highest priority takes precedence. See Table 6 for the
priority sequence. For more information about available options and
communication methods that the API supports, see the Tivoli Storage Manager
Installing and Using the Backup-Archive Client for your operating system.

Table 6. Configuration sources in order of decreasing priority

UNIX and Linux Windows Description

1. dsm.sys file

(client system options)

1. None. This file contains options that a system administrator sets for UNIX
and Linux only.

2 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Table 6. Configuration sources in order of decreasing priority (continued)

UNIX and Linux Windows Description

2. Option string

(client options)

2. Option string

(all options)

One of these options takes effect when it is passed as a parameter to
a dsmInitEx call. The list can contain client options such as
compressalways, servername (UNIX and Linux only), or
tcpserveraddr (non-UNIX).

With the API option string, an application client can make changes to
the option values in the API configuration file and the client options
file. For example, your application might query the end user if
compression is required. Depending on the user responses, you can
construct an API option string with this option and pass it into the
call to dsmInitEx.

For information about the API option string format, see “dsmInitEx”
on page 105. You also can set this parameter to NULL. This indicates
that there is no API option string for this session.

3. API configuration file

(client options)

3. API
configuration file

(all options)

The values that you set in the API configuration file override the
values that you set in the Tivoli Storage Manager client options file.
Set up the options in the API configuration file with values that you
are appropriate in the Tivoli Storage Manager session for the end
user. The values take effect when the API configuration file name is
passed as a parameter in the dsmInitEx call.

You also can set this parameter to NULL. This indicates that there is
no API configuration file for this session.

4. dsm.opt file (client
options)

4. dsm.opt file (all
options)

On UNIX and Linux operating systems the dsm.opt file contains the
user options only. On other operating systems, the dsm.opt file
contains all options. To override the options in these files, follow the
methods that are described in this table.

On OS/400, the UNIX style option processing with both dsm.sys and dsm.opt files
is used. However, for compatibility reasons, the previous option file method using
one QSYS file is also supported.

The type of options file processing to use is determined at run time using the
following information:
1. If no other option specification is used and a file member named

QOPTADSM(APIOPT) is in a library in the caller's library list, then the
QOPTADSM(APIOPT) file is used and should contain all options.

2. If a QSYS file name in the format LIBRARY/FILE(MEMBER) is passed as a
parameter in the dsmInitEx call, then the input file is used. The
QOPTADSM(APIOPT) file must also exist in the caller's library list and its
options are used, but options from the input parameter file have precedence.

3. Any other way of specifying the option file, such as environment variables or
with a path name starting with '/', uses the UNIX style processing of dsm.sys
and dsm.opt files. The two files must be in the "root" (/) file system.

Chapter 1. API overview 3

Setting up the API environment
The API uses unique environment variables to locate files. You can use different
files for API applications from those that the backup-archive client uses.
Applications can use the dsmSetup function call to override the values that the
environment variables set.

Tip: On Windows, the default installation directory is: %SystemDrive%\Program
Files\Common Files\Tivoli\TSM\api

Table 7 lists the API environment variables by operating system.

Table 7. API environment variables

Variables UNIX and Linux Windows

DSMI_CONFIG The fully-qualified name for the
client options file (dsm.opt).

The fully-qualified name for the
client options file (dsm.opt).

DSMI_DIR Points to the path that contains the
dsm.sys, dsmtca, en_US
subdirectory, and any other national
language support (NLS) language.
The en_US subdirectory must
contain dsmclientV3.cat.

Points to the path that contains
dscenu.txt and any NLS message
file.

DSMI_LOG Points to the path for the
dsierror.log file.

Points to the path for the
dsierror.log file.

4 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Chapter 2. Building and running the sample API application

The API package includes sample applications that demonstrate the API function
calls in context. Install a sample application and review the source code to
understand how you can use the function calls.

Select one of the following sample API application packages:
v The interactive, single-threaded application package (dapi*)
v The multithreaded application package (callmt*)
v The logical object grouping test application (dsmgrp*)
v The event-based retention policy sample application (callevnt)
v The deletion hold sample application (callhold)
v The data retention protection sample application (callret)
v The Tivoli Storage Manager buffer sample program (callbuff)

To help you get started, review the procedure to build the sample dapismp sample
application by your platform:
v OS/400 (see “OS/400 operating system sample application source files”)
v UNIX or Linux (see “UNIX or Linux sample application source files” on page 8)
v Windows (see “Windows 32-bit sample application” on page 10, or “Windows

64-bit sample application” on page 11)

The dapismp sample application creates its own data streams when backing up or
archiving objects. It does not read or write objects to the local disk file system. The
object name does not correspond to any file on your workstation. The “seed
string” that you issue generates a pattern that can be verified when the object is
restored or retrieved. Once you compile the sample application and run dapismp
to start it, follow the instructions that display on your screen.

OS/400 operating system sample application source files
To build and run a sample OS/400 application you need install the API and ensure
you have certain source files. You build the sample application using the QShell or
CL program.

Note:

v References to OS/400 include both OS/400 and i5/OS.
v The installation instructions for the OS/400 Tivoli Storage Manager API are

included for your convenience in “Installing the API on OS/400 or i5/OS” on
page 6. Installation instructions for other operating systems, such as Windows,
are included in the Tivoli Storage Manager Installing and Using the Backup-Archive
Client for your operating system.

The files that are listed in Table 8 include the source files and other files that you
need to build the sample application that is included with the API package.

Table 8. Files that you need to build the OS/400 API sample application

File names Description

README_api_enu README file

© Copyright IBM Corp. 1993, 2010 5

Table 8. Files that you need to build the OS/400 API sample application (continued)

File names Description

crtapismp.clp
makesmp.os400.sh

A CL program file to build dapismp for your
application.

dsmrc.h
dsmapitd.h
dsmapips.h
dsmapifp.h
release.h

Return codes header file
Common type definitions header file
Operating system-specific type definitions
header file
Function prototype header file
Release values header file

dapibkup.c
dapidata.h
dapiinit.c
dapint64.h
dapint64.c
dapipref.c
dapiproc.c
dapiproc.h

dapipw.c
dapiqry.c
dapirc.c
dapismp.c
dapitype.h
dapiutil.h
dapiutil.c

Source code files for a sample application that
demonstrates the use of the primary API functions

callmt1.c
callmt2.c
callevnt.c
callhold.c
callret.c
callbuff.c
dpsthread.c

Multi-threaded sample files
Event-based retention policy sample source code
Deletion hold sample source code
Data retention protection sample source code
Tivoli Storage Manager buffer sample source
code

Installing the API on OS/400 or i5/OS
You can run a command to install the API on OS/400 or i5/OS.

Note:

v The RSTLICPGM command includes language specific arguments. By default,
the current user's language based on the primary OS/400 language is loaded. As
languages are requested, additional languages are added as secondary languages
in OS/400.

v The OS/400 command to uninstall the API product is:
DLTLICPGM LICPGM(5733197)

Depending on your installation source, use one of the following to commands to
install the API:
v If you are installing the Tivoli Storage Manager API for OS/400 from the CD,

place the CD in the CD-ROM drive and issue the following OS/400 command
where OPT1 is the device name for the CD-ROM drive:

RSTLICPGM LICPGM(5733197) DEV(OPT1)

v If you are installing the Tivoli Storage Manager API for OS/400 from a “save
file”, issue the following OS/400 command where MYLIB/MYSAVEFILE is the
name of your save file:

RSTLICPGM LICPGM(5733197) DEV(*SAVF) SAVF(MYLIB/MYSAVEFILE) LNG(2924)

6 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Building the OS/400 sample application from the QShell
Once you install the API and have the required files for the OS/400 sample
application, you can compile the dapismp sample application with the OS/400
QShell environment.

In the QShell environment, follow these steps to compile the sample applications
and run the dapismp application:
1. To start the QShell environment, issue the command QSH from the OS/400

command line.
2. To change your directory to the API sample installation directory issue the

following command:
cd /usr/tivoli/tsm/client/api/bin/sample

3. Run the makesmp.os400.sh shell script. This shell script compiles the modules,
creates the sample application, and binds it to the API service program. The
shell script takes one optional parameter of the library in which you would like
the modules and program placed. If you do not enter a library name, the
QANSAPI library is used. For example, issue the following the command to
compile the sample API modules and create the program into library MYLIB:

makesmp.os400.sh mylib

4. After you build the sample, set up your environment variables, your
DSMI_DIR file, and your options files. For more information, see
“Understanding configuration and options files” on page 2 and Tivoli Storage
Manager Installing and Using the Backup-Archive Client for your operating system.
You can use the Work with Object Links (WRKLNK) and Edit File (EDTF)
commands to edit the options files.

5. To run the sample application issue the following command:
dapismp

The makesmp.os400.sh script creates a symbolic link from the directory to the
dapismp program.

6. Issue the dapismp command to run that same application.
7. Choose from the list of options displayed on your screen, making sure to run

the sign-on action before you run other actions.

Note: Always prefix the file space, high-level, and low-level names with the
correct path delimiter (/) when you enter them, for example: /myfilespace.
This is true even if you specify the asterisk (*) wildcard character.

Building the OS/400 sample application from the command
line

Once you install the API and have the required files for the OS/400 sample
application, you can compile the dapismp sample application from the OS/400
command line.

Follow these steps to compile and run the dapismp sample application from the
OS/400 command-line:
1. Copy the crtapismp.clp CL program source into a source file. For example, if

your source file is in library MYLIB, you would issue the following command:
CPYFRMSTMF FROMSTMF('/usr/tivoli/tsm/client/api/bin/sample/crtapismp.clp') \
TOMBR('/qsys.lib/mylib.lib/qclsrc.file/crtapismp.mbr')

2. To compile the sample application from the command line,
MYLIB/QCLSRC(CRTAPISMP), issue the command:

Chapter 2. Building and running the sample API application 7

CRTCLPGM PGM(MYLIB/CRTAPISMP) SRCFILE(MYLIB/QCLSRC)

3. To run the program that compiles the sample application modules, creates the
sample application, and binds it to the API service program, issue the
command:

CALL MYLIB/CRTAPISMP PARM(MYLIB)

Note: The library is the only required parameter in which you want to place
the modules and program.

4. After you build the sample, set up your environment variables, your
DSMI_DIR file, and your options files. For more information, see
“Understanding configuration and options files” on page 2 and Tivoli Storage
Manager Installing and Using the Backup-Archive Client for your operating system.
You can use the Work with Object Links (WRKLNK) and Edit File (EDTF)
commands to edit the options files.

5. Use the ADDENVVAR command to set the environment variables.
6. To run the dapismp sample application, issue the command:

CALL MYLIB/DAPISMP

7. Choose from the list of options displayed on your screen, making sure to run
the sign-on action before you run other actions.

Note: Always prefix the file space, high-level, and low-level names with the
correct path delimiter (/) when you enter them, for example:/myfilespace. This
is true even if you specify the asterisk (*) wildcard character.

UNIX or Linux sample application source files
To build and run the sample UNIX or Linux sample application you need to
ensure you have certain source files. Once you build the sample application you
can compile and run it.

The files that are listed in Table 9 include the source files and other files that you
need to build the sample application that is included with the API package.

Table 9. Files that you need to build the UNIX or Linux API sample application

File names Description

README_api_enu README file

dsmrc.h
dsmapitd.h
dsmapips.h
dsmapifp.h
release.h

Return codes header file
Common type definitions header file
Operating system-specific type definitions header file
Function prototype header file
Release values header file

dapibkup.c
dapidata.h
dapiinit.c
dapint64.h
dapint64.c
dapipref.c
dapiproc.c
dapiproc.h

dapipw.c
dapiqry.c
dapirc.c
dapismp.c
dapitype.h
dapiutil.h
dapiutil.c

Modules for the command line-driven sample
application

makesmp[64].xxx Makefile to build dapismp for your operating system.
The xxx indicates the operating system.

callmt1.c
callmt2.c

Multi-threaded sample files

8 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Table 9. Files that you need to build the UNIX or Linux API sample application (continued)

File names Description

callmtu1.c
callmtu2.c

Multi-threaded Unicode sample files

libApiDS.xx
libApiDS64.xx, or
libApiTSM64.xx

Shared library (the suffix is platform-dependent)

dsmgrp.c
callevnt.c
callhold.c
callret.c
callbuff.c
dpsthread.c

Grouping sample files
Event-based retention policy sample source code
Deletion hold sample source code
Data retention protection sample source code

Building the UNIX or Linux sample application
You build the dapismp sample API application using a compiler for your operating
system.

You need the following compilers to build the UNIX or Linux API sample
application:
v AIX - IBM Visual Age compiler Version 6 or higher
v HP-IA64 - aCC compiler A.05.50 or higher
v Linux - GCC compiler Version 3.3.3 or higher
v Mac OS X - GCC compiler Version 4.0 or higher
v Solaris - Sun Studio C++ compiler Version 11 or higher
v USS - OS/390® C/C++ compiler V2R8 or higher
1. To build the API samples, issue the following command (where xxx indicates

your operating system):
gmake -f makesmp[64].xxx

2. After you build the samples, set up your environment variables, including the
DSMI_DIR, and your options files. For more information, see “Understanding
configuration and options files” on page 2 and Tivoli Storage Manager Installing
and Using the Backup-Archive Client for your operating system.

3. Log on as root the first time for password registration.

Note: Setting the compressalways option to no might not resend an object
uncompressed. This behavior depends on the application functionality.

When specifying the Shared Memory communications method on AIX, the
Tivoli Storage Manager API client user must be logged in as root or have the
same uid as the process running the Tivoli Storage Manager server. This
restriction does not apply if the passwordaccess option is set to generate in the
client systems option file (dsm.sys) and the TCA is being used or if you alter
your application program file permissions using the following commands:

chown root.system your_api_program
chown u+s your_api_program

Check the application program documentation for any recommendations about
this.

4. Issue the dapismp command to run that same application.

Chapter 2. Building and running the sample API application 9

5. Choose from the list of options displayed on your screen, making sure to run
the sign-on action before you run other actions.

Note: Always prefix the file space, high-level, and low-level names with the
correct path delimiter (/) when you enter them, for example: /myfilespace.
This is true even if you specify the asterisk (*) wildcard character.

Windows 32-bit sample application
To build and run the sample Windows 32–bit application you need install the API
and ensure you have certain source files.

Note:

v For Windows applications that were built with V3.1 of the API, replace
adsmv3.dll with the new adsmv3.dll and add in tsmapi.dll. For new
applications, build with, and use the tsmapi.dll. These DLLs are 32 bit DLLs.

v We recommend that you use dynamic loading. See the implementation in the
sample code in dynaload.c.

v The api\obj directory contains the API sample program object files.
v Use the Microsoft C/C++ Compiler Version 15 and the makefile, makesmp.mak,

to compile the API sample application, dapismp. It might be necessary to adjust
the makefiles to your environment (specifically, the library or the include
directories).

v After compiling, run the sample application by issuing the command dapismp
from the api\samprun directory. The dapismp sample program contains the
execution directory.

v Choose from the list of options displayed on your screen, making sure to run the
sign-on action before you run other actions.

v Always prefix the file space, high-level, and low-level names with the correct
path delimiter (\) when you enter them, for example:\myfilespace. This is true
even if you specify the asterisk (*) wildcard character.

For Windows operating systems, the files that are listed in Table 10 include the
source files that you need to build the sample application. This sample application
is included in the API package. For convenience, a precompiled executable
(dapismp.exe) is also included.

Table 10. Files that you need to build the Windows 32–bit API sample application

File names Description

api.txt README file

tsmapi.dll
adsmv3.dll

API DLLs

dsmrc.h
dsmapitd.h
dsmapips.h
dsmapifp.h
dsmapidl.h
release.h

Return codes header file
Common type definitions header file
Operating system-specific type definitions header file
Function prototype header file
Dynamically loaded function prototype header file
Release values header file

dapidata.h
dapint64.h
dapitype.h
dapiutil.h

Source code header files

tsmapi.lib Implicit library

10 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Table 10. Files that you need to build the Windows 32–bit API sample application (continued)

File names Description

dapibkup.c
dapiinit.c
dapint64.c
dapipref.c
dapiproc.c
dapiproc.h

dapipw.c
dapiqry.c
dapirc.c
dapismp.c
dapiutil.c
dynaload.c

Source code files for dapismp.exe

makesmp.mak Make file for building sample applications

callmt1.c
callmt2.c
callmtu1.c
callmtu2.c

Multi-threaded sample file

Multi-threaded Unicode sample files

dsmgrp.c
callevnt.c
callhold.c
callret.c
callbuff.c
dpsthread.c

Grouping sample files.
Makefile to build dsmgrp for your operating system.
Event-based retention policy sample source code
Deletion hold sample source code
Data retention protection sample source code

Windows 64-bit sample application
To build and run the sample Windows 64-bit application you need install the API
and ensure you have certain source files.

Note:

v We recommend that you use dynamic loading. See dynaload.c and
implementation in the sample code.

v The API64\OBJ directory contains the API sample program object files. The
API64\SAMPRUN directory contains the sample program. The dapismp sample
program contains the execution directory.

v The DLL tsmapi64.dll is a 64-bit DLL.
v Use the Microsoft C/C++ Compiler Version 15 and the makefile,

makesmp64.mak, to compile the API sample application, dapismp. It might be
necessary to adjust the makefiles (specifically, the library or the Include
directories) to fit your environment.

v After compiling, run the sample application by issuing the command dapismp
from the api64\samprun directory.

v Choose from the list of options displayed on your screen, making sure to run the
sign-on action before you run other actions.

v Always prefix the file space, high-level, and low-level names with the correct
path delimiter (\) when you enter them, for example: \myfilespace. This is true
even if you specify the asterisk (*) wildcard character.

For Windows operating systems, the files that are listed in Table 11 include the
source files that you need to build the sample application. This sample application
is included in the API package. For your convenience, a precompiled executable
(dapismp.exe) is also included.

Table 11. Files that you need to build the Windows 64-bit API sample application

File names Description

api.txt README file

Chapter 2. Building and running the sample API application 11

Table 11. Files that you need to build the Windows 64-bit API sample
application (continued)

File names Description

tsmapi64.dll API DLLs

dsmrc.h
dsmapitd.h
dsmapips.h
dsmapifp.h
dsmapidl.h
release.h

Return codes header file
Common type definitions header file
Operating system-specific type definitions header file
Function prototype header file
Dynamically loaded function prototype header file
Release values header file

dapidata.h
dapint64.h
dapitype.h
dapiutil.h

Source code header files

tsmapi64.lib Implicit library

dapibkup.c
dapiinit.c
dapint64.c
dapipref.c
dapiproc.c
dapiproc.h
dapipw.c
dapiqry.c
dapirc.c
dapismp64.c
dapiutil.c
dynaload.c

Source code files for dapismp.exe

makesmpx64.mak
(Windows x64)
makesmp64.mak
(Windows IA64)

Makefiles to build sample applications

callmt1.c
callmt2.c
callmtu164.c
callmtu264.c

dpsthread.c

Multithreaded sample files

Sample file source code

dsmgrp.c
callevnt.c
callhold.c
callret.c
callbuff.c

Grouping sample files.
Makefile to build dsmgrp for your operating system.
Event-based retention policy sample source code
Deletion hold sample source code
Data retention protection sample source code

12 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Chapter 3. API design recommendations and considerations

Before beginning the design of an application, you need to have a broad
understanding of many aspects of the API.

You need to familiarize yourself with the following topics:
v “Determining size limits” on page 16
v “Maintaining API version control” on page 16
v “Using multithreading” on page 18
v “Using signals” on page 18
v “Starting or ending a session” on page 19
v “Object names and IDs” on page 24
v “Using passwordaccess generate without TCA” on page 23
v “Accessing objects as session owner” on page 26
v “Accessing objects across nodes and owners” on page 27
v “Managing file spaces” on page 28
v “Associating objects with management classes” on page 30
v “Expiration/deletion hold and release” on page 32
v “Querying the Tivoli Storage Manager system” on page 35
v “Sending data to a server” on page 38
v “Example flow diagrams for backup and archive” on page 53
v “File grouping” on page 57
v “Putting it all together - a summary diagram” on page 69

When you design your application, consider carefully the items in Table 12. Start
structures with memset. Fields might change with future releases. The stVersion
value increments with future product enhancements.

Table 12. Design recommendations

Design item Considerations

Setting locale It is the responsibility of the application to set the locale before calling the
API. By adding the following code to the application, the locale is set to
the default.

setlocale(LC_ALL,"");

To set the locale to another value, use the same call with the proper locale
in the second parameter. Check for specifics in the documentation for each
operating system that you are using.

© Copyright IBM Corp. 1993, 2010 13

||
|
|

|

|
|
|

Table 12. Design recommendations (continued)

Design item Considerations

Session control Understand and follow these conditions of session control:

v Make the node name unique for each Tivoli Storage Manager
backup-archive client and Tivoli Storage Manager API client product
that you use. Examples of these clients are Tivoli Storage Manager for
Mail or Tivoli Storage Manager HSM for Windows.

v The owner name should be consistent across a backup and restore
procedure.

v The passwordaccess option affects the use of the TCA child process
(UNIX and Linux only), node name, session owner name, and password
management.

v Sessions for data movement should end as soon as the task completes so
that devices on the server are freed for use by other sessions.

v To permit LAN-free data transfer, use the dsmSetup function call with
the multithread flag set to on.

v On AIX, when using multithreaded applications or LAN-free, especially
when running on machines with multiple CPUs, we strongly
recommend setting the environment variable AIXTHREAD_SCOPE to S
in the environment before starting the application, for better
performance and more solid scheduling. For example:

EXPORT AIXTHREAD_SCOPE=S

Setting AIXTHREAD_SCOPE to S means that user threads created with
default attributes are placed into system-wide contention scope. If a user
thread is created with system-wide contention scope, it is bound to a
kernel thread and it is scheduled by the kernel. The underlying kernel
thread is not shared with any other user thread. See “Using
multithreading” on page 18 for more information about this
environment variable.

v Applications that use multiple threads with the same session handle
need to synchronize the TSM API calls. No two threads in the same
session should call any API function at the same time. For example, use
a mutex to synchronize API calls:

getTSMMutex()
issue TSM API call
releaseTSMMutex()

This is only needed when the threads are sharing the same handle, you
can use parallel calls to API functions if they are using different session
handles.

v For best performance, it is recommended that your application
implements a threaded consumer/producer model for data movement,
since the API calls are synchronous and the calls for dsmGetData
function and dsmSendData function block until they are finished. By
using a consumer/producer model, the application could be reading the
next buffer while waiting for the network. Also this decoupling of data
read/write and network increases performance when there is a network
bottleneck or disk/application delays. In general:

Data thread <----> shared queue of buffers <-----> communication
thread (issue calls to the TSM API)

14 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|

Table 12. Design recommendations (continued)

Design item Considerations

Operation
sequence

The Tivoli Storage Manager server locks file space database entries during
some operations. The following rules apply when designing Tivoli Storage
Manager API applications:
v Queries lock the file space during the entire transaction.
v The query lock can be shared with other query operations, so multiple

query operations on the same file space can execute concurrently.
v Operations that make Tivoli Storage Manager server database changes

(DB Chg) are send, get, rename, update, and delete.
v Completion of a DB Chg operation requires a file space lock during the

database change at the end of the transaction.
v Multiple DB Chg operations on the same file space can execute

concurrently. There might be a delay while waiting for the lock at the
end transaction.

v The query lock cannot be shared with DB Chg operations. A DB Chg
operation delays the beginning of a query on the same file space, so
applications should separate and serialize queries from DB Chg
operations on the same file space.

Object naming
convention

When naming objects, consider the following:

v A file space is a grouping category for the server. Limit the number of
unique file spaces to help performance because several file space queries
are performed.

v The high-level and low-level object names are the specific object names.
If a unique identifier, such as a date stamp, is included in the name,
then backup objects are always active. They expire only when they are
intentionally marked inactive by the dsmDeleteObj function call.

v Consider how your application restores objects. This determines how to
format the name for easy queries. If you plan to use a partial object
restore (POR), you cannot use compression. To suppress compression,
use dsmSendObj objAttr objCompressed=bTrue.

Object
handling

Do not store objectID values to use for future restores. They are not
guaranteed to be persistent during the life of the object.

During restore, pay special attention to the restore order. After the query,
sort on this value before doing the restore. If you are using multiple types
of serial media then access them in separate sessions.

See “Selecting and sorting objects by restore order” on page 62 for more
information.

Management
class

Consider how much control the application needs to have over the
management class that is associated with its objects. You can define
include statements, or you can specify a name on the dsmSendObj
function call.

Object size Tivoli Storage Manager needs to know a size estimate for each object.
Consider how your application does this. It is better to overestimate the
size than to underestimate.

Chapter 3. API design recommendations and considerations 15

Determining size limits
Certain data structures or fields in the API have size limits. These structures are
often names or other text fields that cannot exceed a predetermined length.

Examples of fields with such limits include:
v Application type
v Archive description
v Copy group destination
v Copy group name
v File space information
v Management class name
v Object owner name
v Password

These limits are defined as constants within the header file, dsmapitd.h. Any
storage allocation should be based on these constants rather than numbers you
enter. Refer to Appendix B, “API type definitions source files,” on page 147 for
further information and a list of the current constants.

Maintaining API version control
All APIs have some form of version control, and Tivoli Storage Manager is no
exception. The API version that you use in your application must be compatible
with the version of the API library that is installed on the end user workstation.

The dsmQueryApiVersionEx should be the first API call that you enter when you
use the API. This call:
v Confirms that the API library is installed and available on the end user's system
v Returns the version level of the API library that the application accesses

The API is designed to be upwardly compatible. Applications that are written to
older versions or releases of the API library operate correctly when you run a
newer version.

Determining the release of the API library is very important because some releases
might have different memory requirements and data structure definitions.
Downward compatibility is unlikely. See Table 13 for information about your
platform.

Table 13. Platform compatibility information

Platform Description

Windows The message files must be at the same level as the library (DLL). The
Trusted Communication Agent module (dsmtca) is not used.

OS/400 The API service program (QANSAPI/QANSAPI), the Trusted
Communication Agent program (QANSAPI/DSMTCA), and the message
files must be at the same level.

UNIX or
Linux

The API library, the Trusted Communication Agent module (dsmtca), and
the message files must be at the same level.

The dsmQueryApiVersionEx call returns the version of the API library that is
installed on the end user workstation. You can then compare the returned value
with the version of the API that the application client is using.

16 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

The API version number of the application client is entered in the compiled object
code as a set of four constants defined in dsmapitd.h:

DSM_API_VERSION
DSM_API_RELEASE
DSM_API_LEVEL
DSM_API_SUB_LEVEL

See Appendix B, “API type definitions source files,” on page 147.

The API version of the application client should be less than, or equal to, the API
library that is installed on the user's system. Be careful about any other condition.
You can enter the dsmQueryApiVersionEx call at any time, whether the API
session has been started or not.

Data structures that the API uses also have version control information in them.
Structures have version information as the first field. As enhancements are made to
structures, the version number is increased. When initializing the version field, use
the defined structure Version value in dsmapitd.h.

Figure 1 demonstrates the type definition of the structure, dsmApiVersionEx from
the header file, dsmapitd.h. The example then defines a global variable that is
named apiLibVer. It also demonstrates how you can use it in a call to
dsmQueryApiVersionEx to return the version of the end user's API library. Finally,
the returned value is compared to the API version number of the application client.

typedef struct
{

dsUint16_t stVersion; /* Structure version */
dsUint16_t version; /* API version */
dsUint16_t release; /* API release */
dsUint16_t level; /* API level */
dsUint16_t subLevel; /* API sub level */

} dsmApiVersionEx;

dsmApiVersionEx apiLibVer;

memset(&apiLibVer,0x00,sizeof(dsmApiVersionEx));
dsmQueryApiVersionEx(&apiLibVer);

/* check for compatibility problems */
dsInt16_t appVersion= 0, libVersion = 0;

appVersion=(DSM_API_VERSION * 10000)+(DSM_API_RELEASE * 1000) +
(DSM_API_LEVEL * 100) + (DSM_API_SUBLEVEL);

libVersion = (apiLibVer.version * 10000) + (apiLibVer.release * 1000) +
(apiLibVer.level * 100) + (apiLibVer.subLevel);

if (libVersion < appVersion)
{

printf("\n***\n");
printf("The TSM API library is lower than the application version\n");
printf("Install the current library version.\n");
printf("***\n");
return 0;

}

printf("* API Library Version = %d.%d.%d.%d *\n",
apiLibVer.version,
apiLibVer.release,
apiLibVer.level,
apiLibVer.subLevel);

Figure 1. An example of obtaining the version level of the API

Chapter 3. API design recommendations and considerations 17

Using multithreading
The multithreaded API permits applications to create multiple sessions with the
Tivoli Storage Manager server within the same process. The API can be entered
again. Any calls can run in parallel from within different threads.

Note: When you run applications that assume a multithreaded API, use the
dsmQueryAPIVersionEx call.

To run the API in multithreaded mode, set the mtflag value to
DSM_MULTITHREAD on the dsmSetUp call. The dsmSetUp call must be the first
call after the dsmQueryAPIVersionEx call. This call must return before any thread
calls the dsmInitEx call. When all threads complete processing, enter a call to
dsmCleanUp. The primary process should not end before all the threads complete
processing. See callmt1.c in the sample application.

Restriction: The default for the API is single-thread mode. If an application does
not call dsmSetUp with the mtflag value set to DSM_MULTITHREAD, the API
permits only one session for each process.

For UNIX or Linux for versions 3.1.6 through version 4.1.2, you cannot use the
Trusted Communication Agent in multithread mode. If you want to set the
passwordaccess option to generate, you must be an -Authorized user. For version
4.2 and beyond, this is no longer true.

Once dsmSetUp successfully completes, the application can begin multiple threads
and enter multiple dsmInitEx calls. Each dsmInitEx call returns a handle for that
session. Any subsequent calls on that thread for that session must use that handle
value. Certain values are process-wide, environmental variables (values that are set
on dsmSetUp). Each dsmInitEx call parses options again. Each thread can run
with different options by specifying an overwrite file or an options string on the
dsmInitEx call. This enables different threads to go to different servers, or use
different node names.

Recommendation: On HP, set the thread stack to 64K or greater. The default value
of the thread stack (32K) might not be sufficient

To permit application users to have a LAN-free session, use dsmSetUp mtFlag
DSM_MULTITHREAD in your application. This is necessary even if the application
is single threaded. This flag activates the threading necessary for the Tivoli Storage
Manager LAN-free interface.

Using signals
The application handles signals from the user or the operating system. If the user
enters a CTRL+C, the application should catch the signal and send dsmTerminate
calls for each of the active threads. Then, call dsmCleanUp to exit. Failure to do
this might result in unexpected results on the server if sessions are not closed
properly.

Recommendation: The application should install signal handlers, such as SIGPIPE
and SIGUSR1, for signals that cause the application to end. The application then
receives the return code from the API. For example, to ignore SIGPIPE add:
signal(SIGPIPE, SIG_IGN). After adding this information, instead of the application
exiting on a broken pipe, the proper return code is returned.

18 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

You can use the child process, Trusted Communication Agent (TCA) if the
passwordaccess option is set to generate. When the TCA is used, Tivoli Storage
Manager uses the SIGCLD signal. If your application uses the SIGCLD signal, be
aware of potential interference from the Tivoli Storage Manager program and how
it uses SIGCLD. See “Session security” on page 20 for more information about
using the TCA.

Starting or ending a session
The Tivoli Storage Manager program is a session-based program, and all activities
must be performed within a Tivoli Storage Manager session. To start a session, the
application starts the dsmInitEx call. This call must be performed before any other
API call other than dsmQueryApiVersionEx, dsmQueryCliOptions, or dsmSetUp.

The dsmQueryCliOptions function can only be called before the dsmInitEx call. It
returns the values of important options, such as option files, compression settings,
and communication parameters. The dsmInitEx call sets up a session with the
server as indicated in the parameters that are passed in the call or defined in the
options files.

The client node name, the owner name, and the password parameters are passed
to the dsmInitEx call. The owner name is case-sensitive, but the node name and
password are not. The application client nodes must be registered with the server
before starting a session.

Each time an API application client starts a session with the server, the client
application type is registered with the server. We recommend that the application
type value contain an operating system abbreviation because this value is entered
in the “platform” field on the server. The maximum string length is
DSM_MAX_PLATFORM_LENGTH.

The dsmInitEx function call establishes the Tivoli Storage Manager session with
the API configuration file and option list of the application client. The application
client can use the API configuration file and option list to set a number of Tivoli
Storage Manager options. These values override the values that are set in the user's
configuration files at installation time. They cannot change the options that the
Tivoli Storage Manager administrator defines. If the application client does not
have its own configuration file and option list, you can set both of these
parameters to NULL. For more information about configuration files, see
“Understanding configuration and options files” on page 2.

The dsmInitEx function call establishes the Tivoli Storage Manager session, using
additional parameters that permit extended verification.

Check the dsmInitEx function call and the dsmInitExOut information return code.
The Tivoli Storage Manager administrator cancelled the last session if the return
code is okay (RC=ok) and the information return code (infoRC) is
DSM_RC_REJECT_LASTSESS_CANCELED. To end the current session
immediately, call dsmTerminate.

The dsmQuerySessOptions call returns the same fields as the
dsmQueryCliOptions call. It can be sent only within a session. The values reflect
the client options that are valid during that session, from option files, and from
any overrides from the dsmInitEx call.

Chapter 3. API design recommendations and considerations 19

Once a session starts, the application can send a call to dsmQuerySessInfo to
determine the server parameters that are set for this session. Items such as the
policy domain and transaction limits are returned to the application with this call.

End sessions with a dsmTerminate call. This closes any connection with the server
and frees all resources that are associated with this session.

The example in Figure 2 on page 22 defines a number of global and local variables
and then uses them in calls to dsmInitEx and dsmTerminate. The dsmInitEx call
takes a pointer to dsmHandle for one of its parameters, while the dsmTerminate
call takes the dsmHandle itself. The example in Figure 3 on page 22 displays the
details of rcApiOut. The function, rcApiOut, calls the API function dsmRCMsg,
that translates a return code into a message. The rcApiOut call then prints the
message for the user. A version of rcApiOut is included in the API sample
application. The dsmApiVersion function is a type definition that is found in the
header file, dsmapitd.h.

Session security
Tivoli Storage Manager, a session-based system, has security components that
permit applications to start sessions in a secure manner. These security measures
prohibit unauthorized access to the server and help to insure system integrity.

Every session that is started with the server must complete a sign-on process,
requires a password. When the password is coupled with the node name of the
client, it insures proper authorization when connecting to the server. The
application client provides this password to the API to start the session.

Two methods of password processing are available: passwordaccess=prompt or
passwordaccess=generate. If you use the passwordaccess=prompt option, you must
include the password value on each dsmInitEx call. Or, you can supply the node
name and owner name on the dsmInitEx call.

Passwords have expiration times associated with them. If a dsmInitEx call fails
with a password-expired return code (DSM_RC_REJECT_VERIFIER_EXPIRED), the
application client must enter the dsmChangePW call using the handle that is
returned by dsmInitEx. This updates the password before the session can be
established successfully. The example in Figure 4 on page 23 demonstrates the
procedure to change a password by using dsmChangePW. The login owner must
be root or Tivoli Storage Manager-Authorized to change the password.

The second method, passwordaccess=generate, encrypts and stores the password
value in a file. The node name and owner name cannot be supplied on the
dsmInitEx call, and the system default values are used. This protects the security
of the password file. When the password expires, the generate parameter creates a
new one and updates the password file automatically.

Note:

1. If two different physical machines have the same Tivoli Storage Manager node
name or multiple paths are defined on one node using several server stanzas,
passwordaccess=generate might only work for the stanza which is used first after
password expiration. During the first client-server contact, the user is prompted
for the same password for each server stanza separately, and for each stanza, a
copy of the password is stored separately. When the password expires, a new
password is generated for the stanza which connects the first client-server
contact. All subsequent attempts to connect via other server stanzas fail,

20 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

because there is no logical link between their respective copies of the old
password, and the updated copy generated by the stanza used first after
password expiration. In this case, you must update the passwords prior to
expiration or after expiration as a recovery from the situation, as follows:
a. Run dsmadmc and update the password on the server.
b. Run dsmc -servername=stanza1 and use the new password to generate a

proper entry.
c. Run dsmc -servername=stanza2 and use the new password to generate a

proper entry.
2. For UNIX or Linux: Only the root user or the Tivoli Storage

Manager-Authorized user can change the password when using
passwordaccess=prompt. Only the root user or the Tivoli Storage
Manager-Authorized user can start the password file when using
passwordaccess=generate. You can use the Trusted Communication Agent (TCA)
child process for password processing. The application should be aware of this
because a child process and the SIGCLD signal are used. The TCA is not used
in these situations:
v The passwordaccess option is set to prompt.
v The login user is root.
v The caller of the function must be a Tivoli Storage Manager-Authorized user.

Note: The options users and groups are not recognized.

An application can restrict user access by other means, such as setting access
filters.

Applications that use multiple IP connections to a single Tivoli Storage Manager
server should use the same nodename and Tivoli Storage Manager client password
for each session. Follow these steps to enable this support:
1. Define one Tivoli Storage Manager server stanza in the dsm.sys file.
2. For the connections not using the default IP address, specify the option values

for TCPserver address and TCPport on the dsmInitEx call.

These values override the IP connection information, but the session still uses the
same dsm.sys stanza node and password information.

Note: Nodes in a cluster share a single password.

Chapter 3. API design recommendations and considerations 21

dsmApiVersionEx * apiApplVer;
char *node;
char *owner;
char *pw;
char *confFile = NULL;
char *options = NULL;
dsInt16_t rc = 0;
dsUint32_t dsmHandle;
dsmInitExIn_t initIn;
dsmInitExOut_t initOut;
char *userName;
char *userNamePswd;

memset(&initIn, 0x00, sizeof(dsmInitExIn_t));
memset(&initOut, 0x00, sizeof(dsmInitExOut_t));
memset(&apiApplVer,0x00,sizeof(dsmapiVersionEx));
apiApplVer.version = DSM_API_VERSION; /* Set the applications compile */
apiApplVer.release = DSM_API_RELEASE; /* time version. */
apiApplVer.level = DSM_API_LEVEL;
apiApplVer.subLevel= DSM_API_SUBLEVEL;

printf("Doing signon for node %s, owner %s, with password %s\n", node,owner,pw);

initIn.stVersion = dsmInitExInVersion;
initIn.dsmApiVersionP = &apiApplVer
initIn.clientNodeNameP = node;
initIn.clientOwnerNameP = owner ;
initIn.clientPasswordP = pw;
initIn.applicationTypeP = "Sample-API AIX";
initIn.configfile = confFile;
initIn.options = options;
initIn.userNameP = userName;
initIn.userPasswordP = userNamePswd;
rc = dsmInitEx(&dsmHandle, &initIn, &initOut);

if (rc == DSM_RC_REJECT_VERIFIER_EXPIRED)
{

printf("*** Password expired. Select Change Password.\n");
return(rc);

}
else if (rc)
{

printf("*** Init failed: ");
rcApiOut(dsmHandle, rc); /* Call function to print error message */
dsmTerminate(dsmHandle); /* clean up memory blocks */
return(rc);

}

Figure 2. An example of starting and ending a session

void rcApiOut (dsUint32_t handle, dsInt16_t rc)
{

char *msgBuf ;

if ((msgBuf = (char *)malloc(DSM_MAX_RC_MSG_LENGTH+1)) == NULL)
{

printf("Abort: Not enough memory.\n") ;
exit(1) ;

}

dsmRCMsg(handle, rc, msgBuf);
printf("
free(msgBuf) ;
return;

}

Figure 3. Details of rcApiOut

22 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Using passwordaccess generate without TCA
The Trusted Communication Agent (TCA) is a child process that normally controls
access to the protected password file. It is possible to have the passwordaccess
option set to generate work without starting the TCA by using the TSM-Authorized
User (for UNIX and Linux).

Note: For version 3.1.6 through version 4.1.2, when you are running in a
multithreaded mode and the passwordaccess is set to generate, only the root, or
TSM-Authorized user, is permitted access. The TCA child process does not start.

Follow these guidelines when setting the passwordaccess to generate without the
TCA:
1. Write the application with a call to dsmSetUp which passes argv[0]. The argv[0]

contains the name of the application that calls the API. We permit the
application to run as TSM-Authorized; however, the Tivoli Storage Manager
administrator should decide on the login name for the TSM-Authorized user.

2. Set the S bit (set the effective user ID) to On for the application executable. The
owner of that application executable can then become a TSM-Authorized user
and can create a password file, update passwords, and run applications. The
owner of the application executable must be the same as the user ID that runs
the program. In the following example, User is user1, the name of the
application executable is applA, and user1 has read-write permissions on the
/home/user1 directory. The permissions on applA are:
-rwsr-xr-x user1 group1 applA

On OS/400, since there is no S bit, set the application program to run under
owner authority so the application owner can become a TSM-Authorized user.
To set this, use the USRPRF(*OWNER) option of the CRTPGM (create
program) or the CHGPGM (change program) commands.

3. Instruct the users of the application to use the TSM-Authorized name to log in.
Tivoli Storage Manager verifies that the login ID matches the application
executable owner before it permits access to the protected password file.

4. Set the passworddir option in the dsm.sys file to point to a directory where this
user has read-write access. For example, under the server stanza in dsm.sys,
you would enter:

passworddir /home/user1

printf("Enter your current password:");
gets(current_pw);
printf("Enter your new password:");
gets(new_pw1);
printf("Enter your new password again:");
gets(new_pw2);
/* If new password entries don't match, try again or exit. */
/* If they do match, call dsmChangePW. */

rc = dsmChangePW(dsmHandle,current_pw,new_pw1);
if (rc)
{

printf("*** Password change failed. Rc =
}
else
{

printf("*** Your new password has been accepted and updated.\n");
}
return 0;

Figure 4. An example of changing a password

Chapter 3. API design recommendations and considerations 23

5. Create the password file and ensure that the TSM-Authorized user owns the
file.

6. Run applA logged on as user1.
7. Call dsmSetUp and pass in argv.

Creating an administrative user with client owner authority
An administrative user with client owner authority can set parameters on the
dsmInitEx function call to start sessions. This user can function as an
“administrative user” with backup and restore authority for the defined nodes.

To receive client owner authority, issue the following commands:
1. Define the administrative user:

REGister Admin admin_name password

Where admin_name is the administrative user name and password is the admin
password.

2. Define the authority level. Users with system or policy authority also have
client owner authority.
Grant Authority admin_name classes authority node

Where admin_name is the administrative user, classes is the node, authority is the
owner (full backup and restore authority for the node), node (single node) or
domain (group of nodes).

3. Define access to a single node.
Register Node node_name password userid

Where node_name is the client user node, password is the client user node
password, and userid is the administrative user name.

When the application uses the administrative user, it calls the dsmInitEx function
call with the userName and userNamePswd parameters.

dsmInitEx
clientNodeName = NULL
clientOwnerName = NULL
clientPassword = NULL
userName = 'administrative user' name
userNamePswd = 'administrative user' password

You can set the passwordaccess option to generate or prompt. With either parameter,
the userNamePswd value starts the session. Once the session starts, any backup or
restore process can occur for that node.

Object names and IDs
The Tivoli Storage Manager server is an object storage server whose primary
function is to efficiently store and retrieve named objects. The object ID is unique
for each object and remains with the object for the life of the object except when
you use export or import.

To meet this requirement Tivoli Storage Manager has two main storage areas,
database and data storage.
v The database contains all metadata, such as the name or attributes associated

with objects.

24 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

v The data storage contains the object data. The data storage is actually a storage
hierarchy that the system administrator defines. Data are efficiently stored and
managed on either online or offline media, depending on cost and access needs.

Each object that is stored on the server has a name associated with it. The client
controls the following key components of that name:
v File space name
v High-level name
v Low-level name
v Object type

When making decisions about naming objects for an application, you might need
to use an external name for the full object names to the end user. Specifically, the
end user might need to specify the object in an Include or Exclude statement when
the application is run. The exact syntax of the object name in these statements is
platform-dependent. On the Windows operating system, the drive letter associated
with the file space rather than the file space name itself is used in the Include or
Exclude statement. On the OS/400 operating system, the first character of the
low-level name must be a forward slash (/).

The object ID value that was assigned when you created the object might not be
the same as when you perform a restore process. Applications should save the
object name and then query to obtain the current object ID before doing a restore.

File space name
The file space name is one of the most important storage components. It can be the
name of a file system, disk drive, or any other high-level qualifier that groups
related data together.

Tivoli Storage Manager uses the file space to identify the file system or disk drive
on which the data are located. In this way, actions can be performed on all entities
within a file space, such as querying all objects within a specified file space.
Because the file space is such an important component of the Tivoli Storage
Manager naming convention, Tivoli Storage Manager has special calls to register,
update, query, and delete file spaces.

The server also has administrative commands to query the file spaces on any node
in Tivoli Storage Manager storage, and delete them if necessary. All data stored by
the application client must have a file space name associated with it. Select the
name carefully to group similar data together in the system.

To avoid possible interference, an application client should select different file
space names from those that a backup-archive client would use. The application
client should publish its file space names so that end users can identify the objects
for include-exclude statements, if necessary.

Note: On Windows platforms, a drive letter is associated with a file space. When
you register or update a file space, you must supply the drive letter. Because the
include-exclude list refers to the drive letter, you must keep track of each letter and
its associated file space. In the sample program dapismp, the drive letter is set to
"G" by default.

See Chapter 2, “Building and running the sample API application,” on page 5 for
more information on the sample programs.

Chapter 3. API design recommendations and considerations 25

High-level and low-level names
Two other components of the object name are the high-level name qualifier and the
low-level name qualifier. The high-level name qualifier is the directory path in
which the object belongs, and the low-level name qualifier is the actual name of
the object in that directory path.

When the file space name, high-level name, and low-level name are concatenated,
they must form a syntactically correct name on the operating system on which the
client runs. It is not necessary for the name to exist as an object on the system or
resemble the actual data on the local file system. However, the name must meet
the standard naming rules to be properly processed by the dsmBindMC calls. See
“Understanding backup and archive objects” on page 41 for naming considerations
that are related to policy management.

Object type
The object type identifies the object as either a file or a directory. A file is an object
that contains both attributes and binary data, and a directory is an object that
contains only attributes.

Table 14 shows what the application client would code is for object names by
platform.

Table 14. Application object name examples by platform

Platform Client code for object name

UNIX or Linux /myfs/highlev/lowlev

Windows "myvol\\highlev\\lowlev"
Note: On a Windows platform, a double backslash translates into a
single backslash, because a backslash is the escape character. File space
names start with a slash on the UNIX or Linux platform, but do not
start with a slash on the Windows platform.

OS/400 myfs/highlev/lowlev

Accessing objects as session owner
Each object has an owner name associated with it. The rules determining what
objects are accessed depend on what owner name is used when a session is
started. Use this session owner value to control access to the object.

The session owner is set during the call to dsmInitEx in the clientOwnerNameP
parameter. If you start a session with dsmInitEx owner name of NULL and you
use passwordaccess=prompt, that session owner is handled with session (root or
TSM-Authorized) authority. This is also true if you log in with a root ID or TSM
authorized ID and you use passwordaccess= generate. This session can perform any
action on any object that is owned by this node regardless of the actual owner of
that object.

If a session is started with a specific owner name, the session can only perform
actions on objects that have that object owner name associated with them. Backups
or archives into the system all must have this owner name associated with them.
Any queries performed return only the values that have this owner name
associated with them. The object owner value is set during the dsmSendObj call in

26 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

the Owner field of the ObjAttr structure. An owner name is case-sensitive.
Table 15 summarizes the conditions under which a user has access to an object.

Table 15. Summary of user access to objects

Session owner Object owner User access

NULL (root, system owner) “ ” (empty string) Yes

NULL Specific name Yes

Specific name “ ” (empty string) No

Specific name Same name Yes

Specific name Different name No

Accessing objects across nodes and owners
Three function calls support cross-node, cross-owner access on the same platform:
dsmSetAccess, dsmDeleteAccess, and dsmQueryAccess. These functions, along
with the -fromnode and -fromowner string options that are passed on dsmInitEx,
permit a complete cross-node query, restore and retrieve process through the API.

For example, User A on node A uses the dsmSetAccess function call to give access
to its backups under the /db file space to User B from Node B. The access rule is
displayed as:

ID Type Node User Path

1 Backup Node B User B /db/*/*

When User B logs on at Node B, the option string to dsmInitEx is:
-fromnode=nodeA -fromowner=userA

These options are set for this session. Any queries access the file spaces, and files
of Node A. Backups and archives are not permitted. Only query, restore, and
retrieve processes are permitted from the file spaces for which User B has access. If
the application tries to execute any operation using a dsmBeginTxn (for examples,
backup or update) while signed in with a -fromnode or -fromowner option set, then
the dsmBeginTxn fails with the return code
DSM_RC_ABORT_NODE_NOT_AUTHORIZED. See the individual function calls
and “dsmInitEx” on page 105 for more information.

Note: On UNIX and Linux you can specify –fromowner=root in the option string
that is passed on the dsmInitEx function call. This permits non-root users access to
files that the root owns if a set access was performed.

Use the asnodename option on the dsmInitEx option string with the appropriate
function to back up, archive, restore, retrieve, query or delete data under the target
node name on the Tivoli Storage Manager server. See “Backing up multiple nodes
with client node proxy support” on page 73 for information on enabling this
option.

Chapter 3. API design recommendations and considerations 27

Managing file spaces
Because the file space is so important to the operation of the system, a separate set
of calls is used to register, update, and delete file space identifiers. Before you can
store any objects that are associated with a file space on the system, you must first
register the file space with Tivoli Storage Manager.

Use the dsmRegisterFS call to accomplish this task. See “Object names and IDs”
on page 24 for more information.

The file space identifier is the top-level qualifier in a three-part name hierarchy.
Grouping related data together within a file space makes management of that data
much easier. For example, either the application client or the Tivoli Storage
Manager server administrator can delete a file space and all the objects within that
file space.

File spaces also permit the application client to provide information about the file
space to the server that the Tivoli Storage Manager administrator can then query.
This information is returned on the query in the qryRespFSData structure and
includes:

Type Definition

fstype The file space type. This field is a character string that the
application client sets.

fsAttr[platform].fsInfo A client information field used for client-specific data.

capacity The total amount of space in the file space.

occupancy The amount of space currently occupied in the file space.

backStartDate The time stamp when the latest backup started (set by sending a
dsmUpdateFS call).

backCompleteDate The time stamp when the latest backup completed (set by sending
a dsmUpdateFS call).

Using capacity and occupancy depends on the application client. Some applications
might not need information about the size of the file space, in which case these
fields can default to 0. See “Querying the Tivoli Storage Manager system” on page
35 for more information about querying file spaces.

After a file space is registered with the system, you can back up or archive objects
at any time. We recommend that you call dsmUpdateFS to update the occupancy
and the capacity fields of the file space after a backup or archive operation. This
ensures that the values for the occupancy and capacity of the file system are
current. You can also update the fsinfo, backupstart, and backupcomplete fields.

If you want to monitor your last backup dates, enter a dsmUpdateFS call before
starting your backup. Set the update action to DSM_FSUPD_BACKSTARTDATE.
This forces the server to set the backStartDate field of the file space to the current
time. After the backup is complete for that file space, enter a dsmUpdateFS call
with the update action that is set to DSM_FSUPD_BACKCOMPLETEDATE. This
creates a time stamp on the end of the backup.

If a file space is no longer needed, you can delete it with the dsmDeleteFS
command. On the UNIX or Linux platform, only the root user or TSM-Authorized
user can delete file spaces.

28 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

The examples in Figure 5 demonstrate how to use the three file space calls for
UNIX or Linux. For an example of how to use the three file space calls for
Windows, see the sample program code installed on your system.

/* Register the file space if it has not already been done. */

dsInt16 rc;
regFSData fsData;
char fsName[DSM_MAX_FSNAME_LENGTH];
char smpAPI[] = "Sample-API";

strcpy(fsName,"/home/tallan/text");
memset(&fsData,0x00,sizeof(fsData));
fsData.stVersion = regFSDataVersion;
fsData.fsName = fsName;
fsData.fsType = smpAPI;
strcpy(fsData.fsAttr.unixFSAttr.fsInfo,"Sample API FS Info");
fsData.fsAttr.unixFSAttr.fsInfoLength =

strlen(fsData.fsAttr.unixFSAttr.fsInfo) + 1;
fsData.occupancy.hi=0;
fsData.occupancy.lo=100;
fsData.capacity.hi=0;
fsData.capacity.lo=300;

rc = dsmRegisterFS(dsmHandle,fsData);
if (rc == DSM_RC_FS_ALREADY_REGED) rc = DSM_RC_OK; /* already done */
if (rc)
{

printf("Filespace registration failed: ");
rcApiOut(dsmHandle, rc);
free(bkup_buff);
return (RC_SESSION_FAILED);

}

Figure 5. An example of working with file spaces, Part 1

/* Update the file space. */

dsmFSUpd updFilespace; /* for update FS */

updFilespace.stVersion = dsmFSUpdVersion;
updFilespace.fsType = 0; /* no change */
updFilespace.occupancy.hi = 0;
updFilespace.occupancy.lo = 50;
updFilespace.capacity.hi = 0;
updFilespace.capacity.lo = 200;
strcpy(updFilespace.fsAttr.unixFSAttr.fsInfo,

"My update for filespace") ;
updFilespace.fsAttr.unixFSAttr.fsInfoLength =

strlen(updFilespace.fsAttr.unixFSAttr.fsInfo);

updAction = DSM_FSUPD_FSINFO |
DSM_FSUPD_OCCUPANCY |
DSM_FSUPD_CAPACITY;

rc = dsmUpdateFS (handle,fsName,&updFilespace,updAction);
printf("dsmUpdateFS rc=%d\n", rc);

Figure 6. An example of working with file spaces, Part 2

Chapter 3. API design recommendations and considerations 29

Associating objects with management classes
A primary feature of Tivoli Storage Manager is the use of policies (management
classes) to define how objects are stored and managed in Tivoli Storage Manager
storage. An object is associated with a management class when the object is backed
up or archived.

This management class determines:
v How many versions of the object are kept if backed up
v How long to keep archive copies
v Where to insert the object in the storage hierarchy on the server

Management classes consist of both backup copy groups and archive copy groups.
A copy group is a set of attributes that define the management policies for an
object that is being backed up or archived. If a backup operation is being
performed, the attributes in the backup copy group apply. If an archive operation
is being performed, the attributes in the archive copy group apply.

The backup or archive copy group in a particular management class can be empty
or NULL. If an object is bound to the NULL backup copy group, that object cannot
be backed up. If an object is bound to the NULL archive copy group, the object
cannot be archived.

Because the use of policy is a very important component of Tivoli Storage
Manager, the API requires that all objects sent to the server are first assigned a
management class by using the dsmBindMC call. The Tivoli Storage Manager
product supports using an include-exclude list to affect management class binding.
The dsmBindMC call uses the current Include-Exclude list to perform management
class binding.

Include statements can associate a specific management class with a backup or
archive object. Exclude statements can prevent objects from being backed up but
not from being archived. For more information, see Tivoli Storage Manager
Installation and Using Guide for your operating system.

The API requires that dsmBindMC is called before you back up or archive an
object. The dsmBindMC call returns a mcBindKey structure that contains
information on management class and copy groups that are associated with the
object. Check the copy group destination before proceeding with a send. When you
send multiple objects in a single transaction, they must have the same copy group
destination. The dsmBindMC function call returns the following information:

/* Delete the file space. */

printf("\nDeleting file space
rc = dsmDeleteFS (dsmHandle,fsName,DSM_REPOS_ALL);
if (rc)
{

printf(" FAILED!!! ");
rcApiOut(dsmHandle, rc);

}
else printf(" OK!\n");

Figure 7. An example of working with file spaces, Part 3

30 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Table 16. Information returned on the dsmBindMC call

Information Description

Management Class The name of the management class that was bound to the object. The application client can
send the dsmBeginQuery call to determine all attributes of this management class.

Backup Copy Group Informs you if a backup copy group exists for this management class. If a backup
operation is being performed and a backup copy group does not exist, this object cannot
be sent to Tivoli Storage Manager storage. You receive an error code if you attempted to
send it using the dsmSendObj call.

Backup Copy
Destination

This field identifies the Tivoli Storage Manager storage pool to which the data is sent. If
you are performing a multiple object backup transaction, all copy destinations within that
transaction must be the same. If an object has a different copy destination than previous
objects in the transaction, end the current transaction and begin a new transaction before
you can send the object. You receive an error code if you attempt to send objects to
different copy destinations within the same transaction.

Archive Copy Group Informs you if an archive copy group exists for this management class. If an archive
operation is being performed and an archive copy group does not exist, this object cannot
be sent to Tivoli Storage Manager storage. You receive an error code if you attempted to
send it using the dsmSendObj call.

Archive Copy
Destination

This field identifies the Tivoli Storage Manager storage pool to which the data are sent. If
you are performing a multiple object archive transaction, all copy destinations within that
transaction must be the same. If an object has a different copy destination than previous
objects in the transaction, end the current transaction and begin a new transaction before
you send the object. You receive an error code if you attempt to send objects to different
copy destinations within the same transaction.

Backup copies of an object can be rebound to a different management class if a
subsequent back up with the same object name is done that uses a management
class different than the original. For example, if you back up ObjectA and bind it to
Mgmtclass1, and later you back up ObjectA and bind it to Mgmtclass2, the most
current backup rebinds any inactive copies to Mgmtclass2. The parameters defined
in Mgmtclass2 would now control all copies. However the data does not move if
the destination is different.

You can also rebind backup copies to a different management class using the
dsmUpdateObj or dsmUpdateObjEx call with the DSM_BACKUPD_MC action.

Query management classes
Applications can query management classes to determine what management
classes are possible for a given node and to determine what the attributes are
within the management class.

You can only bind objects to management classes by using the dsmBindMC call.
You might want your applications to query the management class attributes and
display them to end users. See “Querying the Tivoli Storage Manager system” on
page 35 for more information.

In the example in Figure 8 on page 32, a switch statement is used to distinguish
between backup and archive operations when calling dsmBindMC. The
information returned from this call is stored in the MCBindKey structure.

Chapter 3. API design recommendations and considerations 31

Expiration/deletion hold and release
You can suspend (hold) deletion and expiration of specific archive objects in
response to a pending or ongoing action that requires that particular data be held.
In the event an action is initiated that might require access to data, that data must
be available until the action is concluded and access to the data is no longer
required as part of that process. Upon determination the suspension is no longer
required (released), normal deletion and expiration timing resumes per the original
retention period.

Prerequisites:

Verify the server license by issuing a test dsmRetentionEvent call:
1. Query for one object you want to hold and get the ID.
2. Issue the dsmBeginTxn, dsmRetentionEvent with Hold, and dsmEndTxn.
3. If the server is not licensed, you receive a vote of abort with reason code

DSM_RC_ABORT_LICENSE_VIOLATION.

Note:
1. You cannot issue more than one dsmRetentionEvent call in a single transaction.
2. You cannot issue a hold on an object that is already under hold.

To hold objects follow these steps:

1. Query the server for all the objects that you want to place under hold. Get the
object ID for each object.

2. Issue a dsmBeginTxn call, then issue a dsmRetentionEvent call with the list of
objects, followed by a dsmEventType: eventHoldObj call. If the number of
objects exceeds the value of maxObjPerTxn, use multiple transactions.

3. Use the qryRespArchiveData response on the dsmGetNextQObj function call
to confirm if the objects were put under hold (look at the value of objHeld in
qryRespArchiveData).

dsUint16_t send_type;
dsUint32_t dsmHandle;
dsmObjName objName; /* structure containing the object name */
mcBindKey MCBindKey; /* management class information */
char *dest; /* save destination value */

switch (send_type)
{

case (Backup_Send) :
rc = dsmBindMC(dsmHandle,&objName,stBackup,&MCBindKey);
dest = MCBindKey.backup_copy_dest;
break;

case (Archive_Send) :
rc = dsmBindMC(dsmHandle,&objName,stArchive,&MCBindKey);
dest = MCBindKey.archive_copy_dest;
break;

default : ;
}

if (rc)
{

printf("*** dsmBindMC failed: ");
rcApiOut(dsmHandle, rc);
rc = (RC_SESSION_FAILED);
return;

}

Figure 8. An example of associating a management class with an object

32 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

To release objects from hold:

1. Query the server for all the objects that you want to release from hold. Get the
object ID for each object.

2. Issue a dsmBeginTxn call, then issue a dsmRetentionEvent call with the list of
objects, followed by a dsmEventType: eventReleaseObj call. If the number of
objects exceeds the value of maxObjPerTxn, use multiple transactions.

3. Use the qryRespArchiveData response on the dsmGetNextQObj function call to
confirm if the objects were released from hold (look at the value of objHeld in
qryRespArchiveData).

Archive data retention protection
Tivoli Storage Manager currently prevents the modification of data under Tivoli
Storage Manager control and the deletion of archive objects by unauthorized
agents (individual or program). This protection extends to preventing the deletion
of data by any agent prior to the expiration of the retention period.

This helps assure that no individual or program can maliciously or accidentally
delete data under Tivoli Storage Manager control. An archive object that is sent to
an archive retention protection server is protected from accidental deletes and has
its retention period enforced.

To set up archive data retention protection, perform the following steps:
1. On a new server installation (no previous data) issue the SET

ARCHIVERETENTIONPROTECTION ON command.
2. In the API option string on the dsmInit or dsmInitEx function calls, enter:

-ENABLEARCHIVERETENTIONPROTECTION=yes

You can also set the enablearchiveretentionprotection option in your dsm.opt file
on non-UNIX systems or in your dsm.sys file on UNIX systems:

SERVERNAME srvr1.ret
TCPPORT 1500
TCPSERVERADDRESS node.domain.company.com
COMMMETHOD TCPIP
ENABLEARCHIVERETENTIONPROTECTION YES

See “The enablearchiveretentionprotection option” on page 34 for more
information about this option.

3. Issue a query to the server to confirm if the Tivoli Storage Manager server is
enabled for archive retention protection. Check the value of the
archiveRetentionProtection field in the dsmQuerySessInfo structure.

Note:

v Only archive operations are allowed on a retention protection server.
v Any object that is not bound explicitly to a management class through a value in

the dsmBindMc function call or through include-exclude statements is bound to
the explicit name of the default management class. For example, if the default
management class in the node's policy is MC1, after a bind that would have
resulted in a bind to DEFAULT, the object is instead bound explicitly to MC1.
On a query response, the object displays as bound to MC1.

v After you enable archive data retention protection, any attempt to delete an
object before it is due to expire returns the abort code
DSM_RC_ABORT_DELETE_NOT_ALLOWED on the end transaction.

Chapter 3. API design recommendations and considerations 33

v See the appropriate Tivoli Storage Manager server Administrator's Reference for
setting retention protection for an archive object.

The enablearchiveretentionprotection option
The enablearchiveretentionprotection option specifies whether to enable data
retention protection for archive objects on a Tivoli Storage Manager server
dedicated for this purpose. Your Tivoli Storage Manager server administrator must
activate data retention protection on a new Tivoli Storage Manager server that does
not already have stored objects (backup, archive, or space-managed). If the API
application attempts to store a backup version or space-managed object on the
server, an error message is issued.

Note: This option is valid for API applications only. The backup-archive client
does not support data retention protection for archive objects to a Tivoli Storage
Manager retention protection server.

The note in Chapter 3, “API design recommendations and considerations,” on page
13 that states "Do not store objectID values to use for future restores. They are not
guaranteed to be persistent during the life of the object." can be relaxed for Archive
manager applications since the archive-manager server does not support export or
import. Archive-manager applications can save and use the objectID to improve
the performance during object restore.

If the Tivoli Storage Manager server issues the SET
ARCHIVERETENTIONPROTECTION ON command, you cannot delete an
archived object from the server using the delete filespace command, until the
policy parameters of the archive copy group are satisfied. See the appropriate
Tivoli Storage Manager server Administrator's Reference for information on how to
set up a management class.

Event-based retention policy
Event-based retention policy provides a mechanism whereby retention time for an
archive object can be initiated by the occurrence of a business event, such as the
closure of a bank account. This more closely aligns Tivoli Storage Manager's data
retention policy with business requirements for data. When the event occurs it is
expected that the application sends an eventRetentionActivate event on that object
to the server to initiate the retention.

To use an event-based retention policy, perform the following steps:
1. On the server, create a management class with an archive copygroup of type

EVENT (See the appropriate Tivoli Storage Manager server Administrator's
Reference).

2. Query the management class to confirm if it is event-based (the retainInit field
in the archDetailCG structure should be ARCH_RETINIT_EVENT).

3. Bind the objects to the event-based management class using include, archmc, or
explicitly through the mcNameP attribute in the ObjAttr structure on the
dsmSendObj function call.

4. At the point that you want to start the retention for the object(s) (i.e., the event
has occurred), query the server for all the objects affected, check to see if they
are in a PENDING state, and get the object IDs. The qryRespArchiveData
structure retentionInitiated field should indicate
DSM_ARCH_RETINIT_PENDING

5. Issue a dsmBeginTxn call, then issue a dsmRetentionEvent call with the list of
objects, followed by a dsmEventType:eventRetentionActivate call. If the number
of objects exceeds the value of maxObjPerTxn, use multiple transactions.

34 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

6. Query the objects to confirm if the retention has been activated. The
qryRespArchiveData structure, the retentionInitiated field should have the
value of DSM_ARCH_RETINIT_STARTED.

Note: Only one dsmRetentionEvent call is allowed per transaction.

Querying the Tivoli Storage Manager system
The API has several queries, such as management class query, that applications can
use.

All queries that use dsmBeginQuery call follow these steps:
1. Send the dsmBeginQuery call with the appropriate query type:

v Backup
v Archive
v Active backed-up objects
v File space
v Management class

The dsmBeginQuery call informs the API of the data format being returned
from the server. The appropriate fields can be placed in the data structures that
are passed by the dsmGetNextQObj calls. The begin query call also permits
the application client to set the scope of the query by properly specifying the
parameters on the begin query call.

Note: On the UNIX or Linux platform, only the root user can query active
backed-up objects (also known as "fast path").

2. Enter the dsmGetNextQObj call to obtain each record from the query. This call
passes a buffer that is large enough to hold the data that is returned from the
query. Each query type has a corresponding data structure for the data
returned. For example, a backup query type has an associated
qryRespBackupData structure that is filled in when the dsmGetNextQObj call
is sent.

3. The dsmGetNextQObj call usually returns one of the following codes:
v DSM_RC_MORE_DATA. Send the dsmGetNextQObj call again.
v DSM_RC_FINISHED. There is no more data. Send the dsmEndQuery call.

4. Send the dsmEndQuery call. When all query data are retrieved or additional
query data are not needed, enter the dsmEndQuery call to end the query
process. This causes the API to flush any remaining data from the query stream
and release any resources that were used for the query.

Figure 9 on page 36 displays the state diagram for performing query operations.

Chapter 3. API design recommendations and considerations 35

Figure 10 displays the flowchart for performing query operations.

Example of querying the system
In this example a management class query prints out the values of all the fields in
the backup and archive copy groups for a particular management class.

In Query

dsmBeginQuery dsmEndQuery

dsmGetNextQObj

Figure 9. State diagram for general queries

Start

Yes

More
objects?

dsmBeginQuery

dsmEndQuery

dsmGetNextQObj

No

Figure 10. Flowchart for general queries

36 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Server efficiency
Use these guidelines when you retrieve from, or send objects to, the Tivoli Storage
Manager server.
v When you retrieve objects from the Tivoli Storage Manager server, follow these

guidelines:

dsInt16 rc;
qryMCData qMCData;
DataBlk qData;
qryRespMCDetailData qRespMCData, *mcResp;
char *mc, *s;
dsBool_t done = bFalse;
dsUint32_t qry_item;

/* Fill in the qMCData structure with the query criteria we want */
qMCData.stVersion = qryMCDataVersion; /* structure version */
qMCData.mcName = mc; /* management class name */
qMCData.mcDetail = bTrue; /* want full details? */

/* Set parameters of the data block used to get or send data */
qData.stVersion = DataBlkVersion;
qData.bufferLen = sizeof(qryRespMCDetailData);
qData.bufferPtr = (char *)&qRespMCData;

qRespMCData.stVersion = qryRespMCDetailDataVersion;

if ((rc = dsmBeginQuery(dsmHandle,qtMC,(dsmQueryBuff *)&qMCData)))
{

printf("*** dsmBeginQuery failed: ");
rcApiOut(dsmHandle, rc);
rc = (RC_SESSION_FAILED);

}
else
{

done = bFalse;
qry_item = 0;
while (!done)
{

rc = dsmGetNextQObj(dsmHandle,&qData);
if (((rc == DSM_RC_MORE_DATA)

|| (rc == DSM_RC_FINISHED))
&& qData.numBytes)

{
qry_item++;
mcResp = (qryRespMCDetailData *)qData.bufferPtr;
printf("Mgmt. Class
printf(" Name:
printf(" Backup CG Name:

.

. /* other fields of backup and archive copy groups */

.
printf(" Copy Destination:

}
else
{

done = bTrue;
if (rc != DSM_RC_FINISHED)
{

printf("*** dsmGetNextQObj failed: ");
rcApiOut(dsmHandle, rc);

}
}
if (rc == DSM_RC_FINISHED) done = bTrue;

}
rc = dsmendQuery (dsmHandle);

}

Figure 11. An example of performing a system query

Chapter 3. API design recommendations and considerations 37

|

|
|

|
|

– Retrieve data in the restore order that is provided by the Tivoli Storage
Manager server. The restore order is especially important for tape devices,
because retrieving data that is not ordered can result in tape rewinds and
mounts.

– Even when data is stored on a disk device, you can save time when the
retrieves are ordered.

– Perform as much work as possible in a single Tivoli Storage Manager server
session.

– Do not start and stop multiple sessions.
v When you send objects to the Tivoli Storage Manager server, follow these

guidelines:
– Send multiple objects in a single transaction.
– Avoid sending one object per transaction, especially when the data is sent

directly to a tape device. Part of the tape device transaction is to ensure that
the data in the RAM buffers of the tape is written to media.

Related concepts

“Selecting and sorting objects by restore order” on page 62
Related information

“Starting or ending a session” on page 19

Sending data to a server
The API permits application clients to send data or named objects and their
associated data to Tivoli Storage Manager server storage.

Note: You can either back up or archive data. Perform all send operations within a
transaction.

The transaction model
All data sent to Tivoli Storage Manager storage during a backup or archive
operation is done within a transaction. A transaction model provides a high level
of data integrity for the Tivoli Storage Manager product, but it does impose some
restrictions that an application client must take into consideration.

Start a transaction by a call to dsmBeginTxn or end a transaction by a call to
dsmEndTxn. A single transaction is an atomic action. Data sent within the
boundaries of a transaction is either committed to the system at the end of the
transaction or rolled back if the transaction ends prematurely.

Transactions can consist of either single object sends or multiple object sends. To
improve system performance by decreasing system overhead, send smaller objects
in a multiple object transaction. The application client determines whether single or
multiple transactions are appropriate.

Send all objects within a multiple object transaction to the same copy destination.
If you need to send an object to a different destination than the previous object,
end the current transaction and start a new one. Within the new transaction, you
can send the object to the new copy destination.

Note: Objects that do not contain any bit data (sizeEstimate=0) are not checked for
copy destination consistency.

38 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|

|
|

|
|

|

|
|

|

|
|
|

|

|

|

|

Tivoli Storage Manager limits the number of objects that can be sent in a multiple
object transaction. To find this limit, call dsmQuerySessInfo and examine the
maxObjPerTxn field. This field displays the value of the TXNGroupmax option that
is set on your server.

The application client must keep track of the objects sent within a transaction to
perform retry processing or error processing if the transaction ends prematurely.
Either the server or the client can stop a transaction at any time. The application
client must be prepared to handle sudden transaction ends that it did not start.

File aggregation
Tivoli Storage Manager servers use a function that is called file aggregation. With
file aggregation, all objects sent in a single transaction are stored together, which
saves space and improves performance. You can still query and restore the objects
separately.

To use this function, all of the objects in a transaction should have the same file
space name. If the file space name changes within a transaction, the server closes
the existing aggregated object and begins a new one.

LAN-free data transfer
The API can take advantage of LAN-free data transfer if the dsmSetUp option for
multithreading is ON. The API returns the existence of a LAN-free destination in
the Query Mgmt Class response structure archDetailCG or backupDetailCG field
bLanFreeDest.

You can use LAN-free operations on platforms that are supported by the storage
agent. Excluded platforms are Macintosh, OS/400, and zOS/USS.

LAN-free information is provided in the following output structures. The out
structure (dsmEndGetDataExOut_t) for dsmEndGetData includes the field,
totalLFBytesRecv. This is the total number of LAN-free bytes that are received.
The out structure (dsmEndSendObjExOut_t) for dsmEndSendObjEx includes the
field, totalLFBytesSent. This is the total number of LAN-free bytes that were sent.

For more information about LAN-free data transfer, see the IBM Tivoli Storage
Manager for Storage Area Networks User's Guide.

Simultaneous-write operations
Tivoli Storage Manager server storage pools can be configured to write to a
primary storage pool and copy storage pool(s) simultaneously during a backup or
archive. This creates multiple copies of the object.

Note: For information on setting up simultaneous-write operations, refer to Tivoli
Storage Manager Administrator's Guide.

If a simultaneous-write operation fails, the return code on the dsmEndTxn function
might be DSM_RC_ABORT_STGPOOL_COPY_CONT_NO indicating that the write
to one of the copy storage pools failed, and the Tivoli Storage Manager storage
pool option COPYCONTINUE was set to NO. The application should terminate
because the problem needs to be resolved by the Tivoli Storage Manager server
administrator.

Chapter 3. API design recommendations and considerations 39

API performance considerations
You can use the tcpbuffsize and tcpnodelay client options and the DataBlk API
parameter to enhance API performance.

Table 17. Backup-archive options and the API parameter that enhance performance

Backup-archive
client options Recommendation

tcpbuffsize We recommend setting this to 32 KB. The default is 31 KB.

tcpnodelay This option is valid for Windows and AIX only. Specifies whether
to send small buffers to the server rather than holding them. We
recommend setting this option to yes for all platforms.

API parameter Recommendation

DataBlk This parameter is used with the dsmSendData function call to
determine the application buffer size. It should be a multiple of the
tcpbuffsize minus 4 bytes (for example, 32 KB - 4) specified with the
tcpbuffsize option.

Each dsmSendData call is synchronous and does return until the data transferred
to the API in the dataBlkPtr is flushed to the network. The API adds a 4 byte
overhead to each transaction buffer that is placed on the network.

For example, when the transaction buffer size is 32 KB and the application DataBlk
buffer size is 31 KB, then each application DataBlk buffer fits in a communications
buffer and be flushed immediately. However, if the application DataBlk buffer is
exactly 32 KB, and since the API is adding a 4 byte overhead per transaction
buffer, there are 2 flushes: one of 32 KB and one of 4 bytes. Also, if you set the
tcpnodelay option to no, there could be a delay of up to 200 milliseconds until the 4
bytes are flushed.

Sending objects to the server
Application clients can send data or named objects and their associated data to
Tivoli Storage Manager storage by using the API backup and archive functions.
The backup and archive components of the system permit use of different
management procedures for data that is sent to Tivoli Storage Manager storage.

The size estimate attribute is an estimate of the total size of the data object to send
to the server. If the application does not know the exact object size, set the
sizeEstimate to a higher estimate. If the estimate is smaller than the actual size, the
Tivoli Storage Manager server uses extra resources to manage extra space
allocations.

Important:

v It is important that you try to be as accurate as possible on this size estimate,
because the Tivoli Storage Manager server uses this attribute for efficient space
allocation and object placement within its storage resources.

v If the estimate is smaller than the actual size, a Tivoli Storage Manager server
with caching does not allocate extra space and stops the send.

You might encounter problems if the sizeEstimate is much too large. The Tivoli
Storage Manager server might not have enough space for the estimated size but
does have space for the actual size; or the server might use slower devices.

40 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

You can back up or archive objects that are larger than two gigabytes in size. The
objects can be either compressed or uncompressed.

To start a send operation, call dsmSendObj. If you have more data than you can
send at one time, you can make repeated calls to dsmSendData to transfer the
remainder of the information. Call dsmEndSendObj to complete the send
operation.

Understanding backup and archive objects
The backup component of the Tivoli Storage Manager system supports several
versions of named objects that are stored on the server.

Any object backed up to the server that has the same name as an object that is
already stored on the server from that client is subject to version control. Objects
are considered to be in active or inactive states on the server. The latest copy of an
object on the server that has not been deactivated is in the active state. Any other
object with the same name, whether it is an older version or a deactivated copy, is
considered inactive. Management class constructs define different management
criteria. They are assigned to active and inactive objects on the server.

Table 18 lists the copy group fields that apply to active and inactive states:

Table 18. Backup copy group fields

Field Description

VEREXISTS The number of inactive versions if active versions exist.

VERDELETED The number of inactive versions if active versions do not exist.

RETEXTRA The number of days to keep inactive versions.

RETONLY The number of days to keep the last inactive versions if active
versions do not exist.

If backup versions each have a unique name, such as using a time stamp in the
name, then versioning does not happen automatically: every object is active. Active
objects never expire, so an application would be responsible for deactivating these
with the dsmDeleteObj call. In this situation, the application would need the
deactivated objects to expire as soon as possible. The user would define a backup
copy group with VERDELETED=0 and RETONLY=0.

The archive component of the Tivoli Storage Manager system permits objects to be
stored on the server with retention or expiration period controls instead of version
control. Each object stored is unique, even though its name might be the same as
an object already archived. Archive objects have a description field associated with
the metadata that can be used during query to identify a specific object.

Every object on a Tivoli Storage Manager server is assigned a unique object ID.
The persistence of the original value is not guaranteed during the life of an object
(specifically, after an export or import). Therefore, an application should not query
and save the original object ID for use on later restores. Rather, an application
should save the object name and insert date. You can use this information during a
restore to query objects and verify the insert date. Then, the current object ID can
be used to restore the object.

Chapter 3. API design recommendations and considerations 41

Compression
The end user's configuration, along with the dsmSendObj objCompressed option,
determines whether Tivoli Storage Manager compresses the object during a send.
Also, objects with a sizeEstimate less than DSM_MIN_COMPRESS_SIZE are never
compressed.

If the object is compressed already (objCompressed=bTrue), it is not compressed
again. If it is not compressed, Tivoli Storage Manager decides whether to compress
the object, based on the values of the compression option that is set by the Tivoli
Storage Manager administrator and that is set in the API configuration sources.

The Tivoli Storage Manager server administrator can affect compression behavior
with the register node command (compression=yes, no, or client-determined). If this is
client-determined, then the compression behavior is determined by the compression
option value in the configuration sources.

Some types of data, such as data that is already compressed, might actually get
bigger when processed with the compression algorithm. When this happens, the
return code DSM_RC_COMPRESS_GREW is generated. If you realize that this
might happen, but you want the send operation to continue anyway, tell the end
users to specify the following option in their options file:

COMPRESSAlways Yes

If, during dsmSendData with compression you get DSM_RC_COMPRESS_GREW,
you might want to start over and send the object again without compression. To
enforce this, set the dsmSendObj ObjAttr.objCompressed to bTrue.

Information about the actual compression behavior during a dsmSendObj is
returned by the dsmEndSendObjEx call. objCompressed specifies if compression
was done. totalBytesSent is the number of bytes sent by the application.
totalCompressedSize is the number of bytes after compression. The
dsmEndSendObjEx call also has a totalLFBytesSent field that contains the total
bytes sent over LAN-free.

Attention: If your application plans to use partial object restore or retrieve, you
cannot compress the data while sending it. To enforce this, set the dsmSendObj
ObjAttr.objCompressed to bTrue.

Buffer copy elimination
The buffer copy elimination function removes the copy of data buffers between an
application and the Tivoli Storage Manager server, which results in better CPU
utilization. For maximum effect, this should be used in a LAN-free environment.

The basis for this function is a mechanism where the buffers for data movement
are allocated by Tivoli Storage Manager and a pointer is passed back to the
application. The application places the data in the provided buffer, and that buffer
is passed through the communication layers to the storage agent (using shared
memory). Then the data is moved to the tape device, which eliminates copies of
data. This function can be used with either backup or archive operations.

Attention: When using this method, pay extra attention to proper buffer handling
and sizes of buffers. The buffers are shared between the components and any
memory overwrite that is a result of a programming error results in severe errors.

The overall sequence of calls for backup/archive is as follows:

42 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

dsmInitEx (UseTsmBuffers = True, numTsmBuffers = [how many Tivoli Storage Manager
-allocated buffers the application needs to allocate])

dsmBeginTxn
for each object in the txn

dsmBindMC
dsmSendObject

dsmRequestBuffer
dsmSendBufferData (sends and release the buffer used)

dsmEndSendObjEx
dsmEndTxn
for each buffer still held

dsmReleaseBuffer
dsmTerminate

dsmRequestBuffer can be called multiple times (up to numTsmBuffers). An
application can have two threads: a producer thread that fills buffers with data;
and a consumer thread that sends those buffers to Tivoli Storage Manager with the
dsmSendBufferData call. When a dsmRequestBuffer call is issued and the
numTsmBuffers has been reached, the dsmRequestBuffer call blocks until a buffer
is released. This could happen by either calling dsmSendBufferData, which sends
and releases a buffer or by calling dsmReleaseBuffer. See callbuff.c in the API
sample directory.

If at any point there is a failure in the send, the application must release all the
buffers it is holding and terminate the session. For example:

If failure
for each TSM buffer held by application

call dsmReleaseBuffer
dsmTerminate

If an application calls dsmTerminate and it is still holding a buffer, the API does
not exit and returns the return code:
DSM_RC_CANNOT_EXIT_MUST_RELEASE_BUFFER. If the application cannot
release the buffers it should exit the process to force a cleanup.

Buffer copy elimination and restore and retrieve
The amount of data to be placed in the buffer is controlled by the Tivoli Storage
Manager server and is based on tape access optimization with restore and retrieve,
so it is not as beneficial to the application as the normal method of getting data.
After you prototype the buffer copy elimination method, check the performance
and use it only if there is worthwhile improvement.

The maximum amount of data in a single buffer returned by the Tivoli Storage
Manager server is (256K bytes – header overhead). This means that only
applications that deal with small buffer writes benefit from this mechanism when
getting data. The application must give special attention to the number of bytes in
the provided buffer, because it is dependent on size of the object, the network, and
other boundary conditions. In some situations, the use of buffer copy elimination
can actually perform worse than the normal restore. The API normally caches the
data and returns a fixed length to the application, which gives the application the
ability to control the number of data writes back to the disk.

If you choose buffer copy elimination, create a data caching mechanism for buffers
that are less than the preferred write buffer size. For example, if an application
writes to disk 64K data blocks, it should call dsmGetBufferData and write out
blocks of 64K. On the last block, it should copy the remainder to a tempBuff, issue
another dsmGetBufferData call, and fill the tempBuff with the rest of the data and
continue writing blocks of 64K:

Chapter 3. API design recommendations and considerations 43

dsmGetBufferData #1 get 226K dsmGetBufferData #2 get 240K
Block1 64K – write to disk Block1 30K – copy to tempbuff - write to disk
Block2 64K – write to disk Block2 64K – write to disk
Block3 64K – write to disk Block3 64K – write to disk
Block4 34K - copy to tempbuff Block4 64K – write to disk
Block5 18K – write to tempbuff etc

In this example, out of 7 disk writes, 6 were direct and 1 was cached.

The overall sequence of calls for restore/retrieve is as follows: dsmInitEx
(UseTsmBuffers = True, numTsmBuffers = how many buffers the application wants to
allocate).
dsmBeginGetData
While obj id

dsmGetObj (no data restored on this call- buffer set to NULL)
While data to read

dsmGetBufferData (returns the data in the TSM buffer)
...process data...
dsmReleaseBuffer

dsmEndGetObj
dsmEndGetData

For every dsmGetBufferData call implement a dsmReleaseBuffer call. The
dsmGetBufferData and corresponding dsmReleaseBuffer do not need to be
consecutive. An application might issue multiple dsmGetBufferData calls first to
get several buffers, and then issue the corresponding dsmReleaseBuffer calls later.
For sample code using this function, see callbuff.c in the API sample directory.

Restrictions: Since the API is providing the buffer and the goal is to minimize CPU
utilization, additional processing of the data in the buffer is not permitted. This
means that encryption and compression are not allowed when using buffer copy
elimination since both of these operations require data processing and copies.

Recommendation: Implement both the regular data movement path and the buffer
copy elimination to enable the user to switch between both paths, based on their
needs. If the user needs to compress or encrypt data, they should use the existing
mechanism. If there is a CPU constraint, they should use the new mechanism. Both
of these mechanisms are complementary and are not intended to totally replace
each other.

API encryption
There are two methods to handle encryption: application managed encryption and
transparent encryption. You must ensure that your chosen method is the only
method you use, so you avoid problems during restore and retrieve.

Note: If using encryption, the Tivoli Storage Manager server should be set with
Authentication set to ON.

For example, if an application used application managed encryption to encrypt
object A and transparent encryption to encrypt object B, during restore, since the
methods are mutually exclusive, the application sets the option to use transparent
encryption and tries to restore both objects. Object B is restored but object A fails to
restore.

For both of the encryption methods, the encrypted objects must match an
include.encrypt pattern. The two encryption methods are mutually exclusive and in
a given API invocation you can use only one of the methods. If both methods are
specified, the API fails with return code DSM_RC_ENCR_NOT_ALLOWED.

44 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

On most platforms, the API uses either 128 bit AES or 56 bit DES encryption. On
OS/400, and zOS/USS, the API uses 56 bit DES encryption. Encryption can be
enabled with or without compression. There is no support of partial object restore,
retrieve or buffer copy elimination when using encryption.

Application managed encryption
With application managed encryption, the application provides the key password
to the API (using key DSM_ENCRYPT_USER) and it is the application's
responsibility to manage the key password.

Remember: If the encryption key is not saved, and you have forgotten the key,
your data will be unrecoverable.

The application provides the key password in the dsmInitEx call and must provide
the proper key password at restore time. If the key password is lost, there is no
way to restore the data. The same key password must be used for backup and
restore (or archive and retrieve) of the same object. This method does not have a
Tivoli Storage Manager server level dependency. To set up this method, the
application needs to do the following:
1. Set the bEncryptKeyEnabled variable to bTrue in the call to dsmInitEx, and set

the encryptionPasswordP variable to point to a string with the encrypt key
password.

2. Set the include.encrypt for the objects to encrypt. For example, to encrypt all data,
set:
include.encrypt /.../* (UNIX)

and
include.encrypt *\...* (Windows)

To encrypt the object /FS1/DB2/FULL, set:
include.encrypt /FS1/DB2/FULL

3. Set ENCRYPTKEY=PROMPT|SAVE in the option string passed to the API in
the dsmInitEx call on Windows. This option can also be set in dsm.opt
(Windows) or dsm.sys (UNIX or Linux).

Note: By default, the encryptkey option is set to prompt. This is to ensure that the
key does not get stored automatically. If encryptkey save is specified, the key is
stored by Tivoli Storage Manager on the local machine but then only one key can
be valid for all Tivoli Storage Manager operations with the same node name.

After a send of an object, the dsmEndSendObjEx specifies whether an object has
been encrypted and which method was used. Possible values in the encryptionType
field are:
v DSM_ENCRYPT_NO
v DSM_ENCRYPT_USER
v DSM_ENCRYPT_CLIENTENCRKEY

The following table lists the API encryption types, prerequisites, and functions
available.

Chapter 3. API design recommendations and considerations 45

Table 19. API encryption types, prerequisites, and functions available

Type Prerequisite Function available

ENCRYPTIONTYPE None Set
-ENCRYPTIONTYPE=DES56|AES128 in
the option string passed to the API in
the dsmInitEx call on Windows. This
option can also be set in dsm.opt
(Windows) or dsm.sys (UNIX).
ENCRYPTIONTYPE is AES128 by
default.

EncryptKey=save None API and backup-archive

EncryptKey=prompt None API and backup-archive

EncryptKey=generate None API and backup-archive

EnableClientEncryptKey None API only

Note: The server should have authentication turned ON. If authentication is
turned OFF, the key is not encrypted, but the data is still encrypted. This is not
recommended.

Table 20 shows how both Authorized Users and non-Authorized Users can encrypt
or decrypt data during a backup or restore operation, depending on the value
specified for the passwordaccess option. The TSM.PWD file must exist to perform
the following authorized-user and non-authorized-user operations. The authorized
user creates the TSM.PWD file and sets the encryptkey option to save and the
passwordaccess option to generate.

Table 20. Encrypting or decrypting data with application managed key on UNIX or Linux

Operation
passwordaccess
option

encryptkey
option Result

Authorized
user backup

generate save data encrypted

generate prompt data encrypted if encryptionPasswordP
contains an encryption password

prompt save data encrypted if encryptionPasswordP
contains an encryption password

prompt prompt data encrypted if encryptionPasswordP
contains an encryption password

Authorized
user restore

generate save data encrypted

generate prompt data encrypted if encryptionPasswordP
contains an encryption password

prompt save data encrypted if encryptionPasswordP
contains an encryption password

prompt prompt data encrypted if encryptionPasswordP
contains an encryption password

Non-
authorized
user backup

generate save data encrypted

generate prompt data encrypted if encryptionPasswordP
contains an encryption password

prompt save data encrypted if encryptionPasswordP
contains an encryption password

prompt prompt data encrypted if encryptionPasswordP
contains an encryption password

46 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Table 20. Encrypting or decrypting data with application managed key on UNIX or
Linux (continued)

Operation
passwordaccess
option

encryptkey
option Result

Non-
authorized
user restore

generate save data encrypted

generate prompt data encrypted if encryptionPasswordP
contains an encryption password

prompt save data encrypted if encryptionPasswordP
contains an encryption password

prompt prompt data encrypted if encryptionPasswordP
contains an encryption password

Using transparent encryption
Using the transparent encryption method, with the key managed by Tivoli Storage
Manager DSM_ENCRYPT_CLIENTENCRKEY, you can benefit from data
encryption without having to change the code at all. It can be totally transparent to
the application.

Note: For both transparent and application-managed encryption, the
encryptionPassword refers to a string value that is used to generate the "real"
encryption key. The encryptionPassword can be up to 63 characters in length, but the
key generated from it is always 8 bytes for 56 DES and 16 bytes for 128 AES.
Attention: If the encryption key is not available, data cannot be restored or
retrieved under any circumstance. When using ENABLECLIENTENCRYPTKEY
for encryption, the encryption key is stored on the server database. This means
that for objects using this method, the server database must exist and have the
proper values for the objects for a proper restore. Ensure that you back up the
server database frequently to prevent data loss.

This is the simpler method to implement, where one random encryption key is
generated per session and it is stored on the Tivoli Storage Manager server with
the object in the server database. During restore, the stored key is used for
decryption. Using this method, the management of the key is the responsibility of
Tivoli Storage Manager, and the application does not have to deal with the key at
all. It is also important to note that since the key is stored in the server database, it
is always required to have a valid Tivoli Storage Manager database for a restore of
an encrypted object. When the key is transmitted between the API and the server it
is also encrypted. The transmission of the key is secure, and when the key is stored
in the Tivoli Storage Manager server database it is encrypted. The only time that
the key is placed in the clear with the export data stream is when a node's data are
exported between servers.

To enable transparent encryption, do the following:
1. Specify -ENABLECLIENTENCRYPTKEY=YES in the option string passed to the

API on the dsmInitEx call or set the option in the system option file dsm.opt
(Windows) or dsm.sys (UNIX or Linux).

2. Set the include.encrypt for the objects to encrypt. For example, to encrypt all
data, set:
include.encrypt /.../* (UNIX)

and
include.encrypt *\...* (Windows)

To encrypt the object /FS1/DB2/FULL, set:

Chapter 3. API design recommendations and considerations 47

include.encrypt /FS1/DB2/FULL

Data deduplication
Data deduplication is a method of reducing storage needs by eliminating
redundant data.

Overview

Two types of data deduplication are available on Tivoli Storage Manager: client-side
data deduplication and server-side data deduplication.

Client-side data deduplication is a data deduplication technique that is used on the
backup-archive client to remove redundant data during backup and archive
processing before the data is transferred to the Tivoli Storage Manager sever. Using
client-side data deduplication can reduce the amount of data that is sent over a
local area network.

Server-side data deduplication is a data deduplication technique that is done by the
server. The Tivoli Storage Manager administrator can specify the data
deduplication location (client or server) to use with the DEDUP parameter on the
REGISTER NODE or UPDATE NODE server command.

Enhancements

With client-side data deduplication, you can:
v Exclude specific files on a client from data deduplication.
v Enable a data deduplication cache that reduces network traffic between the

client and the server. The cache contains extents that were sent to the server in
previous incremental backup operations. Instead of querying the server for the
existence of an extent, the client queries its cache.
Specify a size and location for a client cache. If an inconsistency between the
server and the local cache is detected, the local cache is removed and
repopulated.

v Enable both client-side data deduplication and compression to reduce the
amount of data that is stored by the server. Each extent is compressed before
being sent to the server. The trade-off is between storage savings and the
processing power that is required to compress client data. In general, if you
compress and deduplicate data on the client system, you are using
approximately twice as much processing power as data deduplication alone.
The server can work with deduplicated, compressed data. In addition,
backup-archive clients earlier than V6.2 can restore deduplicated, compressed
data.

Client-side data deduplication uses the following process:
v The client creates extents. Extents are parts of files that are compared with other

file extents to identify duplicates.
v The client and server work together to identify duplicate extents. The client

sends non-duplicate extents to the server.
v Subsequent client data-deduplication operations create new extents. Some or all

of those extents might match the extents that were created in previous
data-deduplication operations and sent to the server. Matching extents are not
sent to the server again.

48 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|

|
|

|

|
|

|
|
|
|
|

|
|
|
|

|

|

|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|
|
|

Benefits

Client-side data deduplication provides several advantages:
v It can reduce the amount of data that is sent over the local area network (LAN).
v The processing power that is required to identify duplicate data is offloaded

from the server to client nodes. Server-side data deduplication is always enabled
for deduplication-enabled storage pools. However, files that are in the
deduplication-enabled storage pools and that were deduplicated by the client,
do not require additional processing.

v The processing power that is required to remove duplicate data on the server is
eliminated, allowing space savings on the server to occur immediately.

Client-side data deduplication has a possible disadvantage. The server does not
have whole copies of client files until you back up the primary storage pools that
contain client extents to a non-deduplicated copy storage pool. (Extents are parts of
a file that are created during the data-deduplication process.) During storage pool
backup to non-deduplicated storage pool, client extents are reassembled into
contiguous files.

Server-side data deduplication offers more protection against data loss. By default,
primary sequential-access storage pools that are set up for data deduplication must
be backed up to non-deduplicated copy storage pools before they can be reclaimed
and before duplicate data can be removed. The default ensures that the server has
copies of whole files at all times, in either a primary storage pool or a copy storage
pool.

Important: For further data reduction, you can enable client-side data
deduplication and compression together. Each extent is compressed before it is sent
to the server. Compression saves space, but it increases the processing time on the
client workstation.

The following options pertain to data deduplication:
v Deduplication
v Dedupcachepath
v Dedupcachesize
v Enablededupcache
v Exclude.dedup
v Include.dedup

API client-side data deduplication
Client-side data deduplication is used by the API on the backup-archive client, to
remove redundant data during backup and archive processing before the data is
transferred to the Tivoli Storage Manager server.

Client-side data deduplication is used by the API, to remove redundant data
during backup and archive processing before the data is transferred to the Tivoli
Storage Manager server. Using client-side data deduplication can reduce the
amount of data that is sent over a local area network. Using client-side data
deduplication can also reduce the Tivoli Storage Manager server storage space.

When the client is enabled for client-side data deduplication, and you perform a
backup or archive operation, the data is sent to the server as extents. The next time

Chapter 3. API design recommendations and considerations 49

|

|

|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|
|

|
|

a backup or archive operation is performed, the client and server identify which
data extents have already been backed up or archived, and send only the unique
extents of data to the server.

For client-side data deduplication, the Tivoli Storage Manager server and API must
be at version 6.2 or later.

Before you use client-side data deduplication to back up or archive your files, the
system must meet the following requirements:
v The client must have the deduplication option enabled.
v The server must enable the client for client-side data deduplication with the

DEDUP=CLIENTORSERVER parameter on either the REGISTER NODE or
UPDATE NODE command.

v The storage pool destination for the data must be a data deduplication-enabled
storage pool. The data deduplication-enabled storage pool is file device type
only.

v Ensure that the files are bound to the correct management class.
v A file can be excluded from client-side data deduplication processing. By default,

all files are included.
v Files must be larger than 2 KB.
v The server can limit the maximum transaction size for data deduplication by

setting the CLIENTDEDUPTXNLIMIT option on the server. See the
Administrator's Guide for details.

If any of these requirements are not met, data is processed normally, with no
client-side data deduplication.

Here are some data deduplication restrictions:
v LAN-free data movement and client-side data deduplication are mutually

exclusive. If you enable both LAN-free data movement and client-side data
deduplication, LAN-free data movement operations complete and client-side
data deduplication is ignored.

v Encryption and client-side data deduplication are mutually exclusive. If you
enable both encryption and client-side data deduplication, encryption operations
complete and client-side data deduplication is ignored. Encrypted files, and files
that are eligible for client-side data deduplication, can be processed in the same
operation, but are done in separate transactions.

Important:

1. In any transaction, all files must be either included for data deduplication or
excluded. If the transaction has mixed files, the transaction fails, and a return
code of DSM_RC_NEEDTO_ENDTXN is returned by the API.

2. Use storage device encryption together with client-side data deduplication.
Because SSL is used in combination with client-side deduplication, there is
no need for client encryption.

v The following functions are not available for client-side data deduplication:
– Hierarchical Storage Manager (HSM) client
– API shared buffer
– NAS
– Subfile backup

v Buffer copy elimination cannot be used with data transformations like
compression, encryption, and data deduplication.

50 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|

|
|

|
|

|

|
|
|

|
|
|

|

|
|

|

|
|
|

|
|

|

|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|
|
|

|
|

v Simultaneous-write operations on the server takes precedence over client-side
data deduplication. If simultaneous-write operations are enabled, client-side data
deduplication does not occur.

Important: When client side data deduplication is enabled, the API cannot
recover from a state where the server has run out of storage on the destination
pool, even if there is a next pool defined. A stop reason code of
DSM_RS_ABORT_DESTINATION_POOL_CHANGED is returned and the
operation fails. There are two ways to recover from this situation:
1. Ask the Tivoli Storage Manager administrator to add more scratch volumes

to the original filepool.
2. Retry the operation with data deduplication disabled.

For even greater bandwidth savings, you can enable a local cache for data
deduplication. The local cache saves queries from going to the Tivoli Storage
Manager server. The default value for ENABLEDEDUPCACHE is NO, so that the
cache is not out of sync with the server. If the cache is out of sync with the server,
the application resends all data. If your application can retry on a failed
transaction, and you want to use the local cache, set the ENABLEDEDUPCACHE
option to YES in the dsm.opt (Windows) or dsm.sys (UNIX) file.

At the end of a restore, if all of the data was restored through the API, and the
object was deduplicated by the client, an end-to-end digest is calculated and
compared to the value calculated at backup time. If those values do not match,
error DSM_RC_DIGEST_VALIDATION_ERROR is returned. If an application
receives this error, the data is corrupt. This error can also be a result of a transient
error on the network, so try the restore or retrieve again.

Here is an example of the query session command showing data deduplication
information:
dsmQuerySessInfo Values:
Server Information:
Server name: SERVER1
Server Host: AVI
Server port: 1500
Server date: 2009/10/6 20:48:51
Server type: Windows
Server version: 6.2.0.0
Server Archive Retention Protection : NO
Client Information:
Client node type: API Test1
Client filespace delimiter: :
Client hl & ll delimiter: \
Client compression: Client determined (3u)
Client archive delete: Client can delete archived objects
Client backup delete: Client CANNOT delete backup objects
Maximum objects in multiple object transactions: 4096
Lan free Enabled: NO
Deduplication : Client Or Server
General session info:
Node: AVI
Owner:
API Config file:

Here is an example of the query management class command showing data
deduplication information:
Policy Information:
Domain name: DEDUP
Policyset name: DEDUP

Chapter 3. API design recommendations and considerations 51

|
|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

Policy activation date: 0/0/0 0:0:0
Default management class: DEDUP
Backup retention grace period: 30 days
Archive retention grace period: 365 days
Mgmt. Class 1:
Name: DEDUP
Description: dedup - values like standard
Backup CG Name: STANDARD
Frequency: 0
Ver. Data Exists: 2
Ver. Data Deleted: 1
Retain Extra Ver: 30
Retain Only Ver: 60
Copy Destination: AVIFILEPOOL
Lan free Destination: NO
Deduplicate Data: YES

Archive CG Name: STANDARD
Frequency: 10000
Retain versions: 365
Copy Destination: AVIFILEPOOL
Lan free Destination: NO
Retain Init : CREATE
Retain Minimum : 65534
Deduplicate Data: YES

Related reference

Deduplication option

Exclude files from data deduplication
You can choose to exclude backup or archive files from data deduplication.

To exclude files from data deduplication processing, follow these steps:
1. Set the exclude.dedup option for the objects to exclude.

For example, to exclude all dedup data for UNIX systems, set:
exclude.dedup /.../*

To exclude all dedup data for Windows systems, set:
exclude.dedup *\...*

Important: If an object is sent to a data deduplication pool, data deduplication
occurs on the server, even if the object is excluded from client-side data
deduplication.

Include files for data deduplication
You can choose to include backup or archive files for data deduplication.

To refine the list of files to be included, the include.dedup option can be used in
combination with the exclude.dedup option.

By default, all eligible objects are included for data deduplication.

Here are some UNIX and Linux examples:
exclude.dedup /FS1/.../*

include.dedup /FS1/archive/*

Here are some Windows examples:
exclude.dedup E:\myfiles\...*

include.dedup E:\myfiles\archive*

52 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|

|

|

|

|
|
|

|
|

|
|

|

|

|
|
|

|

|
|
|

Server-side data deduplication
Server-side data deduplication is data deduplication that is performed by the server.

The Tivoli Storage Manager administrator can specify the data deduplication
location (client or server) to use with the DEDUP parameter on the REGISTER
NODE or UPDATE NODE server command.

In a data deduplication-enabled storage pool (file pool), only one instance of a data
extent is retained. Other instances of the same data extent are replaced with a
pointer to the retained instance.

For more information about server-side data deduplication, see the Tivoli Storage
Manager Administrator's Guide.

Example flow diagrams for backup and archive
The API is designed for straightforward logic flows and clear transitions between
the various states of the application client. This clean state transition catches logic
flaws and program errors early in the development cycle, greatly enhancing the
quality and reliability of the system.

For example, you cannot make a dsmSendObj call unless a transaction was started
and a dsmBindMC call was previously made for the object that you are backing
up.

Figure 12 on page 54 displays the state diagram for performing backup or archive
operations within a transaction. The arrow pointing from “In Send Object” to
dsmEndTxn indicates that a dsmEndTxn call can be started after a call to
dsmSendObj or dsmSendData. You might want to do this if an error condition
occurred during the send of an object and you want to stop the entire operation. In
this case, you must use a vote of DSM_VOTE_ABORT. In normal circumstances,
however, call dsmEndSendObj before you end the transaction.

Chapter 3. API design recommendations and considerations 53

|

|

|
|
|

|
|
|

|
|

Figure 13 on page 55 displays the flowchart for performing backup or archive
operations within a transaction.

In Transaction

dsmBeginTxn

dsmBindMC*

* May be inside or outside of a transaction

dsmSendData

dsmEndTxn

In Send Object

dsmEndSendObjdsmSendObj

dsmDeleteObj

dsmEndTxnEx

dsmEndSendObjEx

Figure 12. State diagram for backup and archive operations

54 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

The primary feature in these two diagrams is the loop between the following API
calls from within a transaction:
v dsmBindMC

v dsmSendObj

v dsmSendData

v dsmEndSendObj

The dsmBindMC call is unique in that you can start it from inside or outside of a
transaction boundary. You can also start it from a different transaction, if required.
The only requirement for the dsmBindMC call is that it is made prior to backing
up or archiving an object. If the object that you are backing up or archiving is not
associated with a management class, an error code is returned from dsmSendObj.
In this situation, the transaction is ended by calling dsmEndTxn (this error
condition is not shown in the flowchart).

The flowchart illustrates how an application would use multiple object
transactions. It shows where decision points can be placed to determine if the
object that is sent fits within the transaction or whether to start a new transaction.

Start

No

No

Yes

Yes

Yes

Yes

Yes

No

No

No Idle
State

BindMC
Done?

Send
Object?

More
data?

More
objects
in txn?

More
objects?

dsmBeginTxn

dsmBindMC

dsmSendObj

dsmSendData

dsmEndSendObj

dsmEndTxn

Figure 13. Flowchart for backup and archive operations

Chapter 3. API design recommendations and considerations 55

Code example of API functions that send data to Tivoli
Storage Manager storage

This example demonstrates the use of the API functions that send data to Tivoli
Storage Manager storage. The dsmSendObj call appears inside a switch statement,
so that different parameters can be called depending on whether a backup or
archive operation is being performed.

The dsmSendData call is called from inside a loop that repeatedly sends data until
a flag is set that permits the program execution to exit the loop. The entire send
operation is performed from within the transaction.

The third parameter on the dsmSendObj call is a buffer that contains the archive
description. Because backup objects do not have a description, this parameter is
NULL when backing up an object.

Figure 8 on page 32 displays an example that shows the use of the dsmBindMC
function call.

56 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

File grouping
The Tivoli Storage Manager API has a logical file grouping protocol that relates
several individual objects together. You can reference and manage these groups as
a logical group on the server. A logical group requires all group members and the
group leader belong to the same node and file space on the server.

if ((rc = dsmBeginTxn(dsmHandle))) /* API session handle */
{

printf("*** dsmBeginTxn failed: ");
rcApiOut(dsmHandle, rc);
return;

}

/* Call dsmBindMC if not done previously */
objAttr.sizeEstimate.hi = 0; /* estimate of */
objAttr.sizeEstimate.lo = 32000; /* object size */
switch (send_type)
{

case (Backup_Send) :
rc = dsmSendObj(dsmHandle,stBackup,
NULL,&objName,&objAttr,NULL);
break;

case (Archive_Send) :
archData.stVersion = sndArchiveDataVersion;
archData.descr = desc;
rc = dsmSendObj(dsmHandle,stArchive,

&archData,&objName,&objAttr,NULL);
break;

default : ;
}
if (rc)
{

printf("*** dsmSendObj failed: ");
rcApiOut(dsmHandle, rc);
return;

}
done = bFalse;
while (!done)
{

dataBlk.stVersion = DataBlkVersion;
dataBlk.bufferLen = send_amt;
dataBlk.numBytes = 0;
dataBlk.bufferPtr = bkup_buff;
rc = dsmSendData(dsmHandle,&dataBlk);
if (rc)
{

printf("*** dsmSendData failed: ");
rcApiOut(dsmHandle, rc);
done = bTrue;

}
/* Adjust the dataBlk buffer for the next piece to send */

}
rc = dsmEndSendObj(dsmHandle);
if (rc)
{

printf("*** dsmEndSendObj failed: ");
rcApiOut(dsmHandle, rc);

}
txn_reason = 0;
rc = dsmEndTxn(dsmHandle, /* API session handle */

DSM_VOTE_COMMIT, /* Commit transaction */
&txn_reason); /* Reason if txn aborted */

if (rc || txn_reason)
{

printf("*** dsmEndTxn failed: rc = ");
rcApiOut(dsmHandle, rc);
printf(" reason =

}

Figure 14. An example of sending data to a server

Chapter 3. API design recommendations and considerations 57

Each logical group has a group leader. If the group leader is deleted, the group is
deleted. You cannot delete a member if it is part of a group. Expiration of all
members in a group is dependent on the group leader. For example, if a member is
marked for expiration, it does not expire unless the group leader expires. However,
if a member is not marked for expiration, and the group leader is expired, then all
members are expired.

File groups can only contain backup data, not archive data. Archive objects can use
the Archive Description field to facilitate a type of grouping if required by an
application.

The dsmGroupHandler call groups the operations. The dsmGroupHandler
function must be called from within a transaction. Most group error conditions are
caught on either the dsmEndTxnl or dsmEndTxnEx calls.

The out structure in dsmEndTxnEx includes a new field, groupLeaderObjId. This
field contains the object ID of the group leader if a group was opened in that
transaction. You can create a group across more than one transaction. A group is
not committed, or saved, on the server until a close is performed. The
dsmGroupHandler is an interface that can accept five different operations. They
include:
v DSM_GROUP_ACTION_OPEN
v DSM_GROUP_ACTION_CLOSE
v DSM_GROUP_ACTION_ADD
v DSM_GROUP_ACTION_ASSIGNTO
v DSM_GROUP_ACTION_REMOVE

Table 21 lists the dsmGroupHandler function call actions:

Table 21. dsmGroupHanlder functions

Action Description

OPEN The OPEN action creates a new group. The next object that is sent
becomes the group leader. The group leader cannot have content. All
objects after the first object become members that are added to the group.
To create a group, open a group and pass in a unique string to identify the
group. This unique identifier allows several groups with the same name to
be opened. After the group is opened, the next object that is sent is the
group leader. All other objects that are sent are group members.

CLOSE The CLOSE action commits and saves an open group. To close the group,
pass in the object name and the unique string that is used in the open
operation. The application must check for open groups and, if necessary,
close or delete them. A group is not committed or saved until a close of
the group is performed. You cannot close a new group with the same
name as an existing open group. This causes the CLOSE action to fail.

A CLOSE action can also fail if there is a management class
incompatibility between the current closed group and the new group to be
closed of the same name. Before issuing a close group, query the previous
closed group and if the management class of the existing closed group is
different than the management class associated with the current open
group, issue a dsmUpdateObject with type DSM_BACKUPD_MC to
update the existing group to the new management class. You can then
issue the close.

ADD The ADD action appends an object to a group. All objects that are sent
after the ADD action are assigned to the group.

58 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Table 21. dsmGroupHanlder functions (continued)

Action Description

ASSIGNTO The ASSIGNTO action permits the client to assign objects that exist on the
server to the declared peer group. This is similar to the ADD action except
that the add applies to objects within an in-flight transaction and the
ASSIGNTO action applies to an object that is on the server. This
transaction sets up the PEER group relationship.

REMOVE The REMOVE action removes a member, or a list of members, from a
group. A group leader cannot be removed from a group. A group member
must be removed before it can be deleted.

There are two new query types for group support:
v qtBackupGroups
v qtOpenGroups

The qtBackupGroups queries groups that are closed while qtOpenGroups queries
groups that are open. The query buffer for the new types has fields for
groupLeaderObjId and objType. The query performs differently depending on the
values for these two fields. The following table includes some query possibilities:

Table 22. Examples of queries

groupLeaderObjId.hi groupLeaderObjId.lo objType Result

0 0 NULL Returns a list of all group leaders

grpLdrObjId.hi grpLdrObjId.lo 0 Returns a list for all group members that are assigned
to the specified group leader (grpLdrObjId).

grpLdrObjId.hi grpLdrObjId.lo objType Returns a list (using BackQryRespEnhanced3) for each
group member that is assigned to the specified group
leader (grpLdrObjId), and matching the object type
(objType).

The response structure (qryRespBackupData) from dsmGetNextQObj includes
two fields for group support:
v isGroupLeader
v isOpenGroup

These are Boolean flags. The following example displays the creation of the group,
adding members to the group, and closing the group to commit it on the Tivoli
Storage Manager server. Refer to the sample group program (dsmgrp.c) that is
included in the API sampsrc directory for an actual code example.

Chapter 3. API design recommendations and considerations 59

Receiving data from a server
Application clients can receive data or named objects and their associated data
from Tivoli Storage Manager storage by using the restore and retrieve functions of
the product. The restore function accesses objects that previously were backed up,
and the retrieve function accesses objects that previously were archived.

Note: The API can only restore or retrieve objects that were backed up or archived
using API calls.

Both restore and retrieve functions start with a query operation. The query returns
different information depending on whether the data was originally backed up or
archived. For instance, a query on backup objects returns information on whether
an object is active or inactive, while a query on archive objects returns information
such as object descriptions. Both queries return object IDs that Tivoli Storage
Manager uses to uniquely identify the object on the server.

Partial object restore or retrieve
The application client can receive only a portion of the object. This is called a
partial object restore or a partial object retrieve.

Attention: Partial restore or retrieve of compressed or encrypted objects produces
unpredictable results.

Note: If you code your application to use a partial object restore or retrieve, you
cannot compress the data while sending it. To enforce this, set
ObjAttr.objCompressed to bTrue.

To perform a partial object restore or retrieve, associate the following two data
fields with each object GetList entry:

offset The byte offset into the object from which to begin returning data.

length The number of object bytes to return.

dsmBeginTxn
dsmGroupHandler (PEER, OPEN, leader, uniqueId)
dsmBeginSendObj
dsmEndSendObj

dsmEndTxnEx (With objId of leader)
Loop for multiple txns
{
dsmBeginTxn
dsmGroupHandler (PEER, ADD, member, groupLeaderObjID)
Loop for multiple objects
{
dsmBeginSendObj
Loop for data
{
dsmSendData
}
dsmEndSendObj
}
dsmEndTxn
}
dmBeginTxn
dsmGroupHandler(CLOSE)
dsmEndTxn

Figure 15. Example of pseudo-code to create a group

60 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Use DSM_MAX_PARTIAL_GET_OBJ to determine the maximum number of objects
that can perform a partial object restore or retrieve for a specific dsmBeginGetData
list.

The following data fields, used on the dsmBeginGetData call, determine what
portion of the object is restored or retrieved:
v If both the offset and length are zero, the entire object is restored or retrieved

from Tivoli Storage Manager storage.
v If the offset is greater than zero, but the length is zero, the object is restored or

retrieved from the offset to the end.
v If the length is greater than zero, only the portion of the object from the offset

for the specified length is restored or retrieved.

Restoring or retrieving data
After a query is made and a session is established with the Tivoli Storage Manager
server, you can run a procedure to restore or retrieve data.

Follow these steps:
1. Query the Tivoli Storage Manager server for either backup or archive data.
2. Determine the objects to restore or retrieve from the server.
3. Sort the objects on the Restore Order field.
4. Send the dsmBeginGetData call with the list of objects that you want to access.
5. Send the dsmGetObj call to obtain each object from the system. Multiple

dsmGetData calls might be needed for each object to obtain all associated
object data. Send the dsmEndGetObj call after all data for an object is obtained.

6. Send the dsmEndGetData call after all data for all objects is received, or to end
the receive operation.

Querying the server
Before you can begin any restore or retrieve operation, first query the Tivoli
Storage Manager server to determine what objects you can receive from storage.

To send the query, the application must enter the proper parameter lists and
structures for the dsmBeginQuery call. This includes the file space that the query
examines and pattern-match entries for the high-level and low-level name fields. If
the session was initialized with a NULL owner name, you do not need to specify
the owner field. However, if the session was initialized with an explicit owner
name, only objects that explicitly have that owner name associated with them are
returned.

The point-in-time BackupQuery supplies a snapshot of the system at a given time.
By specifying a valid date, you can query all files that were backed up to that time.
Even if an object has an active backup from a later date, point-in-time overrides an
object state so that the previous inactive copy is returned. An example of this is in
pitDate. You must be connected to at least a Version 3 server to use point-in-time
BackupQuery.

A query returns all information that was originally stored with the object, in
addition to the following in Table 23 on page 62.

Chapter 3. API design recommendations and considerations 61

Table 23. Query to the server return information

Field Description

copyId The copyIdHi and copyIdLo values provide an eight-byte
number that uniquely identifies this object for this node in Tivoli
Storage Manager storage. Use this ID to request a specific object
from storage for restore or retrieve processing.

restoreOrderExt The restoreOrderExt value provides a mechanism for receiving
objects from Tivoli Storage Manager storage in the most efficient
manner possible. Sort the objects to restore on this value to
ensure that tapes are mounted only once and are read from front
to back.

You must keep some or all of the query information for later processing. Keep the
copyId and restoreOrderExt fields because they are needed for the actual restore
operation. You must also keep any other information needed to properly open a
data file or identify a destination.

Call dsmEndQuery to finish the query operation.

Selecting and sorting objects by restore order
After the backup or archive query is performed, the application client must
determine which objects, if any, are to be restored or retrieved.

Then you sort the objects in ascending order (low to high). This sorting is very
important to the performance of the restore operation. Sorting the objects on the
restoreOrderExt fields ensures that the data is read from the server in the most
efficient order.

All data on disk is restored first, followed by data on media classes that require
volume mounts (such as tape). The restoreOrderExt field also ensures that data on
tape is read in order with processing starting at the front of a tape and progressing
towards the end.

Properly sorting on the restoreOrderExt field means that duplicate tape mounts
and unnecessary tape rewinds do not occur.

A non-zero value in the restoreOrderExt.top field correlates to a unique serial
access device on the Tivoli Storage Manager server. Since a serial access device can
only be used by one session / mount point at a time, the application should
ensure that if it uses multiple sessions there are not concurrent restores with the
same restoreOrderExt.top value. Otherwise the first session are able to access the
objects, but other sessions wait until the first session terminates and the device
becomes available.

Following is an example of sorting objects by using Restore Order fields.

typedef struct {
dsStruct64_t objId;
dsUint160_t restoreOrderExt;

} SortOrder; /* struct used for sorting */

===

Figure 16. An example of sorting objects with the restore order fields

62 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

/* the code for sorting starts from here */
dsmQueryType queryType;
qryBackupData queryBuffer;
DataBlk qDataBlkArea;
qryRespBackupData qbDataArea;
dsInt16_t rc;
dsBool_t done = bFalse;
int i = 0;
int qry_item;
SortOrder sortorder[100]; /* sorting can be done up to 100 items

only right now. Set appropriate
array size to fit your needs */

/*---+
| NOTE: Make sure that proper initializations have been done to
| queryType,
| queryBuffer, qDataBlkAre, and qbDataArea.
|
--*/

qDataBlkArea.bufferPtf = (char*) &qbDataArea;

rc = dsmBeginQuery(dsmHandle, queryType, (void *) &queryBuffer);

/*--+
| Make sure to check rc from dsmBeginQuery
+---*/
while (!done)
{

rc = dsmGetNextQObj(dsmHandle, &qDataBlkArea);
if ((rc == DSM_RC_MORE_DATA) ||

(rc == DSM_RC_FINISHED))
&&(qDataBlkArea.numBytes))

{
/**/
/* transferring restoreOrderExt and objId */
/**/
sortorder[i].restoreOrderExt = qbDataArea.restoreOrderExt;
sortorder[i].objId = qbDataArea.objId;

} /* if ((rc == DSM_RC_MORE_DATA) || (rc == DSM_RC_FINISHED)) */
else
{

done = bTrue;
/****************************/
/* take appropriate action. */
/****************************/

}

i++;
qry_item++;

} /* while (!done) */
rc = dsmEndQuery(dsmHandle);
/*check rc */
/***/
/* sorting the array using qsort. After the call, */
/* sortorder will be sorted by restoreOrderExt field */
/***/

qsort(sortorder, qry_item, sizeof(SortOrder), SortRestoreOrder);

/*---+
| NOTE: Make sure to extract sorted object ids and store them in
| any data structure you want.
--*/

/*--+

Chapter 3. API design recommendations and considerations 63

| int SortRestoreOrder(SortOrder *a, SortOrder *b)
|
| This function compares restoreOrder fields from two structures.
| if (a > b)
| return(GREATERTHAN);
|| if (a < b)
| return(LESSTHAN);
|| if (a == b)
| return(EQUAL);
|+--*/
int SortRestoreOrder(SortOrder *a, SortOrder *b)
{

if (a->restoreOrderExt.top > b->restoreOrderExt.top)
return(GREATERTHAN);

else if (a->restoreOrderExt.top < b->restoreOrderExt.top)
return(LESSTHAN);

else if (a->restoreOrderExt.hi_hi > b->restoreOrderExt.hi_hi)
return(GREATERTHAN);

else if (a->restoreOrderExt.hi_hi < b->restoreOrderExt.hi_hi)
return(LESSTHAN);

else if (a->restoreOrderExt.hi_lo > b->restoreOrderExt.hi_lo)
return(GREATERTHAN);

else if (a->restoreOrderExt.hi_lo < b->restoreOrderExt.hi_lo)
return(LESSTHAN);

else if (a->restoreOrderExt.lo_hi > b->restoreOrderExt.lo_hi)
return(GREATERTHAN);

else if (a->restoreOrderExt.lo_hi < b->restoreOrderExt.lo_hi)
return(LESSTHAN);

else if (a->restoreOrderExt.lo_lo > b->restoreOrderExt.lo_lo)
return(GREATERTHAN);

else if (a->restoreOrderExt.lo_lo < b->restoreOrderExt.lo_lo)
return(LESSTHAN);

else
return(EQUAL);

}

Starting the dsmBeginGetData call
Once you select and sort the objects to receive, submit them to Tivoli Storage
Manager for either a restore or retrieve. The dsmBeginGetData call begins a
restore or retrieve operation. The objects are returned to the application client in
the order you requested.

Complete the information for these two parameters in these calls:

mountWait
This parameter tells the server whether the application client waits for
offline media to be mounted in order to obtain data for an object, or
whether that object should be skipped during processing of the restore or
retrieve operation.

dsmGetObjListP
This parameter is a data structure that contains the objId field which is a
list of all object IDs that are restored or retrieved. Each objId is associated
with a partialObjData structure that describes whether the entire objId or
only a particular section of the object will be retrieved.

Each objId is eight bytes in length, so a single restore or retrieve request
can contain thousands of objects. The number of objects to request in a
single call is limited to DSM_MAX_GET_OBJ or
DSM_MAX_PARTIAL_GET_OBJ.

64 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Receiving each object to restore or retrieve
Once the dsmBeginGetData call is sent, you can perform a procedure to receive
each object that is sent from the server

Note:

v The DSM_RC_MORE_DATA return code means that a buffer was returned and
you should call dsmGetData again. Check the DataBlk.numBytes for the actual
number of returned bytes.

v When you obtain all data for an object, you must send a dsmEndGetObj call. If
more objects will be received, send the dsmGetObj call again.

v If you need to stop the process (normally or abnormally), for example you want
to discard any remaining data in the restore stream for all objects not yet
received, send the dsmEndGetData call. This flushes the data from the server to
the client. However, using this method might take time to complete. If you need
to end a restore, use dsmTerminate to close the session.

1. Send the dsmGetObj call to identify the object that you requested from the
data stream and, to obtain the first block of data that is associated with the
object.

2. Send more dsmGetData calls, as necessary, to obtain the remaining object data.

Example flow diagrams for restore and retrieve
View these state diagram and flowchart for a visual example of how to perform
restore or retrieve operations.

The arrow pointing from “In Get Object” to dsmEndGetData indicates that you
can send a dsmEndGetData call after a call to dsmGetObj or dsmGetData. You
might need to do this if an error condition occurred while getting an object from
Tivoli Storage Manager storage and you want to stop the operation. In normal
circumstances, however, call dsmEndGetObj first.

Figure 18 on page 66 displays the flowchart for performing restore or retrieve
operations.

In Get Data

dsmBeginGetData

dsmGetData

dsmEndGetData

In Get Object

dsmEndGetObjdsmGetObj

Figure 17. State diagram for restore and retrieve operations

Chapter 3. API design recommendations and considerations 65

Code example of receiving data from a server
This example demonstrates using the API functions to retrieve data from Tivoli
Storage Manager storage.

The dsmBeginGetData function call appears inside a switch statement, so that
different parameters can be called depending on whether a restore or retrieve
operation is being performed. The dsmGetData function call is called from inside a
loop that repeatedly gets data from the server until a flag is set that permits the
program execution to exit the loop.

/* Call dsmBeginQuery and create a linked list of objects to restore. */
/* Process this list to create the proper list for the GetData calls. */
/* Set up the getList structure to point to this list. */
/* This example is set up to perform a partial object retrieve. To */
/* retrieve only complete objects, set up: */
/* getList.stVersion = dsmGetListVersion; */
/* getList.partialObjData = NULL; */
dsmGetList getList;
getList.stVersion = dsmGetListPORVersion; /* structure version */
getList.numObjId = items; /* number of items in list */
getList.objId = (ObjID *)rest_ibuff;

/* list of object IDs to restore */
getList.partialObjData = (PartialObjData *) part_ibuff;

/* list of partial object data */
switch(get_type)
{

No

Yes

Start

Idle
State

Yes

Yes

No

No

Query server to determine
objects to get

Sort desired objects
by restore order

dsmBeginGetData

dsmGetObj

More
data?

dsmGetData

dsmEndGetObj More
objects? dsmEndGetData

Another
list?

Figure 18. Flowchart for restore and retrieve operations

Figure 19. An example of receiving data from a server

66 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

case (Restore_Get) :
rc = dsmBeginGetData(dsmHandle,bFalse,gtBackup,&getList);
break;

case (Retrieve_Get) :
rc = dsmBeginGetData(dsmHandle,bFalse,gtArchive,&getList);
break;

default : ;
}
if (rc)
{

printf("*** dsmBeginGetData failed: ");
rcApiOut(dsmHandle, rc);
return rc;

}
/* Get each object from the list and verify whether it is on the */
/* server. If so, initialize structures with object attributes for */
/* data validation checks. When done, call dsmGetObj. */
rc = dsmGetObj(dsmHandle,objId,&dataBlk);

done = bFalse;
while(!done)
{

if ((rc == DSM_RC_MORE_DATA)
|| (rc == DSM_RC_FINISHED))

{
if (rc == DSM_RC_MORE_DATA)
{

dataBlk.numBytes = 0;
rc = dsmGetData(dsmHandle,&dataBlk);

}
else

done = bTrue;
}
else
{

printf("*** dsmGetObj or dsmGetData failed: ");
rcApiOut(dsmHandle, rc);
done = bTrue;

}
} /* while */
rc = dsmEndGetObj(dsmHandle);
/* check rc from dsmEndGetObj */
/* check rc from dsmEndGetData */
rc = dsmEndGetData(dsmHandle);
return 0;

Updating and deleting objects on the server
Your API applications can use thedsmUpdateObj or dsmUpdateObjEx function
call to update objects that were archived or backed up. Use either call in the
session state only, updating one object at a time. Use dsmUpdateObjEx to update
any of several archive objects containing the same name.

To select an archive object, set the dsmSendType function call to stArchive.
v With dsmUpdateObj, only the latest archive object with the assigned name is

updated.
v With dsmUpdateObjEx, any archived object can be updated by specifying the

proper object ID.

For an archived object, the application can update the following fields:
v Description
v Object information
v Owner

Chapter 3. API design recommendations and considerations 67

To select a backup object, set dsmSendType to stBackup. For backed-up objects,
only the active copy is updated.

For a backed-up object, the application can update the following fields:
v Management class
v Object information
v Owner

Deleting objects from the server
API applications can make calls to either delete objects that were archived or turn
off objects that were backed up. Deleting archived objects is dependent on the
node authorization that was given when the Tivoli Storage Manager administrator
registered the node. Administrators can specify that nodes can delete archived
objects.

Use the dsmDeleteObj function call to delete archived objects and turn off backup
objects. Using this delType removes the backup object from the server. This is
based on objID, deletes an object from the server database. Only an owner of an
object can delete it. You can delete any version (active or inactive) of an object. The
server reconciles the versions. If you delete an active version of an object, the first
inactive version becomes active. If you delete an inactive version of an object, all
older versions advance. The node must be registered with backDel permission.

An archived object is marked for deletion in storage when the system performs its
next object expiration cycle. Once you delete an archived object from the server,
you cannot retrieve it.

When you inactivate a backup object at the server, the object moves from an active
state to an inactive state. These states have different retention policies associated
with them that are based on the management class that is assigned.

Similar to the dsmSendObj call, a call to dsmDeleteObj is sent within the
boundary of a transaction. The state diagram in Figure 12 on page 54 displays how
a call to dsmDeleteObj is preceded by a call to dsmBeginTxn and followed by a
call to dsmEndTxn.

Logging events
An API application can log event messages to central locations. It can direct
logging to the Tivoli Storage Manager server, the local machine, or both. The
dsmLogEventEx function call is performed inside a session. To view messages
logged on the server, use the query actlog command through the administrative
client.

Note: See the Tivoli Storage Manager Administrator's Reference for more
information.

We recommend that you use the Tivoli Storage Manager client option,
errorlogretention, to prune the client error log file if the application generates
numerous client messages that are written to the client log (dsmLogType either
logLocal or logBoth).

68 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Putting it all together - a summary diagram
Once you review all the considerations for creating your own application with the
Tivoli Storage Manager API, review this state diagram summary of an entire
application.

Figure 20 on page 70 contains the state diagram for the API. It contains all
previously displayed state diagrams in addition to several other calls previously
not displayed.

The points in this diagram include:
v Call dsmQueryApiVersionEx at any time. It has no state associated with it. See

Figure 1 on page 17 for an example.
v Call dsmQueryCliOptions before a dsmInitEx call only.
v Use dsmRegisterFS, dsmUpdateFS, and dsmDeleteFS to manage file spaces.

These calls are made from within an idle session state. Use the dsmBeginQuery
call to query file spaces. For more information about file space calls, see
“Managing file spaces” on page 28.

v Send the dsmBindMC call from within an idle session state or from within a
send object transaction state. See the example in Figure 8 on page 32.

v Send the dsmChangePW call from within an idle session state.

Note: If the dsmInitEx call returns with a password-expired return code, the
dsmChangePW call must be made before you start a valid session. See Figure 4
on page 23 for an example that uses dsmChangePW.

v If a call returns with an error, the state remains as it was. For example, if
dsmGetObj returns with an error, the state remains In Get Data, and a call to
dsmEndGetObj is a call sequence error.

Chapter 3. API design recommendations and considerations 69

dsmQueryApiVersion

dsmRegisterFS

dsmUpdateFS

dsmDeleteFS

dsmSetAccess

dsmQueryAccess

dsmDeleteAccess

dsmBeginTxn

dsmBindMc*

dsmGroupHandler

In
Transaction

In
Send Object

dsmDeleteObj

dsmEndSendObjEx

dsmGetObjdsmSendObj

dsmSendData

* Can be inside or outside of a transaction

dsmBeginGetData dsmEndGetData

dsmEndGetDataEx

dsmBeginQuery dsmEndQuery

dsmUpdateObj
dsmUpdateObjEx

dsmLogEvent
dsmLogEventEx

dsmQuerySessInfo

dsmChangePW

dsmBindMC

dsmQuerySessOptions

dsmReleaseBuffer

dsmGetData

dsmGetBufferData

dsmReleaseBuffer

dsmSendBufferData

dsmRequestBuffer

dsmGetNextQObj

In Query

In Get Object

dsmEndGetObj

End Get Data

dsmEndSendObj or

dsmEndTxn

dsmEndTxnEx

dsmQueryCliOptions (optional)

dsmTerminate

In
Session

dsmInit
or dsmInitEx

dsmSetUp dsmCleanUp

dsmRenameObj

Figure 20. Summary state diagram for the API

70 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Chapter 4. Understanding interoperability

The API has two types of interoperability: between the backup-archive client and
API applications and between different operating systems.

Backup-archive client interoperability
The backup-archive command line can access API objects to provide limited
interoperability. API objects can only be viewed and accessed from the
backup-archive command line client and cannot be viewed or accessed from any of
the GUI interfaces (native, web Java™). The backup-archive command-line client
can only restore content of the file and nothing else, so you should only use it for a
salvage type of operation.

The following command-line actions are provided:
v Delete archive
v Delete filespace
v Query
v Restore
v Retrieve
v Set access

The path information is actual directories for backup-archive client objects. In
contrast, the API object path information might not have any relationship to
existing directories: the path might be completely contrived. Interoperability does
not change this aspect of these object types. To use this feature successfully, follow
the restrictions and conventions.

Notes:

1. There is no interoperability between the backup-archive client and API objects
stored on a retention protection server.

2. You cannot use the backup-archive client GUIs to access files that were stored
using the API client. You can only use the command line to access these files.

Naming your API objects
Establish a consistent naming convention for API object names that contain the file
space name, the high-level qualifier, and the low-level qualifier. The file space
name and high-level qualifiers can refer to actual directory names, although this is
not a requirement. Each can consist of more than one directory name that applies
to the low-level qualifier.

We recommend that the low-level qualifier be the name of the object that is not
prefixed with directory information. See “Object names and IDs” on page 24 for
more information.

File space names must be fully qualified when they are referred from either the
API or the backup-archive command line. For example, on a UNIX or Linux
operating system, if you register file space /a and another file space, /a/b, then,
when you refer to /a, it displays objects that are related only to file space /a. To
view objects that are related to /a/b, specify /a/b as the file space name. After
you register both file spaces, if you back up object b into file space /a, then a
query for /a/b continues to display objects that are related to file space /a/b only.

© Copyright IBM Corp. 1993, 2010 71

The exception to this restriction occurs in file space references when you attempt to
query or delete file spaces with the API. In both cases, it is not necessary for file
space names to be fully qualified if you use a wildcard character. For example, /a*
refers to both /a and /a/b.

Note: If interoperability is important to you, then avoid file space names that
overlap.

On Windows-based operating systems, enclose file space names in braces { } for
API objects when you access them from the backup-archive command line.
Windows-based operating systems automatically place file space names in
uppercase letters when you register or refer them. However, this is not true for the
remainder of the object name specification. If you want full interoperability, place
the high-level qualifier and the low-level qualifier in uppercase letters in the
application when you back up API objects.

The examples that follow demonstrate these concepts. In both environments, it is
not necessary to specify completely either the high-level or the low-level qualifier.
However, if you do not, then you must use the wildcard character.

Platform Example

Windows To query all backed-up files in file space MYFS, enter:

dsmc q ba "{MYFS}**"

Note: There is at least one asterisk (*) for each of the high-level and
low-level qualifiers.

UNIX or
Linux

To query all backed-up files in file space /A, enter:

dsmc q ba "/A/*/*"

Note: There is at least one asterisk (*) for each of the high-level and
low-level qualifiers.

Backup-archive client commands you can use with the API
You can use a subset of backup-archive client commands within an application. For
example, you can view and manage objects that other users own either on the
same node or on a different node.

To view and manage objects that other users own either on the same node or on a
different node, perform these steps:
1. Give access with the set access command.
2. Specify the owner and the node. Use the fromowner and fromnode options from

the backup-archive command line to specify the owner and the node. For
example:

dsmc q ba "/A/*/*" -fromowner=other_owner -fromnode=other_node

Table 24 describes the commands that you can use with API objects.

Table 24. Backup-archive client commands you can use with API objects

Command Description

Delete
Archive

Archived files that the current user owns can be deleted. The set access
command settings have no effect on this command.

Delete
Filespace

The delete filespace command affects API objects.

72 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Table 24. Backup-archive client commands you can use with API objects (continued)

Command Description

Query From the backup-archive command line, you can query backed up and
archived API objects and objects that other users own, or that reside on
other nodes. See “Naming your API objects” on page 71 for information
about querying API objects.

Use the existing –fromowner option to query objects that a different user
owns for which the set access permission has been given. Use the existing
–fromnode option to query objects that reside on another node for which the
set access permission has been given. See “dsmInitEx” on page 105 for
more information.

Restore
Retrieve

Note: Only use these commands for exception situations. API objects
encrypted using the application managed key can be restored or retrieved if
the encryption key is known or saved in the password file or registry. API
objects encrypted using transparent encryption cannot be restored or
retrieved using the backup-archive client.

These commands return data as bit files that are created using default file
attributes. You can restore or retrieve API objects that other users own, or
that are from a different node. The set access command determines which
objects qualify.

dSet Access The set access command permits users to manage API objects that another
user owns, or that are from another node.

Operating system interoperability
The Tivoli Storage Manager API supports cross-platform interoperability.
Applications on a UNIX or Linux system can operate on file spaces and objects
that are backed up from a Windows system, and a Windows system can operate
on a UNIX or Linux system.

To achieve interoperability, perform the following setup tasks:
1. Establish a consistent naming convention. Select a character for the dir

delimiter and place it in front of the file space name, the high-level qualifier,
and the low-level qualifier.

2. When calling dsmInitEx, set the value of the dirDelimiter field to the character
that you selected: for example, / or \ and set bCrossPlatform to bTrue.

3. Set the useUnicode flag to bFalse when you use the Tivoli Storage Manager
interface. Unicode filenames and non-Unicode filenames do not interoperate.

Backing up multiple nodes with client node proxy support
Backups of multiple nodes which share storage can be consolidated to a common
target nodename on the Tivoli Storage Manager server. This is useful when the
machine responsible for performing the backup can change over time, such as with
a cluster. The asnodename option also allows data to be restored from a different
system than the one which performed the backup.

Use the asnodename option on the dsmInitEx option string to backup, archive,
restore, and retrieve, query or delete data under the target node name on the Tivoli
Storage Manager server. You can also specify the asnodename option in the dsm.opt
or dsm.sys file.

Chapter 4. Understanding interoperability 73

Recommendation: Do not use target nodes as traditional nodes, especially if you
encrypt your files before backing them up to the server.

For more information, see the IBM Tivoli Storage Manager Backup-Archive Clients
Installation and User's Guide for your operating system.

To enable this option, follow these steps:
1. Install the API client on all nodes in a shared data environment.
2. If not already registered, register each node with the Tivoli Storage Manager

server. Register the common "target" nodename to be shared by each of the
agent nodes used in your shared data environment.

3. Register each of the agent nodes in the shared data environment with the Tivoli
Storage Manager server. This is the agent nodename which is used for
authentication purposes. Data is not be stored using the agent nodename when
the asnodename option is used.

4. Ask your Tivoli Storage Manager administrator to grant proxy authority to all
nodes in the shared environment to access the target node name on the Tivoli
Storage Manager server, using the grant proxynode command.

5. Use the query proxynode administrative client command to display the client
nodes, granted by the grant proxynode command. Or use the dsmQuery
command with the query type qtProxyNodeAuth to see the nodes to which
this node can proxy

6. If the application is using user encryption (not TSMENCRKEY) of data, make
sure that all nodes are using the exact encryption key. You must use the same
encryption key for all files backed up in the shared node environment.

74 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Chapter 5. Using the API with Unicode

The Tivoli Storage Manager API supports Unicode UCS2, a fixed length,
double-byte code page that has code points for all known code pages, such as
Japanese, Chinese, or German. It supports as many as 65,535 unique code points.

Note: This feature is only available on Windows.

With Unicode, your application can back up and restore file names in any
character set from the same machine. For example, on an English machine, you can
back up and restore file names in any other language code page.

When you should use Unicode
You can simplify your application that supports multiple languages by writing a
Unicode application and by taking advantage of the Tivoli Storage Manager
Unicode interface.

Use the Tivoli Storage Manager Unicode interface if any of the following
conditions are true.
v If your application is already compiled for Unicode and it was converting to a

multibyte character set (mbcs) before calling the Tivoli Storage Manager API.
v If you are writing a new application and want to enable your application to

support Unicode.
v If your application uses a string passed to it from an operating system or other

application that uses Unicode.

If you do not need Unicode, it is not necessary to compile your application again.

The API continues to support the dsm interface. The API SDK contains callmtu1.c
and callmtu2.c sample programs that demonstrate how to use the Unicode API.
Use makemtu to compile these programs.

Setting up Unicode
To set up and use Unicode you must perform a particular procedure so the API
registers a Unicode file space on the server and all file names in that file space
become Unicode strings.

Note: You cannot store Unicode and non-Unicode file names in the same file
space.
1. Compile the code with the -DUNICODE flag.
2. All strings in your application must be wchar strings.
3. Follow the structures in the tsmapitd.h file, and the function definitions in the

tsmapifp.h file for calls to the API.
4. Set the useUnicode flag to bTrue on the tsmInitEx function call. Any new file

space is registered as a Unicode file space.

When you send data to previously registered, non-Unicode file spaces, the API
continues to send file names as non-Unicode. Rename the old file spaces on the
server to fsname_old and start a new Unicode file space for new data. The API

© Copyright IBM Corp. 1993, 2010 75

restores non-Unicode data from the old file spaces. Use the bIsUnicode field in the
tsmQryRespFSData structure that is returned on a query file space to determine
whether or not a file space is Unicode.

Each dsmXXX function call has a matching tsmXXX function call. The difference
between the two are the structures that are used. All tsm structures have dsChar_t
types for string values when they are compiled with the UNICODE flag. The
dsChar_r maps to wchar. There is no other difference between these interfaces.

Note: Use either one interface or the other. Do not mix the dsm and tsm interfaces.
Ensure that you use the Tivoli Storage Manager structures and Tivoli Storage
Manager version definitions.

Some constants continue to be defined in the dsmapitd.h file, so you need both the
dsmapitd.h and the tsmapitd.h files when you compile.

You can use the Tivoli Storage Manager interface on other operating systems, such
as UNIX or Linux, but on these operating systems, the dsChar_t type maps to char
because Unicode is supported on Windows only. You can write only one variation
of the application and compile on more than one operating system using the Tivoli
Storage Manager interface. If you are writing a new application, use the Tivoli
Storage Manager interface.

If you are upgrading an existing application:
1. Convert the dsm structures and calls to the Tivoli Storage Manager interface
2. Migrate existing file spaces
3. Back up new file spaces with the useUnicode flag set to true.

Note: After you use a Unicode-enabled client to access a node, you cannot connect
to the same node name with an older version of the API or with an API from
another operating system. If your application uses cross-platform capability, do not
use the Unicode flag. There is no cross-platform support between Unicode and
non-Unicode operating systems.

When you enable the useUnicode flag, all string structures are treated as Unicode
strings. On the server, only the following fields are true Unicode:
v File space name
v High level
v Low level
v Archive description

All remaining fields convert to mbcs in the local code page before they are sent to
the server. Fields, such as nodename, are wchar strings. They must be valid in the
current locale. For example, on a Japanese machine, you can back up files with
Chinese names, but the node name must be a valid string in Japanese. The option
file remains in the current code page. If you need to create a Unicode
include-exclude list, use the inclexcl option with a file name and create a Unicode
file with Unicode patterns in it. For more information, see the Tivoli Storage
Manager Installing and Using the Backup-Archive Client for your operating system.

76 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Chapter 6. API function calls

Table 25 provides an alphabetical list of the API function calls, a brief description
and the location of more detailed information about the function call, which
includes:

Element Description

Purpose Describes the function call.

Syntax Contains the actual C code for the function call. This code is copied from the
UNIX or Linux version of the dsmapifp.h header file. See Appendix C, “API
function definitions source file,” on page 187.

This file differs slightly on other operating systems. Application programmers
for other operating systems should check their version of the header file,
dsmapifp.h, for the exact syntax of the API definitions.

Parameters Describes each parameter in the function call, identifying it as either input (I)
or output (O), depending on how it is used. Some parameters are designated
as both input and output (I/O). The data types that are referenced in this
section are defined in the dsmapitd.h header file. See Appendix B, “API type
definitions source files,” on page 147.

Return
codes

Contains a list of the return codes that are specific to the function call. General
system errors, such as communication errors, server problems, or user errors
that might appear on any call are not listed. The return codes are defined in
the dsmrc.h header file. See Appendix A, “API return codes source file
dsmrc.h,” on page 135.

See Tivoli Storage Manager Client Messages and Application Programming Interface
Return Codes for detailed explanations of API return codes.

Table 25. API function calls

Function call and location Description

“dsmBeginGetData” on page
79

Starts a restore or retrieve operation on a list of objects in
storage.

“dsmBeginQuery” on page 81 Starts a query request to Tivoli Storage Manager for
information.

“dsmBeginTxn” on page 84 Starts one or more transactions that begins a complete
action. Either all of the actions succeed, or none succeed.

“dsmBindMC” on page 85 Associates, or binds, a management class to the object that
is passed.

“dsmChangePW” on page 86 Changes a Storage Manager password.

“dsmCleanUp” on page 87 This call is used if dsmSetUp was called.

“dsmDeleteAccess” on page
87

Deletes current authorization rules for backup versions or
archived copies of your objects.

“dsmDeleteFS” on page 88 Deletes a file space from storage.

“dsmDeleteObj” on page 89 Turns off backup objects, or deletes archive objects in
storage.

“dsmEndGetData” on page 90 Ends a dsmBeginGetData session that gets objects from
storage.

“dsmEndGetDataEx” on page
91

Provides the total of LAN-free bytes that were sent.

© Copyright IBM Corp. 1993, 2010 77

Table 25. API function calls (continued)

Function call and location Description

“dsmEndGetObj” on page 91 Ends a dsmGetObj session that obtains data for a specified
object.

“dsmEndQuery” on page 92 Signifies the end of a dsmBeginQuery action.

“dsmEndSendObj” on page 92 Indicates the end of data that is sent to storage.

“dsmEndSendObjEx” on page
93

Provides compression information and the number of bytes
that were sent.

“dsmEndTxn” on page 93 Ends a Storage Manager transaction.

“dsmEndTxnEx” on page 95 Provides group leader object ID information to use with the
dsmGroupHandlerfunction call.

“dsmGetData” on page 96 Obtains a byte stream of data from Tivoli Storage Manager
and place it in the caller's buffer.

“dsmGetBufferData” on page
97

Gets a Tivoli Storage Manager-allocated buffer of data from
the Tivoli Storage Manager server.

“dsmGetNextQObj” on page
98

Gets the next query response from a previous
dsmBeginQuery call and places it in the caller's buffer.

“dsmGetObj” on page 100 Obtains the requested object data from the data stream and
places it in the caller's buffer.

“dsmGroupHandler” on page
101

Performs an action on a logical file group depending on the
input that is given.

“dsmInit” on page 102 Starts an API session and connects the client to storage.

“dsmInitEx” on page 105 Starts an API session using the additional parameters that
permit extended verification.

“dsmLogEvent” on page 109 Logs a user message to the server log file, to the local error
log, or to both.

“dsmLogEventEx” on page
109

Logs a user message to the server log file, to the local error
log, or to both.

“dsmQueryAccess” on page
111

Queries the server for all access authorization rules for
either backup versions or archived copies of your objects.

“dsmQueryApiVersion” on
page 111

Performs a query request for the API library version that
the application client accesses.

“dsmQueryApiVersionEx” on
page 112

Performs a query request for the API library version that
the application client accesses.

“dsmQueryCliOptions” on
page 113

Queries important option values in the user's option files.

“dsmQuerySessInfo” on page
113

Starts a query request to Storage Manager for information
that is related to the operation of the specified session in
dsmHandle.

“dsmQuerySessOptions” on
page 114

Queries important option values that are valid in the
specified session in dsmHandle.

“dsmRCMsg” on page 115 Obtains the message text that is associated with an API
return code.

“dsmRegisterFS” on page 116 Registers a new file space with the server.

“dsmReleaseBuffer” on page
117

Returns a Tivoli Storage Manager-allocated buffer.

“dsmRenameObj” on page 118 Renames the high-level or low-level object name.

78 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Table 25. API function calls (continued)

Function call and location Description

“dsmRequestBuffer” on page
119

Obtains a Tivoli Storage Manager-allocated buffer for buffer
copy elimination.

“dsmRetentionEvent” on page
120

Sends a list of object IDs to the server with a retention
event operation to be performed on these objects.

“dsmSendBufferData” on page
121

Sends data from a Tivoli Storage Manager-allocated buffer.

“dsmSendData” on page 122 Sends a byte stream of data to Storage Manager via a
buffer.

“dsmSendObj” on page 123 Starts a request to send a single object to storage.

“dsmSetAccess” on page 126 Gives other users, or nodes, access to backup versions or
archived copies of your objects, access to all your objects, or
access to a selective set.

“dsmSetUp” on page 128 Overwrites environment variable values.

“dsmTerminate” on page 129 Ends a session with the server and cleans up the Storage
Manager environment.

“dsmUpdateFS” on page 129 Updates a file space in storage.

“dsmUpdateObj” on page 130 Updates the objInfo information that is associated with an
active backup object already on the server, or it updates
archived objects.

“dsmUpdateObjEx” on page
132

Updates the objInfo information that is associated with a
specific archive object even when there are multiple objects
with same name, or it updates active backup objects.

dsmBeginGetData
The dsmBeginGetData function call starts a restore or retrieve operation on a list
of objects in storage. This list of objects is contained in the dsmGetList structure.
The application creates this list with values from the query that preceded a call to
dsmBeginGetData.

The caller first must use the restore order fields that are obtained from the object
query to sort the list that is contained in this call. This ensures that the objects are
restored from storage in the most efficient way possible without rewinding or
remounting data tapes.

When getting whole objects, the maximum dsmGetList.numObjID is
DSM_MAX_GET_OBJ. When getting partial objects, the maximum is
DSM_MAX_PARTIAL_GET_OBJ.

Follow the call to dsmBeginGetData with one or more calls to dsmGetObj to
obtain each object within the list. After each object is obtained, or additional data
for the object is not needed, the dsmEndGetObj call is sent.

When all objects are obtained, or the dsmEndGetObj is canceled, the
dsmEndGetData call is sent. You then can start the cycle again.

Chapter 6. API function calls 79

Syntax
dsInt16_t dsmBeginGetData (dsUint32_t dsmHandle,

dsBool_t mountWait,
dsmGetType getType,
dsmGetList *dsmGetObjListP);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

dsBool_t mountWait (I)
A Boolean true or false value indicates whether or not the application client
waits for offline media to be mounted if the data that is needed is currently
offline. If mountWait is true and the server device is not available, the server
option, IDLETIMEOUT, determines how long the application waits.

dsmGetType getType (I)
An enumerated type consisting of gtBackup and gtArchive that indicates what
type of object to get.

dsmGetList *dsmGetObjListP (I)
The structure that contains information about the objects or partial objects to
restore or retrieve. The structure points to a list of object IDs and, in the case of
a partial object restore or retrieve, a list of associated offsets and lengths. If
your application uses the partial object restore or retrieve function, set the
dsmGetList.stVersion field to dsmGetListPORVersion. In a partial object
restore or retrieve, you cannot compress data while sending it. To enforce this,
set ObjAttr.objCompressed to bTrue.

See Figure 19 on page 66 and Appendix B, “API type definitions source files,”
on page 147 for more information on this structure.

See “Partial object restore or retrieve” on page 60 for more information on
partial object restore or retrieve.

Return codes

The return code numbers are provided in parentheses ().

Table 26. Return codes for dsmBeginGetData

Return code Explanation

DSM_RC_ABORT_INVALID_OFFSET (33) The offset that was specified during a partial object retrieve is greater
than the length of the object.

DSM_RC_ABORT_INVALID_LENGTH
(34)

The length that was specified during a partial object retrieve is greater
than the length of the object, or the offset in addition to the length
extends past the end of the object.

DSM_RC_NO_MEMORY (102) There is no RAM remaining to complete the request.

DSM_RC_NUMOBJ_EXCEED (2029) The dsmGetList.numObjId is greater than DSM_MAX_GET_OBJ.

DSM_RC_OBJID_NOTFOUND (2063) The object ID was not found. The object was not restored.

DSM_RC_WRONG_VERSION_PARM
(2065)

The API version of the application client is different from the Tivoli
Storage Manager library version.

80 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

dsmBeginQuery
The dsmBeginQuery function call starts a query request to the server for
information about data, file spaces, and management classes.

Specifically, dsmBeginQuery can query:
v Archived data
v Backed-up data
v Active backed-up data
v File spaces
v Management classes

The query data that is returned from the call is obtained by one or more calls to
dsmGetNextQObj. When the query is complete, the dsmEndQuery call is sent.

Syntax
dsInt16_t dsmBeginQuery (dsUint32_t dsmHandle,

dsmQueryType queryType,
dsmQueryBuff *queryBuffer);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

dsmQueryType queryType (I)
Identifies the type of query to perform. Select from one of the following:

qtArchive Queries archived objects.
qtBackup Queries backed-up objects.
qtBackupActive Queries active, backed-up objects only for the entire file space

name that you pass. This is referred to as “fast path” and is an
efficient way to query active objects from storage.
Note: You must be a root user on a UNIX or Linux operating
system.

qtFilespace Queries registered file spaces.
qtMC Queries defined management classes.
qtBackupGroups Queries groups that are closed.
qtOpenGroups Queries groups that are open.
qtProxyNodeAuth Queries nodes to which this node can proxy.
qtProxyNodePeer Queries peer nodes with the same target.

dsmQueryBuff *queryBuffer (I)
Identifies a pointer to a buffer that is mapped to a particular data structure.
This structure is associated with the query type that you pass. These structures
contain the selection criteria for each query type. Complete the fields in each
structure to specify the scope of the query that you want to perform. The first
field of each structure is stVersion, the structure version number.

The data structures and their related fields include:

qryArchiveData:

Chapter 6. API function calls 81

objName The complete object name. You can use a wildcard
character, such as an asterisk (*) or question mark (?), in the
high- or low-level portion of the name. See “High-level and
low-level names” on page 26. An asterisk matches zero or
more characters, and a question mark matches exactly one
character. The objType field of the objName can be
DSM_OBJ_FILE, DSM_OBJ_DIRECTORY, or
DSM_OBJ_ANY_TYPE.

owner The owner name of the object.
insDateLowerBound The lower boundary for the archive insert date (the date

the object was archived). To obtain the default lower
boundary, set the year component to
DATE_MINUS_INFINITE.

insDateUpperBound The upper boundary for the archive insert date (the date
the object was archived). To obtain the default upper
boundary, set the year component to
DATE_PLUS_INFINITE.

expDateLowerBound The lower boundary for the expiration date. The default
values for both expiration date fields are the same as for
the insert date fields.

expDateUpperBound The upper boundary for the expiration date.
descr The archive description. Enter an asterisk (*) to search on

all descriptions.

qryBackupData:
objName The complete object name. You can use a wildcard

character, such as an asterisk (*) or question mark (?) in the
high- or low-level portion of the name. See “High-level and
low-level names” on page 26. An asterisk matches zero or
more characters, and a question mark matches exactly one
character. The objType field of objName can be
DSM_OBJ_FILE, DSM_OBJ_DIRECTORY, or
DSM_OBJ_ANY_TYPE.

owner The object owner name.
objState This field can have one of three values: DSM_ACTIVE,

DSM_INACTIVE, or DSM_ANY_MATCH.
pitDate The point-in-time value. A query using this field returns the

latest object that was backed up before this date and time.
The objState can be active or inactive. Objects that were
deleted before the pitDate are not be returned. For
example:

Mon - backup ABC(1), DEF, GHI
Tue - backup ABC(2), delete DEF
Thr - backup ABC(3)

On Friday, call the query with a point-in-time value of
Wednesday at 12:00:00 a.m. It returns the following
information:

ABC(2) - an Inactive copy
GHI - an Active copy

It does not return DEF because it was deleted.

qryABackupData:

82 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

objName The complete object name. You can use a wildcard
character, such as an asterisk (*) or question mark (?) in the
high- or low-level portion of the name. See “High-level and
low-level names” on page 26. An asterisk matches zero or
more characters, and a question mark matches exactly one
character. The objType field of objName can be
DSM_OBJ_FILE, DSM_OBJ_DIRECTORY or
DSM_OBJ_ANY_TYPE.

qryFSData:
fsName Enter the name of a specific file space in this field, or enter

an asterisk (*) to retrieve information about all registered
file spaces.

qryMCData:
mcName Enter the name of a specific management class, or enter an

empty string (“ ”) to retrieve information about all
management classes.
Note: You cannot use an asterisk (*).

mcDetail This field has a value of bTrue or bFalse. The value
determines whether information on the backup and archive
copy groups of the management class is returned.

qryBackupGroup:

groupType The group type is DSM_GROUPTYPE_PEER
fsName The File Space name
owner The owner ID
groupLeaderObjId The group leader object ID
objType The object type

qryProxyNodeAuth:

targetNodeName The target node name
peerNodeName The peer node name
hlAddress The peer address of the high level name
llAddress The peer address of the low level name

qryProxyNodePeer:

targetNodeName The target node name
peerNodeName The peer node name
hlAddress The peer address of the high level name
llAddress The peer address of the low level name

Return codes

The return code numbers are provided in parentheses ().

Table 27. Return codes for dsmBeginQuery

Return code Explanation

DSM_RC_NO_MEMORY (102) There is no RAM remaining to complete the request.

DSM_RC_FILE_SPACE_NOT_FOUND (124) The specified file space was not found.

DSM_RC_NO_POLICY_BLK (2007) Server policy information was not available.

DSM_RC_INVALID_OBJTYPE (2010) Invalid object type.

Chapter 6. API function calls 83

Table 27. Return codes for dsmBeginQuery (continued)

Return code Explanation

DSM_RC_INVALID_OBJOWNER (2019) Invalid object owner name.

DSM_RC_INVALID_OBJSTATE (2024) Invalid object condition.

DSM_RC_WRONG_VERSION_PARM (2065) The API version of the application client is different from the Tivoli
Storage Manager library version.

dsmBeginTxn
The dsmBeginTxn function call begins one or more Tivoli Storage Manager
transactions that begin a complete action; either all the actions succeed or none
succeed. An action can be either a single call or a series of calls. For example, a
dsmSendObj call that is followed by a number of dsmSendData calls can be
considered a single action. Similarly, a dsmSendObj call with a dataBlkPtr that
indicates a data area containing the object to back up is also considered a single
action.

Try to group more than one object together in a single transaction for data transfer
operations. Grouping objects results in significant performance improvements in
the Tivoli Storage Manager system. From both a client and a server perspective, a
certain amount of overhead is incurred by starting and ending each transaction.

There are limits to what you can perform within a single transaction. These
restrictions include:
v A maximum number of objects that you can send or delete in a single

transaction. This limit is located in the data that dsmQuerySessInfo returns in
the ApiSessInfo.maxObjPerTxn field. This corresponds to the TxnGroupMax server
option.

v All objects that are sent to the server (either backup or archive) within a single
transaction must have the same copy destination that is defined in the
management class binding for the object. This value is located in the data that
dsmBindMC returns in the mcBindKey.backup_copy_dest or
mcBindKey.archive_copy_dest fields.

With the API, either the application client can monitor and control these
restrictions, or the API can monitor these restrictions. If the API is monitoring
restrictions, appropriate return codes from the API calls inform the application
client when one or more restrictions are reached.

Always match a dsmBeginTxn call with a dsmEndTxn call to optimize the set of
actions within a pair of dsmBeginTxn and dsmEndTxn calls.

Syntax
dsInt16_t dsmBeginTnx (dsUint32_t dsmHandle);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

84 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Return codes

The return code numbers are provided in parentheses ().

Table 28. Return codes for dsmBeginTxn

Return code Explanation

DSM_RC_ABORT_NODE_NOT_AUTHORIZED
(36)

FROMNODE or FROMOWNER is not allowed for TXN
operations.

dsmBindMC
The dsmBindMC function call associates, or binds, a management class to the
passed object. The object is passed through the ixclude-exclude list that is pointed
to in the options file. If a match is not found in the Include list for a specific
management class, the default management class is assigned. The Exclude list can
prevent objects from a backup but not from an archive.

The application client can use the parameters that are returned in the mcBindKey
structure to determine if this object should be backed up or archived, or whether a
new transaction must be started because of different copy destinations. See
dsmBeginTxn for more information.

Call dsmBindMC before you call dsmSendObj because every object must have a
management class associated with it. This call can be performed within a
transaction or outside of a transaction. For example, within a multiple object
transaction, if dsmBindMC indicates that the object has a different copy
destination than the previous object, the transaction must be ended and a new
transaction started. In this case, another dsmBindMC is not required because one
has already been performed for this object.

Syntax
dsInt16_t dsmBindMC (dsUint32_t dsmHandle,

dsmObjName *objNameP,
dsmSendType sendType,
mcBindKey *mcBindKeyP);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

dsmObjName *objNameP (I)
A pointer to the structure that contains the file space name, high-level object
name, low-level object name, and object type.

dsmSendType sendType (I)
Identifies whether this management class bind is performed for archive or
backup sends. The possible values for this call include:

Name Description
stBackup A backup object

stArchive An archive object
stBackupMountWait A backup object
stArchiveMountWait An archive object

For the dsmBindMC call, stBackup and stBackupMountWait are equivalent, and
stArchive and stArchiveMountWait are equivalent.

Chapter 6. API function calls 85

mcBindKey *mcBindKeyP (O)
This is the address of an mcBindKey structure where the management class
information is returned. The application client can use the information that is
returned here to determine if this object fits within a multiple object
transaction, or to perform a management class query on the management class
that is bound to the object.

Return codes

The return code numbers are provided in parentheses ().

Table 29. Return codes for dsmBindMC

Return code Explanation

DSM_RC_NO_MEMORY (102) There is no RAM remaining to complete the request.

DSM_RC_INVALID_PARM (109) One of the parameters that was passed has an invalid value.

DSM_RC_TL_EXCLUDED (185) The backup object is excluded and cannot be sent.

DSM_RC_INVALID_OBJTYPE (2010) Invalid object type.

DSM_RC_INVALID_SENDTYPE (2022) Invalid send type.

DSM_RC_WRONG_VERSION_PARM (2065) Application client API version is different from the Tivoli
Storage Manager library version.

dsmChangePW
The dsmChangePW function call changes a Tivoli Storage Manager password. On
a multiple-user operating system such as UNIX or Linux, only the root user or the
TSM-Authorized user can use this call.

On the Windows and Novell operating systems, you can specify the password in
the dsm.opt file. In this situation, dsmChangePW does not update the dsm.opt file.
After the call to dsmChangePW is made, you must update the dsm.opt file
separately.

This call must process successfully if dsmInitEx returns
DSM_RC_VERIFIER_EXPIRED. The session ends if the dsmChangePW call fails in
this situation.

If dsmChangePW is called for some other reason, the session remains open
regardless of the return code.

Syntax
dsInt16_t dsmChangePW (dsUint32_t dsmHandle,

char *oldPW,
char *newPW);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

char *oldPW (I)
The old password of the caller. The maximum length is
DSM_MAX_VERIFIER_LENGTH.

86 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

char *newPW (I)
The new password of the caller. The maximum length is
DSM_MAX_VERIFIER_LENGTH.

Return codes

The return code numbers are provided in parentheses ().

Table 30. Return codes for dsmChangePW

Return code Explanation

DSM_RC_ABORT_BAD_VERIFIER (6) An incorrect password was entered.

DSM_RC_AUTH_FAILURE (137) Authentication failure. Old password is incorrect.

DSM_RC_NEWPW_REQD (2030) A value must be entered for the new password.

DSM_RC_OLDPW_REQD (2031) A value must be entered for the old password.

DSM_RC_PASSWD_TOOLONG (2103) The specified password is too long.

DSM_RC_NEED_ROOT (2300) The API caller must be a root user or a TSM-Authorized user.

dsmCleanUp
The dsmCleanUp function call is used if dsmSetUp was called. The dsmCleanUp
function call should be called after dsmTerminate. You cannot make any other calls
after you call dsmCleanUp.

There are no return codes that are specific to this call.

Syntax
dsInt16_t DSMLINKAGE dsmCleanUp

(dsBool_t mtFlag);

Parameters

dsBool_t mtFlag (I)
This parameter specifies that the API was used either in a single thread or a
multithread mode. Possible values include:
v DSM_SINGLETHREAD
v DSM_MULTITHREAD

dsmDeleteAccess
The dsmDeleteAccess function call deletes current authorization rules for backup
versions or archived copies of your objects. When you delete an authorization rule,
you revoke the access a user has to any files that are specified by the rule.

When you use dsmDeleteAccess, you can only delete one rule at a time. Obtain
the rule ID through the dsmQueryAccess command.

There are no return codes that are specific to this call.

Syntax
dsInt16_t DSMLINKAGE dsmDeleteAccess

(dsUint32_t dsmHandle,
dsUint32_t ruleNum) ;

Chapter 6. API function calls 87

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

dsUint32_t ruleNum (I)
The rule ID for the access rule that is deleted. This value is obtained from a
dsmQueryAccess function call.

dsmDeleteFS
The dsmDeleteFS function call deletes a file space from storage. To delete a file
space, you must have the appropriate permissions that your Tivoli Storage
Manager administrator gave you. To determine whether you have the necessary
permissions, call dsmQuerySessInfo. This function call returns a data structure of
type ApiSessInfo, that includes two fields, archDel and backDel.

Note:

v On a UNIX or Linux operating system, only a root user or a TSM-Authorized
user can delete a file space.

v If the file space that you need to delete contains backup versions, you must have
backup delete authority (backDel = BACKDEL_YES). If the file space contains
archive copies, you must have archive delete authority (archDel =
ARCHDEL_YES). If the file space contains both backup versions and archive
copies, you must have both types of delete authority.

v When using an archive manager server, a file space cannot actually be removed.
This function call returns rc=0 even though the file space was not actually
deleted. The only way to verify that the file space has been deleted is to issue a
filespace query to the server.

v The Tivoli Storage Manager server delete file space function is a background
process. If errors other than those detected before passing a return code happen,
they are recorded in the Tivoli Storage Manager server log.

Syntax
dsInt16_t dsmDeleteFS (dsUint32_t dsmHandle,

char *fsName,
unsigned char repository);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

char *fsName (I)
A pointer to the file space name to delete. The wildcard character is not
permitted.

unsigned char repository (I)
Indicates whether the file space to delete is a backup repository, archive
repository, or both. The possible values for this field include:
DSM_ARCHIVE_REP /* archive repository */
DSM_BACKUP_REP /* backup repository */
DSM_REPOS_ALL /* all repository types */

88 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Return codes

The return code numbers are provided in parentheses ().

Table 31. Return codes for dsmDeleteFS

Return code Explanation

DSM_RC_ABORT_NOT_AUTHORIZED (27) You do not have the necessary authority to delete the file
space.

DSM_RC_INVALID_REPOS (2015) Invalid value for repository.

DSM_RC_FSNAME_NOTFOUND (2060) File space name not found.

DSM_RC_NEED_ROOT (2300) API caller must be a root user.

dsmDeleteObj
The dsmDeleteObj function call inactivates backup objects, deletes backup objects,
or it deletes archive objects in storage. The dtBackup type inactivates the currently
active backup copy only. The dtBackupID type removes from the server whichever
object ID is specified. Call this function from within a transaction.

See dsmBeginTxn for more information.

Before you send dsmDeleteObj, send the query sequence that is described in
“Querying the Tivoli Storage Manager system” on page 35 to obtain the
information for delInfo. The call to dsmGetNextQObj returns a data structure
named qryRespBackupData for backup queries or qryRespArchiveData for
archive queries. These data structures contain the information that you need for
delInfo.

The value of maxObjPerTxn determines the maximum number of objects that you
can delete in a single transaction. To obtain this value, call dsmQuerySessInfo.

Note: Your node must have the appropriate permission that your Tivoli Storage
Manager administrator set. To delete archive objects, you must have archive delete
authority. You do not need backup delete authority to inactivate a backup object.

Syntax
dsInt16_t dsmDeleteObj (dsUint32_t dsmHandle,

dsmDelType delType,
dsmDelInfo delInfo)

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

dsmDelType delType (I)
Indicates what type of object (backup or archive) to delete. Possible values
include:

Name Description
dtArchive The object to delete was previously archived.

To use this delete type, you must have a Tivoli Storage Manager
server, V3.7.4 or later.

Chapter 6. API function calls 89

Name Description
dtBackup The object to inactivate was previously backed up.

To use this delete type, you must have a Tivoli Storage Manager
server, V3.7.3 or later.

dtBackupID The object to delete was previously backed up.

To use this delete type, you must have a Tivoli Storage Manager
server, V3.7.3 or later.

Attention: Using this delType with objID removes the backup
object from the server. Only an owner of an object can delete it.

You can delete any version (active or inactive) of an object. The
server reconciles the versions. If you delete an active version of an
object, the first inactive version becomes active. If you delete an
inactive version of an object, all older versions will advance. The
node must be registered with backDel permission.

dsmDelInfo delInfo (I)
A structure whose fields identify the object. The fields are different, depending
on whether the object is a backup object or an archive object. The structure to
inactivate a backup object, delBack, contains the object name and the object
copy group. The structure for an archive object, delArch, contains the object ID.

The structure to remove a backup object, delBackID, contains the object ID.

Return codes

The return code numbers are provided in parentheses ().

Table 32. Return codes for dsmDeleteObj

Return code Explanation

DSM_RC_FS_NOT_REGISTERED (2061) File space name is not registered.

DSM_RC_WRONG_VERSION_PARM (2065) Application client API version is different from the Tivoli
Storage Manager library version.

dsmEndGetData
The dsmEndGetData function call ends a dsmBeginGetData session that obtains
objects from storage.

The dsmEndGetData function call starts after all objects that you want to restore
are processed, or ends the get process prematurely. Call dsmEndGetData to end a
dsmBeginGetData session before you can continue other processing.

Depending on when dsmEndGetData is called, the API might need to finish
processing a partial data stream before the process can be stopped. The caller,
therefore, should not expect an immediate return from this call. Use dsmTerminate
if the application needs to close the session and end the restore immediately.

There are no return codes that are specific to this call.

Syntax
dsInt16_t dsmEndGetData (dsUint32_t dsmHandle);

90 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

dsmEndGetDataEx
The dsmEndGetDataEx function call provides the total of LAN-free bytes that
were sent. It is an extension of the dsmEndGetData function call.

Syntax

There are no return codes that are specific to this call.
dsInt16_t dsmEndGetDataEx (dsmEndGetDataExIn_t * dsmEndGetDataExInP,

dsmEndGetDataExOut_t * dsmEndGetDataExOutP);

Parameters

dsmEndGetDataExIn_t *dsmEndGetDataExInP (I)
Passes the end get object dsmHandle that identifies the session and associates
it with subsequent calls.

dsmEndGetDataExOut_t *dsmEndGetDataExOutP (O)
This structure contains this input parameter:

totalLFBytesRecv
The total LAN-free bytes that are received.

dsmEndGetObj
The dsmEndGetObj function call ends a dsmGetObj session that obtains data for
a specified object.

Start the dsmEndGetObj call after an end of data is received for the object. This
indicates that all data was received, or that no more data will be received for this
object. Before you can start another dsmGetObj call, you must call
dsmEndGetObj.

Depending on when dsmEndGetObj is called, the API might need to finish
processing a partial data stream before the process can stop. Do not expect an
immediate return from this call.

Syntax
dsInt16_t dsmEndGetObj (dsUint32_t dsmHandle);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

Return codes

The return code numbers are provided in parentheses ().

Table 33. Return codes for dsmEndGetObj

Return code Explanation

DSM_RC_NO_MEMORY (102) There is no RAM remaining to complete the request.

Chapter 6. API function calls 91

dsmEndQuery
The dsmEndQuery function call signifies the end of a dsmBeginQuery action. The
application client sends dsmEndQuery to complete a query. This call either is sent
after all query responses are obtained through dsmGetNextQObj, or it is sent to
end a query before all data are returned.

Note: The Tivoli Storage Manager continues to send the query data from the
server to the client in this case, but the API discards any remaining data.

Once a dsmBeginQuery is sent, a dsmEndQuery must be sent before any other
activity can start.

There are no return codes that are specific to this call.

Syntax
dsInt16_t dsmEndQuery (dsUint32_t dsmHandle);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

dsmEndSendObj
The dsmEndSendObj function call indicates the end of data that is sent to storage.

Enter the dsmEndSendObj function call to indicate the end of data from the
dsmSendObj and dsmSendData calls. A protocol violation occurs if this is not
performed. The exception to this rule is if you call dsmEndTxn to end the
transaction. Doing this discards all data that was sent for the transaction.

Syntax
dsInt16_t dsmEndSendObj (dsUint32_t dsmHandle);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

Return codes

The return code numbers are provided in parentheses ().

Table 34. Return codes for dsmEndSendObj

Return code Explanation

DSM_RC_NO_MEMORY (102) There is no RAM remaining to complete this request.

92 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

dsmEndSendObjEx

The dsmEndSendObjEx function call provides additional information regarding
the number of bytes processed. The information includes: total bytes sent,
compression information, lan-free bytes, and deduplication information.

The dsmEndSendObjEx function call is an extension of the dsmEndSendObj
function call.

Syntax
dsInt16_t dsmEndSendObjEx (dsmEndSendObjExIn_t *dsmEndSendObjExInP,

dsmEndSendObjExOut_t *dsmEndSendObjExOutP);

Parameters

dsmEndSendObjExIn_t *dsmEndSendObjExInP (I)
This parameter passes the end send object dsmHandle that identifies the
session and associates it with subsequent calls.

dsmEndSendObjExOut_t *dsmEndSendObjExOutP (O)
This parameter passes the end send object information:

Name Description
totalBytesSent The total number of bytes that are read from the application.
objCompressed A flag that displays if the object was compressed.
totalCompressedSize The total byte size after compression.
totalLFBytesSent The total LAN-free bytes that were sent.
objDeduplicated A flag that displays if the object was deduplicated by the API.
totalDedupSize Total bytes sent after deduplication.

Return codes

The return code numbers are provided in parentheses ().

Table 35. Return codes for dsmEndSendObjEx

Return code Explanation

DSM_RC_NO_MEMORY (102) There is no RAM remaining to complete this request.

dsmEndTxn
The dsmEndTxn function call ends a Tivoli Storage Manager transaction. Pair the
dsmEndTxn function call with dsmBeginTxn to identify the call or set of calls that
are considered a transaction. The application client can specify on the dsmEndTxn
call whether or not the transaction should be committed or ended.

Perform all of the following calls within the bounds of a transaction:
v dsmSendObj

v dsmSendData

v dsmEndSendObj

v dsmDeleteObj

Chapter 6. API function calls 93

|
|
|

|||
|||

Syntax
dsInt16_t dsmEndTxn (dsUint32_t dsmHandle,

dsUint8_t vote,
dsUint16_t *reason);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

dsUint8_t vote (I)
Indicates whether or not the application client commits all the actions that are
done between the previous dsmBeginTxn call and this call. The possible
values are:

DSM_VOTE_COMMIT /* commit current transaction */
DSM_VOTE_ABORT /* roll back current transaction */

Use DSM_VOTE_ABORT only if your application has found a reason to stop
the transaction.

dsUint16_t *reason (O)
If the call to dsmEndTxn ends with an error, or the value of vote is not agreed
to, this parameter has a reason code indicating why the vote failed.

Note: The return code for the call might be zero, and the reason code might be
non-zero. Therefore, the application client must always check for errors on
both the return code and the reason (if (rc || reason)) before you can
assume a successful completion.

If the application specifies a vote of DSM_VOTE_ABORT, the reason code is
DSM_RS_ABORT_BY_CLIENT (3). See Appendix A, “API return codes source
file dsmrc.h,” on page 135 for a list of the possible reason codes. Numbers 1
through 50 in the return codes list are reserved for the reason codes. If the
server ends the transaction, the return code is
DSM_RC_CHECK_REASON_CODE. In this case, the reason value contains
more information on the cause of the abort.

Return codes

The return code numbers are provided in parentheses ().

Table 36. Return codes for dsmEndTxn

Return code Explanation

DSM_RC_ABORT_CRC_FAILED (236) The CRC that was received from the server does not match the
CRC that was calculated by the client.

DSM_RC_INVALID_VOTE (2011) The value that was specified for vote is not valid.

DSM_RC_CHECK_REASON_CODE (2302) The transaction was aborted. Check the reason field.

DSM_RC_ABORT_STGPOOL_COPY_CONT_NO
(241)

The write to one of the copy storage pools failed, and the Tivoli
Storage Manager storage pool option COPYCONTINUE was set
to NO. The transaction terminates.

DSM_RC_ABORT_RETRY_SINGLE_TXN (242) This abort code indicates that the current transaction was
aborted because of a problem during a store operation. The
problem could be resolved by sending each file in an individual
transaction. This error is typical when the next storage pool has
a different copy storage pool list and we switch to this pool in
the middle of a transaction.

94 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

dsmEndTxnEx
The dsmEndTxnEx function call provides group leader object ID information for
you to use with the dsmGroupHandler function call. It is an extension of the
dsmEndTxn function call.

Syntax
dsInt16_t dsmEndTxnEx (dsmEndTxnExIn_t *dsmEndTxnExInP

dsmEndTxnExOut_t *dsmEndTxnExOutP);

Parameters

dsmEndTxnExIn_t *dsmEndTxnExInP (I)
This structure contains the following parameters:

dsmHandle
The handle that identifies the session and associates it with subsequent
Tivoli Storage Manager calls.

dsUint8_t vote (I)
Indicates whether or not the application client commits all the actions that
are done between the previous dsmBeginTxn call and this call. The
possible values are:

DSM_VOTE_COMMIT /* commit current transaction */
DSM_VOTE_ABORT /* roll back current transaction */

Use DSM_VOTE_ABORT only if your application has found a reason to stop the
transaction.

dsmEndTxnExOut_t *dsmEndTxnExOutP (O)
This structure contains the following parameters:

dsUint16_t *reason (O)
If the call to dsmEndTxnEx ends with an error or the value of vote is not
agreed to, this parameter has a reason code indicating why the vote failed.

Note: The return code for the call might be zero, and the reason code
might be non-zero. Therefore, the application client must always check for
errors on both the return code and the reason (if (rc || reason)) before
you can assume a successful completion.

If the application specifies a vote of DSM_VOTE_ABORT, the reason code
is DSM_RS_ABORT_BY_CLIENT (3). See Appendix A, “API return codes
source file dsmrc.h,” on page 135 for a list of the possible reason codes.
Numbers 1 through 50 in the return codes list are reserved for the reason
codes. If the server ends the transaction, the return code is
DSM_RC_CHECK_REASON_CODE. In this case, the reason value contains
more information on the cause of the abort.

groupLeaderObjId
The group leader object ID that is returned when the
DSM_ACTION_OPEN flag is used with the dsmGroupHandler call.

Chapter 6. API function calls 95

Return codes

The return code numbers are provided in parentheses ().

Table 37. Return codes for dsmEndTxnEx

Return code Explanation

DSM_RC_INVALID_VOTE (2011) The value that was specified for vote is invalid.

DSM_RC_CHECK_REASON_CODE (2302) The transaction was aborted. Check the reason field.

DSM_RC_ABORT_STGPOOL_COPY_CONT_NO
(241)

The write to one of the copy storage pools failed, and the Tivoli
Storage Manager storage pool option COPYCONTINUE was set
to NO. The transaction terminates.

DSM_RC_ABORT_RETRY_SINGLE_TXN (242) During a simultaneous-write operation, an object in the
transaction is going to a destination with different copy storage
pools. End the current transaction and send each object again in
its own transaction.

dsmGetData
The dsmGetData function call obtains a byte stream of data from Tivoli Storage
Manager and places it in the caller's buffer. The application client calls
dsmGetData when there is more data to receive from a previous dsmGetObj or
dsmGetData call.

Syntax
dsInt16_t dsmGetData (dsUint32_t dsmHandle,

DataBlk *dataBlkPtr);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

DataBlk *dataBlkPtr (I/O)
Points to a structure that includes both a pointer to the buffer for the data that
is received and the size of the buffer. On return, this structure contains the
number of bytes that is actually transferred. See Appendix B, “API type
definitions source files,” on page 147 for the type definition.

Return codes

The return code numbers are provided in parentheses ().

Table 38. Return codes for dsmGetData

Return code Explanation

DSM_RC_ABORT_INVALID_OFFSET
(33)

The offset that was specified during a partial object retrieve is greater than
the length of the object.

DSM_RC_ABORT_INVALID_LENGTH
(34)

The length that was specified during a partial object retrieve is greater
than the length of the object, or the offset in addition to the length extends
beyond the end of the object.

DSM_RC_FINISHED (121) Finished processing. The last buffer was received. Check numBytes for the
amount of data and then call Tivoli Storage ManagerdsmEndGetObj.

DSM_RC_NULL_DATABLKPTR (2001) Datablock pointer is null.

DSM_RC_ZERO_BUFLEN (2008) Buffer length is zero for datablock pointer.

96 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Table 38. Return codes for dsmGetData (continued)

Return code Explanation

DSM_RC_NULL_BUFPTR (2009) Buffer pointer is null for datablock pointer.

DSM_RC_WRONG_VERSION_PARM
(2065)

The application client's API version is different from the Tivoli Storage
Manager library version.

DSM_RC_MORE_DATA (2200) There is more data to get.

dsmGetBufferData
The dsmGetBufferData function call receives a byte stream of data from the Tivoli
Storage Manager through a Tivoli Storage Manager buffer. After each call the
application needs to copy the data and release the buffer through a call to
dsmReleaseBuffer. If the number of buffers held by the application equals the
numTsmBuffers specified in the dsmInitEx call, the dsmGetBufferData function
blocks until a dsmReleaseBuffer is called.

Syntax
dsInt16_t dsmGetBufferData (getDatatExIn_t *dsmGetBufferDataExInP,

getDataExOut_t *dsmGetBufferDataExOutP) ;

Parameters

getDataExIn_t * dsmGetBufferDataExInP (I)
This structure contains the following input parameter.

dsUint32_t dsmHandle
The handle that identifies the session and associates it with a previous
dsmInitEx call.

getDataExOut_t * dsmGetBufferDataExOutP (0)
This structure contains the following output parameters.

dsUint8_t tsmBufferHandle(0)
The handle that identifies the buffer received.

char *dataPtr(0)
The address to which Tivoli Storage Manager data was written.

dsUint32_t numBytes(0)
Actual number of bytes written by Tivoli Storage Manager.

Return codes

The return code numbers are provided in parentheses ().

Table 39. Return codes for dsmGetBufferData

Return code Explanation

DSM_RC_BAD_CALL_SEQUENCE (2041) The call was not issued in the proper state.

DSM_RC_OBJ_ENCRYPTED (2049) This function cannot be used for encrypted objects.

DSM_RC_OBJ_COMPRESSED (2048) This function cannot be used for compressed objects.

DSM_RC_BUFF_ARRAY_ERROR (2045) A buffer array error occurred.

Chapter 6. API function calls 97

dsmGetNextQObj
The dsmGetNextQObj function call gets the next query response from a previous
dsmBeginQuery call and places it in the caller's buffer. The dsmGetNextQObj call
is called one or more times. Each time it is called, a single query record is
retrieved. If the application client needs to end the query before retrieving all of
the data, you can send a dsmEndQuery call.

The dataBlkPtr must point to a buffer that is defined with the qryResp*Data
structure type. The context in which dsmGetNextQObj is called determines the
type of structure that is entered on the query response.

Syntax
dsInt16_t dsmGetNextQObj (dsUint32_t dsmHandle,

DataBlk *dataBlkPtr);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

DataBlk *dataBlkPtr (I/O)
Points to a structure that includes both a pointer to the buffer for the data to
be received and the size of the buffer. This buffer is the qryResp*Data
structure that is described in Table 40. On return, this structure contains the
number of bytes that is actually transferred. See Appendix B, “API type
definitions source files,” on page 147 for the type definition of DataBlk. The
structure associated with each type of query is:

Table 40. DataBlk pointer structure

Query Response structure Fields of special interest

qtArchive qryRespArchiveData sizeEstimate contains the value that is
passed on a previous dsmSendObj
call.

mediaClass can have a value of
MEDIA_FIXED if the object is on disk,
or MEDIA_LIBRARY if the object is on
tape.

clientDeduplicated indicates whether
this object was deduplicated by the
client.

qtBackup qryRespBackupData restoreOrderExt is of type dsUint16_t.
Sort on this field when restoring
several objects on a dsmBeginGetData
call. An example of sorting code for
this is in the API sample, dapiqry.c.
Also see Figure 16 on page 62 for a
sorting example.

sizeEstimate contains the value that is
passed on a previous dsmSendObj
call.

mediaClass can have a value of
MEDIA_FIXED if the object is on disk
or MEDIA_LIBRARY if the object is on
tape.

98 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

||||
|
|

Table 40. DataBlk pointer structure (continued)

Query Response structure Fields of special interest

clientDeduplicated indicates whether
this object was deduplicated by the
client.

qtBackupActive qryARespBackupData -

qtBackupGroups qryRespBackupData dsBool_t isGroupLeader, if true,
signifies this object is a group leader.

qtOpenGroups qryRespBackupData dsBool_t isOpenGroup;, if true,
signifies this group is open and not
complete.

qtFilespace qryRespFSData backStartDate contains the server's
time stamp when the file space was
updated with the backStartDate
action.

backCompleteDate contains the server
time stamp when the file space was
updated with the backCompleteDate
action.

qtMC qryRespMCData
qryRespMCDetailData

-

qtProxyNodeAuth qryRespProxyNodeData
targetNodeName
peerNodeName
hlAddress
llAddress

-

qtProxyNodePeer qryRespProxyNodeData
targetNodeName
peerNodeName
hlAddress
llAddress

-

Return codes

The return code numbers are provided in parentheses ().

Table 41. Return codes for dsmGetNextQObj

Return code Explanation

DSM_RC_ABORT_NO_MATCH (2) No match for the query was requested.

DSM_RC_FINISHED (121) Finished processing (start dsmEndQuery).

DSM_RC_UNKNOWN_FORMAT (122) The file that Tivoli Storage Manager attempted to restore or retrieve has an
unknown format.

DSM_RC_COMM_PROTOCOL_ERROR
(136)

Communication protocol error.

DSM_RC_NULL_DATABLKPTR (2001) Pointer is not pointing to a data block.

DSM_RC_INVALID_MCNAME (2025) Invalid management class name.

DSM_RC_BAD_CALL_SEQUENCE
(2041)

The sequence of calls is invalid.

DSM_RC_WRONG_VERSION_PARM
(2065)

Application client's API version is different from the Tivoli Storage
Manager library version.

Chapter 6. API function calls 99

||||
|
|

Table 41. Return codes for dsmGetNextQObj (continued)

Return code Explanation

DSM_RC_MORE_DATA (2200) There is more data to get.

DSM_RC_BUFF_TOO_SMALL (2210) Buffer is too small.

dsmGetObj
The dsmGetObj function call obtains the requested object data from the Tivoli
Storage Manager data stream and places it in the caller's buffer. The dsmGetObj
call uses the object ID to obtain the next object or partial object from the data
stream.

The data for the indicated object is placed in the buffer to which DataBlk points. If
more data is available, you must make one or more calls to dsmGetData to receive
the remaining object data until a return code of DSM_RC_FINISHED is returned.
Check the numBytes field in DataBlk to see whether any data remains in the buffer.

Objects should be asked for in the order that they were listed on the
dsmBeginGetData call in the dsmGetList parameter. The exception is when the
application client needs to pass over an object in the data stream to get to an object
later in the list. If the object that is indicated by the object ID is not the next object
in the stream, the data stream is processed until the object is located, or the stream
is completed. Use this feature with care, because it might be necessary to process
and discard large amounts of data to locate the requested object.

Note: If dsmGetObj returns a failure code (NOT FINISHED or MORE_DATA), the
session needs to be terminated to abort the restore operation. This is especially
important when using encryption and receiving a RC_ENC_WRONG_KEY. A new
session with the proper key must be started.

Syntax
dsInt16_t dsmGetObj (dsUint32_t dsmHandle,

ObjID *objIdP,
DataBlk *dataBlkPtr);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

ObjID *objIdP (I)
A pointer to the ID of the object to restore.

DataBlk *dataBlkPtr (I/O)
A pointer to the buffer where the restored data are placed.

Return codes

The return code numbers are provided in parentheses ().

Table 42. Return codes for dsmGetObj

Return code Explanation

DSM_RC_ABORT_INVALID_OFFSET (33) The offset that is specified during a partial object retrieve is
greater than the length of the object.

100 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Table 42. Return codes for dsmGetObj (continued)

Return code Explanation

DSM_RC_ABORT_INVALID_LENGTH (34) The length that is specified during a partial object retrieve is
greater than the length of the object, or the offset in addition to
the length extends past the end of the object.

DSM_RC_FINISHED (121) Finished processing (start dsmEndGetObj).

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different from the Tivoli
Storage Manager library version.

DSM_RC_MORE_DATA (2200) There is more data to get.

RC_ENC_WRONG_KEY (4580) The key provided in the dsmInitEx call, or the saved key, does
not match the key that was used to encrypt this object.
Terminate the session and provide the proper key.

dsmGroupHandler
The dsmGroupHandler function call performs an action on a logical file group
depending on the input that is given. The client relates a number of individual
objects together to reference and manage on the Tivoli Storage Manager server as a
logical group.

Note: For more information, see “File grouping” on page 57.

Syntax
dsInt16_t dsmGroupHandler (dsmGroupHandlerIn_t *dsmGroupHandlerInP,

dsmGroupHandlerOut_t *dsmGroupHandlerOutP);

Parameters

dsmGroupHandlerIn_t *dsmGroupHandlerInP (I)
Passes group attributes to the API.

groupType
The type of the group. Values include:
v DSM_GROUPTYPE_PEER - peer group

actionType
The action to be executed. Values include:
v DSM_GROUP_ACTION_OPEN - creates a new group
v DSM_GROUP_ACTION_CLOSE - commits and saves an open group
v DSM_GROUP_ACTION_ADD - appends to a group
v DSM_GROUP_ACTION_ASSIGNTO - assigns to another group
v DSM_GROUP_ACTION_REMOVE- removes a member from a group

memberType.
The group type of the object. Values include:
v DSM_MEMBERTYPE_LEADER - group leader
v DSM_MEMBERTYPE_MEMBER - group member

*uniqueGroupTagP
A unique string ID that is associated with a group.

leaderObjId
The Object ID for the group leader.

*objNameP
A pointer to the object name of the group leader.

Chapter 6. API function calls 101

memberObjList
A list of objects to remove or assign.

dsmGroupHandlerOut_t *dsmGroupHandlerOutP (O)
Passes the address of the structure that the API completes. The structure
version number is returned.

Return codes

The return code numbers are provided in parentheses ().

Table 43. Return codes for dsmGroupHandler

Return code Explanation

DSM_RC_ABORT_INVALID_GROUP_ACTION
(237)

An invalid operation was attempted on a group leader or
member.

dsmInit
The dsmInit function call starts an API session and connects the client to Tivoli
Storage Manager storage. The application client can have only one active session
open at a time. To open another session with different parameters, use the
dsmTerminate call first to end the current session.

To permit cross-node query and restore or retrieve, use the -fromnode and
-fromowner string options. See “Accessing objects across nodes and owners” on
page 27 for more information.

Syntax
dsInt16_t dsmInit (dsUint32_t *dsmHandle,

dsmApiVersion *dsmApiVersionP,
char *clientNodeNameP,
char *clientOwnerNameP,
char *clientPasswordP,
char *applicationType,
char *configfile,
char *options);

Parameters

dsUint32_t *dsmHandle (O)
The handle that identifies this initialization session and associates it with
subsequent Tivoli Storage Manager calls.

dsmApiVersion *dsmApiVersionP (I)
A pointer to the data structure identifying the version of the API that the
application client is using for this session. The structure contains the values of
the three constants, DSM_API_VERSION, DSM_API_RELEASE, and
DSM_API_LEVEL, that are set in the dsmapitd.h file. A previous call to
dsmQueryApiVersion must be performed to ensure that compatibility exists
between the application client API version and the version of the API library
that is installed on the user's workstation.

char *clientNodeNameP (I)
This parameter is a pointer to the node for the Tivoli Storage Manager session.
All sessions must have a node name associated with them. The constant,
DSM_MAX_NODE_LENGTH, in the dsmapitd.h file sets the maximum size
that is permitted for a node name.

102 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

The node name is not case-sensitive.

If this parameter is set both to NULL and passwordaccess is set to prompt, the
API attempts to obtain the node name first from the options string that was
passed. If it is not there, the API then attempts to obtain the node name from
the configuration file or options files. If these attempts to find the node name
fail, the UNIX or Linux API uses the system host name, while APIs on other
operating systems return the DSM_RC_REJECT_ID_UNKNOWN code.

This parameter must be NULL if the passwordaccess option in the dsm.sys file is
set to generate. The API uses the system host name.

char *clientOwnerNameP (I)
This parameter is a pointer to the owner of the Tivoli Storage Manager session.
If the operating system on which the session starts is a multi-user operating
system, an owner name of NULL (the root user) has the authority to back up,
archive, restore, or retrieve any objects belonging to the application, regardless
of the owner of the object.

The owner name is case-sensitive.

This parameter must be NULL if the passwordaccess option in the dsm.sys file is
set to generate. The API then uses the login user ID.

Note: On a multi-user operating system, if passwordaccess is set to prompt, it is
not necessary for the owner name to match the active user ID of the session
running the application.

char *clientPasswordP (I)
This parameter is a pointer to the password of the node on which the Tivoli
Storage Manager session runs. The DSM_MAX_VERIFIER_LENGTH constant
in the dsmapitd.h file sets the maximum size that is permitted for a password.

The password is not case-sensitive.

Except when the password file is first started, the value of this parameter is
ignored if passwordaccess is set to generate.

char *applicationType (I)
This parameter identifies the application that is running the session. The
application client defines the value.

Each time an API application client starts a session with the server, the
application type (or platform) of the client is updated on the server. We
recommend that the application type value contain an operating system
abbreviation because this value is entered in the platform field on the server.
The maximum string length is DSM_MAX_PLATFORM_LENGTH.

To see the current value of the application type, call dsmQuerySessInfo.

char *configfile (I)
This parameter points to a character string that contains the fully-qualified
name of an API configuration file. Options specified in the API configuration
file override their specification in the client options file. Options files are
defined when Tivoli Storage Manager (client or API) is installed.

For the description and use of configuration files, see “Understanding
configuration and options files” on page 2 or the Tivoli Storage Manager
Installing and Using the Backup-Archive Client for your operating system.

char *options (I)
Points to a character string that can contain user options such as:
v Compressalways

Chapter 6. API function calls 103

v Servername (UNIX or Linux only)
v TCPServeraddr

v Fromnode

v Fromowner

v EnableClientEncryptKey

The application client can use the option list to override the values of these
options that the configuration file sets.

The format of the options is:
1. Each option that is specified in the option list begins with a dash (-) and is

followed by the option keyword.
2. The keyword, in turn, is followed by an equal sign (=) and then followed

by the option parameter.
3. If the option parameter contains a blank space, enclose the parameter with

single or double quotes.
4. If more than one option is specified, separate the options with blanks.

If options are NULL, values for all options are taken from the user options file
or the API configuration file. For a description and use of each option, see the
Tivoli Storage Manager Installing and Using the Backup-Archive Client for your
operating system.

Return codes

The return code numbers are provided in parentheses ().

Table 44. Return codes for dsmInit

Return code Explanation

DSM_RC_ABORT_SYSTEM_ERROR (1) The server has detected a system error and has notified the clients.

DSM_RC_REJECT_VERIFIER_EXPIRED
(52)

Password has expired and must be updated.

DSM_RC_REJECT_ID_UNKNOWN (53) Could not find the node name.

DSM_RC_AUTH_FAILURE (137) There was an authentication failure.

DSM_RC_NO_STARTING_DELIMITER
(148)

There is no starting delimiter in pattern.

DSM_RC_NEEDED_DIR_DELIMITER (149) A directory delimiter is needed immediately before and after the “match
directories” meta-string (“...”) and one was not located.

DSM_RC_NO_PASS_FILE (168) The password file is not available.

DSM_RC_UNMATCHED_QUOTE (177) An unmatched quote is in the option string.

DSM_RC_NLS_CANT_OPEN_TXT (0610) Unable to open the message text file.

DSM_RC_INVALID_OPT (400) An entry in the option string is invalid.

DSM_RC_INVALID_DS_HANDLE (2014) Invalid DSM handle.

DSM_RC_NO_OWNER_REQD (2032) Owner parameter must be NULL when passwordaccess is set to generate.

DSM_RC_NO_NODE_REQD (2033) Node parameter must be NULL when passwordaccess is set to generate.

DSM_RC_WRONG_VERSION (2064) The API version for the application client has a higher value than the
Tivoli Storage Manager version.

DSM_RC_PASSWD_TOOLONG (2103) The password that was specified is too long.

DSM_RC_NO_OPT_FILE (2220) A configuration file could not be located.

DSM_RC_INVALID_KEYWORD (2221) A keyword that was specified in an options string is invalid.

104 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Table 44. Return codes for dsmInit (continued)

Return code Explanation

DSM_RC_PATTERN_TOO_COMPLEX
(2222)

The include-exclude pattern is too complex for Tivoli Storage Manager
to interpret.

DSM_RC_NO_CLOSING_BRACKET (2223) There is no closing bracket in the pattern.

DSM_RC_INVALID_SERVER (2225) For a multi-user environment, the server in the system configuration file
was not found.

DSM_RC_NO_HOST_ADDR (2226) Not enough information to connect to host.

DSM_RC_MACHINE_SAME (2227) The nodename that is defined in the options file cannot be the same as
the system host name.

DSM_RC_NO_API_CONFIGFILE (2228) Cannot open the configuration file.

DSM_RC_NO_INCLEXCL_FILE (2229) The include-exclude file was not found.

DSM_RC_NO_SYS_OR_INCLEXCL (2230) Either the dsm.sys file or the include-exclude file was not found.

dsmInitEx
The dsmInitEx function call starts an API session using the additional parameters
that permit extended verification.

Syntax
dsInt16_t dsmInitEx (dsUint32_t *dsmHandleP,

dsmInitExIn_t *dsmInitExInP,
dsmInitExOut_t *dsmInitExOutP) ;

Parameters

dsUint32_t *dsmHandleP (O)
The handle that identifies this initialization session and associates it with
subsequent Tivoli Storage Manager calls.

dsmInitExIn_t *dsmInitExInP
This structure contains the following input parameters:

dsmApiVersion *dsmApiVersionP (I)
This parameter is a pointer to the data structure that identifies the version
of the API that the application client is using for this session. The structure
contains the values of the four constants, DSM_API_VERSION,
DSM_API_RELEASE, DSM_API_LEVEL, and DSM_API_SUBLEVEL that
are set in the dsmapitd.h file. A previous call to dsmQueryApiVersionEx
must be performed to ensure that compatibility exists between the API
version of the application client and the version of the API library installed
on the user's workstation.

char *clientNodeNameP (I)
This parameter is a pointer to the node for the Tivoli Storage Manager
session. All sessions must have a node name associated with them. The
constant, DSM_MAX_NODE_LENGTH in the dsmapitd.h file sets the
maximum size that is permitted for a node name.

The node name is not case sensitive.

If this parameter is set to NULL, and passwordaccess is set to prompt, the
API attempts to obtain the node name first from the options string that
was passed. If it is not there, the API then attempts to obtain the node
name from the configuration file or options files. If these attempts to find

Chapter 6. API function calls 105

the node name fail, the UNIX or Linux API uses the system host name,
while the APIs from other operating systems return the code,
DSM_RC_REJECT_ID_UNKNOWN.

This parameter must be NULL if the passwordaccess option in the dsm.sys
file is set to generate. The API then uses the system host name.

char *clientOwnerNameP (I)
This parameter is a pointer to the owner of the Tivoli Storage Manager
session. If the operating system is a multi-user platform on which the
session is started, an owner name of NULL (the root user) has the
authority to back up, archive, restore, or retrieve any objects belonging to
the application, regardless of the owner of the object.

The owner name is case sensitive.

This parameter must be NULL if the passwordaccess option in the dsm.sys
file is set to generate. The API then uses the login user ID.

Note: On a multi-user platform, if passwordaccess is set to prompt, it is not
necessary for the owner name to match the active user ID of the session
running the application.

char *clientPasswordP (I)
A pointer to the password of the node on which the Tivoli Storage
Manager session runs. The DSM_MAX_VERIFIER_LENGTH constant in
the dsmapitd.h file sets the maximum size that is allowed for a password.

The password is not case sensitive.

Except when the password file is first started, the value of this parameter
is ignored if passwordaccess is set to generate.

char *userNameP;
A pointer to the administrative user name that has client authority for this
node.

char *userPasswordP;
A pointer to the password for the userName, if a value is supplied.

char *applicationType (I)
Identifies the application that is running the Tivoli Storage Manager
session. The application client identifies the value.

Each time an API application client starts a session with the server, the
application type (or operating system) of the client is updated on the
server. We recommend that the application type value contain an operating
system abbreviation because this value is entered in the platform field on
the server. The maximum string length is
DSM_MAX_PLATFORM_LENGTH.

To view the current value of the application type, call dsmQuerySessInfo.

char *configfile (I)
Points to a character string that contains the fully-qualified name of an API
configuration file. Options specified in the API configuration file override
their specification in the client options file. Options files are defined when
Tivoli Storage Manager (client or API) is installed.

For a description and use of configuration files, see “Understanding
configuration and options files” on page 2 and the Tivoli Storage Manager
Installing and Using the Backup-Archive Client for your operating system.

106 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

char *options (I)
Points to a character string that can contain user options such as:
v Compressalways
v Servername (UNIX and Linux only)
v TCPServeraddr (non-UNIX)
v Fromnode
v Fromowner

The application client can use the options list to override the values of
these options that the configuration file sets.

The format of the options is:
1. Each option that is specified in the option list begins with a dash (-)

and is followed by the option keyword.
2. The keyword is followed by an equal sign (=) and then the option

parameter.
3. If the option parameter contains a blank space, enclose the parameter

with single or double quotes.
4. If more than one option is specified, separate the options with blanks.

If options are NULL, values for all options are taken from the user options
file or the API configuration file. You can find descriptions and use of each
option in the Tivoli Storage Manager Installing and Using the Backup-Archive
Client for your operating system.

dirDelimiter
The directory delimiter that is prefixed on the file space, high-level or
low-level names. You need to specify this only if the application overrides
the system defaults. In a UNIX or Linux environment, this is /. In a
Windows environment, this is\.

useUnicode
A Boolean flag that indicates if Unicode is enabled.

bCrossPlatform
A Boolean flag that indicates if cross-platform is enabled.

UseTsmBuffers
Indicates whether to use buffer copy elimination.

numTsmBuffers
Number of buffers when useTsmBuffers = bTrue.

bEncryptKeyEnabled
Indicates whether encryption with application-managed key is used.

encryptionPasswordP
The encryption password.

Note: When using encryptkey=save, if an encrypt key already exists, the
value specified in the encryptionPasswordP is ignored.

dsmInitExOut_t *dsmInitExOut P
This structure contains the output parameters.

dsUint32_t *dsmHandle (0)
The handle that identifies this initialization session and associates it with
subsequent API calls.

infoRC
Additional information about the return code. Check both the function
return code and infoRC. If infoRC is

Chapter 6. API function calls 107

DSM_RC_REJECT_LASTSESS_CANCELED (69), the Tivoli Storage
Manager administrator cancelled the last session. The application should
decide if it will cancel this session attempt by calling dsmTerminate
immediately.

Return codes

The return code numbers are provided in parentheses ().

Table 45. Return codes for dsmInitEx

Return code Explanation

DSM_RC_ABORT_SYSTEM_ERROR (1) The Tivoli Storage Manager server has detected a system error and has
notified the clients.

DSM_RC_REJECT_VERIFIER_EXPIRED
(52)

Password has expired and must be updated. The next call must be
dsmChangePW with the handle returned on this call.

DSM_RC_REJECT_ID_UNKNOWN (53) Could not find the node name.

DSM_RC_TA_COMM_DOWN (103) The communications link is down.

DSM_RC_AUTH_FAILURE (137) There was an authentication failure.

DSM_RC_NO_STARTING_DELIMITER
(148)

There is no starting delimiter in pattern.

DSM_RC_NEEDED_DIR_DELIMITER
(149)

A directory delimiter is needed immediately before and after the “match
directories” meta-string (“...”) and one was not found.

DSM_RC_NO_PASS_FILE (168) The password file is not available.

DSM_RC_UNMATCHED_QUOTE (177) An unmatched quote is in the option string.

DSM_RC_NLS_CANT_OPEN_TXT (0610) Unable to open the message text file.

DSM_RC_INVALID_OPT (2013) An entry in the option string is invalid.

DSM_RC_INVALID_DS_HANDLE (2014) Invalid DSM handle.

DSM_RC_NO_OWNER_REQD (2032) Owner parameter must be NULL when passwordaccess is set to generate.

DSM_RC_NO_NODE_REQD (2033) Node parameter must be NULL when passwordaccess is set to generate.

DSM_RC_WRONG_VERSION (2064) Application client's API version has a higher value than the Tivoli Storage
Manager version.

DSM_RC_PASSWD_TOOLONG (2103) The specified password is too long.

DSM_RC_NO_OPT_FILE (2220) No configuration file could be found.

DSM_RC_INVALID_KEYWORD (2221) A keyword specified in an options string is invalid.

DSM_RC_PATTERN_TOO_COMPLEX
(2222)

Include-exclude pattern too complex to be interpreted by Tivoli Storage
Manager.

DSM_RC_NO_CLOSING_BRACKET
(2223)

There is no closing bracket in the pattern.

DSM_RC_INVALID_SERVER (2225) For a multi-user environment, the server in the system configuration file
was not found.

DSM_RC_NO_HOST_ADDR (2226) Not enough information to connect to the host.

DSM_RC_MACHINE_SAME (2227) The nodename defined in the options file cannot be the same as the
system host name.

DSM_RC_NO_API_CONFIGFILE (2228) Cannot open the configuration file.

DSM_RC_NO_INCLEXCL_FILE (2229) The include-exclude file was not found.

DSM_RC_NO_SYS_OR_INCLEXCL
(2230)

Either the dsm.sys or the include-exclude file was not found.

108 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

dsmLogEvent
The dsmLogEvent function call logs a user message (ANE4991 I) to the server log
file, to the local error log, or to both. A structure of type logInfo is passed in the
call. This call must be performed while at InSession state inside a session. Do not
perform it within a send, get, or query. To retrieve messages logged on the server,
use the query actlog command through the administrative client.

Note:

v See the summary state diagram, Figure 20 on page 70.
v See the Tivoli Storage Manager Administrator's Reference for more information.

Syntax
dsInt16_t dsmLogEvent

(dsUint32_t dsmHandle,
logInfo *logInfoP);

Parameters

dsUint32_t dsmHandle(I)
The handle that associates this call with a previous dsmInitEx call.

logInfo *logInfoP (I)
Passes the message and destination. The application client is responsible for
allocating storage for the structure.

The fields in the logInfo structure are:

message
The text of the message to be logged. This must be a null-ended string.
The maximum length is DSM_MAX_RC_MSG_LENGTH.

dsmLogtype
Specifies where to log the message. Possible values include: logServer,
logLocal, logBoth.

Return codes

The return code numbers are provided in parentheses ().

Table 46. Return codes for dsmLogEvent

Return code Explanation

DSM_RC_STRING_TOO_LONG (2120) The message string is too long.

dsmLogEventEx
The dsmLogEventEx function call logs a user message to the server log file, to the
local error log, or to both. This call must be performed while at an InSession state
inside a session. Do not perform it within a send, get, or query.

Note: See the summary state diagram, Figure 20 on page 70.

The severity determines the Tivoli Storage Manager message number. To view
messages that are logged on the server, use the query actlog command through the
administrative client. Use the Tivoli Storage Manager client option, errorlogretention,
to prune the client error log file if the application generates numerous client

Chapter 6. API function calls 109

messages written to the client log (dsmLogType either logLocal or logBoth). Refer to
the Tivoli Storage Manager Administrator's Reference for more information.

Syntax
extern dsInt16_t DSMLINKAGE dsmLogEventEx(

dsUint32_t dsmHandle,
dsmLogExIn_t *dsmLogExInP,
dsmLogExOut_t *dsmLogExOutP

);

Parameters

dsUint32_t dsmHandle(I)
The handle that associates this call with a previous dsmInitEx call.

dsmLogExIn_t *dsmLogExInP
This structure contains the input parameters.

dsmLogSeverity severity;
This parameter is the event severity. The possible values are:

logSevInfo, /* information ANE4990 */
logSevWarning, /* warning ANE4991 */
logSevError, /* Error ANE4992 */
logSevSevere /* severe ANE4993 */

char appMsgID[8];
This parameter is a string to identify the specific application message. The
format we recommend is three characters that are followed by four
numbers. For example DSM0250.

dsmLogType logType;
This parameter specifies where to direct the event. The possible values
include: logServer, logLocal, or logBoth.

char *message;
This parameter is the text of the event message to log. This must be a
null-ended string. The maximum length is DSM_MAX_RC_MSG_LENGTH.

Note: Messages that go to the server should be in English. Non-English
messages do not display correctly.

dsmLogExOut_t *dsmLogExOutP
This structure contains the output parameters.

Note: Currently, there are no output parameters.

Return codes

The return code numbers are provided in parentheses ().

Table 47. Return codes for dsmLogEventEx

Return code Explanation

DSM_RC_STRING_TOO_LONG (2120) The message string is too long.

110 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

dsmQueryAccess
The dsmQueryAccess function call queries the server for all access authorization
rules for either backup versions or archived copies of your objects. A pointer to an
array of access rules is passed in to the call, and the completed array is returned. A
pointer to the number of rules is passed in to indicate how many rules are in the
array.

There are no return codes that are specific to this call.

Syntax
dsInt16_t DSMLINKAGE dsmQueryAccess

(dsUint32_t dsmHandle),
qryRespAccessData **accessListP,
dsUint16_t *numberOfRules) ;

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

qryRespAccessData **accessListP (O)
A pointer to an array of qryRespAccessData elements that the API library
allocates. Each element corresponds to an access rule. The number of elements
in the array is returned in the numberOfRules parameter. The information that
is returned in each qryRespAccessData element includes the following:

Name Description
ruleNumber The ID for the access rule. This identifies the rule for deletion.
AccessType The backup or archive type.
Node The node on which you gave access.
Owner The user to whom you gave access.
objName The high-level, or low-level file space descriptors.

dsUint32_t *numberOfRules (O)
Returns the number of rules in the accessList array.

dsmQueryApiVersion
The dsmQueryApiVersion function call performs a query request for the API
library version that the application client accesses.

All updates to the API are made in an upward-compatible format. Any application
client with an API version or release less than, or equal to, the API library on the
end user's workstation operates without change. Be aware before you proceed that
should the dsmQueryApiVersion call return a version or version release older than
that of the application clients, some API calls might be enhanced in a manner that
is not supported by the end user's older version of the API.

The application API version number is stored in the dsmapitd.h header file as
constants DSM_API_VERSION, DSM_API_RELEASE, and DSM_API_LEVEL.

There are no return codes that are specific to this call.

Syntax
void dsmQueryApiVersion (dsmApiVersion *apiVersionP);

Chapter 6. API function calls 111

Parameters

dsmApiVersion *apiVersionP (O)
This parameter is a pointer to the structure that contains the API library
version, release, and level components. For example, if the library is version
1.1.0, then, after returning from the call, the fields of the structure contain the
following values:

dsmApiVersionP->version = 1
dsmApiVersionP->release = 1
dsmApiVersionP->level = 0

dsmQueryApiVersionEx
The dsmQueryApiVersionEx function call performs a query request for the API
library version that the application client accesses.

All updates to the API are made in an upward-compatible format. Any application
client that has an API version or release less than or equal to the API library on the
end user's workstation operates without change. See Summary of Code Changes in
the README_api_enu file for exceptions to upward compatibility. If the
dsmQueryApiVersionEx call returns a version or version release that is different
from that of the application client, be aware before you proceed that some API
calls might be enhanced in a manner that is not supported by the end user's older
version of the API.

The application API version number is stored in the dsmapitd.h header file as
constants DSM_API_VERSION, DSM_API_RELEASE, DSM_API_LEVEL, and
DSM_API_SUBLEVEL.

There are no return codes that are specific to this call.

Syntax
void dsmQueryApiVersionEx (dsmApiVersionEx *apiVersionP);

Parameters

dsmApiVersionEx *apiVersionP (O)
This parameter is a pointer to the structure that contains the API library's
version, release, level, and sublevel components. For example, if the library is
version 5.5.0.0, then, after returning from the call, the fields of the structure
contain the following values:
v ApiVersionP->version = 5
v ApiVersionP->release = 5
v ApiVersionP->level = 0
v ApiVersionP->subLevel = 0

112 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

dsmQueryCliOptions
The dsmQueryCliOptions function call queries important option values in the
user's option files. A structure of type optStruct is passed in the call and contains
the information. This call is performed before dsmInitEx is called, and it
determines the setup before the session.

Note: For more information about options, see the Tivoli Storage Manager Installing
and Using the Backup-Archive Client for your operating system.

There are no return codes that are specific to this call.

Syntax
dsInt16_t dsmQueryCliOptions

(optStruct *optstructP);

Parameters

optStruct *optstructP (I/O)
This parameter passes the address of the structure that the API completes. The
application client is responsible for allocating storage for the structure. On
successful return, the appropriate information is entered in the fields in the
structure.

The information returned in the optStruct structure is:

Name Description
dsmiDir The value of the environment DSMI_DIR variable.
dsmiConfig The client option file as specified by the DSMI_CONFIG

environment variable.
serverName The name of the Tivoli Storage Manager server.
commMethod The communication method selected. See the #defines for

DSM_COMM_* in the dsmapitd.h file.
serverAddress The address of the server that is based on the communication

method.
nodeName The name of the client's node (machine).
compression This field provides information regarding the compression option.
passwordAccess The values are: bTrue for generate, and bFalse for prompt.

dsmQuerySessInfo
The dsmQuerySessInfo function call starts a query request to Tivoli Storage
Manager for information related to the operation of the specified session in
dsmHandle. A structure of type ApiSessInfo is passed in the call, with all
available session related information entered. This call is started after a successful
dsmInitEx call.

The information that is returned in the ApiSessInfo structure includes the
following:
v Server information: port number, date and time, and type
v Client defaults: application type, delete permissions, delimiters, and transaction

limits
v Session information: login ID, and owner
v Policy data: domain, active policy set, and retention grace period

Chapter 6. API function calls 113

See Appendix B, “API type definitions source files,” on page 147 for information
about the content of the structure that is passed and each field within it.

Syntax
dsInt16_t dsmQuerySessInfo (dsUint32_t dsmHandle,

ApiSessInfo *SessInfoP);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

ApiSessInfo *SessInfoP (I/O)
This parameter passes the address of the structure that the API enters. The
application client is responsible for allocating storage for the structure and for
completing the field entries that indicate the version of the structure that is
used. On successful return, the fields in the structure are completed with the
appropriate information. The adsmServerName is the name that is given in the
define server command on the Tivoli Storage Manager server. If the
archiveRetentionProtection field is true, the server is enabled for retention
protection.

Return codes

The return code numbers are provided in parentheses ().

Table 48. Return codes for dsmQuerySessInfo

Return code Explanation

DSM_RC_NO_SESS_BLK (2006) No server session block information.

DSM_RC_NO_POLICY_BLK (2007) No server policy information available.

DSM_RC_WRONG_VERSION_PARM
(2065)

Application client's API version is different from the Tivoli Storage
Manager library version.

dsmQuerySessOptions
The dsmQuerySessOptions function call queries important option values that are
valid in the specified session in dsmHandle. A structure of type optStruct is
passed in the call and contains the information.

This call is started after a successful dsmInitEx call. The values that are returned
might be different from the values returned on a dsmQueryCliOptions call,
depending on values that are passed to the dsmInitEx call, primarily optString, and
optFile. For information about option precedence, see “Understanding configuration
and options files” on page 2.

There are no return codes that are specific to this call.

Syntax
dsInt16_t dsmQuerySessOptions

(dsUint32_t dsmHandle,
optStruct *optstructP);

Parameters

dsUint32_t dsmhandle(I)
The handle that associates this call with a previous dsmInitEx call.

114 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

optStruct *optstructP (I/O)
This parameter passes the address of the structure that the API completes. The
application client is responsible for allocating storage for the structure. On
successful return, the fields in the structure are completed with the appropriate
information.

The information returned in the optStruct structure is:

Name Description
dsmiDir The value of the DSMI_DIR environment variable.
dsmiConfig The dsm.opt file that the DSMI_CONFIG environment variable

specifies.
serverName The name of the Tivoli Storage Manager server stanza in the

options file.
commMethod The communication method that was selected. See the #defines for

DSM_COMM_* in the dsmapitd.h file.
serverAddress The address of the server that is based on the communication

method.
nodeName The name of the client's node (machine).
compression The value of the compression option (bTrue=on and bFalse=off).
compressAlways The value of the compressalways option (bTrue=on and bFalse=off).
passwordAccess Value bTrue for generate, and bFalse for prompt.

For more information about options, see Tivoli Storage Manager Installing and
Using the Backup-Archive Client for your operating system.

dsmRCMsg
The dsmRCMsg function call obtains the message text that is associated with an
API return code.

The msg parameter displays the message prefix return code in parentheses (),
followed by the message text. For example, a call to dsmRCMsg might return the
following:
ANS0264E (RC2300) Only root user can execute dsmChangePW or dsmDeleteFS.

For some languages where characters are different in ANSII and OEM code pages,
it might be necessary to convert strings from ANSII to OEM before printing them
out (for example, Eastern European single-byte character sets). The following is an
example:

dsmRCMsg(dsmHangle, rc, msgBuf);
#ifdef WIN32
#ifndef WIN64
CharToOemBuff(msgBuf, msgBuf, strlen(msgBuf));
#endif
#endif
printf("

Syntax
dsInt16_t dsmRCMsg (dsUint32_t dsmHandle,

dsInt16_t dsmRC,
char *msg);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

Chapter 6. API function calls 115

dsInt16_t dsmRC (I)
The API return code of the associated message text. The API return codes are
listed in the dsmrc.h file. See Appendix A, “API return codes source file
dsmrc.h,” on page 135 for more information.

char *msg (O)
This parameter is the message text that is associated with the return code,
dsmRC. The caller is responsible for allocating enough space for the message
text.

The maximum length for msg is defined as DSM_MAX_RC_MSG_LENGTH.

On platforms that have National Language Support and a choice of language
message files, the API returns a message string in the national language.

Return codes

The return code numbers are provided in parentheses ().

Table 49. Return codes for dsmRCMsg

Return code Explanation

DSM_RC_NULL_MSG (2002) The msg parameter for dsmRCMsg call is a NULL pointer.

DSM_RC_INVALID_RETCODE (2021) Return code that was passed to dsmRCMsg call is an invalid
code.

DSM_RC_NLS_CANT_OPEN_TXT (0610) Unable to open the message text file.

dsmRegisterFS
The dsmRegisterFS function call registers a new file space with the Tivoli Storage
Manager server. Register a file space first before you can back up any data to it.

Application clients should not use the same file space names that a backup-archive
client would use.
v On UNIX or Linux, run the df command for these names.
v On Windows, these names are generally the volume labels that are associated

with the different drives on your system.
v On OS/400, there is no backup-archive client.

Syntax
dsInt16_t dsmRegisterFS (dsUint32_t dsmHandle,

regFSData *regFilespaceP);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

regFSData *regFilespaceP (I)
This parameter passes the name of the file space and associated information
that you need to register with the Tivoli Storage Manager server.

Note: The fstype field includes the prefix, “API:”. All file space queries display
this string. For example, if the user passes myfstype for fstype in
dsmRegisterFS, the actual value string on the server is returned as
API:myfstype when queried. This prefix distinguishes API objects from
backup-archive objects.

116 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

The usable area for fsInfo is now DSM_MAX_USER_FSINFO_LENGTH.

Return codes

The return code numbers are provided in parentheses ().

Table 50. Return codes for dsmRegisterFS

Return code Explanation

DSM_RC_INVALID_FSNAME (2016) Invalid file space name.

DSM_RC_INVALID_DRIVE_CHAR (2026) Drive letter is not an alphabetic character.

DSM_RC_NULL_FSNAME (2027) Null file space name.

DSM_RC_FS_ALREADY_REGED (2062) File space is already registered.

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different from the Tivoli
Storage Manager library version.

DSM_RC_FSINFO_TOOLONG (2106) File space information is too long.

dsmReleaseBuffer
The dsmReleaseBuffer function returns a buffer to Tivoli Storage Manager. The
application calls dsmReleaseBuffer after a dsmGetDataEx was called and the
application has moved all the data out of the buffer and is ready to release it.
dsmReleaseBuffer requires that dsmInitEx was called with the UseTsmBuffers set
to btrue and a non-zero value was provided for numTsmBuffers. dsmReleaseBuffer
should also be called if the application is about to call dsmTerminate and it still
holds Tivoli Storage Manager buffers.

dsmReleaseBufferSyntax
dsInt16_t dsmReleaseBuffer (releaseBufferIn_t *dsmReleaseBufferInP,

releaseBufferOut_t *dsmReleaseBufferOutP) ;

Parameters

releaseBufferIn_t * dsmReleaseBufferInP (I)
This structure contains the following input parameters.

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

dsUint8_t tsmBufferHandle(I)
The handle that identifies this buffer.

char *dataPtr(I)
The address to which the application is written.

Return codes

The return code numbers are provided in parentheses ().

Table 51. Return codes for dsmReleaseBuffer

Return code Explanation

DSM_RC_BAD_CALL_SEQUENCE The call was not issued in the proper state.

DSM_RC_INVALID_TSMBUFFER The handle or the value of dataPtr are invalid.

DSM_RC_BUFF_ARRAY_ERROR A buffer array error occurred.

Chapter 6. API function calls 117

dsmRenameObj
The dsmRenameObj function call renames the high-level or low-level object name.
For backup objects, pass in the current object name and changes either for
high-level or low-level object names. For archive objects, pass in the current object
file space name and object ID, and changes either for high-level or low-level object
names. Use this function call within dsmBeginTxn and dsmEndTxn calls.

The merge flag determines whether or not a duplicate backup object name is
merged with the existing backups. If the new name corresponds to an existing
object and merge is true, the current object is converted to the new name and it
becomes the active version of the new name while the existing active object that
had that name becomes the top most inactive copy of the object. If the new name
corresponds to an existing object and merge is false, the function then returns the
return code, DSM_RC_ABORT_DUPLICATE_OBJECT.

Note: Only the owner of the object can rename it.

The dsmRenameObj function call tests for these merge conditions:
v The current dsmObjName object and the new high-level or low-level object

must match on owner, copy group, and management class.
v The current dsmObjName must have been backed up more recently than the

currently active object with the new name.
v There must be only an active copy of the current dsmObjName with no inactive

copies.

Syntax
dsInt16_t dsmRenameObj (dsmRenameIn_t *dsmRenameInP,

dsmRenameOut_t *dsmRenameOutP);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

dsmRenameIn_t *dsmRenameInP
This structure contains the input parameters.

dsUint8_t repository (I);
This parameter indicates whether the file space to delete is in the backup
repository or the archive repository.

dsmObjName *objNameP (I);
This parameter is a pointer to the structure that contains the current file
space name, high-level object name, low-level object name, and object type.

char newHl [DSM_MAX_HL_LENGTH + 1];
This parameter specifies the new high-level name.

char newLl [DSM_MAX_LL_LENGTH + 1];
This parameter specifies the new low-level name.

dsBool_t merge;
This parameter determines whether or not a backup object is merged with
duplicate named objects. The values are either true or false.

ObjID;
The object ID for archive objects.

118 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

dsmRenameOut_t *dsmRnameOutP
This structure contains the output parameters.

Note: Currently, there are no output parameters.

Return codes

The return code numbers are provided in parentheses ().

Table 52. Return codes for dsmRenameObj

Return code Explanation

DSM_RC_ABORT_MERGE_ERROR (45) Server detected a merge error.

DSM_RC_ABORT_DUPLICATE_OBJECT (32) Object already exists and merge is false.

DSM_RC_ABORT_NO_MATCH (2) Object not found.

DSM_RC_REJECT_SERVER_DOWNLEVEL (58) The Tivoli Storage Manager server must be at the 3.7.4.0 level or
higher for this function to work.

dsmRequestBuffer
The dsmRequestBuffer function returns a buffer to Tivoli Storage Manager. The
application calls dsmRequestBuffer after a dsmGetDataEx was called and the
application has moved all the data out of the buffer and is ready to release it.

dsmReleaseBuffer requires that dsmInitEx was called with the UseTsmBuffers set to
btrue and a non-zero value was provided for numTsmBuffers. dsmReleaseBuffer
should also be called if the application is about to call dsmTerminate and it still
holds Tivoli Storage Manager buffers.

Syntax
dsInt16_t dsmRequestBuffer (getBufferIn_t *dsmRequestBufferInP,

getBufferOut_t *dsmRequestBufferOutP) ;

Parameters

getBufferIn_t * dsmRequestBufferInP (I)
This structure contains the following input parameter:

dsUint32_t dsmHandle
The handle that identifies the session and associates it with a previous
dsmInitEx call.

getBufferOut_t *dsmRequestBufferOut P (0)
This structure contains the output parameters.

dsUint8_t tsmBufferHandle(0)
The handle that identifies this buffer.

char *dataPtr(0)
The address to which application is written.

dsUint32_t *bufferLen(0)
Maximum number of bytes that can be written to this buffer.

Chapter 6. API function calls 119

Return codes

The return code numbers are provided in parentheses ().

Table 53. Return codes for dsmRequestBuffer

Return code Explanation

DSM_RC_BAD_CALL_SEQUENCE (33) The call was not issued in the proper state.

DSM_RC_SENDDATA_WITH_ZERO_SIZE (34) If the object being sent is 0 length, no calls to dsmReleaseBuffer
are allowed.

DSM_RC_BUFF_ARRAY_ERROR (121) A valid buffer could not be obtained.

dsmRetentionEvent
The dsmRetentionEvent function call sends a list of object IDs to the server, with a
retention event operation to be performed on these objects. Use this function call
within dsmBeginTxn and dsmEndTxn calls.

Note: The Tivoli Storage Manager server must be at the Version 5.2.2.0 level or
higher for this function to work.

The maximum number of objects in a call is limited to the value of maxObjPerTxn
that is returned in the ApisessInfo structure from a dsmQuerySessInfo call.

Only an owner of an object can send an event on that object.

The following events are possible:

eventRetentionActivate
Can be issued only for objects that are bound to an event based
management class. Sending this event activates the event for this object
and the state of the retention for this object changes from
DSM_ARCH_RETINIT_PENDING to DSM_ARCH_RETINIT_STARTED.

eventHoldObj
This event issues a retention or deletion hold on the object so that, until a
release is issued, the object is not expired and cannot be deleted.

eventReleaseObj
This event can only be issued for an object that has a value of
DSM_ARCH_HELD_TRUE in the objectHeld field and removes the hold on
the object resuming the original retention policy.

Before you send dsmRetentionEvent, send the query sequence that is described in
“Querying the Tivoli Storage Manager system” on page 35 to obtain the
information for the object. The call to dsmGetNextQObj returns a data structure
named qryRespArchiveData for archive queries. This data structure contains the
information that is needed for dsmRetentionEvent.

Syntax
extern dsInt16_t DSMLINKAGE dsmRetentionEvent(

dsmRetentionEventIn_t *ddsmRetentionEventInP,
dsmRetentionEventOut_t *dsmRetentionEventOutP
);

120 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Parameters

dsmRetentionEventIn_t *dsmRetentionEventP
This structure contains the following input parameters:

dsUint16_t stVersion;
This parameter indicates the structure version.

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

dsmEventType_t evenType (I);
This parameter indicates the event type. See the beginning of this section
for the meaning of these possible values: eventRetentionActivate,
eventHoldObj, eventReleaseObj

dsmObjList_t objList;
This parameter indicates a list of object IDs to signal.

Return codes

The return code numbers are provided in parentheses ().

Table 54. Return codes for dsmRetentionEvent

Return code Explanation

DSM_RC_ABORT_NODE_NOT_AUTHORIZED
(36)

The node or user does not have proper authority.

DSM_RC_ABORT_TXN_LIMIT_EXCEEDED (249) Too many objects in the transaction.

DSM_RC_ABORT_OBJECT_ALREADY_HELD
(250)

Object is already held, cannot issue another hold.

DSM_RC_REJECT_SERVER_DOWNLEVEL (58) The Tivoli Storage Manager server must be at the Version 5.2.2.0
level or higher for this function to work.

dsmSendBufferData
The dsmSendBufferData function call sends a byte stream of data to Tivoli Storage
Manager through a buffer that was provided in a previous dsmReleaseBuffer call.
The application client can pass any type of data for storage on the server. Usually
this data are file data, but it is not limited to file data. You can call
dsmSendBufferData several times, if the byte stream of data that you are sending
is large. Regardless of whether the call succeeds or fails, the buffer is released.

Note: When using useTsmBuffers, even if an object is included for compression, the
object is not compressed.

Syntax
dsInt16_t dsmSendBufferData (sendBufferDataIn_t *dsmSendBufferDataExInP,

sendBufferDataOut_t *dsmSendBufferDataOutP) ;

Parameters

sendBufferDataIn_t * dsmSendBufferDataInP (I)
This structure contains the following input parameters.

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

Chapter 6. API function calls 121

dsUint8_t tsmBufferHandle(I)
The handle that identifies the buffer to send.

char *dataPtr(I)
The address to which application data was written.

dsUint32_t numBytes(I)
The actual number of bytes written by the application (should always be
less than the value provided in dsmReleaseBuffer).

Return codes

The return code numbers are provided in parentheses ().

Table 55. Return codes for dsmSendBufferData

Return code Explanation

DSM_RC_BAD_CALL_SEQUENCE (2041) The call was not issued in the proper state.

DSM_RC_INVALID_TSMBUFFER (2042) The handle or the value of dataPtr are invalid.

DSM_RC_BUFF_ARRAY_ERROR (2045) A buffer array error occurred.

DSM_RC_TOO_MANY_BYTES (2043) The value of numBytes is bigger than the size of the buffer provided in
the dsmReleaseBuffer call.

dsmSendData
The dsmSendData function call sends a byte stream of data to Tivoli Storage
Manager through a buffer. The application client can pass any type of data for
storage on the server. Usually, these data are file data, but are not limited to such.
You can call dsmSendData several times, if the byte stream of data that you want
to send is large.

Note: The application client cannot reuse the buffer that is specified in
dsmSendData until the dsmSendData call returns.

Note: If Tivoli Storage Manager returns code 157 (DSM_RC_WILL_ABORT), start a
call to dsmEndSendObj and then to dsmEndTxn with a vote of
DSM_VOTE_COMMIT. The application should then receive return code 2302
(DSM_RC_CHECK_REASON_CODE) and pass the reason code back to the
application user. This informs the user why the server is ending the transaction.

Syntax
dsInt16_t dsmSendData (dsUint32_t dsmHandle,

DataBlk *dataBlkPtr);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

DataBlk *dataBlkPtr (I/O)
This parameter points to a structure that includes both a pointer to the buffer
from which the data are to be sent, as well as the size of the buffer. On return,
this structure contains the number of bytes that is actually transferred. See
Appendix B, “API type definitions source files,” on page 147 for the type
definition.

122 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Return codes

The return code numbers are provided in parentheses ().

Table 56. Return codes for dsmSendData

Return code Explanation

DSM_RC_NO_COMPRESS_MEMORY (154) Insufficient memory available to perform data compression or
expansion.

DSM_RC_COMPRESS_GREW (155) During compression the compressed data grew in size
compared to the original data.

DSM_RC_WILL_ABORT (157) An unknown and unexpected error occurred, causing the
transaction to halt.

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different than the Tivoli
Storage Manager library version.

DSM_RC_NEEDTO_ENDTXN (2070) Need to end the transaction.

DSM_RC_OBJ_EXCLUDED (2080) The include-exclude list excludes the object.

DSM_RC_OBJ_NOBCG (2081) The object has no backup copy group and will not be sent to the
server.

DSM_RC_OBJ_NOACG (2082) The object has no archive copy group and is not sent to the
server.

DSM_RC_SENDDATA_WITH_ZERO_SIZE (2107) The object cannot send data with a zero byte sizeEstimate.

dsmSendObj
The dsmSendObj function call starts a request to send a single object to storage.
Multiple dsmSendObj calls and associated dsmSendData calls can be made within
the bounds of a transaction for performance reasons.

The dsmSendObj call processes the data for the object as a byte stream passed in
memory buffers. The dataBlkPtr parameter in the dsmSendObj call permits the
application client to either:
v Pass the data and the attributes (the attributes are passed through the objAttrPtr

) of the object in a single call.
v Specify part of the object data through the dsmSendObj call and the remainder

of the data through one or more dsmSendData calls.

Alternatively, the application client can specify only the attributes through the
dsmSendObj call and specify the object data through one or more calls to
dsmSendData. For this method, set dataBlkPtr to NULL on the dsmSendObj call.

Note: For certain object types, byte stream data might not be associated with the
data; for example, a directory entry with no extended attributes.

Before dsmSendObj is called, a preceding dsmBindMC call must be made to
properly bind a management class to the object that you want to back up or
archive. The API keeps this binding so that it can associate the proper management
class with the object when it is sent to the server. If you permit the management
class that is bound on a dsmSendObj call to default for an object type of directory
(DSM_OBJ_DIRECTORY), the default might not be the default management class.
Instead, the management class with the greatest retention time is used. If more
than one management class exists with this retention time, the first one that is
encountered is used.

Chapter 6. API function calls 123

Follow all object data that is sent to storage with a dsmEndSendObj call. If you do
not have object data to send to the server, or all data was contained within the
dsmSendObj call, start a dsmEndSendObj call before you can start another
dsmSendObj call. If multiple data sends were required through the dsmSendData
call, the dsmEndSendObj follows the last send to indicate the state change.

Note: If Tivoli Storage Manager returns code 157 (DSM_RC_WILL_ABORT), start a
call to dsmEndTxn with a vote of DSM_VOTE_COMMIT. The application should
then receive return code 2302 (DSM_RC_CHECK_REASON_CODE) and pass the
reason code back to the application user. This informs the user why the server is
ending the transaction.

If the reason code is 11 (DSM_RS_ABORT_NO_REPOSIT_SPACE), it is possible
that the sizeEstimate is too small for the actual amount of data. The application
needs to determine a more accurate sizeEstimate and send the data again.

Syntax
dsInt16_t dsmSendObj (dsUint32_t dsmHandle,

dsmSendType sendType,
void *sendBuff,
dsmObjName *objNameP,
ObjAttr *objAttrPtr,
DataBlk *dataBlkPtr);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

dsmSendType sendType (I)
This parameter specifies the type of send that is being performed. Possible
values include:

Name Description
stBackup A backup object that is sent to the server.
stArchive An archive object that is sent to the server.
stBackupMountWait A backup object for which you want the server to wait until the

necessary device, such as a tape, is mounted.
stArchiveMountWait An archive object for which you want the server to wait until

the necessary device, such as a tape, is mounted.

Note: Use the MountWait types if there is any possibility that your application
user might send data to a tape.

void *sendBuff (I)
This parameter is a pointer to a structure that contains other information
specific to the sendType on the call. Currently, only a sendType of stArchive
has an associated structure. This structure is called sndArchiveData and it
contains the archive description.

dsmObjName *objNameP (I)
This parameter is a pointer to the structure that contains the file space name,
high-level object name, low-level object name, and object type. See “Object
names and IDs” on page 24 for more information.

ObjAttr *objAttrPtr (I)
This parameter passes object attributes of interest to the application. See
Appendix B, “API type definitions source files,” on page 147 for the type
definition.

124 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

The attributes are:
v owner refers to the owner of the object. Determining whether the owner is

declared to be a specific name or an empty string is important when getting
the object back from Tivoli Storage Manager storage. See “Accessing objects
as session owner” on page 26 for more information.

v sizeEstimate is a best estimate of the total size of the data object to send to
the server. Be as accurate as possible on this size, because the server uses
this attribute for efficient space allocation and object placement within its
storage resources.
If the size estimate that you specified is significantly smaller than the actual
number of bytes that are sent, the server might have difficulty allocating
enough space and end the transaction with a reason code of 11
(DSM_RS_ABORT_NO_REPOSIT_SPACE).

Note: The size estimate is for the total size of the data object in bytes.
Objects with a size smaller than DSM_MIN_COMPRESS_SIZE do not
compress.
If your object has no bit data (only the attribute information from this call),
the sizeEstimate should be zero.

Note: Starting with version 5.1.0, the copy destination within a transaction is
not checked for consistency on zero-length objects.

v objCompressed is a Boolean value that states whether or not the object data
have already been compressed.
If the object is compressed (object compressed=bTrue), Tivoli Storage Manager
does not try to compress it again. If it is not compressed, Tivoli Storage
Manager decides whether to compress the object, based on the values of the
compression option set by the Tivoli Storage Manager administrator and set
in the API configuration sources.
If your application plans to use partial object restore or retrieve, you cannot
compress the data while sending it. To enforce this, set ObjAttr.objCompressed
to bTrue.

v objInfo saves information about the particular object.

Note: Information is not stored here automatically. When this attribute is
used, the attribute, objInfoLength, also must be set to show the length of
objInfo.

v mcNameP contains the name of a management class that overrides the
management class that is obtained from dsmBindMC.

v disableDeduplication is a Boolean value. When it is set to true, this object
is not deduplicated by the client.

DataBlk *dataBlkPtr (I/O)
This parameter points to a structure that includes both a pointer to the buffer
of data that is to be backed up or archived and the size of that buffer. This
parameter applies to dsmSendObj only. If you want to begin sending data on
a subsequent dsmSendData call, rather than on the dsmSendObj call, set the
buffer pointer in the DataBlk structure to NULL. On return, this structure
contains the number of bytes that is actually transferred. See Appendix B, “API
type definitions source files,” on page 147 for the type definition.

Chapter 6. API function calls 125

|
|

Return codes

The return code numbers are provided in parentheses ().

Table 57. Return codes for dsmSendObj

Return code Explanation

DSM_RC_NO_COMPRESS_MEMORY
(154)

Insufficient memory available to perform data compression or expansion.

DSM_RC_COMPRESS_GREW (155) During compression, the compressed data grew in size compared to the
original data.

DSM_RC_WILL_ABORT (157) An unknown and unexpected error occurred, causing the transaction to be
halted.

DSM_RC_TL_NOACG (186) The management class for this file does not have a valid copy group for
the send type.

DSM_RC_NULL_OBJNAME (2000) Null object name.

DSM_RC_NULL_OBJATTRPTR (2004) Null object attribute pointer.

DSM_RC_INVALID_OBJTYPE (2010) Invalid object type.

DSM_RC_INVALID_OBJOWNER (2019) Invalid object owner.

DSM_RC_INVALID_SENDTYPE (2022) Invalid send type.

DSM_RC_WILDCHAR_NOTALLOWED
(2050)

Wildcard characters not allowed.

DSM_RC_FS_NOT_REGISTERED (2061) File space not registered.

DSM_RC_WRONG_VERSION_PARM
(2065)

Application client's API version is different from the Tivoli Storage
Manager library version.

DSM_RC_NEEDTO_ENDTXN (2070) Need to end transaction.

DSM_RC_OBJ_EXCLUDED (2080) The include-exclude list excluded the object.

DSM_RC_OBJ_NOBCG (2081) The object has no backup copy group, and it is not sent to the server.

DSM_RC_OBJ_NOACG (2082) The object has no archive copy group, and it is not sent to the server.

DSM_RC_DESC_TOOLONG (2100) Description is too long.

DSM_RC_OBJINFO_TOOLONG (2101) Object information is too long.

DSM_RC_HL_TOOLONG (2102) High-level qualifier is too long.

DSM_RC_FILESPACE_TOOLONG (2104) File space name is too long.

DSM_RC_LL_TOOLONG (2105) Low-level qualifier is too long.

DSM_RC_NEEDTO_CALL_BINDMC
(2301)

dsmBindMC must be called first.

dsmSetAccess
The dsmSetAccess function call gives other users or nodes access to backup
versions or archived copies of your objects, access to all your objects, or access to a
selective set. When you give access to another user, that user can query, restore, or
retrieve your files. This command supports wildcards for the following fields: fs, hl,
ll, node, owner.

Note: You cannot give access to both backup versions and archive copies by using
a single command. You must specify either backup or archive.

126 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Syntax
dsInt16_t DSMLINKAGE dsmSetAccess

(dsUint32_t dsmHandle,
dsmSetAccessType accessType,
dsmObjName *objNameP,
char *node,
char *owner);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

dsmAccessType accessType (I)
This parameter specifies the type of objects for which you want to give access.
Possible values include:

Name Description
atBackup Specifies that access is being set to backup objects.
atArchive Specifies that the access is being set for archive objects.

dsmObjName *objNameP (I)
This parameter is a pointer to the structure that contains the file space name,
the high-level object name, and the low-level object name.

Note: To specify all file spaces, use an asterisk (*) for the file space name.

char *node (I)
This parameter is a pointer to the node name for which access is given. For
any node, specify an asterisk (*).

char *owner (I)
This parameter is a pointer to the user name on the node to which you gave
access. For all users, specify an asterisk (*).

Return codes

The return code numbers are provided in parentheses ().

Table 58. Return codes for dsmSetAccess

Return code Explanation

DSM_RC_INVALID_ACCESS_TYPE (2110) Invalid access type specified.

DSM_RC_FILE_SPACE_NOT_FOUND (124) Specified file space was not found on the server.

DSM_RC_QUERY_COMM_FAILURE (2111) Communication error during server query.

DSM_RC_NO_FILES_BACKUP (2112) No files were backed up for this file space.

DSM_RC_NO_FILES_ARCHIVE (2113) No files were archived for this file space.

DSM_RC_INVALID_SETACCESS (2114) Invalid formulation of set access.

Chapter 6. API function calls 127

dsmSetUp
The dsmSetUp function call overwrites environment variable values. Call
dsmSetUp before dsmInitEx. The values that were passed in the envSetUp
structure overwrite any existing environment variables or defaults. If you specify
NULL for a field, values are taken from the environment. If you do not set a value,
the values are taken from the defaults.

Note:

1. If you use dsmSetUp, always call dsmTerminate before dsmCleanUp.
2. API instrumentation can only be activated if the testflag INSTRUMENT: API is

set in the configuration file and the dsmSetUp or dsmCleanUp calls are used
in the application.

Syntax
dsInt16_t DSMLINKAGE dsmSetUp

(dsBool_t mtFlag,
envSetUp *envSetUpP);

Parameters

dsBool_t mtFlag (I)
This parameter specifies if the API will be used in a single thread, or a
multithread mode. Values include:

DSM_SINGLETHREAD
DSM_MULTITHREAD

Note: The multithread flag must be on for LAN-free data transfer to occur.

envSetUp *envSetUpP(I)
This parameter is a pointer to the structure that holds the overwrite values.
Specify NULL if you do not want to override existing environment variables.
The fields in the envSetUp structure include:

Name Description
dsmiDir A fully-qualified directory path that contains a message file on

UNIX or Linux. It also specifies the dsmtca and the dsm.sys
directories.

dsmiConfig The fully-qualified name of the client options file.
dsmiLog The fully-qualified path of the error log directory.
argv Pass the argv[0] name of the calling program if the application

must run as TSM-Authorized. See “Using passwordaccess
generate without TCA” on page 23 for more information.

logName The file name for an error log if the application does not use
dsierror.log.

inclExclCaseSensitive Indicates whether include/exclude rules are case-sensitive or
case-insensitive. This parameter can be used on Windows only,
it is ignored elsewhere.

Return codes

The return code numbers are provided in parentheses ().

Table 59. Return codes for dsmSetUp

Return code Explanation

DSM_RC_ACCESS_DENIED (106) Access to the specified file or directory is denied.

128 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Table 59. Return codes for dsmSetUp (continued)

Return code Explanation

DSM_RC_INVALID_OPT (0400) An invalid option was found.

DSM_RC_NO_HOST_ADDR (0405) The TCPSERVERADDRESS for this server is not defined in the server
name stanza in the system options file.

DSM_RC_NO_OPT_FILE (0406) The options file specified by filename cannot be found.

DSM_RC_MACHINE_SAME (0408) The NODENAME defined in the options file cannot be the same as
the system HostName.

DSM_RC_INVALID_SERVER (0409) The system options file does not contain the SERVERNAME option.

DSM_RC_INVALID_KEYWORD (0410) An invalid option keyword was found in the dsmInitEx
configuration file, the option string, dsm.sys, or dsm.opt.

DSM_RC_PATTERN_TOO_COMPLEX (0411) The include or exclude pattern issued is too complex to be accurately
interpreted by Tivoli Storage Manager.

DSM_RC_NO_CLOSING_BRACKET (0412) The include or exclude pattern is incorrectly constructed. The closing
bracket is missing.

DSM_RC_NLS_CANT_OPEN_TXT (0610) The system is unable to open the message text file.

DSM_RC_NLS_INVALID_CNTL_REC (0612) The system is unable to use the message text file.

DSM_RC_NOT_ADSM_AUTHORIZED (0927) You must be the TSM-Authorized user to have multithreading and
passwordaccess generate.

DSM_RC_NO_INCLEXCL_FILE (2229) The include-exclude file was not found.

DSM_RC_NO_SYS_OR_INCLEXCL (2230) Either the dsm.sys or the include-exclude file was not found.

dsmTerminate
The dsmTerminate function call ends a session with the Tivoli Storage Manager
server and cleans up the Tivoli Storage Manager environment.

Syntax

There are no return codes that are specific for this call.
dsInt16_t dsmTerminate (dsUint32_t dsmHandle);

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

dsmUpdateFS
The dsmUpdateFS function call updates a file space in Tivoli Storage Manager
storage. This ensures that the Tivoli Storage Manager administrator has a current
record of your file space.

Syntax
dsInt16_t dsmUpdateFS (dsUint32_t dsmHandle,

char *fs,
dsmFSUpd *fsUpdP,
dsUint32_t fsUpdAct);

Chapter 6. API function calls 129

Parameters

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

char *fs (I)
This parameter is a pointer to the file space name.

dsmFSUpd *fsUpdP (I)
This parameter is a pointer to the structure that has the proper fields
completed for the update that you want. Complete only those fields that need
updating.

dsUint32_t fsUpdAct (I)
A two-byte bit map that indicates which of the above fields to update. The bit
masks are:
v DSM_FSUPD_FSTYPE
v DSM_FSUPD_FSINFO

Note: For Windows operating systems, the drive letter value from
dsmDOSAttrib is also updated when FSINFO is selected.

v DSM_FSUPD_OCCUPANCY
v DSM_FSUPD_CAPACITY
v DSM_FSUPD_BACKSTARTDATE
v DSM_FSUPD_BACKCOMPLETEDATE

See the DSM_FSUPD definitions in Appendix B, “API type definitions source
files,” on page 147 for a description of these bit masks.

Return codes

The return code numbers are provided in parentheses ().

Table 60. Return codes for dsmUpdateFS

Return code Explanation

DSM_RC_FS_NOT_REGISTERED (2061) File space name is not registered.

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different from the Tivoli
Storage Manager library version.

DSM_RC_FSINFO_TOOLONG (2106) File space information is too long.

dsmUpdateObj
The dsmUpdateObj function call updates the meta information associated with an
active backup or archive object already on the server. The application bit data is
not affected. To update an object, you must give a specific non-wildcard name. To
update an archived object, set the dsmSendType to stArchive. Only the latest
named archive object is updated.

You can only start the dsmUpdateObj call in the session state; it cannot be called
inside a transaction because it performs its own transaction. And, you can update
only one object at a time.

Note: On a UNIX or Linux operating system, if you change the owner field, you
cannot query or restore the object unless you are the root user.

130 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Syntax
dsInt16_t dsmUpdateObj

(dsUint32_t dsmHandle,
dsmSendType sendType,
void *sendBuff,
dsmObjName *objNameP,
ObjAttr *objAttrPtr, /* objInfo */
dsUint16_t objUpdAct); /* action bit vector */

Parameters

The field descriptions are the same as those in dsmSendObj, with the following
exceptions:

dsmObjName *objNameP (I)
You cannot use a wildcard.

ObjAttr *objAttrPtr (I)
The objCompressed field is ignored for this call.

Other differences are:
v owner. If you specify a new owner field, the owner changes.
v sizeEstimate. If you specify a non-zero value it should be the actual amount

of data sent, in bytes. The value is stored in the Tivoli Storage Manager meta
data for future use.

v objInfo. This attribute contains the new information to be placed in the
objInfo field. Set the objInfoLength to the length of the new obiInfo.

dsUint16_t objUpdAct
The bit masks and possible actions for objUpdAct are:

DSM_BACKUPD_MC
Updates the management class for the object.

DSM_BACKUPD_OBJINFO
Updates objInfo, objInfoLength, and sizeEstimate.

DSM_BACKUPD_OWNER
Updates the owner of the object.

DSM_ARCHUPD_DESCR
Updates the Description field. Enter the value for the new description
through the SendBuff parameter. See the sample program for proper
use.

DSM_ARCHUPD_OBJINFO
Updates objInfo, objInfoLength, and sizeEstimate.

DSM_ARCHUPD_OWNER
Updates the owner of the object.

Return codes

The return code numbers are provided in parentheses ().

Table 61. Return codes for dsmUpdateObj

Return code Explanation

DSM_RC_INVALID_ACTION (2232) Invalid action.

DSM_RC_FS_NOT_REGISTERED (2061) File space not registered.

DSM_RC_BAD_CALL_SEQUENCE (2041) Sequence of calls is invalid.

Chapter 6. API function calls 131

Table 61. Return codes for dsmUpdateObj (continued)

Return code Explanation

DSM_RC_WILDCHAR_NOTALLOWED
(2050)

Wildcard characters are not allowed.

DSM_RC_ABORT_NO_MATCH (2) Previous query does not match.

dsmUpdateObjEx
The dsmUpdateObjEx function call updates the meta information that is associated
with an active backup or archive object that is on the server. The application bit
data is not affected. To update an object, you must specify a non-wildcard name,
or you can specify the object ID to update a specific archived object. You cannot
use wildcard characters when specifying the name. To update a backup object, set
the dsmSendType parameter to stBackup. To update an archived object, set the
dsmSendType parameter to stArchive.

You can only start the dsmUpdateObjEx call in the session state; it cannot be
called inside a transaction because it performs its own transaction. You can update
only one object at a time.

Remember: On a UNIX or Linux operating system, if you change the owner field,
you cannot query or restore the object unless you are the root user. Only the
current active version of a backup object can be updated.

Syntax
dsInt16_t dsmUpdateObjEx

(dsmUpdateObjExIn_t *dsmUpdateObjExInP,
dsmUpdateObjExOut_t *dsmUpdateObjExOutP);

Parameters

dsmUpdateObjExIn_t *dsmUpdateObjExInP
This structure contains the following input parameters:

dsUint16_t stVersion (I)
The current version of the structure that is used.

dsUint32_t dsmHandle (I)
The handle that associates this call with a previous dsmInitEx call.

dsmSendType sendType (I)
The type of send that is being performed. The value can be:

stBackup A backup object that is sent to the server.
stArchive An archive object that is sent to the server.

dsmObjName *objNameP (I)
A pointer to the structure that contains the filespace name, high-level
object name, low-level object name, and object type. You cannot use a
wildcard.

ObjAttr *objAttrPtr (I)
Passes object attributes to the application. The values that are updated
depend on the flags in the objUpdAct field. The objCompressed attribute
is ignored for this call.

The attributes are:

132 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

v owner changes the owner if a new name is entered.
v sizeEstimate is the actual amount of data that is sent in bytes. The value

is stored in the Tivoli Storage Manager meta data for future use.
v objCompressed is a Boolean value that states whether or not the object

data have already been compressed.
v objInfo is an attribute that contains the new information to be placed in

the objInfo field. Set the objInfoLength to the length of the new
objInfo.

v mcNameP contains the name of a management class that overrides the
management class that is obtained from dsmBindMC.

dsUint32_t objUpdAct
Specifies the bit masks and actions for objUpdAct are:

DSM_BACKUPD_MC
Updates the management class for the object.

DSM_BACKUPD_OBJINFO
Updates the information object (objInfo), the length of the
information object (objInfoLength), and the amount of data that is
sent (sizeEstimate) for the backup object.

DSM_BACKUPD_OWNER
Updates the owner for the backup object.

DSM_ARCHUPD_DESCR
Updates the Description field for the archive object. Enter the
value for the new description through the sendBuff parameter.

DSM_ARCHUPD_OBJINFO
Updates the information object (objInfo), the length of the
information object (objInfoLength), and the amount of data that is
sent (sizeEstimate) for the archive object.

DSM_ARCHUPD_OWNER
Updates the owner of the archive object.

ObjID archObjId
Specifies the unique object ID for a specific archive object. Because multiple
archive objects can have the same name, this parameter identifies a specific
one. You can obtain the object ID by using a query archive call.

dsmUpdateObjExOut_t *dsmUpdateObjExOutP
This structure contains the output parameter:

dsUint16_t stVersion (I)
The current version of the structure that is used.

Return codes

The return code numbers are provided in parentheses () in the following table.

Table 62. Return codes for dsmUpdateObjEx

Return code Explanation

DSM_RC_INVALID_ACTION (2012) Invalid action.

DSM_RC_FS_NOT_REGISTERED (2061) File space not registered.

DSM_RC_BAD_CALL_SEQUENCE (2041) Sequence of calls is invalid.

Chapter 6. API function calls 133

Table 62. Return codes for dsmUpdateObjEx (continued)

Return code Explanation

DSM_RC_WILDCHAR_NOTALLOWED
(2050)

Wildcard characters are not allowed.

DSM_RC_ABORT_NO_MATCH (2) Previous query does not match.

134 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Appendix A. API return codes source file dsmrc.h

This index is a copy of the dsmrc.h header file that is used in the product, so you
can see all possible return codes from the APIs.

See Tivoli Storage Manager Client Messages and Application Programming Interface
Return Codes for detailed explanations of API return codes.

/***
* Tivoli Storage Manager *
* API Client Component *
* *
* (C) Copyright IBM Corporation 1993,2010 *
***/

/**/
/* Header File Name: dsmrc.h */
/* */
/* Descriptive-name: Return codes from Tivoli Storage Manager APIs */
/**/
#ifndef _H_DSMRC
#define _H_DSMRC

#ifndef DSMAPILIB

#ifndef _H_ANSMACH
typedef int RetCode ;
#endif

#endif

#define DSM_RC_SUCCESSFUL 0 /* successful completion */
#define DSM_RC_OK 0 /* successful completion */

#define DSM_RC_UNSUCCESSFUL -1 /* unsuccessful completion */

/* dsmEndTxn reason code */
#define DSM_RS_ABORT_SYSTEM_ERROR 1
#define DSM_RS_ABORT_NO_MATCH 2
#define DSM_RS_ABORT_BY_CLIENT 3
#define DSM_RS_ABORT_ACTIVE_NOT_FOUND 4
#define DSM_RS_ABORT_NO_DATA 5
#define DSM_RS_ABORT_BAD_VERIFIER 6
#define DSM_RS_ABORT_NODE_IN_USE 7
#define DSM_RS_ABORT_EXPDATE_TOO_LOW 8
#define DSM_RS_ABORT_DATA_OFFLINE 9
#define DSM_RS_ABORT_EXCLUDED_BY_SIZE 10
#define DSM_RS_ABORT_NO_STO_SPACE_SKIP 11
#define DSM_RS_ABORT_NO_REPOSIT_SPACE DSM_RS_ABORT_NO_STO_SPACE_SKIP
#define DSM_RS_ABORT_MOUNT_NOT_POSSIBLE 12
#define DSM_RS_ABORT_SIZESTIMATE_EXCEED 13
#define DSM_RS_ABORT_DATA_UNAVAILABLE 14
#define DSM_RS_ABORT_RETRY 15
#define DSM_RS_ABORT_NO_LOG_SPACE 16
#define DSM_RS_ABORT_NO_DB_SPACE 17
#define DSM_RS_ABORT_NO_MEMORY 18

#define DSM_RS_ABORT_FS_NOT_DEFINED 20
#define DSM_RS_ABORT_NODE_ALREADY_DEFED 21
#define DSM_RS_ABORT_NO_DEFAULT_DOMAIN 22
#define DSM_RS_ABORT_INVALID_NODENAME 23

© Copyright IBM Corp. 1993, 2010 135

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define DSM_RS_ABORT_INVALID_POL_BIND 24
#define DSM_RS_ABORT_DEST_NOT_DEFINED 25
#define DSM_RS_ABORT_WAIT_FOR_SPACE 26
#define DSM_RS_ABORT_NOT_AUTHORIZED 27
#define DSM_RS_ABORT_RULE_ALREADY_DEFED 28
#define DSM_RS_ABORT_NO_STOR_SPACE_STOP 29

#define DSM_RS_ABORT_LICENSE_VIOLATION 30
#define DSM_RS_ABORT_EXTOBJID_ALREADY_EXISTS 31
#define DSM_RS_ABORT_DUPLICATE_OBJECT 32

#define DSM_RS_ABORT_INVALID_OFFSET 33 /* Partial Object Retrieve */
#define DSM_RS_ABORT_INVALID_LENGTH 34 /* Partial Object Retrieve */
#define DSM_RS_ABORT_STRING_ERROR 35
#define DSM_RS_ABORT_NODE_NOT_AUTHORIZED 36
#define DSM_RS_ABORT_RESTART_NOT_POSSIBLE 37
#define DSM_RS_ABORT_RESTORE_IN_PROGRESS 38
#define DSM_RS_ABORT_SYNTAX_ERROR 39

#define DSM_RS_ABORT_DATA_SKIPPED 40
#define DSM_RS_ABORT_EXCEED_MAX_MP 41
#define DSM_RS_ABORT_NO_OBJSET_MATCH 42
#define DSM_RS_ABORT_PVR_ERROR 43
#define DSM_RS_ABORT_BAD_RECOGTOKEN 44
#define DSM_RS_ABORT_MERGE_ERROR 45
#define DSM_RS_ABORT_FSRENAME_ERROR 46
#define DSM_RS_ABORT_INVALID_OPERATION 47
#define DSM_RS_ABORT_STGPOOL_UNDEFINED 48
#define DSM_RS_ABORT_INVALID_DATA_FORMAT 49
#define DSM_RS_ABORT_DATAMOVER_UNDEFINED 50

#define DSM_RS_ABORT_INVALID_MOVER_TYPE 231
#define DSM_RS_ABORT_ITEM_IN_USE 232
#define DSM_RS_ABORT_LOCK_CONFLICT 233
#define DSM_RS_ABORT_SRV_PLUGIN_COMM_ERROR 234
#define DSM_RS_ABORT_SRV_PLUGIN_OS_ERROR 235
#define DSM_RS_ABORT_CRC_FAILED 236
#define DSM_RS_ABORT_INVALID_GROUP_ACTION 237
#define DSM_RS_ABORT_DISK_UNDEFINED 238
#define DSM_RS_ABORT_BAD_DESTINATION 239
#define DSM_RS_ABORT_DATAMOVER_NOT_AVAILABLE 240
#define DSM_RS_ABORT_STGPOOL_COPY_CONT_NO 241
#define DSM_RS_ABORT_RETRY_SINGLE_TXN 242
#define DSM_RS_ABORT_TOC_CREATION_FAIL 243
#define DSM_RS_ABORT_TOC_LOAD_FAIL 244
#define DSM_RS_ABORT_PATH_RESTRICTED 245
#define DSM_RS_ABORT_NO_LANFREE_SCRATCH 246
#define DSM_RS_ABORT_INSERT_NOT_ALLOWED 247
#define DSM_RS_ABORT_DELETE_NOT_ALLOWED 248
#define DSM_RS_ABORT_TXN_LIMIT_EXCEEDED 249
#define DSM_RS_ABORT_OBJECT_ALREADY_HELD 250
#define DSM_RS_ABORT_INVALID_CHUNK_REFERENCE 254
#define DSM_RS_ABORT_DESTINATION_NOT_DEDUP 255
#define DSM_RS_ABORT_DESTINATION_POOL_CHANGED 257

/* RETURN CODE */

#define DSM_RC_ABORT_SYSTEM_ERROR DSM_RS_ABORT_SYSTEM_ERROR
#define DSM_RC_ABORT_NO_MATCH DSM_RS_ABORT_NO_MATCH
#define DSM_RC_ABORT_BY_CLIENT DSM_RS_ABORT_BY_CLIENT
#define DSM_RC_ABORT_ACTIVE_NOT_FOUND DSM_RS_ABORT_ACTIVE_NOT_FOUND
#define DSM_RC_ABORT_NO_DATA DSM_RS_ABORT_NO_DATA
#define DSM_RC_ABORT_BAD_VERIFIER DSM_RS_ABORT_BAD_VERIFIER
#define DSM_RC_ABORT_NODE_IN_USE DSM_RS_ABORT_NODE_IN_USE
#define DSM_RC_ABORT_EXPDATE_TOO_LOW DSM_RS_ABORT_EXPDATE_TOO_LOW

136 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define DSM_RC_ABORT_DATA_OFFLINE DSM_RS_ABORT_DATA_OFFLINE
#define DSM_RC_ABORT_EXCLUDED_BY_SIZE DSM_RS_ABORT_EXCLUDED_BY_SIZE

#define DSM_RC_ABORT_NO_REPOSIT_SPACE DSM_RS_ABORT_NO_STO_SPACE_SKIP
#define DSM_RC_ABORT_NO_STO_SPACE_SKIP DSM_RS_ABORT_NO_STO_SPACE_SKIP

#define DSM_RC_ABORT_MOUNT_NOT_POSSIBLE DSM_RS_ABORT_MOUNT_NOT_POSSIBLE
#define DSM_RC_ABORT_SIZESTIMATE_EXCEED DSM_RS_ABORT_SIZESTIMATE_EXCEED
#define DSM_RC_ABORT_DATA_UNAVAILABLE DSM_RS_ABORT_DATA_UNAVAILABLE
#define DSM_RC_ABORT_RETRY DSM_RS_ABORT_RETRY
#define DSM_RC_ABORT_NO_LOG_SPACE DSM_RS_ABORT_NO_LOG_SPACE
#define DSM_RC_ABORT_NO_DB_SPACE DSM_RS_ABORT_NO_DB_SPACE
#define DSM_RC_ABORT_NO_MEMORY DSM_RS_ABORT_NO_MEMORY

#define DSM_RC_ABORT_FS_NOT_DEFINED DSM_RS_ABORT_FS_NOT_DEFINED
#define DSM_RC_ABORT_NODE_ALREADY_DEFED DSM_RS_ABORT_NODE_ALREADY_DEFED
#define DSM_RC_ABORT_NO_DEFAULT_DOMAIN DSM_RS_ABORT_NO_DEFAULT_DOMAIN
#define DSM_RC_ABORT_INVALID_NODENAME DSM_RS_ABORT_INVALID_NODENAME
#define DSM_RC_ABORT_INVALID_POL_BIND DSM_RS_ABORT_INVALID_POL_BIND
#define DSM_RC_ABORT_DEST_NOT_DEFINED DSM_RS_ABORT_DEST_NOT_DEFINED
#define DSM_RC_ABORT_WAIT_FOR_SPACE DSM_RS_ABORT_WAIT_FOR_SPACE
#define DSM_RC_ABORT_NOT_AUTHORIZED DSM_RS_ABORT_NOT_AUTHORIZED
#define DSM_RC_ABORT_RULE_ALREADY_DEFED DSM_RS_ABORT_RULE_ALREADY_DEFED
#define DSM_RC_ABORT_NO_STOR_SPACE_STOP DSM_RS_ABORT_NO_STOR_SPACE_STOP

#define DSM_RC_ABORT_LICENSE_VIOLATION DSM_RS_ABORT_LICENSE_VIOLATION
#define DSM_RC_ABORT_EXTOBJID_ALREADY_EXISTS DSM_RS_ABORT_EXTOBJID_ALREADY_EXISTS
#define DSM_RC_ABORT_DUPLICATE_OBJECT DSM_RS_ABORT_DUPLICATE_OBJECT

#define DSM_RC_ABORT_INVALID_OFFSET DSM_RS_ABORT_INVALID_OFFSET
#define DSM_RC_ABORT_INVALID_LENGTH DSM_RS_ABORT_INVALID_LENGTH

#define DSM_RC_ABORT_STRING_ERROR DSM_RS_ABORT_STRING_ERROR
#define DSM_RC_ABORT_NODE_NOT_AUTHORIZED DSM_RS_ABORT_NODE_NOT_AUTHORIZED
#define DSM_RC_ABORT_RESTART_NOT_POSSIBLE DSM_RS_ABORT_RESTART_NOT_POSSIBLE
#define DSM_RC_ABORT_RESTORE_IN_PROGRESS DSM_RS_ABORT_RESTORE_IN_PROGRESS
#define DSM_RC_ABORT_SYNTAX_ERROR DSM_RS_ABORT_SYNTAX_ERROR

#define DSM_RC_ABORT_DATA_SKIPPED DSM_RS_ABORT_DATA_SKIPPED
#define DSM_RC_ABORT_EXCEED_MAX_MP DSM_RS_ABORT_EXCEED_MAX_MP
#define DSM_RC_ABORT_NO_OBJSET_MATCH DSM_RS_ABORT_NO_OBJSET_MATCH
#define DSM_RC_ABORT_PVR_ERROR DSM_RS_ABORT_PVR_ERROR
#define DSM_RC_ABORT_BAD_RECOGTOKEN DSM_RS_ABORT_BAD_RECOGTOKEN
#define DSM_RC_ABORT_MERGE_ERROR DSM_RS_ABORT_MERGE_ERROR
#define DSM_RC_ABORT_FSRENAME_ERROR DSM_RS_ABORT_FSRENAME_ERROR
#define DSM_RC_ABORT_INVALID_OPERATION DSM_RS_ABORT_INVALID_OPERATION
#define DSM_RC_ABORT_STGPOOL_UNDEFINED DSM_RS_ABORT_STGPOOL_UNDEFINED
#define DSM_RC_ABORT_INVALID_DATA_FORMAT DSM_RS_ABORT_INVALID_DATA_FORMAT
#define DSM_RC_ABORT_DATAMOVER_UNDEFINED DSM_RS_ABORT_DATAMOVER_UNDEFINED

#define DSM_RC_ABORT_INVALID_MOVER_TYPE DSM_RS_ABORT_INVALID_MOVER_TYPE
#define DSM_RC_ABORT_ITEM_IN_USE DSM_RS_ABORT_ITEM_IN_USE
#define DSM_RC_ABORT_LOCK_CONFLICT DSM_RS_ABORT_LOCK_CONFLICT
#define DSM_RC_ABORT_SRV_PLUGIN_COMM_ERROR DSM_RS_ABORT_SRV_PLUGIN_COMM_ERROR
#define DSM_RC_ABORT_SRV_PLUGIN_OS_ERROR DSM_RS_ABORT_SRV_PLUGIN_OS_ERROR
#define DSM_RC_ABORT_CRC_FAILED DSM_RS_ABORT_CRC_FAILED
#define DSM_RC_ABORT_INVALID_GROUP_ACTION DSM_RS_ABORT_INVALID_GROUP_ACTION
#define DSM_RC_ABORT_DISK_UNDEFINED DSM_RS_ABORT_DISK_UNDEFINED
#define DSM_RC_ABORT_BAD_DESTINATION DSM_RS_ABORT_BAD_DESTINATION
#define DSM_RC_ABORT_DATAMOVER_NOT_AVAILABLE DSM_RS_ABORT_DATAMOVER_NOT_AVAILABLE
#define DSM_RC_ABORT_STGPOOL_COPY_CONT_NO DSM_RS_ABORT_STGPOOL_COPY_CONT_NO
#define DSM_RC_ABORT_RETRY_SINGLE_TXN DSM_RS_ABORT_RETRY_SINGLE_TXN
#define DSM_RC_ABORT_TOC_CREATION_FAIL DSM_RS_ABORT_TOC_CREATION_FAIL
#define DSM_RC_ABORT_TOC_LOAD_FAIL DSM_RS_ABORT_TOC_LOAD_FAIL
#define DSM_RC_ABORT_PATH_RESTRICTED DSM_RS_ABORT_PATH_RESTRICTED
#define DSM_RC_ABORT_NO_LANFREE_SCRATCH DSM_RS_ABORT_NO_LANFREE_SCRATCH
#define DSM_RC_ABORT_INSERT_NOT_ALLOWED DSM_RS_ABORT_INSERT_NOT_ALLOWED

Appendix A. API return codes source file dsmrc.h 137

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define DSM_RC_ABORT_DELETE_NOT_ALLOWED DSM_RS_ABORT_DELETE_NOT_ALLOWED
#define DSM_RC_ABORT_TXN_LIMIT_EXCEEDED DSM_RS_ABORT_TXN_LIMIT_EXCEEDED
#define DSM_RC_ABORT_OBJECT_ALREADY_HELD DSM_RS_ABORT_OBJECT_ALREADY_HELD
#define DSM_RC_ABORT_INVALID_CHUNK_REFERENCE DSM_RS_ABORT_INVALID_CHUNK_REFERENCE
#define DSM_RC_ABORT_DESTINATION_NOT_DEDUP DSM_RS_ABORT_DESTINATION_NOT_DEDUP
#define DSM_RC_ABORT_DESTINATION_POOL_CHANGED DSM_RS_ABORT_DESTINATION_POOL_CHANGED

/* Definitions for server signon reject codes */
/* These error codes are in the range (51 to 99) inclusive. */
#define DSM_RC_REJECT_NO_RESOURCES 51
#define DSM_RC_REJECT_VERIFIER_EXPIRED 52
#define DSM_RC_REJECT_ID_UNKNOWN 53
#define DSM_RC_REJECT_DUPLICATE_ID 54
#define DSM_RC_REJECT_SERVER_DISABLED 55
#define DSM_RC_REJECT_CLOSED_REGISTER 56
#define DSM_RC_REJECT_CLIENT_DOWNLEVEL 57
#define DSM_RC_REJECT_SERVER_DOWNLEVEL 58
#define DSM_RC_REJECT_ID_IN_USE 59
#define DSM_RC_REJECT_ID_LOCKED 61
#define DSM_RC_SIGNONREJECT_LICENSE_MAX 62
#define DSM_RC_REJECT_NO_MEMORY 63
#define DSM_RC_REJECT_NO_DB_SPACE 64
#define DSM_RC_REJECT_NO_LOG_SPACE 65
#define DSM_RC_REJECT_INTERNAL_ERROR 66
#define DSM_RC_SIGNONREJECT_INVALID_CLI 67 /* client type not licensed */
#define DSM_RC_CLIENT_NOT_ARCHRETPROT 68
#define DSM_RC_REJECT_LASTSESS_CANCELED 69
#define DSM_RC_REJECT_UNICODE_NOT_ALLOWED 70
#define DSM_RC_REJECT_NOT_AUTHORIZED 71
#define DSM_RC_REJECT_TOKEN_TIMEOUT 72
#define DSM_RC_REJECT_INVALID_NODE_TYPE 73
#define DSM_RC_REJECT_INVALID_SESSIONINIT 74
#define DSM_RC_REJECT_WRONG_PORT 75
#define DSM_RC_CLIENT_NOT_SPMRETPROT 79

#define DSM_RC_USER_ABORT 101 /* processing aborted by user */
#define DSM_RC_NO_MEMORY 102 /* no RAM left to complete request */
#define DSM_RC_TA_COMM_DOWN 2021 /* no longer used */
#define DSM_RC_FILE_NOT_FOUND 104 /* specified file not found */
#define DSM_RC_PATH_NOT_FOUND 105 /* specified path doesn't exist */
#define DSM_RC_ACCESS_DENIED 106 /* denied due to improper permission */
#define DSM_RC_NO_HANDLES 107 /* no more file handles available */
#define DSM_RC_FILE_EXISTS 108 /* file already exists */
#define DSM_RC_INVALID_PARM 109 /* invalid parameter passed. CRITICAL*/
#define DSM_RC_INVALID_HANDLE 110 /* invalid file handle passed */
#define DSM_RC_DISK_FULL 111 /* out of disk space */
#define DSM_RC_PROTOCOL_VIOLATION 113 /* call protocol violation. CRITICAL */
#define DSM_RC_UNKNOWN_ERROR 114 /* unknown system error. CRITICAL */
#define DSM_RC_UNEXPECTED_ERROR 115 /* unexpected error. CRITICAL */
#define DSM_RC_FILE_BEING_EXECUTED 116 /* No write is allowed */
#define DSM_RC_DIR_NO_SPACE 117 /* directory can't be expanded */
#define DSM_RC_LOOPED_SYM_LINK 118 /* too many symbolic links were

encountered in translating path. */
#define DSM_RC_FILE_NAME_TOO_LONG 119 /* file name too long */
#define DSM_RC_FILE_SPACE_LOCKED 120 /* filespace is locked by the system */
#define DSM_RC_FINISHED 121 /* finished processing */
#define DSM_RC_UNKNOWN_FORMAT 122 /* unknown format */
#define DSM_RC_NO_AUTHORIZATION 123 /* server response when the client has

no authorization to read another
host's owner backup/archive data */

#define DSM_RC_FILE_SPACE_NOT_FOUND 124/* specified file space not found */
#define DSM_RC_TXN_ABORTED 125 /* transaction aborted */
#define DSM_RC_SUBDIR_AS_FILE 126 /* Subdirectory name exists as file */

138 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define DSM_RC_PROCESS_NO_SPACE 127 /* process has no more disk space. */
#define DSM_RC_PATH_TOO_LONG 128 /* a directory path being build became

too long */
#define DSM_RC_NOT_COMPRESSED 129 /* file thought to be compressed is

actually not */
#define DSM_RC_TOO_MANY_BITS 130 /* file was compressed using more bits

then the expander can handle */
#define DSM_RC_SYSTEM_ERROR 131 /* internal system error */
#define DSM_RC_NO_SERVER_RESOURCES 132 /* server out of resources. */
#define DSM_RC_FS_NOT_KNOWN 133 /* the file space is not known by the

server */
#define DSM_RC_NO_LEADING_DIRSEP 134 /* no leading directory separator */
#define DSM_RC_WILDCARD_DIR 135 /* wildcard character in directory

path when not allowed */
#define DSM_RC_COMM_PROTOCOL_ERROR 136 /* communications protocol error */
#define DSM_RC_AUTH_FAILURE 137 /* authentication failure */
#define DSM_RC_TA_NOT_VALID 138 /* TA not a root and/or SUID program */
#define DSM_RC_KILLED 139 /* process killed. */

#define DSM_RC_RETRY 143 /* retry same operation again */

#define DSM_RC_WOULD_BLOCK 145 /* operation would cause the system to
block waiting for input. */

#define DSM_RC_TOO_SMALL 146 /* area for compiled pattern small */
#define DSM_RC_UNCLOSED 147 /* no closing bracket in pattern */
#define DSM_RC_NO_STARTING_DELIMITER 148 /* pattern has to start with

directory delimiter */
#define DSM_RC_NEEDED_DIR_DELIMITER 149 /* a directory delimiter is needed

immediately before and after the
"match directories" metastring
("...") and one wasn't found */

#define DSM_RC_UNKNOWN_FILE_DATA_TYPE 150 /* structured file data type is
unknown */

#define DSM_RC_BUFFER_OVERFLOW 151 /* data buffer overflow */

#define DSM_RC_NO_COMPRESS_MEMORY 154 /* Compress/Expand out of memory */
#define DSM_RC_COMPRESS_GREW 155 /* Compression grew */
#define DSM_RC_INV_COMM_METHOD 156 /* Invalid comm method specified */
#define DSM_RC_WILL_ABORT 157 /* Transaction will be aborted */
#define DSM_RC_FS_WRITE_LOCKED 158 /* File space is write locked */
#define DSM_RC_SKIPPED_BY_USER 159 /* User wanted file skipped in the

case of ABORT_DATA_OFFLINE */
#define DSM_RC_TA_NOT_FOUND 160 /* TA not found in it's directory */
#define DSM_RC_TA_ACCESS_DENIED 161 /* Access to TA is denied */
#define DSM_RC_FS_NOT_READY 162 /* File space not ready */
#define DSM_RC_FS_IS_BAD 163 /* File space is bad */
#define DSM_RC_FIO_ERROR 164 /* File input/output error */
#define DSM_RC_WRITE_FAILURE 165 /* Error writing to file */
#define DSM_RC_OVER_FILE_SIZE_LIMIT 166 /* File over system/user limit */
#define DSM_RC_CANNOT_MAKE 167 /* Could not create file/directory,

could be a bad name */
#define DSM_RC_NO_PASS_FILE 168 /* password file needed and user is

not root */
#define DSM_RC_VERFILE_OLD 169 /* password stored locally doesn't

match the one at the host */
#define DSM_RC_INPUT_ERROR 173 /* unable to read keyboard input */
#define DSM_RC_REJECT_PLATFORM_MISMATCH 174 /* Platform name doesn't match

up with what the server says
is the platform for the client */

#define DSM_RC_TL_NOT_FILE_OWNER 175 /* User trying to backup a file is not
the file's owner. */

#define DSM_RC_COMPRESSED_DATA_CORRUPTED 176 /* Compressed data is corrupted */
#define DSM_RC_UNMATCHED_QUOTE 177 /* missing starting or ending quote */

/*---*/
/* Return codes 180-199 are reserved for Policy Set handling */

Appendix A. API return codes source file dsmrc.h 139

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/*---*/
#define DSM_RC_PS_MULTBCG 181 /* Multiple backup copy groups in 1 MC*/
#define DSM_RC_PS_MULTACG 182 /* Multiple arch. copy groups in 1 MC*/
#define DSM_RC_PS_NODFLTMC 183 /* Default MC name not in policy set */
#define DSM_RC_TL_NOBCG 184 /* Backup req, no backup copy group */
#define DSM_RC_TL_EXCLUDED 185 /* Backup req, excl. by in/ex filter */
#define DSM_RC_TL_NOACG 186 /* Archive req, no archive copy group */
#define DSM_RC_PS_INVALID_ARCHMC 187 /* Invalid MC name in archive override*/
#define DSM_RC_NO_PS_DATA 188 /* No policy set data on the server */
#define DSM_RC_PS_INVALID_DIRMC 189 /* Invalid directory MC specified in

the options file. */
#define DSM_RC_PS_NO_CG_IN_DIR_MC 190 /* No backup copy group in directory MC.

Must specify an MC using DirMC
option. */

#define DSM_RC_WIN32_UNSUPPORTED_FILE_TYPE 280 /* File is not of
Win32 type FILE_TYPE_DISK */

/*---*/
/* Return codes for the Trusted Communication Agent */
/*---*/
#define DSM_RC_TCA_NOT_ROOT 161 /* Access to TA is denied */
#define DSM_RC_TCA_ATTACH_SHR_MEM_ERR 200 /* Error attaching shared memory */
#define DSM_RC_TCA_SHR_MEM_BLOCK_ERR 200 /* Shared memory block error */
#define DSM_RC_TCA_SHR_MEM_IN_USE 200 /* Shared memory block error */
#define DSM_RC_TCA_SHARED_MEMORY_ERROR 200 /* Shared memory block error */
#define DSM_RC_TCA_SEGMENT_MISMATCH 200 /* Shared memory block error */
#define DSM_RC_TCA_FORK_FAILED 292 /* Error forking off TCA process */
#define DSM_RC_TCA_DIED 294 /* TCA died unexpectedly */
#define DSM_RC_TCA_INVALID_REQUEST 295 /* Invalid request sent to TCA */
#define DSM_RC_TCA_SEMGET_ERROR 297 /* Error getting semaphores */
#define DSM_RC_TCA_SEM_OP_ERROR 298 /* Error in semaphore set or wait */
#define DSM_RC_TCA_NOT_ALLOWED 299 /* TCA not allowed (multi thread) */

/*---*/
/* 400-430 for options */
/*---*/
#define DSM_RC_INVALID_OPT 400 /* invalid option */
#define DSM_RC_NO_HOST_ADDR 405 /* Not enuf info to connect server */
#define DSM_RC_NO_OPT_FILE 406 /* No default user configuration file*/
#define DSM_RC_MACHINE_SAME 408 /* -MACHINENAME same as real name */
#define DSM_RC_INVALID_SERVER 409 /* Invalid server name from client */
#define DSM_RC_INVALID_KEYWORD 410 /* Invalid option keyword */
#define DSM_RC_PATTERN_TOO_COMPLEX 411 /* Can't match Include/Exclude entry*/
#define DSM_RC_NO_CLOSING_BRACKET 412 /* Missing closing bracket inc/excl */
#define DSM_RC_OPT_CLIENT_NOT_ACCEPTING 417/* Client doesn't accept this option

from the server */
#define DSM_RC_OPT_CLIENT_DOES_NOT_WANT 418/* Client doesn't want this value

from the server */
#define DSM_RC_OPT_NO_INCLEXCL_FILE 419 /* inclexcl file not found */
#define DSM_RC_OPT_OPEN_FAILURE 420 /* can't open file */
#define DSM_RC_OPT_INV_NODENAME 421/* used for Windows if nodename=local

machine when CLUSTERNODE=YES */
#define DSM_RC_OPT_NODENAME_INVALID 423/* generic invalid nodename */
#define DSM_RC_OPT_ERRORLOG_CONFLICT 424/* both logmax & retention specified */
#define DSM_RC_OPT_SCHEDLOG_CONFLICT 425/* both logmax & retention specified */
#define DSM_RC_CANNOT_OPEN_TRACEFILE 426/* cannot open trace file */
#define DSM_RC_CANNOT_OPEN_LOGFILE 427/* cannot open error log file */
#define DSM_RC_OPT_SESSINIT_LF_CONFLICT 428/* both sessioninit=server and

enablelanfree=yes are specified*/
#define DSM_RC_OPT_OPTION_IGNORE 429/* option will be ignored */
#define DSM_RC_OPT_DEDUP_CONFLICT 430/* cannot open error log file */

/*---*/
/* 600 to 610 for volume label codes */
/*---*/

140 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define DSM_RC_DUP_LABEL 600 /* duplicate volume label found */
#define DSM_RC_NO_LABEL 601 /* drive has no label */

/*---*/
/* Return codes for message file processing */
/*---*/
#define DSM_RC_NLS_CANT_OPEN_TXT 610 /* error trying to open msg txt file */
#define DSM_RC_NLS_CANT_READ_HDR 611 /* error trying to read header */
#define DSM_RC_NLS_INVALID_CNTL_REC 612 /* invalid control record */
#define DSM_RC_NLS_INVALID_DATE_FMT 613 /* invalid default date format */
#define DSM_RC_NLS_INVALID_TIME_FMT 614 /* invalid default time format */
#define DSM_RC_NLS_INVALID_NUM_FMT 615 /* invalid default number format */

/*---*/
/* Return codes 620-630 are reserved for log message return codes */
/*---*/
#define DSM_RC_LOG_CANT_BE_OPENED 620 /* error trying to open error log */
#define DSM_RC_LOG_ERROR_WRITING_TO_LOG 621 /* error occurred writing to

log file */
#define DSM_RC_LOG_NOT_SPECIFIED 622 /* no error log file was specified */

/*---*/
/* Return codes 900-999 TSM CLIENT ONLY */
/*---*/
#define DSM_RC_NOT_ADSM_AUTHORIZED 927 /* Must be ADSM authorized to perform*/

/* action : root user or pwd auth */
#define DSM_RC_REJECT_USERID_UNKNOWN 940 /* userid unknown on server */
#define DSM_RC_FILE_IS_SYMLINK 959 /* errorlog or trace is a symbolic

link
*/

#define DSM_RC_DIRECT_STORAGE_AGENT_UNSUPPORTED 961 /* Direct connection to SA not supported */
#define DSM_RC_FS_NAMESPACE_DOWNLEVEL 963 /* Long namespace has been removed from

from the Netware volume */
#define DSM_RC_CONTINUE_NEW_CONSUMER 972 /* Continue processing using a new consumer */
#define DSM_RC_CONTINUE_NEW_CONSUMER_NODEDUP 973 /* Continue processing using a new consumer no dedup*/

#define DSM_RC_SERVER_SUPPORTS_FUNC 994 /* the server supports this function */
#define DSM_RC_SERVER_AND_SA_SUPPORT_FUNC 995 /* Both server and SA support func */
#define DSM_RC_SERVER_DOWNLEVEL_FUNC 996 /* The server is downlevel for func */
#define DSM_RC_STORAGEAGENT_DOWNLEVEL 997 /* the storage agent is downlevel */
#define DSM_RC_SERVER_AND_SA_DOWNLEVEL 998 /* both server and SA downlevel */

/* TCP/IP error codes */
#define DSM_RC_TCPIP_FAILURE -50 /* TCP/IP communications failure */
#define DSM_RC_CONN_TIMEDOUT -51 /* TCP/IP connection attempt timedout */
#define DSM_RC_CONN_REFUSED -52 /* TCP/IP connection refused by host */
#define DSM_RC_BAD_HOST_NAME -53 /* TCP/IP invalid host name specified */
#define DSM_RC_NETWORK_UNREACHABLE -54 /* TCP/IP host name unreachable */
#define DSM_RC_WINSOCK_MISSING -55 /* TCP/IP WINSOCK.DLL missing */
#define DSM_RC_TCPIP_DLL_LOADFAILURE -56 /* Error from LoadLibrary */
#define DSM_RC_TCPIP_LOADFAILURE -57 /* Error from GetProcAddress */
#define DSM_RC_TCPIP_USER_ABORT -58 /* User aborted while in TCP/IP layer */

/*---*/
/* Return codes (-71)-(-90) are reserved for CommTSM error codes */
/*---*/
#define DSM_RC_TSM_FAILURE -71 /* TSM communications failure */
#define DSM_RC_TSM_ABORT -72 /* Session aborted abnormally */

/*comm3270 error codes - no longer used*/
#define DSM_RC_COMM_TIMEOUT 2021 /* no longer used */
#define DSM_RC_EMULATOR_INACTIVE 2021 /* no longer used */
#define DSM_RC_BAD_HOST_ID 2021 /* no longer used */

Appendix A. API return codes source file dsmrc.h 141

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define DSM_RC_HOST_SESS_BUSY 2021 /* no longer used */
#define DSM_RC_3270_CONNECT_FAILURE 2021 /* no longer used */
#define DSM_RC_NO_ACS3ELKE_DLL 2021 /* no longer used */
#define DSM_RC_EMULATOR_ERROR 2021 /* no longer used */
#define DSM_RC_EMULATOR_BACKLEVEL 2021 /* no longer used */
#define DSM_RC_CKSUM_FAILURE 2021 /* no longer used */

/* The following Return codes are for EHLLAPI for Windows */
#define DSM_RC_3270COMMError_DLL 2021 /* no longer used */
#define DSM_RC_3270COMMError_GetProc 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_DLL 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_GetProc 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_HostConnect 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_AllocBuff 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_SendKey 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_PacketChk 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_ChkSum 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_HostTimeOut 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_Send 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_Recv 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_General 2021 /* no longer used */
#define DSM_RC_PC3270_MISSING_DLL 2021 /* no longer used */
#define DSM_RC_3270COMM_MISSING_DLL 2021 /* no longer used */

/* NETBIOS error codes */
#define DSM_RC_NETB_ERROR -151 /* Could not add node to LAN */
#define DSM_RC_NETB_NO_DLL -152 /* The ACSNETB.DLL could not be loaded*/
#define DSM_RC_NETB_LAN_ERR -155 /* LAN error detected */
#define DSM_RC_NETB_NAME_ERR -158 /* Netbios error on Add Name */
#define DSM_RC_NETB_TIMEOUT -159 /* Netbios send timeout */
#define DSM_RC_NETB_NOTINST -160 /* Netbios not installed - DOS */
#define DSM_RC_NETB_REBOOT -161 /* Netbios config err - reboot DOS */

/* Named Pipe error codes */
#define DSM_RC_NP_ERROR -190

/* CPIC error codes */
#define DSM_RC_CPIC_ALLOCATE_FAILURE 2021 /* no longer used */
#define DSM_RC_CPIC_TYPE_MISMATCH 2021 /* no longer used */
#define DSM_RC_CPIC_PIP_NOT_SPECIFY_ERR 2021 /* no longer used */
#define DSM_RC_CPIC_SECURITY_NOT_VALID 2021 /* no longer used */
#define DSM_RC_CPIC_SYNC_LVL_NO_SUPPORT 2021 /* no longer used */
#define DSM_RC_CPIC_TPN_NOT_RECOGNIZED 2021 /* no longer used */
#define DSM_RC_CPIC_TP_ERROR 2021 /* no longer used */
#define DSM_RC_CPIC_PARAMETER_ERROR 2021 /* no longer used */
#define DSM_RC_CPIC_PROD_SPECIFIC_ERR 2021 /* no longer used */
#define DSM_RC_CPIC_PROGRAM_ERROR 2021 /* no longer used */
#define DSM_RC_CPIC_RESOURCE_ERROR 2021 /* no longer used */
#define DSM_RC_CPIC_DEALLOCATE_ERROR 2021 /* no longer used */
#define DSM_RC_CPIC_SVC_ERROR 2021 /* no longer used */
#define DSM_RC_CPIC_PROGRAM_STATE_CHECK 2021 /* no longer used */
#define DSM_RC_CPIC_PROGRAM_PARAM_CHECK 2021 /* no longer used */
#define DSM_RC_CPIC_UNSUCCESSFUL 2021 /* no longer used */
#define DSM_RC_UNKNOWN_CPIC_PROBLEM 2021 /* no longer used */
#define DSM_RC_CPIC_MISSING_LU 2021 /* no longer used */
#define DSM_RC_CPIC_MISSING_TP 2021 /* no longer used */
#define DSM_RC_CPIC_SNA6000_LOAD_FAIL 2021 /* no longer used */
#define DSM_RC_CPIC_STARTUP_FAILURE 2021 /* no longer used */

/*---*/
/* Return codes -300 to -307 are reserved for IPX/SPX communications */
/*---*/
#define DSM_RC_TLI_ERROR 2021 /* no longer used */
#define DSM_RC_IPXSPX_FAILURE 2021 /* no longer used */
#define DSM_RC_TLI_DLL_MISSING 2021 /* no longer used */

142 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define DSM_RC_DLL_LOADFAILURE 2021 /* no longer used */
#define DSM_RC_DLL_FUNCTION_LOADFAILURE 2021 /* no longer used */
#define DSM_RC_IPXCONN_REFUSED 2021 /* no longer used */
#define DSM_RC_IPXCONN_TIMEDOUT 2021 /* no longer used */
#define DSM_RC_IPXADDR_UNREACHABLE 2021 /* no longer used */
#define DSM_RC_CPIC_MISSING_DLL 2021 /* no longer used */
#define DSM_RC_CPIC_DLL_LOADFAILURE 2021 /* no longer used */
#define DSM_RC_CPIC_FUNC_LOADFAILURE 2021 /* no longer used */

/*=== Shared Memory Protocol error codes ===*/
#define DSM_RC_SHM_TCPIP_FAILURE -450
#define DSM_RC_SHM_FAILURE -451
#define DSM_RC_SHM_NOTAUTH -452

#define DSM_RC_NULL_OBJNAME 2000 /* Object name pointer is NULL */
#define DSM_RC_NULL_DATABLKPTR 2001 /* dataBlkPtr is NULL */
#define DSM_RC_NULL_MSG 2002 /* msg parm in dsmRCMsg is NULL */

#define DSM_RC_NULL_OBJATTRPTR 2004 /* Object Attr Pointer is NULL */

#define DSM_RC_NO_SESS_BLK 2006 /* no server session info */
#define DSM_RC_NO_POLICY_BLK 2007 /* no policy hdr info */
#define DSM_RC_ZERO_BUFLEN 2008 /* bufferLen is zero for dataBlkPtr */
#define DSM_RC_NULL_BUFPTR 2009 /* bufferPtr is NULL for dataBlkPtr */

#define DSM_RC_INVALID_OBJTYPE 2010 /* invalid object type */
#define DSM_RC_INVALID_VOTE 2011 /* invalid vote */
#define DSM_RC_INVALID_ACTION 2012 /* invalid action */
#define DSM_RC_INVALID_DS_HANDLE 2014 /* invalid ADSM handle */
#define DSM_RC_INVALID_REPOS 2015 /* invalid value for repository */
#define DSM_RC_INVALID_FSNAME 2016 /* fs should start with dir delim */
#define DSM_RC_INVALID_OBJNAME 2017 /* invalid full path name */
#define DSM_RC_INVALID_LLNAME 2018 /* ll should start with dir delim */
#define DSM_RC_INVALID_OBJOWNER 2019 /* invalid object owner name */
#define DSM_RC_INVALID_ACTYPE 2020 /* invalid action type */
#define DSM_RC_INVALID_RETCODE 2021 /* dsmRC in dsmRCMsg is invalid */
#define DSM_RC_INVALID_SENDTYPE 2022 /* invalid send type */
#define DSM_RC_INVALID_PARAMETER 2023 /* invalid parameter */
#define DSM_RC_INVALID_OBJSTATE 2024 /* active, inactive, or any match? */
#define DSM_RC_INVALID_MCNAME 2025 /* Mgmt class name not found */
#define DSM_RC_INVALID_DRIVE_CHAR 2026 /* Drive letter is not alphabet */
#define DSM_RC_NULL_FSNAME 2027 /* Filespace name is NULL */
#define DSM_RC_INVALID_HLNAME 2028 /* hl should start with dir delim */

#define DSM_RC_NUMOBJ_EXCEED 2029 /* BeginGetData num objs exceeded */

#define DSM_RC_NEWPW_REQD 2030 /* new password is required */
#define DSM_RC_OLDPW_REQD 2031 /* old password is required */
#define DSM_RC_NO_OWNER_REQD 2032 /* owner not allowed. Allow default */
#define DSM_RC_NO_NODE_REQD 2033 /* node not allowed w/ pw=generate */
#define DSM_RC_KEY_MISSING 2034 /* key file can't be found */
#define DSM_RC_KEY_BAD 2035 /* content of key file is bad */

#define DSM_RC_BAD_CALL_SEQUENCE 2041 /* Sequence of DSM calls not allowed*/
#define DSM_RC_INVALID_TSMBUFFER 2042 /* invalid value for tsmbuffhandle or dataPtr */
#define DSM_RC_TOO_MANY_BYTES 2043 /* too many bytes copied to buffer */
#define DSM_RC_MUST_RELEASE_BUFFER 2044 /* cant exit app needs to release buffers */
#define DSM_RC_BUFF_ARRAY_ERROR 2045 /* internal buff array error */
#define DSM_RC_INVALID_DATABLK 2046 /* using tsmbuff datablk should be null */
#define DSM_RC_ENCR_NOT_ALLOWED 2047 /* when using tsmbuffers encription not allowed */
#define DSM_RC_OBJ_COMPRESSED 2048 /* Can't restore using tsmBuff on compressed object */
#define DSM_RC_OBJ_ENCRYPTED 2049 /* Cant restore using tsmbuff an encr obj */
#define DSM_RC_WILDCHAR_NOTALLOWED 2050 /* Wild card not allowed for hl,ll */
#define DSM_RC_POR_NOT_ALLOWED 2051 /* Can't use partial object restore with tsmBuffers */
#define DSM_RC_NO_ENCRYPTION_KEY 2052 /* Encryption key not found*/
#define DSM_RC_ENCR_CONFLICT 2053 /* mutually exclusive options */

Appendix A. API return codes source file dsmrc.h 143

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define DSM_RC_FSNAME_NOTFOUND 2060 /* Filespace name not found */
#define DSM_RC_FS_NOT_REGISTERED 2061 /* Filespace name not registered */
#define DSM_RC_FS_ALREADY_REGED 2062 /* Filespace already registered */
#define DSM_RC_OBJID_NOTFOUND 2063 /* No object id to restore */
#define DSM_RC_WRONG_VERSION 2064 /* Wrong level of code */
#define DSM_RC_WRONG_VERSION_PARM 2065 /* Wrong level of parameter struct */

#define DSM_RC_NEEDTO_ENDTXN 2070 /* Need to call dsmEndTxn */

#define DSM_RC_OBJ_EXCLUDED 2080 /* Object is excluded by MC */
#define DSM_RC_OBJ_NOBCG 2081 /* Object has no backup copy group */
#define DSM_RC_OBJ_NOACG 2082 /* Object has no archive copy group */

#define DSM_RC_APISYSTEM_ERROR 2090 /* API internal error */

#define DSM_RC_DESC_TOOLONG 2100 /* description is too long */
#define DSM_RC_OBJINFO_TOOLONG 2101 /* object attr objinfo too long */
#define DSM_RC_HL_TOOLONG 2102 /* High level qualifier is too long */
#define DSM_RC_PASSWD_TOOLONG 2103 /* password is too long */
#define DSM_RC_FILESPACE_TOOLONG 2104 /* filespace name is too long */
#define DSM_RC_LL_TOOLONG 2105 /* Low level qualifier is too long */
#define DSM_RC_FSINFO_TOOLONG 2106 /* filespace length is too big */
#define DSM_RC_SENDDATA_WITH_ZERO_SIZE 2107 /* send data w/ zero est */

/*=== new return codes for dsmaccess ===*/
#define DSM_RC_INVALID_ACCESS_TYPE 2110 /* invalid access type */
#define DSM_RC_QUERY_COMM_FAILURE 2111 /* communication error during query */
#define DSM_RC_NO_FILES_BACKUP 2112 /* No backed up files for this fs */
#define DSM_RC_NO_FILES_ARCHIVE 2113 /* No archived files for this fs */
#define DSM_RC_INVALID_SETACCESS 2114 /* invalid set access format */

/*=== new return codes for dsmaccess ===*/
#define DSM_RC_STRING_TOO_LONG 2120 /* String parameter too long */

#define DSM_RC_MORE_DATA 2200 /* There are more data to restore */

#define DSM_RC_BUFF_TOO_SMALL 2210 /* DataBlk buffer too small for qry */

#define DSM_RC_NO_API_CONFIGFILE 2228 /*specified API confg file not found*/
#define DSM_RC_NO_INCLEXCL_FILE 2229 /* specified inclexcl file not found*/
#define DSM_RC_NO_SYS_OR_INCLEXCL 2230 /* either dsm.sys or inclexcl file

specified in dsm.sys not found */
#define DSM_RC_REJECT_NO_POR_SUPPORT 2231 /* server doesn't have POR support*/

#define DSM_RC_NEED_ROOT 2300 /* API caller must be root */
#define DSM_RC_NEEDTO_CALL_BINDMC 2301 /* dsmBindMC must be called first */
#define DSM_RC_CHECK_REASON_CODE 2302 /* check reason code from dsmEndTxn */
#define DSM_RC_NEEDTO_ENDTXN_DEDUP_SIZE_EXCEEDED 2303 /* max dedup bytes exceeded */

/*=== return codes 2400 - 2410 used by lic file see agentrc.h ===*/

/*=== return codes 2410 - 2430 used by Oracle agent see agentrc.h ===*/

#define DSM_RC_ENC_WRONG_KEY 4580 /* the key provided is incorrect */
#define DSM_RC_ENC_NOT_AUTHORIZED 4582 /* user is not allowed to decrypt */
#define DSM_RC_ENC_TYPE_UNKNOWN 4584 /* encryption type unknown */

/*===
Return codes (4600)-(4624) are reserved for clustering

===*/
#define DSM_RC_CLUSTER_INFO_LIBRARY_NOT_LOADED 4600
#define DSM_RC_CLUSTER_LIBRARY_INVALID 4601
#define DSM_RC_CLUSTER_LIBRARY_NOT_LOADED 4602
#define DSM_RC_CLUSTER_NOT_MEMBER_OF_CLUSTER 4603
#define DSM_RC_CLUSTER_NOT_ENABLED 4604
#define DSM_RC_CLUSTER_NOT_SUPPORTED 4605
#define DSM_RC_CLUSTER_UNKNOWN_ERROR 4606

144 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/*===
Return codes (5701)-(5749) are reserved for proxy

===*/
#define DSM_RC_PROXY_REJECT_NO_RESOURCES 5702
#define DSM_RC_PROXY_REJECT_DUPLICATE_ID 5705
#define DSM_RC_PROXY_REJECT_ID_IN_USE 5710
#define DSM_RC_PROXY_REJECT_INTERNAL_ERROR 5717
#define DSM_RC_PROXY_REJECT_NOT_AUTHORIZED 5722
#define DSM_RC_PROXY_INVALID_FROMNODE 5746
#define DSM_RC_PROXY_INVALID_SERVERFREE 5747
#define DSM_RC_PROXY_INVALID_CLUSTER 5748
#define DSM_RC_PROXY_INVALID_FUNCTION 5749

/*===
Return codes 5801 - 5849 are reserved for cryptography/security

===*/

#define DSM_RC_CRYPTO_ICC_ERROR 5801
#define DSM_RC_CRYPTO_ICC_CANNOT_LOAD 5802
#define DSM_RC_SSL_NOT_SUPPORTED 5803
#define DSM_RC_SSL_INIT_FAILED 5804
#define DSM_RC_SSL_KEYFILE_OPEN_FAILED 5805
#define DSM_RC_SSL_KEYFILE_BAD_PASSWORD 5806
#define DSM_RC_SSL_BAD_CERTIFICATE 5807

/*===
Return codes 6300 - 6399 are reserved for client-side deduplication

===*/
#define DSM_RC_DIGEST_VALIDATION_ERROR 6300 /* End-to-end digest validation err */
#define DSM_RC_DATA_FINGERPRINT_ERROR 6301 /* Failure in Rabin fingeprinting */
#define DSM_RC_DATA_DEDUP_ERROR 6302 /* Error converting data into chunks */

#endif /* _H_DSMRC */

Appendix A. API return codes source file dsmrc.h 145

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

146 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Appendix B. API type definitions source files

This appendix contains structure definitions, type definitions, and constants for the
API. The first header files, dsmapitd.h and tsmapitd.h, illustrate the definitions
that are common to all operating systems.

The second header file, dsmapips.h, provides an example of definitions that are
specific to a particular operating system; in this example, the Windows platform.

The third header file, release.h, includes the version and release information.
/***
* Tivoli Storage Manager *
* API Client Component *
* *
* (C) Copyright IBM Corporation 1993,2010 *
***/

/**
* Header File Name: dsmapitd.h
*
* Environment: **
* ** This is a platform-independent source file **
*
* **
*
* Design Notes: This file contains basic data types and constants
* includable by all client source files. The constants
* within this file should be set properly for the
* particular machine and operating system on which the
* client software is to be run.
*
* Platform specific definitions are included in dsmapips.h
*
* Descriptive-name: Definitions for Tivoli Storage manager API constants
---/

#ifndef _H_DSMAPITD
#define _H_DSMAPITD

#include "dsmapips.h" /* Platform specific definitions*/
#include "release.h"

/*=== set the structure alignment to pack the structures ===*/
#if (_OPSYS_TYPE == DS_WINNT) && !defined(_WIN64)
#pragma pack(1)
#endif

#ifdef _MAC
/*===

choices are:
http://developer.apple.com/documentation/DeveloperTools/Conceptual/

PowerPCRuntime/Data/chapter_2_section_3.html

#pragma option align=<mode>
where <mode> is power, mac68k, natural, or packed.
===*/
#pragma options align=packed
#endif

typedef char osChar_t;

© Copyright IBM Corp. 1993, 2010 147

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/*<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>*/
/* D E F I N E S */
/*<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>*/
/*---+
| API Version, Release, and Level to use in dsmApiVersion on dsmInit() |
+---*/
#define DSM_API_VERSION COMMON_VERSION
#define DSM_API_RELEASE COMMON_RELEASE
#define DSM_API_LEVEL COMMON_LEVEL
#define DSM_API_SUBLEVEL COMMON_SUBLEVEL

/*---+
| Maximum field lengths |
+---*/
#define DSM_MAX_CG_DEST_LENGTH 30 /* copy group destination */
#define DSM_MAX_CG_NAME_LENGTH 30 /* copy group name */
#define DSM_MAX_DESCR_LENGTH 255 /* archive description */
#define DSM_MAX_DOMAIN_LENGTH 30 /* policy domain name */
#define DSM_MAX_FSINFO_LENGTH 500 /* filespace info */
#define DSM_MAX_USER_FSINFO_LENGTH 480 /* max user filespace info*/
#define DSM_MAX_FSNAME_LENGTH 1024 /* filespace name */
#define DSM_MAX_FSTYPE_LENGTH 32 /* filespace type */
#define DSM_MAX_HL_LENGTH 1024 /* object high level name */
#define DSM_MAX_ID_LENGTH 64 /* session node name */
#define DSM_MAX_LL_LENGTH 256 /* object low level name */
#define DSM_MAX_MC_NAME_LENGTH 30 /* management class name */
#define DSM_MAX_OBJINFO_LENGTH 255 /* object info */
#define DSM_MAX_OWNER_LENGTH 64 /* object owner name */
#define DSM_MAX_PLATFORM_LENGTH 16 /* application type */
#define DSM_MAX_PS_NAME_LENGTH 30 /* policy set name */
#define DSM_MAX_SERVERTYPE_LENGTH 32 /* server platform type */
#define DSM_MAX_VERIFIER_LENGTH 64 /* password */
#define DSM_PATH_MAX 1024 /* API config file path */
#define DSM_NAME_MAX 255 /* API config file name */
#define DSM_MAX_NODE_LENGTH 64 /* node/machine name */
#define DSM_MAX_RC_MSG_LENGTH 1024 /* msg parm for dsmRCMsg */
#define DSM_MAX_SERVER_ADDRESS 1024 /* server address */

#define DSM_MAX_MC_DESCR_LENGTH DSM_MAX_DESCR_LENGTH /* mgmt class */
#define DSM_MAX_SERVERNAME_LENGTH DSM_MAX_ID_LENGTH /* server name */
#define DSM_MAX_GET_OBJ 4080 /* max objs on BeginGetData */
#define DSM_MAX_PARTIAL_GET_OBJ 1300 /* max partial objs on BeginGetData */
/*---+
| Minimum field lengths |
+---*/
#define DSM_MIN_COMPRESS_SIZE 2048 /* minimum number of bytes an object */

/* needs before compression is allowed*/

/*---+
| Values for mtFlag in dsmSetup call |
+---*/
#define DSM_MULTITHREAD bTrue
#define DSM_SINGLETHREAD bFalse

/*---+
| Values for object type in dsmObjName structure |
| Note: These values must be kept in sync with dsmcomm.h |
+---*/
#define DSM_OBJ_FILE 0x01 /*object has attrib info & data*/
#define DSM_OBJ_DIRECTORY 0x02 /*obj has only attribute info */
#define DSM_OBJ_RESERVED1 0x04 /* for future use */
#define DSM_OBJ_RESERVED2 0x05 /* for future use */
#define DSM_OBJ_RESERVED3 0x06 /* for future use */
#define DSM_OBJ_WILDCARD 0xFE /* Any object type */
#define DSM_OBJ_ANY_TYPE 0xFF /* for future use */

148 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/*---+
| Type definition for compressedState in QryResp |
+---*/
#define DSM_OBJ_COMPRESSED_UNKNOWN 0
#define DSM_OBJ_COMPRESSED_YES 1
#define DSM_OBJ_COMPRESSED_NO 2

/*---+
| Definitions for "group type" field in tsmGrouphandlerIn_t |
+---*/

#define DSM_GROUPTYPE_NONE 0x00 /* Not a group member */
#define DSM_GROUPTYPE_RESERVED1 0x01 /* for future use */
#define DSM_GROUPTYPE_PEER 0x02 /* Peer group */
#define DSM_GROUPTYPE_RESERVED2 0x03 /* for future use */

/*---+
| Definitions for "member type" field in tsmGrouphandlerIn_t |
+---*/

#define DSM_MEMBERTYPE_LEADER 0x01 /* group leader */
#define DSM_MEMBERTYPE_MEMBER 0x02 /* group member */

/*---+
| Definitions for "operation type" field in tsmGrouphandlerIn_t |
+---*/
#define DSM_GROUP_ACTION_BEGIN 0x01
#define DSM_GROUP_ACTION_OPEN 0x02 /* create new group */
#define DSM_GROUP_ACTION_CLOSE 0x03 /* commit and save an open group */
#define DSM_GROUP_ACTION_ADD 0x04 /* Append to a group */
#define DSM_GROUP_ACTION_ASSIGNTO 0x05 /* Assign to a another group */
#define DSM_GROUP_ACTION_REMOVE 0x06 /* remove a member from a group */

/*---+
| Values for copySer in DetailCG structures for Query Mgmt Class response |
+---*/
#define Copy_Serial_Static 1 /*Copy Serialization Static */
#define Copy_Serial_Shared_Static 2 /*Copy Serialization Shared Static*/
#define Copy_Serial_Shared_Dynamic 3 /*Copy Serialization Shared Dynamic*/
#define Copy_Serial_Dynamic 4 /*Copy Serialization Dynamic */

/*---+
| Values for copyMode in DetailCG structures for Query Mgmt Class response |
+---*/
#define Copy_Mode_Modified 1 /*Copy Mode Modified */
#define Copy_Mode_Absolute 2 /*Copy Mode Absolute */

/*---+
| Values for objState in qryBackupData structure |
+---*/
#define DSM_ACTIVE 0x01 /* query only active objects */
#define DSM_INACTIVE 0x02 /* query only inactive objects */
#define DSM_ANY_MATCH 0xFF /* query all backup objects */

/*---+
| Boundary values for dsmDate.year field in qryArchiveData structure |
+---*/
#define DATE_MINUS_INFINITE 0x0000 /* lowest boundary */
#define DATE_PLUS_INFINITE 0xFFFF /* highest upper boundary */

/*---+
| Bits masks for update action parameter on dsmUpdateFS() |
+---*/
#define DSM_FSUPD_FSTYPE ((unsigned) 0x00000002)
#define DSM_FSUPD_FSINFO ((unsigned) 0x00000004)
#define DSM_FSUPD_BACKSTARTDATE ((unsigned) 0x00000008)
#define DSM_FSUPD_BACKCOMPLETEDATE ((unsigned) 0x00000010)

Appendix B. API type definitions source files 149

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define DSM_FSUPD_OCCUPANCY ((unsigned) 0x00000020)
#define DSM_FSUPD_CAPACITY ((unsigned) 0x00000040)
#define DSM_FSUPD_RESERVED1 ((unsigned) 0x00000100)

/*---+
| Bits mask for backup update action parameter on dsmUpdateObj() |
+---*/
#define DSM_BACKUPD_OWNER ((unsigned) 0x00000001)
#define DSM_BACKUPD_OBJINFO ((unsigned) 0x00000002)
#define DSM_BACKUPD_MC ((unsigned) 0x00000004)

#define DSM_ARCHUPD_OWNER ((unsigned) 0x00000001)
#define DSM_ARCHUPD_OBJINFO ((unsigned) 0x00000002)
#define DSM_ARCHUPD_DESCR ((unsigned) 0x00000004)

/*---+
| Values for repository parameter on dsmDeleteFS() |
+---*/
#define DSM_ARCHIVE_REP 0x0A /* archive repository */
#define DSM_BACKUP_REP 0x0B /* backup repository */
#define DSM_REPOS_ALL 0x01 /* all respository types */

/*---+
| Values for vote parameter on dsmEndTxn() |
+---*/
#define DSM_VOTE_COMMIT 1 /* commit current transaction */
#define DSM_VOTE_ABORT 2 /* roll back current transaction */

/*---+
| Values for various flags returned in ApiSessInfo structure. |
+---*/
/* Client compression field codes */
#define COMPRESS_YES 1 /* client must compress data */
#define COMPRESS_NO 2 /* client must NOT compress data */
#define COMPRESS_CD 3 /* client determined */

/* Archive delete permission codes. */
#define ARCHDEL_YES 1 /* archive delete allowed */
#define ARCHDEL_NO 2 /* archive delete NOT allowed */

/* Backup delete permission codes. */
#define BACKDEL_YES 1 /* backup delete allowed */
#define BACKDEL_NO 2 /* backup delete NOT allowed */

/*---+
Values for various flags returned in optStruct structure. |

---*/
#define DSM_PASSWD_GENERATE 1
#define DSM_PASSWD_PROMPT 0

#define DSM_COMM_TCP 1 /* tcpip */
#define DSM_COMM_NAMEDPIPE 2 /* Named pipes */
#define DSM_COMM_SHM 3 /* Shared Memory */

/* obsolete commmethods */
#define DSM_COMM_PVM_IUCV 12
#define DSM_COMM_3270 12
#define DSM_COMM_IUCV 12
#define DSM_COMM_PWSCS 12
#define DSM_COMM_SNA_LU6_2 12
#define DSM_COMM_IPXSPX 12 /* For IPX/SPX support */
#define DSM_COMM_NETBIOS 12 /* NETBIOS */
#define DSM_COMM_400COMM 12
#define DSM_COMM_CLIO 12 /* CLIO/S */
/*---+
| Values for userNameAuthorities in dsmInitEx for future use |

150 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+---*/
#define DSM_USERAUTH_NONE ((dsInt16_t)0x0000)
#define DSM_USERAUTH_ACCESS ((dsInt16_t)0x0001)
#define DSM_USERAUTH_OWNER ((dsInt16_t)0x0002)
#define DSM_USERAUTH_POLICY ((dsInt16_t)0x0004)
#define DSM_USERAUTH_SYSTEM ((dsInt16_t)0x0008)

/*---+
| Values for encryptionType on dsmEndSendObjEx, queryResp |
+---*/
#define DSM_ENCRYPT_NO ((dsUint8_t)0x00)
#define DSM_ENCRYPT_USER ((dsUint8_t)0x01)
#define DSM_ENCRYPT_CLIENTENCRKEY ((dsUint8_t)0x02)
#define DSM_ENCRYPT_DES_56BIT ((dsUint8_t)0x04)
#define DSM_ENCRYPT_AES_128BIT ((dsUint8_t)0x08)
/*---+
| Definitions for mediaClass field. |
+---*/
/*
* The following constants define a hierarchy of media access classes.
* Lower numbers indicate media which can supply faster access to data.
*/

/* Fixed: represents the class of on-line, fixed media (such as
hard disks). */

#define MEDIA_FIXED 0x10

/* Library: represents the class of mountable media accessible
through a mechanical mounting device. */

#define MEDIA_LIBRARY 0x20

/* future use */
#define MEDIA_NETWORK 0x30

/* future use */
#define MEDIA_SHELF 0x40

/* future use */
#define MEDIA_OFFSITE 0x50

/* future use */
#define MEDIA_UNAVAILABLE 0xF0

/*---+
| Type definition for partial object data for dsmBeginGetData() |
+---*/
typedef struct
{

dsUint16_t stVersion; /* Structure version */
dsStruct64_t partialObjOffset; /* offset into object to begin reading */
dsStruct64_t partialObjLength; /* amount of object to read */

} PartialObjData ; /* partial object data */

#define PartialObjDataVersion 1 /* */

/*---+
| Type definition for date structure |
+---*/
typedef struct
{

dsUint16_t year; /* year, 16-bit integer (e.g., 1990) */
dsUint8_t month; /* month, 8-bit integer (1 - 12) */
dsUint8_t day; /* day. 8-bit integer (1 - 31) */
dsUint8_t hour; /* hour, 8-bit integer (0 - 23) */
dsUint8_t minute; /* minute, 8-bit integer (0 - 59) */
dsUint8_t second; /* second, b-bit integer (0 - 59) */

Appendix B. API type definitions source files 151

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}dsmDate ;

/*---+
| Type definition for Object ID on dsmGetObj() and in dsmGetList structure|
+---*/
typedef dsStruct64_t ObjID ;

/*---+
| Type definition for dsmQueryBuff on dsmBeginQuery() |
+---*/
typedef void dsmQueryBuff ;

/*---+
| Type definition for dsmGetType parameter on dsmBeginGetData() |
+---*/
typedef enum
{

gtBackup = 0x00, /* Backup processing type */
gtArchive /* Archive processing type */

} dsmGetType ;

/*---+
| Type definition for dsmQueryType parameter on dsmBeginQuery() |
+---*/
typedef enum
{

qtArchive = 0x00, /* Archive query type */
qtBackup, /* Backup query type */
qtBackupActive, /* Fast query for active backup files */
qtFilespace, /* Filespace query type */
qtMC, /* Mgmt. class query type */
qtReserved1, /* future use */
qtReserved2, /* future use */
qtReserved3, /* future use */
qtReserved4, /* future use */
qtBackupGroups, /* group leaders in a specific fs */
qtOpenGroups, /* Open groups in a specific fs */
qtReserved5, /* future use */
qtProxyNodeAuth, /* nodes that his node can proxy to */
qtProxyNodePeer /* Peer nodes with the same target */

}dsmQueryType ;

/*---+
| Type definition sendType parameter on dsmBindMC() and dsmSendObj() |
+---*/
typedef enum
{

stBackup = 0x00, /* Backup processing type */
stArchive, /* Archive processing type */
stBackupMountWait, /* Backup processing with mountwait on */
stArchiveMountWait /* Archive processing with mountwait on */

}dsmSendType ;

/*---+
| Type definition for delType parameter on dsmDeleteObj() |
+---*/
typedef enum
{

dtArchive = 0x00, /* Archive delete type */
dtBackup, /* Backup delete (deactivate) type */
dtBackupID /* Backup delete (remove) type */

}dsmDelType ;

/*---+
| Type definition sendType parameter on dsmSetAccess() |
+---*/
typedef enum

152 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

{
atBackup = 0x00, /* Backup processing type */
atArchive /* Archive processing type */

}dsmAccessType;

/*---+
| Type definition for API Version on dsmInit() and dsmQueryApiVersion() |
+---*/
typedef struct
{

dsUint16_t version; /* API version */
dsUint16_t release; /* API release */
dsUint16_t level; /* API level */

}dsmApiVersion;

/*---+
| Type definition for API Version on dsmInit() and dsmQueryApiVersion() |
+---*/
typedef struct
{

dsUint16_t stVersion; /* Structure version */
dsUint16_t version; /* API version */
dsUint16_t release; /* API release */
dsUint16_t level; /* API level */
dsUint16_t subLevel; /* API sub level */
dsmBool_t unicode; /* API unicode? */

}dsmApiVersionEx;

#define apiVersionExVer 2
/*---+
| Type definition for object name used on BindMC, Send, Delete, Query |
+---*/
typedef struct S_dsmObjName
{

char fs[DSM_MAX_FSNAME_LENGTH + 1] ; /* Filespace name */
char hl[DSM_MAX_HL_LENGTH + 1] ; /* High level name */
char ll[DSM_MAX_LL_LENGTH + 1] ; /* Low level name */
dsUint8_t objType; /* for object type values, see defines above */

}dsmObjName;

/*---+
| Type definition for Backup delete info on dsmDeleteObj() |
+---*/
typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsmObjName *objNameP ; /* object name */
dsUint32_t copyGroup ; /* copy group */

}delBack ;

#define delBackVersion 1

/*---+
| Type definition for Archive delete info on dsmDeleteObj() |
+---*/
typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsStruct64_t objId ; /* object ID */

}delArch ;

#define delArchVersion 1

/*---+
| Type definition for Backup ID delete info on dsmDeleteObj() |

Appendix B. API type definitions source files 153

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+---*/
typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsStruct64_t objId ; /* object ID */

}delBackID;

#define delBackIDVersion 1

/*---+
| Type definition for delete info on dsmDeleteObj() |
+---*/
typedef union
{

delBack backInfo ;
delArch archInfo ;
delBackID backIDInfo ;

}dsmDelInfo ;

/*---+
| Type definition for Object Attribute parameter on dsmSendObj() |
+---*/
typedef struct
{

dsUint16_t stVersion; /* Structure version */
char owner[DSM_MAX_OWNER_LENGTH + 1]; /* object owner */
dsStruct64_t sizeEstimate; /* Size estimate in bytes of the object */
dsmBool_t objCompressed; /* Is object already compressed? */
dsUint16_t objInfoLength; /* length of object-dependent info */
char *objInfo; /* object-dependent info */
char *mcNameP; /* mgmnt class name for override */
dsmBool_t disableDeduplication; /* force no dedup for this object */

}ObjAttr;

#define ObjAttrVersion 3

/*---+
| Type definition for mcBindKey returned on dsmBindMC() |
+---*/
typedef struct
{

dsUint16_t stVersion; /* structure version */
char mcName[DSM_MAX_MC_NAME_LENGTH + 1];

/* Name of mc bound to object. */
dsmBool_t backup_cg_exists; /* True/false */
dsmBool_t archive_cg_exists; /* True/false */
char backup_copy_dest[DSM_MAX_CG_DEST_LENGTH + 1];

/* Backup copy dest. name */
char archive_copy_dest[DSM_MAX_CG_DEST_LENGTH + 1];

/* Arch copy dest.name */
}mcBindKey;

#define mcBindKeyVersion 1

/*---+
| Type definition for object list on dsmBeginGetData() |
+---*/
typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsUint32_t numObjId ; /* number of object IDs in the list */
ObjID *objId ; /* list of object IDs to restore*/
PartialObjData *partialObjData; /*list of partial obj data info */

}dsmGetList ;

154 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define dsmGetListVersion 2 /* default if not using Partial Obj data */
#define dsmGetListPORVersion 3 /* version if using Partial Obj data */

/*---+
| Type definition for DataBlk used to Get or Send data |
+---*/
typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsUint32_t bufferLen; /* Length of buffer passed below */
dsUint32_t numBytes; /* Actual number of bytes read from */

/* or written to the buffer */
char *bufferPtr; /* Data buffer */
dsUint32_t numBytesCompressed; /* on send actual bytes compressed */

}DataBlk;

#define DataBlkVersion 2

/*---+
| Type definition for Mgmt Class queryBuffer on dsmBeginQuery() |
+---*/
typedef struct S_qryMCData
{

dsUint16_t stVersion; /* structure version */
char *mcName; /* Mgmt class name */

/* single name to get one or empty string to get all*/
dsmBool_t mcDetail; /* Want details or not? */

}qryMCData;

#define qryMCDataVersion 1

/*=== values for RETINIT ===*/
#define ARCH_RETINIT_CREATE 0
#define ARCH_RETINIT_EVENT 1

/*---+
| Type definition for Archive Copy Group details on Query MC response |
+---*/
typedef struct S_archDetailCG
{

char cgName[DSM_MAX_CG_NAME_LENGTH + 1]; /* Copy group name */
dsUint16_t frequency; /* Copy (archive) frequency */
dsUint16_t retainVers; /* Retain version */
dsUint8_t copySer; /* for copy serialization values, see defines */
dsUint8_t copyMode; /* for copy mode values, see defines above */
char destName[DSM_MAX_CG_DEST_LENGTH + 1]; /* Copy dest name */
dsmBool_t bLanFreeDest; /* Destination has lan free path? */
dsmBool_t reserved; /* Not currently used */
dsUint8_t retainInit; /* possible values see above */
dsUint16_t retainMin; /* if retInit is EVENT num of days */
dsmBool_t bDeduplicate; /* destination has dedup enabled */

}archDetailCG;

/*---+
| Type definition for Backup Copy Group details on Query MC response |
+---*/
typedef struct S_backupDetailCG
{

char cgName[DSM_MAX_CG_NAME_LENGTH + 1]; /* Copy group name */
dsUint16_t frequency; /* Backup frequency */
dsUint16_t verDataExst; /* Versions data exists */
dsUint16_t verDataDltd; /* Versions data deleted */
dsUint16_t retXtraVers; /* Retain extra versions */
dsUint16_t retOnlyVers; /* Retain only versions */
dsUint8_t copySer; /* for copy serialization values, see defines */
dsUint8_t copyMode; /* for copy mode values, see defines above */

Appendix B. API type definitions source files 155

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

char destName[DSM_MAX_CG_DEST_LENGTH + 1]; /* Copy dest name */
dsmBool_t bLanFreeDest; /* Destination has lan free path? */
dsmBool_t reserved; /* Not currently used */
dsmBool_t bDeduplicate; /* destination has dedup enabled */

}backupDetailCG;

/*---+
| Type definition for Query Mgmt Class detail response on dsmGetNextQObj()|
+---*/
typedef struct S_qryRespMCDetailData
{

dsUint16_t stVersion; /* structure version */
char mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */
char mcDesc[DSM_MAX_MC_DESCR_LENGTH + 1]; /*mc description */
archDetailCG archDet; /* Archive copy group detail */
backupDetailCG backupDet; /* Backup copy group detail */

}qryRespMCDetailData;

#define qryRespMCDetailDataVersion 4

/*---+
| Type definition for Query Mgmt Class summary response on dsmGetNextQObj()|
+---*/
typedef struct S_qryRespMCData
{

dsUint16_t stVersion; /* structure version */
char mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */
char mcDesc[DSM_MAX_MC_DESCR_LENGTH + 1]; /* mc description */

}qryRespMCData;

#define qryRespMCDataVersion 1

/*---+
| Type definition for Archive queryBuffer on dsmBeginQuery() |
+---*/
typedef struct S_qryArchiveData
{

dsUint16_t stVersion; /* structure version */
dsmObjName *objName; /* Full dsm name of object */
char *owner; /* owner name */

/* for maximum date boundaries, see defines above */
dsmDate insDateLowerBound; /* low bound archive insert date */
dsmDate insDateUpperBound; /* hi bound archive insert date */
dsmDate expDateLowerBound; /* low bound expiration date */
dsmDate expDateUpperBound; /* hi bound expiration date */
char *descr; /* archive description */

} qryArchiveData;

#define qryArchiveDataVersion 1

/*=== values for retentionInitiated field ===*/
#define DSM_ARCH_RETINIT_UNKNOWN 0 /* ret init is unknown (down-level srv) */
#define DSM_ARCH_RETINIT_STARTED 1 /* retention clock is started */
#define DSM_ARCH_RETINIT_PENDING 2 /* retention clock is not started */

/*=== Values for objHeld ===*/
#define DSM_ARCH_HELD_UNKNOWN 0 /* unknown hold status (down-level srv) */
#define DSM_ARCH_HELD_FALSE 1 /* object is NOT in a delete hold state */
#define DSM_ARCH_HELD_TRUE 2 /* object is in a delete hold state */

/*---+

156 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| Type definition for Query Archive response on dsmGetNextQObj() |
+---*/
typedef struct S_qryRespArchiveData
{

dsUint16_t stVersion; /* structure version */
dsmObjName objName; /* Filespace name qualifier */
dsUint32_t copyGroup; /* copy group number */
char mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */
char owner[DSM_MAX_OWNER_LENGTH + 1]; /* owner name */
dsStruct64_t objId; /* Unique copy id */
dsStruct64_t reserved; /* backward compatability */
dsUint8_t mediaClass; /* media access class */
dsmDate insDate; /* archive insertion date */
dsmDate expDate; /* expiration date for object */
char descr[DSM_MAX_DESCR_LENGTH + 1]; /* archive description */
dsUint16_t objInfolen; /* length of object-dependent info*/
char objInfo[DSM_MAX_OBJINFO_LENGTH]; /*object-dependent info */
dsUint160_t restoreOrderExt; /* restore order */
dsStruct64_t sizeEstimate; /* size estimate stored by user*/
dsUint8_t compressType; /* Compression flag*/
dsUint8_t retentionInitiated; /* object waiting on retention event*/
dsUint8_t objHeld; /*object is on retention "hold" see values above*/
dsUint8_t encryptionType; /* type of encryption */
dsmBool_t clientDeduplicated; /* obj deduplicated by API*/

}qryRespArchiveData;

#define qryRespArchiveDataVersion 6

/*---+
| Type definition for Archive sendBuff parameter on dsmSendObj() |
+---*/
typedef struct S_sndArchiveData
{

dsUint16_t stVersion; /* structure version */
char *descr; /* archive description */

}sndArchiveData;

#define sndArchiveDataVersion 1

/*---+
| Type definition for Backup queryBuffer on dsmBeginQuery() |
+---*/
typedef struct S_qryBackupData
{

dsUint16_t stVersion; /* structure version */
dsmObjName *objName; /* full dsm name of object */
char *owner; /* owner name */
dsUint8_t objState; /* object state selector */
dsmDate pitDate; /* Date value for point in time restore */

/* for possible values, see defines above */
}qryBackupData;

#define qryBackupDataVersion 2

typedef struct
{

dsUint8_t reserved1;
dsStruct64_t reserved2;

} reservedInfo_t; /* for future use */

/*---+
| Type definition for Query Backup response on dsmGetNextQObj() |
+---*/
typedef struct S_qryRespBackupData
{

dsUint16_t stVersion; /* structure version */
dsmObjName objName; /* full dsm name of object */

Appendix B. API type definitions source files 157

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

dsUint32_t copyGroup; /* copy group number */
char mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */
char owner[DSM_MAX_OWNER_LENGTH + 1]; /* owner name */
dsStruct64_t objId; /* Unique object id */
dsStruct64_t reserved; /* backward compatability */
dsUint8_t mediaClass; /* media access class */
dsUint8_t objState; /* Obj state, active, etc. */
dsmDate insDate; /* backup insertion date */
dsmDate expDate; /* expiration date for object */
dsUint16_t objInfolen; /* length of object-dependent info*/
char objInfo[DSM_MAX_OBJINFO_LENGTH]; /*object-dependent info */
dsUint160_t restoreOrderExt; /* restore order */
dsStruct64_t sizeEstimate; /* size estimate stored by user */
dsStruct64_t baseObjId;
dsUint16_t baseObjInfolen; /* length of base object-dependent info*/
dsUint8_t baseObjInfo[DSM_MAX_OBJINFO_LENGTH]; /* base object-dependent info */
dsUint160_t baseRestoreOrder; /* restore order */
dsUint32_t fsID;
dsUint8_t compressType;
dsmBool_t isGroupLeader;
dsmBool_t isOpenGroup;
dsUint8_t reserved1; /* for future use */
dsmBool_t reserved2; /* for future use */
dsUint16_t reserved3; /* for future use */
reservedInfo_t *reserved4; /* for future use */
dsUint8_t encryptionType; /* type of encryption */
dsmBool_t clientDeduplicated; /* obj deduplicated by API*/

}qryRespBackupData;

#define qryRespBackupDataVersion 7

/*---+
| Type definition for Active Backup queryBuffer on dsmBeginQuery()
|
| Notes: For the active backup query, only the fs (filespace) and objType
| fields of objName need be set. objType can only be set to
| DSM_OBJ_FILE or DSM_OBJ_DIRECTORY. DSM_OBJ_ANY_TYPE will not
| find a match on the query.
+---*/
typedef struct S_qryABackupData
{

dsUint16_t stVersion; /* structure version */
dsmObjName *objName; /* Only fs and objtype used */

}qryABackupData;

#define qryABackupDataVersion 1

/*---+
| Type definition for Query Active Backup response on dsmGetNextQObj() |
+---*/
typedef struct S_qryARespBackupData
{

dsUint16_t stVersion; /* structure version */
dsmObjName objName; /* full dsm name of object */
dsUint32_t copyGroup; /* copy group number */
char mcName[DSM_MAX_MC_NAME_LENGTH + 1];/*management class name*/
char owner[DSM_MAX_OWNER_LENGTH + 1]; /* owner name */
dsmDate insDate; /* backup insertion date */
dsUint16_t objInfolen; /* length of object-dependent info*/
char objInfo[DSM_MAX_OBJINFO_LENGTH]; /*object-dependent info */

}qryARespBackupData;

#define qryARespBackupDataVersion 1

/*---+
| Type definition for Backup queryBuffer on dsmBeginQuery() |
+---*/

158 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

typedef struct qryBackupGroups
{

dsUint16_t stVersion; /* structure version */
dsUint8_t groupType;
char *fsName;
char *owner;
dsStruct64_t groupLeaderObjId;
dsUint8_t objType;

}qryBackupGroups;

#define qryBackupGroupsVersion 1

/*---+
| Type definition for proxynode queryBuffer on dsmBeginQuery() |
+---*/
typedef struct qryProxyNodeData
{

dsUint16_t stVersion; /* structure version */
char *targetNodeName; /* target node name */

}qryProxyNodeData;

#define qryProxyNodeDataVersion 1

/*---+
| Type definition for qryRespProxyNodeData parameter used on dsmGetNextQObj()|
+---*/

typedef struct
{

dsUint16_t stVersion ; /* structure version */
char targetNodeName[DSM_MAX_ID_LENGTH+1]; /* target node name */
char peerNodeName[DSM_MAX_ID_LENGTH+1]; /* Peer node name */
char hlAddress[DSM_MAX_ID_LENGTH+1]; /* peer hlAddress */
char llAddress[DSM_MAX_ID_LENGTH+1]; /* peer hlAddress */

}qryRespProxyNodeData;

#define qryRespProxyNodeDataVersion 1

/*---+
| Type definition for WINNT and OS/2 Filespace attributes |
+---*/
typedef struct
{

char driveLetter ; /* drive letter for filespace */
dsUint16_t fsInfoLength; /* fsInfo length used */
char fsInfo[DSM_MAX_FSINFO_LENGTH];/*caller-determined data */

}dsmDosFSAttrib ;

/*---+
| Type definition for UNIX Filespace attributes |
+---*/
typedef struct
{

dsUint16_t fsInfoLength; /* fsInfo length used */
char fsInfo[DSM_MAX_FSINFO_LENGTH];/*caller-determined data */

}dsmUnixFSAttrib ;

/*---+
| Type definition for NetWare Filespace attributes |
+---*/
typedef dsmUnixFSAttrib dsmNetwareFSAttrib;

/*---+
| Type definition for Filespace attributes on all Filespace calls |
+---*/

Appendix B. API type definitions source files 159

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

typedef union
{

dsmNetwareFSAttrib netwareFSAttr;
dsmUnixFSAttrib unixFSAttr ;
dsmDosFSAttrib dosFSAttr ;

}dsmFSAttr ;

/*---+
| Type definition for fsUpd parameter on dsmUpdateFS()
+---*/
typedef struct S_dsmFSUpd
{

dsUint16_t stVersion ; /* structure version */
char *fsType ; /* filespace type */
dsStruct64_t occupancy ; /* occupancy estimate */
dsStruct64_t capacity ; /* capacity estimate */
dsmFSAttr fsAttr ; /* platform specific attributes */

}dsmFSUpd ;

#define dsmFSUpdVersion 1

/*---+
| Type definition for Filespace queryBuffer on dsmBeginQuery() |
+---*/
typedef struct S_qryFSData
{

dsUint16_t stVersion; /* structure version */
char *fsName; /* File space name */

}qryFSData;

#define qryFSDataVersion 1

/*---+
| Type definition for Query Filespace response on dsmGetNextQObj() |
+---*/
typedef struct S_qryRespFSData
{

dsUint16_t stVersion; /* structure version */
char fsName[DSM_MAX_FSNAME_LENGTH + 1]; /* Filespace name */
char fsType[DSM_MAX_FSTYPE_LENGTH + 1] ; /* Filespace type */
dsStruct64_t occupancy; /* Occupancy est. in bytes. */
dsStruct64_t capacity; /* Capacity est. in bytes. */
dsmFSAttr fsAttr ; /* platform specific attributes */
dsmDate backStartDate; /* start backup date */
dsmDate backCompleteDate; /* end backup Date */
dsmDate reserved1; /* For future use */

}qryRespFSData;

#define qryRespFSDataVersion 3

/*---+
| Type definition for regFilespace parameter on dsmRegisterFS()
+---*/
typedef struct S_regFSData
{

dsUint16_t stVersion; /* structure version */
char *fsName; /* Filespace name */
char *fsType; /* Filespace type */
dsStruct64_t occupancy; /* Occupancy est. in bytes. */
dsStruct64_t capacity; /* Capacity est. in bytes. */
dsmFSAttr fsAttr ; /* platform specific attributes */

}regFSData;

#define regFSDataVersion 1

/*---+
| Type definition for dedupType used in apisessInfo |

160 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+---*/
typedef enum
{

dedupServerOnly= 0x00, /* dedup only done on server */
dedupClientOrServer /* dedup can be done on client or server */

}dsmDedupType ;
/*---+
| Type definition for session info response on dsmQuerySessionInfo() |
+---*/
typedef struct
{

dsUint16_t stVersion; /* Structure version */
/*--*/
/* Server information */
/*--*/

char serverHost[DSM_MAX_SERVERNAME_LENGTH+1];
/* Network host name of DSM server */

dsUint16_t serverPort; /* Server comm port on host */
dsmDate serverDate; /* Server's date/time */
char serverType[DSM_MAX_SERVERTYPE_LENGTH+1];

/* Server's execution platform */
dsUint16_t serverVer; /* Server's version number */
dsUint16_t serverRel; /* Server's release number */
dsUint16_t serverLev; /* Server's level number */
dsUint16_t serverSubLev; /* Server's sublevel number */

/*--*/
/* Client Defaults */
/*--*/

char nodeType[DSM_MAX_PLATFORM_LENGTH+1]; /*node/application type*/
char fsdelim; /* File space delimiter */
char hldelim; /* Delimiter betw highlev & lowlev */
dsUint8_t compression; /* Compression flag */
dsUint8_t archDel; /* Archive delete permission */
dsUint8_t backDel; /* Backup delete permission */
dsUint32_t maxBytesPerTxn; /* for future use */
dsUint16_t maxObjPerTxn; /* The max objects allowed in a txn */

/*--*/
/* Session Information */
/*--*/

char id[DSM_MAX_ID_LENGTH+1]; /* Sign-in id node name */
char owner[DSM_MAX_OWNER_LENGTH+1]; /* Sign-in owner */

/* (for multi-user platforms) */
char confFile[DSM_PATH_MAX + DSM_NAME_MAX +1];

/* len is platform dep */
/* dsInit name of appl config file */

dsUint8_t opNoTrace; /* dsInit option - NoTrace = 1 */
/*--*/
/* Policy Data */
/*--*/

char domainName[DSM_MAX_DOMAIN_LENGTH+1]; /* Domain name */
char policySetName[DSM_MAX_PS_NAME_LENGTH+1];

/* Active policy set name */
dsmDate polActDate; /* Policy set activation date */
char dfltMCName[DSM_MAX_MC_NAME_LENGTH+1];/* Default Mgmt Class */
dsUint16_t gpBackRetn; /* Grace-period backup retention */
dsUint16_t gpArchRetn; /* Grace-period archive retention */
char adsmServerName[DSM_MAX_SERVERNAME_LENGTH+1]; /* adsm server name */
dsmBool_t archiveRetentionProtection; /* is server Retention protection enabled */
dsStruct64_t maxBytesPerTxn_64; /* for future use */
dsmBool_t lanFreeEnabled; /* lan free option is set */
dsmDedupType dedupType; /* server or clientOrServer */

}ApiSessInfo;

#define ApiSessInfoVersion 4

/*---+
| Type definition for Query options response on dsmQueryCliOptions() |

Appendix B. API type definitions source files 161

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| and dsmQuerySessOptions() |
+---*/

typedef struct
{

char dsmiDir[DSM_PATH_MAX + DSM_NAME_MAX +1];
char dsmiConfig[DSM_PATH_MAX + DSM_NAME_MAX +1];
char serverName[DSM_MAX_SERVERNAME_LENGTH+1];
dsInt16_t commMethod;
char serverAddress[DSM_MAX_SERVER_ADDRESS];
char nodeName[DSM_MAX_NODE_LENGTH+1];
dsmBool_t compression;
dsmBool_t compressalways;
dsmBool_t passwordAccess;

}optStruct ;

/*---+
| Type definition for LogType used in logInfo |
+---*/
typedef enum
{

logServer = 0x00, /* log msg only to server */
logLocal, /* log msg only to local error log */
logBoth /* log msg to server and to local error log */

}dsmLogType ;

/*---+
| Type definition for logInfo parameter used on dsmLogEvent() |
+---*/

typedef struct
{

char *message; /* text of message to be logged */
dsmLogType logType; /* log type : local, server, both */

}logInfo;

/*---+
| Type definition for qryRespAccessData parameter used on dsmQueryAccess()|
+---*/

typedef struct
{

dsUint16_t stVersion ; /* structure version */
char node[DSM_MAX_ID_LENGTH+1]; /* node name */
char owner[DSM_MAX_OWNER_LENGTH+1]; /* owner */
dsmObjName objName ; /* object name */
dsmAccessType accessType; /* archive or backup */
dsUint32_t ruleNumber ; /* Access rule id */

}qryRespAccessData;

#define qryRespAccessDataVersion 1

/*---+
| Type definition for envSetUp parameter on dsmSetUp()
+---*/
typedef struct S_envSetUp
{

dsUint16_t stVersion; /* structure version */
char dsmiDir[DSM_PATH_MAX + DSM_NAME_MAX +1];
char dsmiConfig[DSM_PATH_MAX + DSM_NAME_MAX +1];
char dsmiLog[DSM_PATH_MAX + DSM_NAME_MAX +1];
char **argv; /* for executables name argv[0] */
char logName[DSM_NAME_MAX +1];
dsmBool_t reserved1; /* for future use */
dsmBool_t reserved2; /* for future use */

}envSetUp;

162 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define envSetUpVersion 4

/*---+
| Type definition for dsmInitExIn_t
+---*/
typedef struct dsmInitExIn_t
{

dsUint16_t stVersion; /* structure version */
dsmApiVersionEx *apiVersionExP;
char *clientNodeNameP;
char *clientOwnerNameP;
char *clientPasswordP;
char *userNameP;
char *userPasswordP;
char *applicationTypeP;
char *configfile;
char *options;
char dirDelimiter;
dsmBool_t useUnicode;
dsmBool_t bCrossPlatform;
dsmBool_t bService;
dsmBool_t bEncryptKeyEnabled;
char *encryptionPasswordP;
dsmBool_t useTsmBuffers;
dsUint8_t numTsmBuffers;

}dsmInitExIn_t;

#define dsmInitExInVersion 4

/*---+
| Type definition for dsmInitExOut_t
+---*/
typedef struct dsmInitExOut_t
{

dsUint16_t stVersion; /* structure version */
dsInt16_t userNameAuthorities;
dsInt16_t infoRC; /* error return code if encountered */
char adsmServerName[DSM_MAX_SERVERNAME_LENGTH+1];
dsUint16_t serverVer; /* Server's version number */
dsUint16_t serverRel; /* Server's release number */
dsUint16_t serverLev; /* Server's level number */
dsUint16_t serverSubLev; /* Server's sublevel number */

}dsmInitExOut_t;

#define dsmInitExOutVersion 2

/*---+
| Type definition for LogType used in logInfo |
+---*/
typedef enum
{

logSevInfo = 0x00, /* information ANE4991 */
logSevWarning, /* warning ANE4992 */
logSevError, /* Error ANE4993 */
logSevSevere, /* severe ANE4994 */
logSevLicense, /* License ANE4995 */
logSevTryBuy /* try Buy ANE4996 */

}dsmLogSeverity ;

/*---+
| Type definition for dsmLogExIn_t
+---*/
typedef struct dsmLogExIn_t
{

dsUint16_t stVersion; /* structure version */
dsmLogSeverity severity;

Appendix B. API type definitions source files 163

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

char appMsgID[8];
dsmLogType logType; /* log type : local, server, both */
char *message; /* text of message to be logged */
char appName[DSM_MAX_PLATFORM_LENGTH];
char osPlatform[DSM_MAX_PLATFORM_LENGTH];
char appVersion[DSM_MAX_PLATFORM_LENGTH];

}dsmLogExIn_t;

#define dsmLogExInVersion 2

/*---+
| Type definition for dsmlogExOut_t
+---*/
typedef struct dsmLogExOut_t
{

dsUint16_t stVersion; /* structure version */
}dsmLogExOut_t;

#define dsmLogExOutVersion 1

/*---+
| Type definition for dsmRenameIn_t
+---*/
typedef struct dsmRenameIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* handle for session */
dsUint8_t repository; /* Backup or Archive */
dsmObjName *objNameP ; /* object name */
char newHl[DSM_MAX_HL_LENGTH + 1]; /* new High level name */
char newLl[DSM_MAX_LL_LENGTH + 1]; /* new Low level name */
dsmBool_t merge; /* merge into existing name*/
ObjID objId; /* objId for Archive */

}dsmRenameIn_t;

#define dsmRenameInVersion 1

/*---+
| Type definition for dsmRenameOut_t
+---*/
typedef struct dsmRenameOut_t
{

dsUint16_t stVersion; /* structure version */
}dsmRenameOut_t;

#define dsmRenameOutVersion 1

/*---+
| Type definition for dsmEndSendObjExIn_t
+---*/
typedef struct dsmEndSendObjExIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* handle for session */

}dsmEndSendObjExIn_t;

#define dsmEndSendObjExInVersion 1

/*---+
| Type definition for dsmEndSendObjExOut_t
+---*/
typedef struct dsmEndSendObjExOut_t
{

dsUint16_t stVersion; /* structure version */
dsStruct64_t totalBytesSent; /* total bytes read from app */
dsmBool_t objCompressed; /* was object compressed */
dsStruct64_t totalCompressSize; /* total size after compress */

164 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

dsStruct64_t totalLFBytesSent; /* total bytes sent Lan Free */
dsUint8_t encryptionType; /* type of encryption used */
dsmBool_t objDeduplicated; /* was object processed for dist. data dedup */
dsStruct64_t totalDedupSize; /* total size after de-dup */

}dsmEndSendObjExOut_t;

#define dsmEndSendObjExOutVersion 3
/*---+
| Type definition for dsmGroupHandlerIn_t
+---*/
typedef struct dsmGroupHandlerIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* handle for session */
dsUint8_t groupType; /* Type of group */
dsUint8_t actionType; /* Type of group operation */
dsUint8_t memberType; /* Type of member: Leader or member */
dsStruct64_t leaderObjId; /* OBJID of the groupleader when manipulating a member */
char *uniqueGroupTagP; /* Unique group identifier */
dsmObjName *objNameP ; /* group leader object name */
dsmGetList memberObjList; /* list of objects to remove, assign */

}dsmGroupHandlerIn_t;

#define dsmGroupHandlerInVersion 1

/*---+
| Type definition for dsmGroupHandlerExOut_t
+---*/
typedef struct dsmGroupHandlerOut_t
{

dsUint16_t stVersion; /* structure version */
}dsmGroupHandlerOut_t;

#define dsmGroupHandlerOutVersion 1

/*---+
| Type definition for dsmEndTxnExIn_t
+---*/
typedef struct dsmEndTxnExIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* handle for session */
dsUint8_t vote;

}dsmEndTxnExIn_t;

#define dsmEndTxnExInVersion 1

/*---+
| Type definition for dsmEndTxnExOut_t
+---*/
typedef struct dsmEndTxnExOut_t
{

dsUint16_t stVersion; /* structure version */
dsUint16_t reason; /* reason code */
dsStruct64_t groupLeaderObjId; /* groupLeader obj id returned on */

/* DSM_ACTION_OPEN */
dsUint8_t reserved1; /* future use */
dsUint16_t reserved2; /* future use */

}dsmEndTxnExOut_t;

#define dsmEndTxnExOutVersion 1

/*---+
| Type definition for dsmEndGetDataExIn_t
+---*/
typedef struct dsmEndGetDataExIn_t
{

Appendix B. API type definitions source files 165

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* handle for session */

}dsmEndGetDataExIn_t;

#define dsmEndGetDataExInVersion 1

/*---+
| Type definition for dsmEndGetDataExOut_t
+---*/
typedef struct dsmEndGetDataExOut_t
{

dsUint16_t stVersion; /* structure version */
dsUint16_t reason; /* reason code */
dsStruct64_t totalLFBytesRecv; /* total lan free bytes recieved */

}dsmEndGetDataExOut_t;

#define dsmEndGetDataExOutVersion 1

/*---+
| Type definition for object list on dsmRetentionEvent() |
+---*/
typedef struct dsmObjList
{

dsUint16_t stVersion; /* structure version */
dsUint32_t numObjId; /* number of object IDs in the list */
ObjID *objId; /* list of object IDs to signal */

}dsmObjList_t ;

#define dsmObjlistVersion 1

/*---+
| Type definition eventType used on dsmRetentionEvent |
+--*/
typedef enum
{

eventRetentionActivate = 0x00, /* signal the server that the event has occured */
eventHoldObj, /* suspend delete/expire of the object */
eventReleaseObj /* Resume normal delete/expire processing */

}dsmEventType_t;

/*---+
| Type definition for on dsmRetentionEvent() |
+---*/
typedef struct dsmRetentionEventIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* session Handle */
dsmEventType_t eventType; /* Event type */
dsmObjList_t objList; /* object ID */

}dsmRetentionEventIn_t;

#define dsmRetentionEventInVersion 1

/*---+
| Type definition for on dsmRetentionEvent() |
+---*/
typedef struct dsmRetentionEventOut_t
{

dsUint16_t stVersion ; /* structure version */
}dsmRetentionEventOut_t;

#define dsmRetentionEventOutVersion 1

/*---+
| Type definition for on dsmRequestBuffer() |
+---*/

166 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

typedef struct requestBufferIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* session Handle */

}requestBufferIn_t;

#define requestBufferInVersion 1

/*---+
| Type definition for on dsmRequestBuffer() |
+---*/
typedef struct requestBufferOut_t
{

dsUint16_t stVersion ; /* structure version */
dsUint8_t tsmBufferHandle; /* handle to tsm Data buffer */
char *dataPtr; /* Address to write data to */
dsUint32_t bufferLen; /* Max length of data to be written */

}requestBufferOut_t;

#define requestBufferOutVersion 1

/*---+
| Type definition for on dsmReleaseBuffer() |
+---*/
typedef struct releaseBufferIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* session Handle */
dsUint8_t tsmBufferHandle; /* handle to tsm Data buffer */
char *dataPtr; /* Address to write data to */

}releaseBufferIn_t;

#define releaseBufferInVersion 1

/*---+
| Type definition for on dsmReleaseBuffer() |
+---*/
typedef struct releaseBufferOut_t
{

dsUint16_t stVersion ; /* structure version */
}releaseBufferOut_t;

#define releaseBufferOutVersion 1

/*---+
| Type definition for on dsmGetBufferData() |
+---*/
typedef struct getBufferDataIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* session Handle */

}getBufferDataIn_t;

#define getBufferDataInVersion 1

/*---+
| Type definition for on dsmGetBufferData() |
+---*/
typedef struct getBufferDataOut_t
{

dsUint16_t stVersion ; /* structure version */
dsUint8_t tsmBufferHandle; /* handle to tsm Data buffer */
char *dataPtr; /* Address of actual data to read */
dsUint32_t numBytes; /* Actual number of bytes to read from dataPtr*/

}getBufferDataOut_t;

#define getBufferDataOutVersion 1

Appendix B. API type definitions source files 167

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/*---+
| Type definition for on dsmSendBufferData() |
+---*/
typedef struct sendBufferDataIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* session Handle */
dsUint8_t tsmBufferHandle; /* handle to tsm Data buffer */
char *dataPtr; /* Address of actual data to send */
dsUint32_t numBytes; /* Actual number of bytes to send from dataPtr*/

}sendBufferDataIn_t;

#define sendBufferDataInVersion 1

/*---+
| Type definition for on dsmSendBufferData() |
+---*/
typedef struct sendBufferDataOut_t
{

dsUint16_t stVersion ; /* structure version */
}sendBufferDataOut_t;

#define sendBufferDataOutVersion 1

/*---+
| Type definition for dsmUpdateObjExIn_t
+---*/
typedef struct dsmUpdateObjExIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* session Handle */
dsmSendType sendType; /* send type back/arch */
char *descrP; /* archive description */
dsmObjName *objNameP; /* objName */
ObjAttr *objAttrPtr; /* attribute */
dsUint32_t objUpdAct; /* update action */
ObjID archObjId; /* objId for archive */

}dsmUpdateObjExIn_t;

#define dsmUpdateObjExInVersion 1

/*---+
| Type definition for dsmUpdateObjExOut_t
+---*/
typedef struct dsmUpdateObjExOut_t
{

dsUint16_t stVersion; /* structure version */
}dsmUpdateObjExOut_t;

#define dsmUpdateObjExOutVersion 1

#if (_OPSYS_TYPE == DS_WINNT) && !defined(_WIN64)
#pragma pack()
#endif

#ifdef _MAC
#pragma options align=reset
#endif
#endif /* _H_DSMAPITD */

/***
* Tivoli Storage Manager *
* API Client Component *
* *
* (C) Copyright IBM Corporation 1993,2010 *
***/

168 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/**
* Header File Name: tsmapitd.h
*
* Environment: **
* ** This is a platform-independent source file **
*
* **
*
* Design Notes: This file contains basic data types and constants
* includable by all client source files. The constants
* within this file should be set properly for the
* particular machine and operating system on which the
* client software is to be run.
*
* Platform specific definitions are included in dsmapips.h
*
* Descriptive-name: Definitions for Tivoli Storage manager API constants
---/

#ifndef _H_TSMAPITD
#define _H_TSMAPITD

/*=== set the structure alignment to pack the structures ===*/
#if _OPSYS_TYPE == DS_WINNT
#ifdef _WIN64
#pragma pack(8)
#else
#pragma pack(1)
#endif
#endif

#ifdef _MAC
#pragma options align = packed
#endif

/*==
Win32 applications using the tsm interface must use the
-DUNICODE flag during compilation.

==*/
#if _OPSYS_TYPE == DS_WINNT && !defined(DSMAPILIB)
#ifndef UNICODE
#error "Win32 applications using the TSM interface MUST be compiled with the -DUNICODE flag"
#endif
#endif

/*==
Mac OS X applications using the tsm interface must use the
-DUNICODE flag during compilation.

==*/
#if _OPSYS_TYPE == DS_MACOS && !defined(DSMAPILIB)
#ifndef UNICODE
#error "Mac OS X applications using the TSM interface MUST be compiled with the -DUNICODE flag"
#endif
#endif

/*---+
| Type definition for dsmGetType parameter on tsmBeginGetData() |
+---*/
typedef enum
{

gtTsmBackup = 0x00, /* Backup processing type */
gtTsmArchive /* Archive processing type */

} tsmGetType ;

/*---+

Appendix B. API type definitions source files 169

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| Type definition for dsmQueryType parameter on tsmBeginQuery() |
+---*/
typedef enum
{

qtTsmArchive = 0x00, /* Archive query type */
qtTsmBackup, /* Backup query type */
qtTsmBackupActive, /* Fast query for active backup files */
qtTsmFilespace, /* Filespace query type */
qtTsmMC, /* Mgmt. class query type */
qtTsmReserved1, /* future use */
qtTsmReserved2, /* future use */
qtTsmReserved3, /* future use */
qtTsmReserved4, /* future use */
qtTsmBackupGroups, /* All group leaders in a specific filespace */
qtTsmOpenGroups, /* All group members associated with a leader */
qtTsmReserved5, /* future use */
qtTsmProxyNodeAuth, /* nodes that this node can proxy to */
qtTsmProxyNodePeer /* peer nodes under this target node */

} tsmQueryType ;

/*---+
| Type definition sendType parameter on tsmBindMC() and tsmSendObj() |
+---*/
typedef enum
{

stTsmBackup = 0x00, /* Backup processing type */
stTsmArchive, /* Archive processing type */
stTsmBackupMountWait, /* Backup processing with mountwait on */
stTsmArchiveMountWait /* Archive processing with mountwait on */

} tsmSendType ;

/*---+
| Type definition for delType parameter on tsmDeleteObj() |
+---*/
typedef enum
{

dtTsmArchive = 0x00, /* Archive delete type */
dtTsmBackup, /* Backup delete (deactivate) type */
dtTsmBackupID /* Backup delete (remove) type */

} tsmDelType ;

/*---+
| Type definition sendType parameter on tsmSetAccess() |
+---*/
typedef enum
{

atTsmBackup = 0x00, /* Backup processing type */
atTsmArchive /* Archive processing type */

}tsmAccessType;

/*---+
| Type definition for Overwrite parameter on tsmSendObj() |
+---*/
typedef enum
{

owIGNORE = 0x00,
owYES,
owNO

}tsmOwType;

/*---+
| Type definition for API Version on tsmInit() and tsmQueryApiVersion() |
+---*/
typedef struct
{

dsUint16_t stVersion; /* Structure version */

170 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

dsUint16_t version; /* API version */
dsUint16_t release; /* API release */
dsUint16_t level; /* API level */
dsUint16_t subLevel; /* API sub level */
dsmBool_t unicode; /* API unicode? */

} tsmApiVersionEx;

#define tsmApiVersionExVer 2

/*---+
| Type definition for object name used on BindMC, Send, Delete, Query |
+---*/

typedef struct tsmObjName
{

dsChar_t fs[DSM_MAX_FSNAME_LENGTH + 1] ; /* Filespace name */
dsChar_t hl[DSM_MAX_HL_LENGTH + 1] ; /* High level name */
dsChar_t ll[DSM_MAX_LL_LENGTH + 1] ; /* Low level name */
dsUint8_t objType; /* for object type values, see defines above */
dsChar_t dirDelimiter;

} tsmObjName;

/*---+
| Type definition for Backup delete info on dsmDeleteObj() |
+---*/
typedef struct tsmDelBack
{

dsUint16_t stVersion ; /* structure version */
tsmObjName *objNameP ; /* object name */
dsUint32_t copyGroup ; /* copy group */

} tsmDelBack ;

#define tsmDelBackVersion 1

/*---+
| Type definition for Archive delete info on dsmDeleteObj() |
+---*/
typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsStruct64_t objId ; /* object ID */

} tsmDelArch ;

#define tsmDelArchVersion 1

/*---+
| Type definition for Backup ID delete info on dsmDeleteObj() |
+---*/
typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsStruct64_t objId ; /* object ID */

} tsmDelBackID;

#define tsmDelBackIDVersion 1

/*---+
| Type definition for delete info on dsmDeleteObj() |
+---*/
typedef union
{

tsmDelBack backInfo ;
tsmDelArch archInfo ;
tsmDelBackID backIDInfo;

} tsmDelInfo ;

Appendix B. API type definitions source files 171

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/*---+
| Type definition for Object Attribute parameter on dsmSendObj() |
+---*/
typedef struct tsmObjAttr
{

dsUint16_t stVersion; /* Structure version */
dsChar_t owner[DSM_MAX_OWNER_LENGTH + 1]; /* object owner */
dsStruct64_t sizeEstimate; /* Size estimate in bytes of the object */
dsmBool_t objCompressed; /* Is object already compressed? */
dsUint16_t objInfoLength; /* length of object-dependent info */
char *objInfo; /* object-dependent info byte buffer */
dsChar_t *mcNameP; /* mgmnt class name for override */
tsmOwType reserved1; /* for future use */
tsmOwType reserved2; /* for future use */
dsmBool_t disableDeduplication; /* force no dedup for this object */

} tsmObjAttr;

#define tsmObjAttrVersion 4
/*---+
| Type definition for mcBindKey returned on dsmBindMC() |
+---*/
typedef struct tsmMcBindKey
{

dsUint16_t stVersion; /* structure version */
dsChar_t mcName[DSM_MAX_MC_NAME_LENGTH + 1];

/* Name of mc bound to object. */
dsmBool_t backup_cg_exists; /* True/false */
dsmBool_t archive_cg_exists; /* True/false */
dsChar_t backup_copy_dest[DSM_MAX_CG_DEST_LENGTH + 1];

/* Backup copy dest. name */
dsChar_t archive_copy_dest[DSM_MAX_CG_DEST_LENGTH + 1];

/* Arch copy dest.name */
} tsmMcBindKey;

#define tsmMcBindKeyVersion 1

/*---+
| Type definition for Mgmt Class queryBuffer on dsmBeginQuery() |
+---*/
typedef struct tsmQryMCData
{

dsUint16_t stVersion; /* structure version */
dsChar_t *mcName; /* Mgmt class name */

/* single name to get one or empty string to get all*/
dsmBool_t mcDetail; /* Want details or not? */

} tsmQryMCData;

#define tsmQryMCDataVersion 1

/*---+
| Type definition for Archive Copy Group details on Query MC response |
+---*/
typedef struct tsmArchDetailCG
{

dsChar_t cgName[DSM_MAX_CG_NAME_LENGTH + 1]; /* Copy group name */
dsUint16_t frequency; /* Copy (archive) frequency */
dsUint16_t retainVers; /* Retain version */
dsUint8_t copySer; /* for copy serialization values, see defines */
dsUint8_t copyMode; /* for copy mode values, see defines above */
dsChar_t destName[DSM_MAX_CG_DEST_LENGTH + 1]; /* Copy dest name */
dsmBool_t bLanFreeDest; /* Destination has lan free path? */
dsmBool_t reserved; /* Not currently used */
dsUint8_t retainInit; /* possible values see dsmapitd.h */
dsUint16_t retainMin; /* if retInit is EVENT num of days */

172 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

dsmBool_t bDeduplicate; /* destination has dedup enabled */
}tsmArchDetailCG;

/*---+
| Type definition for Backup Copy Group details on Query MC response |
+---*/
typedef struct tsmBackupDetailCG
{

dsChar_t cgName[DSM_MAX_CG_NAME_LENGTH + 1]; /* Copy group name */
dsUint16_t frequency; /* Backup frequency */
dsUint16_t verDataExst; /* Versions data exists */
dsUint16_t verDataDltd; /* Versions data deleted */
dsUint16_t retXtraVers; /* Retain extra versions */
dsUint16_t retOnlyVers; /* Retain only versions */
dsUint8_t copySer; /* for copy serialization values, see defines */
dsUint8_t copyMode; /* for copy mode values, see defines above */
dsChar_t destName[DSM_MAX_CG_DEST_LENGTH + 1]; /* Copy dest name */
dsmBool_t bLanFreeDest; /* Destination has lan free path? */
dsmBool_t reserved; /* Not currently used */
dsmBool_t bDeduplicate; /* destination has dedup enabled */

}tsmBackupDetailCG;

/*---+
| Type definition for Query Mgmt Class detail response on dsmGetNextQObj()|
+---*/
typedef struct tsmQryRespMCDetailData
{

dsUint16_t stVersion; /* structure version */
dsChar_t mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */
dsChar_t mcDesc[DSM_MAX_MC_DESCR_LENGTH + 1]; /*mc description */
archDetailCG archDet; /* Archive copy group detail */
backupDetailCG backupDet; /* Backup copy group detail */

} tsmQryRespMCDetailData;

#define tsmQryRespMCDetailDataVersion 4

/*---+
| Type definition for Query Mgmt Class summary response on dsmGetNextQObj()|
+---*/
typedef struct tsmQryRespMCData
{

dsUint16_t stVersion; /* structure version */
dsChar_t mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */
dsChar_t mcDesc[DSM_MAX_MC_DESCR_LENGTH + 1]; /* mc description */

}tsmQryRespMCData;

#define tsmQryRespMCDataVersion 1

/*---+
| Type definition for Archive queryBuffer on tsmBeginQuery() |
+---*/
typedef struct tsmQryArchiveData
{

dsUint16_t stVersion; /* structure version */
tsmObjName *objName; /* Full dsm name of object */
dsChar_t *owner; /* owner name */

/* for maximum date boundaries, see defines above */
dsmDate insDateLowerBound; /* low bound archive insert date */
dsmDate insDateUpperBound; /* hi bound archive insert date */
dsmDate expDateLowerBound; /* low bound expiration date */
dsmDate expDateUpperBound; /* hi bound expiration date */
dsChar_t *descr; /* archive description */

} tsmQryArchiveData;

#define tsmQryArchiveDataVersion 1

Appendix B. API type definitions source files 173

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/*---+
| Type definition for Query Archive response on dsmGetNextQObj() |
+---*/
typedef struct tsmQryRespArchiveData
{

dsUint16_t stVersion; /* structure version */
tsmObjName objName; /* Filespace name qualifier */
dsUint32_t copyGroup; /* copy group number */
dsChar_t mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */
dsChar_t owner[DSM_MAX_OWNER_LENGTH + 1]; /* owner name */
dsStruct64_t objId; /* Unique copy id */
dsStruct64_t reserved; /* backward compatability */
dsUint8_t mediaClass; /* media access class */
dsmDate insDate; /* archive insertion date */
dsmDate expDate; /* expiration date for object */
dsChar_t descr[DSM_MAX_DESCR_LENGTH + 1]; /* archive description */
dsUint16_t objInfolen; /* length of object-dependent info */
dsUint8_t objInfo[DSM_MAX_OBJINFO_LENGTH]; /*object-dependent info */
dsUint160_t restoreOrderExt; /* restore order */
dsStruct64_t sizeEstimate; /* size estimate stored by user */
dsUint8_t compressType; /* Compression flag */
dsUint8_t retentionInitiated; /* object waiting on retention event*/
dsUint8_t objHeld; /* object is on "hold" see dsmapitd.h for values */
dsUint8_t encryptionType; /* type of encryption */
dsmBool_t clientDeduplicated; /* obj deduplicated by API*/

} tsmQryRespArchiveData;

#define tsmQryRespArchiveDataVersion 6

/*---+
| Type definition for Archive sendBuff parameter on dsmSendObj() |
+---*/
typedef struct tsmSndArchiveData
{

dsUint16_t stVersion; /* structure version */
dsChar_t *descr; /* archive description */

} tsmSndArchiveData;

#define tsmSndArchiveDataVersion 1

/*---+
| Type definition for Backup queryBuffer on dsmBeginQuery() |
+---*/
typedef struct tsmQryBackupData
{

dsUint16_t stVersion; /* structure version */
tsmObjName *objName; /* full dsm name of object */
dsChar_t *owner; /* owner name */
dsUint8_t objState; /* object state selector */
dsmDate pitDate; /* Date value for point in time restore */

/* for possible values, see defines above */
dsUint32_t reserved1;
dsUint32_t reserved2;

} tsmQryBackupData;

#define tsmQryBackupDataVersion 3

/*---+
| Type definition for Query Backup response on dsmGetNextQObj() |
+---*/
typedef struct tsmQryRespBackupData
{

dsUint16_t stVersion; /* structure version */
tsmObjName objName; /* full dsm name of object */
dsUint32_t copyGroup; /* copy group number */
dsChar_t mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */
dsChar_t owner[DSM_MAX_OWNER_LENGTH + 1]; /* owner name */

174 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

dsStruct64_t objId; /* Unique object id */
dsStruct64_t reserved; /* backward compatability */
dsUint8_t mediaClass; /* media access class */
dsUint8_t objState; /* Obj state, active, etc. */
dsmDate insDate; /* backup insertion date */
dsmDate expDate; /* expiration date for object */
dsUint16_t objInfolen; /* length of object-dependent info*/
dsUint8_t objInfo[DSM_MAX_OBJINFO_LENGTH]; /*object-dependent info */
dsUint160_t restoreOrderExt; /* restore order */
dsStruct64_t sizeEstimate; /* size estimate stored by user */
dsStruct64_t baseObjId;
dsUint16_t baseObjInfolen; /* length of base object-dependent info*/
dsUint8_t baseObjInfo[DSM_MAX_OBJINFO_LENGTH]; /* base object-dependent info */
dsUint160_t baseRestoreOrder; /* restore order */
dsUint32_t fsID;
dsUint8_t compressType;
dsmBool_t isGroupLeader;
dsmBool_t isOpenGroup;
dsUint8_t reserved1; /* for future use */
dsmBool_t reserved2; /* for future use */
dsUint16_t reserved3; /* for future use */
reservedInfo_t *reserved4; /* for future use */
dsUint8_t encryptionType; /* type of encryption */
dsmBool_t clientDeduplicated; /* obj deduplicated by API*/

} tsmQryRespBackupData;

#define tsmQryRespBackupDataVersion 7

/*---+
| Type definition for Active Backup queryBuffer on dsmBeginQuery()
|
| Notes: For the active backup query, only the fs (filespace) and objType
| fields of objName need be set. objType can only be set to
| DSM_OBJ_FILE or DSM_OBJ_DIRECTORY. DSM_OBJ_ANY_TYPE will not
| find a match on the query.
+---*/
typedef struct tsmQryABackupData
{

dsUint16_t stVersion; /* structure version */
tsmObjName *objName; /* Only fs and objtype used */

} tsmQryABackupData;

#define tsmQryABackupDataVersion 1

/*---+
| Type definition for Query Active Backup response on dsmGetNextQObj() |
+---*/
typedef struct tsmQryARespBackupData
{

dsUint16_t stVersion; /* structure version */
tsmObjName objName; /* full dsm name of object */
dsUint32_t copyGroup; /* copy group number */
dsChar_t mcName[DSM_MAX_MC_NAME_LENGTH + 1];/*management class name*/
dsChar_t owner[DSM_MAX_OWNER_LENGTH + 1]; /* owner name */
dsmDate insDate; /* backup insertion date */
dsUint16_t objInfolen; /* length of object-dependent info*/
dsUint8_t objInfo[DSM_MAX_OBJINFO_LENGTH]; /*object-dependent info */

} tsmQryARespBackupData;

#define tsmQryARespBackupDataVersion 1

/*---+
| Type definition for Backup queryBuffer on dsmBeginQuery() |
+---*/
typedef struct tsmQryBackupGroups
{

dsUint16_t stVersion; /* structure version */

Appendix B. API type definitions source files 175

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

dsUint8_t groupType;
dsChar_t *fsName;
dsChar_t *owner;
dsStruct64_t groupLeaderObjId;
dsUint8_t objType;
dsUint32_t reserved1;
dsUint32_t reserverd2;

} tsmQryBackupGroups;

#define tsmQryBackupGroupsVersion 2

/*---+
| Type definition for proxynode queryBuffer on tsmBeginQuery() |
+---*/
typedef struct tsmQryProxyNodeData
{

dsUint16_t stVersion; /* structure version */
dsChar_t *targetNodeName; /* target node name */

}tsmQryProxyNodeData;

#define tsmQryProxyNodeDataVersion 1

/*---+
| Type definition for qryRespProxyNodeData parameter used on tsmGetNextQObj()|
+---*/

typedef struct tsmQryRespProxyNodeData
{

dsUint16_t stVersion ; /* structure version */
dsChar_t targetNodeName[DSM_MAX_ID_LENGTH+1]; /* target node name */
dsChar_t peerNodeName[DSM_MAX_ID_LENGTH+1]; /* peer node name */
dsChar_t hlAddress[DSM_MAX_ID_LENGTH+1]; /* peer hlAddress */
dsChar_t llAddress[DSM_MAX_ID_LENGTH+1]; /* peer llAddress */

}tsmQryRespProxyNodeData;

#define tsmQryRespProxyNodeDataVersion 1

/*---+
| Type definition for WINNT and OS/2 Filespace attributes |
+---*/
typedef struct tsmDosFSAttrib
{

osChar_t driveLetter ; /* drive letter for filespace */
dsUint16_t fsInfoLength; /* fsInfo length used */
osChar_t fsInfo[DSM_MAX_FSINFO_LENGTH];/*caller-determined data */

} tsmDosFSAttrib ;

/*---+
| Type definition for UNIX Filespace attributes |
+---*/
typedef struct tsmUnixFSAttrib
{

dsUint16_t fsInfoLength; /* fsInfo length used */
osChar_t fsInfo[DSM_MAX_FSINFO_LENGTH];/*caller-determined data */

} tsmUnixFSAttrib ;

/*---+
| Type definition for NetWare Filespace attributes |
+---*/
typedef tsmUnixFSAttrib tsmNetwareFSAttrib;

/*---+
| Type definition for Filespace attributes on all Filespace calls |
+---*/
typedef union
{

tsmNetwareFSAttrib netwareFSAttr;

176 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

tsmUnixFSAttrib unixFSAttr ;
tsmDosFSAttrib dosFSAttr ;

} tsmFSAttr ;

/*---+
| Type definition for fsUpd parameter on dsmUpdateFS()
+---*/
typedef struct tsmFSUpd
{

dsUint16_t stVersion ; /* structure version */
dsChar_t *fsType ; /* filespace type */
dsStruct64_t occupancy ; /* occupancy estimate */
dsStruct64_t capacity ; /* capacity estimate */
tsmFSAttr fsAttr ; /* platform specific attributes */

} tsmFSUpd ;

#define tsmFSUpdVersion 1

/*---+
| Type definition for Filespace queryBuffer on dsmBeginQuery() |
+---*/
typedef struct tsmQryFSData
{

dsUint16_t stVersion; /* structure version */
dsChar_t *fsName; /* File space name */

} tsmQryFSData;

#define tsmQryFSDataVersion 1

/*---+
| Type definition for Query Filespace response on dsmGetNextQObj() |
+---*/
typedef struct tsmQryRespFSData
{

dsUint16_t stVersion; /* structure version */
dsChar_t fsName[DSM_MAX_FSNAME_LENGTH + 1]; /* Filespace name */
dsChar_t fsType[DSM_MAX_FSTYPE_LENGTH + 1] ; /* Filespace type */
dsStruct64_t occupancy; /* Occupancy est. in bytes. */
dsStruct64_t capacity; /* Capacity est. in bytes. */
tsmFSAttr fsAttr ; /* platform specific attributes */
dsmDate backStartDate; /* start backup date */
dsmDate backCompleteDate; /* end backup Date */
dsmDate reserved1 ; /* For future use */
dsmBool_t bIsUnicode;
dsUint32_t fsID;

} tsmQryRespFSData;

#define tsmQryRespFSDataVersion 4

/*---+
| Type definition for regFilespace parameter on dsmRegisterFS()
+---*/
typedef struct tsmRegFSData
{

dsUint16_t stVersion; /* structure version */
dsChar_t *fsName; /* Filespace name */
dsChar_t *fsType; /* Filespace type */
dsStruct64_t occupancy; /* Occupancy est. in bytes. */
dsStruct64_t capacity; /* Capacity est. in bytes. */
tsmFSAttr fsAttr ; /* platform specific attributes */

} tsmRegFSData;

#define tsmRegFSDataVersion 1

/*---+
| Type definition for session info response on dsmQuerySessionInfo() |
+---*/

Appendix B. API type definitions source files 177

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

typedef struct
{

dsUint16_t stVersion; /* Structure version */
/*--*/
/* Server information */
/*--*/

dsChar_t serverHost[DSM_MAX_SERVERNAME_LENGTH+1];
/* Network host name of DSM server */

dsUint16_t serverPort; /* Server comm port on host */
dsmDate serverDate; /* Server's date/time */
dsChar_t serverType[DSM_MAX_SERVERTYPE_LENGTH+1];

/* Server's execution platform */
dsUint16_t serverVer; /* Server's version number */
dsUint16_t serverRel; /* Server's release number */
dsUint16_t serverLev; /* Server's level number */
dsUint16_t serverSubLev; /* Server's sublevel number */

/*--*/
/* Client Defaults */
/*--*/

dsChar_t nodeType[DSM_MAX_PLATFORM_LENGTH+1]; /*node/application type*/
dsChar_t fsdelim; /* File space delimiter */
dsChar_t hldelim; /* Delimiter betw highlev & lowlev */
dsUint8_t compression; /* Compression flag */
dsUint8_t archDel; /* Archive delete permission */
dsUint8_t backDel; /* Backup delete permission */
dsUint32_t maxBytesPerTxn; /* for future use */
dsUint16_t maxObjPerTxn; /* The max objects allowed in a txn */

/*--*/
/* Session Information */
/*--*/

dsChar_t id[DSM_MAX_ID_LENGTH+1]; /* Sign-in id node name */
dsChar_t owner[DSM_MAX_OWNER_LENGTH+1]; /* Sign-in owner */

/* (for multi-user platforms) */
dsChar_t confFile[DSM_PATH_MAX + DSM_NAME_MAX +1];

/* len is platform dep */
/* dsInit name of appl config file */

dsUint8_t opNoTrace; /* dsInit option - NoTrace = 1 */
/*--*/
/* Policy Data */
/*--*/

dsChar_t domainName[DSM_MAX_DOMAIN_LENGTH+1]; /* Domain name */
dsChar_t policySetName[DSM_MAX_PS_NAME_LENGTH+1];

/* Active policy set name */
dsmDate polActDate; /* Policy set activation date */
dsChar_t dfltMCName[DSM_MAX_MC_NAME_LENGTH+1];/* Default Mgmt Class */
dsUint16_t gpBackRetn; /* Grace-period backup retention */
dsUint16_t gpArchRetn; /* Grace-period archive retention */
dsChar_t adsmServerName[DSM_MAX_SERVERNAME_LENGTH+1]; /* adsm server name */
dsmBool_t archiveRetentionProtection; /* is server Retention protection enabled */
dsUint64_t maxBytesPerTxn_64; /* for future use */
dsmBool_t lanFreeEnabled; /* lan free option is set */
dsmDedupType dedupType; /* server or clientOrServer */

} tsmApiSessInfo;

#define tsmApiSessInfoVersion 4

/*---+
| Type definition for Query options response on dsmQueryCliOptions() |
| and dsmQuerySessOptions() |
+---*/

typedef struct
{

dsUint16_t stVersion;
dsChar_t dsmiDir[DSM_PATH_MAX + DSM_NAME_MAX +1];
dsChar_t dsmiConfig[DSM_PATH_MAX + DSM_NAME_MAX +1];

178 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

dsChar_t serverName[DSM_MAX_SERVERNAME_LENGTH+1];
dsInt16_t commMethod;
dsChar_t serverAddress[DSM_MAX_SERVER_ADDRESS];
dsChar_t nodeName[DSM_MAX_NODE_LENGTH+1];
dsmBool_t compression;
dsmBool_t compressalways;
dsmBool_t passwordAccess;
}tsmOptStruct ;

#define tsmOptStructVersion 1

/*---+
| Type definition for qryRespAccessData parameter used on dsmQueryAccess()|
+---*/

typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsChar_t node[DSM_MAX_ID_LENGTH+1]; /* node name */
dsChar_t owner[DSM_MAX_OWNER_LENGTH+1]; /* owner */
tsmObjName objName ; /* object name */
dsmAccessType accessType; /* archive or backup */
dsUint32_t ruleNumber ; /* Access rule id */

}tsmQryRespAccessData;

#define tsmQryRespAccessDataVersion 1

/*---+
| Type definition for envSetUp parameter on dsmSetUp()
+---*/
typedef struct tsmEnvSetUp
{

dsUint16_t stVersion; /* structure version */
dsChar_t dsmiDir[DSM_PATH_MAX + DSM_NAME_MAX +1];
dsChar_t dsmiConfig[DSM_PATH_MAX + DSM_NAME_MAX +1];
dsChar_t dsmiLog[DSM_PATH_MAX + DSM_NAME_MAX +1];
char **argv; /* for executables name argv[0] */
dsChar_t logName[DSM_NAME_MAX +1];
dsmBool_t reserved1; /* for future use */
dsmBool_t reserved2; /* for future use */

} tsmEnvSetUp;

#define tsmEnvSetUpVersion 4

/*---+
| Type definition for dsmInitExIn_t
+---*/
typedef struct tsmInitExIn_t
{

dsUint16_t stVersion; /* structure version */
tsmApiVersionEx *apiVersionExP;
dsChar_t *clientNodeNameP;
dsChar_t *clientOwnerNameP;
dsChar_t *clientPasswordP;
dsChar_t *userNameP;
dsChar_t *userPasswordP;
dsChar_t *applicationTypeP;
dsChar_t *configfile;
dsChar_t *options;
dsChar_t dirDelimiter;
dsmBool_t useUnicode;
dsmBool_t bCrossPlatform;
dsmBool_t bService;
dsmBool_t bEncryptKeyEnabled;
dsChar_t *encryptionPasswordP;
dsmBool_t useTsmBuffers;

Appendix B. API type definitions source files 179

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

dsUint8_t numTsmBuffers;
} tsmInitExIn_t;

#define tsmInitExInVersion 4

/*---+
| Type definition for dsmInitExOut_t
+---*/
typedef struct tsmInitExOut_t
{

dsUint16_t stVersion; /* structure version */
dsInt16_t userNameAuthorities;
dsInt16_t infoRC; /* error return code if encountered */

/* adsm server name */
dsChar_t adsmServerName[DSM_MAX_SERVERNAME_LENGTH+1];
dsUint16_t serverVer; /* Server's version number */
dsUint16_t serverRel; /* Server's release number */
dsUint16_t serverLev; /* Server's level number */
dsUint16_t serverSubLev; /* Server's sublevel number */

} tsmInitExOut_t;

#define tsmInitExOutVersion 2

/*---+
| Type definition for dsmLogExIn_t
+---*/
typedef struct tsmLogExIn_t
{

dsUint16_t stVersion; /* structure version */
dsmLogSeverity severity;
dsChar_t appMsgID[8];
dsmLogType logType; /* log type : local, server, both */
dsChar_t *message; /* text of message to be logged */
dsChar_t appName[DSM_MAX_PLATFORM_LENGTH];
dsChar_t osPlatform[DSM_MAX_PLATFORM_LENGTH];
dsChar_t appVersion[DSM_MAX_PLATFORM_LENGTH];

} tsmLogExIn_t;

#define tsmLogExInVersion 2

/*---+
| Type definition for dsmlogExOut_t
+---*/
typedef struct tsmLogExOut_t
{

dsUint16_t stVersion; /* structure version */
} tsmLogExOut_t;

#define tsmLogExOutVersion 1

/*---+
| Type definition for dsmRenameIn_t
+---*/
typedef struct tsmRenameIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t tsmHandle; /* handle for session */
dsUint8_t repository; /* Backup or Archive */
tsmObjName *objNameP ; /* object name */
dsChar_t newHl[DSM_MAX_HL_LENGTH + 1]; /* new High level name */
dsChar_t newLl[DSM_MAX_LL_LENGTH + 1]; /* new Low level name */
dsmBool_t merge; /* merge into existing name*/
ObjID objId; /* objId for Archive */

} tsmRenameIn_t;

#define tsmRenameInVersion 1

180 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/*---+
| Type definition for dsmRenameOut_t
+---*/
typedef struct tsmRenameOut_t
{

dsUint16_t stVersion; /* structure version */
} tsmRenameOut_t;

#define tsmRenameOutVersion 1

/*---+
| Type definition for tsmEndSendObjExIn_t
+---*/
typedef struct tsmEndSendObjExIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t tsmHandle; /* handle for session */

} tsmEndSendObjExIn_t;

#define tsmEndSendObjExInVersion 1

/*---+
| Type definition for dsmEndSendObjExOut_t
+---*/
typedef struct tsmEndSendObjExOut_t
{

dsUint16_t stVersion; /* structure version */
dsStruct64_t totalBytesSent; /* total bytes read from app */
dsmBool_t objCompressed; /* was object compressed */
dsStruct64_t totalCompressSize; /* total size after compress */
dsStruct64_t totalLFBytesSent; /* total bytes sent Lan Free */
dsUint8_t encryptionType; /* type of encryption used */
dsmBool_t objDeduplicated; /* was object processed for dist. data dedup */
dsStruct64_t totalDedupSize; /* total size after de-dup */

}tsmEndSendObjExOut_t;

#define tsmEndSendObjExOutVersion 3

/*---+
| Type definition for tsmGroupHandlerIn_t
+---*/
typedef struct tsmGroupHandlerIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t tsmHandle; /* handle for session */
dsUint8_t groupType; /* Type of group */
dsUint8_t actionType; /* Type of group operation */
dsUint8_t memberType; /* Type of member: Leader or member */
dsStruct64_t leaderObjId; /* OBJID of the groupleader */
dsChar_t *uniqueGroupTagP; /* Unique group identifier */
tsmObjName *objNameP ; /* group leader object name */
dsmGetList memberObjList; /* list of objects to remove, assign */

} tsmGroupHandlerIn_t;

#define tsmGroupHandlerInVersion 1

/*---+
| Type definition for tsmGroupHandlerExOut_t
+---*/
typedef struct tsmGroupHandlerOut_t
{

dsUint16_t stVersion; /* structure version */
} tsmGroupHandlerOut_t;

#define tsmGroupHandlerOutVersion 1

Appendix B. API type definitions source files 181

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/*---+
| Type definition for tsmEndTxnExIn_t
+---*/
typedef struct tsmEndTxnExIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t tsmHandle; /* handle for session */
dsUint8_t vote;

} tsmEndTxnExIn_t;

#define tsmEndTxnExInVersion 1

/*---+
| Type definition for tsmEndTxnExOut_t
+---*/
typedef struct tsmEndTxnExOut_t
{

dsUint16_t stVersion; /* structure version */
dsUint16_t reason; /* reason code */
dsStruct64_t groupLeaderObjId; /* groupLeader obj id returned on */

/* DSM_ACTION_OPEN */
dsUint8_t reserved1; /* future use */
dsUint16_t reserved2; /* future use */

} tsmEndTxnExOut_t;

#define tsmEndTxnExOutVersion 1

/*---+
| Type definition for tsmEndGetDataExIn_t
+---*/
typedef struct tsmEndGetDataExIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t tsmHandle; /* handle for session */

}tsmEndGetDataExIn_t;

#define tsmEndGetDataExInVersion 1

/*---+
| Type definition for tsmEndGetDataExOut_t
+---*/
typedef struct tsmEndGetDataExOut_t
{

dsUint16_t stVersion; /* structure version */
dsUint16_t reason; /* reason code */
dsStruct64_t totalLFBytesRecv; /* total lan free bytes recieved */

}tsmEndGetDataExOut_t;

#define tsmEndGetDataExOutVersion 1

/*---+
| Type definition for on tsmRetentionEvent() |
+---*/
typedef struct tsmRetentionEventIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t tsmHandle; /* session Handle */
dsmEventType_t eventType; /* Event type */
dsmObjList_t objList; /* object ID */

}tsmRetentionEventIn_t;

#define tsmRetentionEventInVersion 1

/*---+
| Type definition for on tsmRetentionEvent() |
+---*/
typedef struct tsmRetentionEventOut_t

182 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

{
dsUint16_t stVersion ; /* structure version */

}tsmRetentionEventOut_t;

#define tsmRetentionEventOutVersion 1

/*---+
| Type definition for tsmUpdateObjExIn_t
+---*/
typedef struct tsmUpdateObjExIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t tsmHandle; /* session Handle */
tsmSendType sendType; /* send type back/arch */
dsChar_t *descrP; /* archive description */
tsmObjName *objNameP; /* objName */
tsmObjAttr *objAttrPtr; /* attribute */
dsUint32_t objUpdAct; /* update action */
ObjID archObjId; /* objId for archive */

}tsmUpdateObjExIn_t;

#define tsmUpdateObjExInVersion 1

/*---+
| Type definition for tsmUpdateObjExOut_t
+---*/
typedef struct tsmUpdateObjExOut_t
{

dsUint16_t stVersion; /* structure version */
}tsmUpdateObjExOut_t;

#define tsmUpdateObjExOutVersion 1

#if _OPSYS_TYPE == DS_WINNT
#pragma pack()
#endif

#ifdef _MAC
#pragma options align = reset
#endif
#endif /* _H_TSMAPITD */

/***
* Tivoli Storage Manager *
* API Client Component *
* *
* (C) Copyright IBM Corporation 1993,2008 *
***/
/**
* Header File Name: dsmapips.h
*
* Environment: ***
* ** This is a platform-specific source file **
* ** versioned for Windows NT **
*
* ***
*
* Design Notes: This file includes platform dependent definitions
*
* Descriptive-name: Definitions for Tivoli Storage Manager typedefs and LINKAGE
---/
#ifndef _H_DSMAPIPS
#define _H_DSMAPIPS
#ifndef _WIN64
#pragma pack(1)
#endif
/*<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>*/

Appendix B. API type definitions source files 183

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* T Y P E D E F S */
/*<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>*/
/* new typedef file for Version 3 */
#if !defined(DSMAPILIB) || defined (XOPEN_BUILD)
/* support for linkage */
#include <windows.h>
#define DSMLINKAGE WINAPI
#define DS_WINNT 22
#define _OPSYS_TYPE DS_WINNT

typedef signed char dsInt8_t;
typedef unsigned char dsUint8_t;
typedef signed short dsInt16_t;
typedef unsigned short dsUint16_t;
typedef signed long dsInt32_t;
typedef unsigned long dsUint32_t;

/*=== Character and string types ===*/
#ifdef UNICODE

typedef wchar_t dsChar_t;
#define dsTEXT(x) L##x

#else
typedef char dsChar_t;
#define dsTEXT(x) x

#endif /* !UNICODE */
/*=== Common typedefs and defines derived from dsChar_t ===*/
typedef dsChar_t *dsString_t;

/* added for the extended restore order */
typedef struct
{

dsUint32_t top;
dsUint32_t hi_hi;
dsUint32_t hi_lo;
dsUint32_t lo_hi;
dsUint32_t lo_lo;

} dsUint160_t ;
#if defined(_LONG_LONG)

typedef __int64 dsInt64_t;
typedef unsigned __int64 dsUint64_t;
/*=== A "true" unsigned 64-bit integer ===*/
typedef __int64 dsLongLong_t;

#else
typedef struct tagUINT64_t

{
dsUint32_t hi; /* Most significant 32 bits. */
dsUint32_t lo; /* Least significant 32 bits. */

} dsUint64_t;
#endif
/*---+
| Type definition for bool_t |
+---*/
/*
* Had to create a Boolean type that didn't clash with any other predefined
* version in any operating system or windowing system.
*/

typedef enum
{

dsmFalse = 0x00,
dsmTrue = 0x01

}dsmBool_t ;
/*=== for backward compatability ===*/
#define uint8 dsUint8_t
#define int8 dsInt8_t
#define uint16 dsUint16_t
#define int16 dsInt16_t
#define uint32 dsUint32_t
#define int32 dsInt32_t
#define uint64 dsStruct64_t
#define bool_t dsBool_t

184 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

#define dsBool_t dsmBool_t
#define bTrue dsmTrue
#define bFalse dsmFalse
typedef struct
{

dsUint32_t hi; /* Most significant 32 bits. */
dsUint32_t lo; /* Least significant 32 bits. */

}dsStruct64_t ;
#endif /* DSMAPILIB */
#ifndef _WIN64
#pragma pack()
#endif
#endif /* _H_DSMAPIPS */</windows.h>

/***
* Tivoli Storage Manager *
* Common Source Component *
* *
* (C) Copyright IBM Corporation 1993,2010 *
***/

/***
* Header File Name: release.h
*
* Environment: **
* ** This is a platform-independent source file **
* **
*
* Design Notes: This file contains the common information about
* the actual version.release.level.sublevel
*
* Descriptive-name: Definitions for Tivoli Storage manager version
*
* Note: This file should contain no LOG or CMVC information. It is
* shipped with the API code.
*
--/

#ifndef _H_RELEASE
#define _H_RELEASE

#define COMMON_VERSION 6
#define COMMON_RELEASE 2
#define COMMON_LEVEL 0
#define COMMON_SUBLEVEL 00
#define COMMON_DRIVER dsTEXT("")

#define COMMON_VERSIONTXT "6.2.0.00"

#define SHIPYEARTXT "2010"
#define SHIPYEARTXTW dsTEXT("2010")
#define TSMPRODTXT "IBM Tivoli Storage Manager"

/*==
The following string definitions are used for VERSION information
and should not be converted to dsTEXT or osTEXT. They are used
only at link time.

These are also used when the Jar file is built on Unix. See the
the perl script tools/unx/mzbuild/createReleaseJava

==*/
#define COMMON_VERSION_STR "6"
#define COMMON_RELEASE_STR "2"
#define COMMON_LEVEL_STR "0"
#define COMMON_SUBLEVEL_STR "00"
#define COMMON_DRIVER_STR "091116B"

/*=== product names definitions ===*/

Appendix B. API type definitions source files 185

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define COMMON_NAME_DFDSM 1
#define COMMON_NAME_ADSM 2
#define COMMON_NAME_TSM 3
#define COMMON_NAME_ITSM 4
#define COMMON_NAME COMMON_NAME_ITSM

/*==
Internal version, release, and level (build) version. This
should be unique for every version+release+ptf of a product.
This information is recorded in the file attributes and data
stream for diagnostic purposes.
NOTE: DO NOT MODIFY THESE VALUES. YOU CAN ONLY ADD NEW ENTRIES ONLY!

==*/
#define COMMON_BUILD_TSM_510 1
#define COMMON_BUILD_TSM_511 2
#define COMMON_BUILD_TSM_515 3
#define COMMON_BUILD_TSM_516 4
#define COMMON_BUILD_TSM_520 5
#define COMMON_BUILD_TSM_522 6
#define COMMON_BUILD_TSM_517 7
#define COMMON_BUILD_TSM_523 8
#define COMMON_BUILD_TSM_530 9
#define COMMON_BUILD_TSM_524 10
#define COMMON_BUILD_TSM_532 11
#define COMMON_BUILD_TSM_533 12
#define COMMON_BUILD_TSM_525 13
#define COMMON_BUILD_TSM_534 14
#define COMMON_BUILD_TSM_540 15
#define COMMON_BUILD_TSM_535 16
#define COMMON_BUILD_TSM_541 17
#define COMMON_BUILD_TSM_550 18
#define COMMON_BUILD_TSM_542 19
#define COMMON_BUILD_TSM_551 20
#define COMMON_BUILD_TSM_610 21
#define COMMON_BUILD_TSM_552 22
#define COMMON_BUILD_TSM_611 23
#define COMMON_BUILD_TSM_543 24
#define COMMON_BUILD_TSM_620 25
#define COMMON_BUILD COMMON_BUILD_TSM_620

#endif /* _H_RELEASE */

186 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Appendix C. API function definitions source file

This appendix contains the dsmapifp.h header file, so you can see the function
definitions for the API.

Note: DSMLINKAGE is defined differently for each operating system. See the
definitions in the dsmapips.h file for your specific operating system.

/***
* Tivoli Storage Manager *
* API Client Component *
* *
* (C) Copyright IBM Corporation 1993,2008 *
***/
/**/
/* Header File Name: dsmapifp.h */
/* */
/* Descriptive-name: Tivoli Storage Manager API function prototypes */
/**/
#ifndef _H_DSMAPIFP
#define _H_DSMAPIFP
#if defined(__cplusplus)
extern "C" {
#endif
#ifdef DYNALOAD_DSMAPI
/* function will be dynamically loaded */
#include "dsmapidl.h"
#else
/* functions will be implicitly loaded from library */
/*==*/
/* P U B L I C F U N C T I O N S */
/*==*/
extern dsInt16_t DSMLINKAGE dsmBeginGetData(

dsUint32_t dsmHandle,
dsBool_t mountWait,
dsmGetType getType,
dsmGetList *dsmGetObjListP

);
extern dsInt16_t DSMLINKAGE dsmBeginQuery(

dsUint32_t dsmHandle,
dsmQueryType queryType,
dsmQueryBuff *queryBuffer

);
extern dsInt16_t DSMLINKAGE dsmBeginTxn(

dsUint32_t dsmHandle
);
extern dsInt16_t DSMLINKAGE dsmBindMC(

dsUint32_t dsmHandle,
dsmObjName *objNameP,
dsmSendType sendType,
mcBindKey *mcBindKeyP

);
extern dsInt16_t DSMLINKAGE dsmChangePW(

dsUint32_t dsmHandle,
char *oldPW,
char *newPW

);
extern dsInt16_t DSMLINKAGE dsmCleanUp(

dsBool_t mtFlag
);
extern dsInt16_t DSMLINKAGE dsmDeleteAccess(

dsUint32_t dsmHandle,
dsUint32_t ruleNum

© Copyright IBM Corp. 1993, 2010 187

);
extern dsInt16_t DSMLINKAGE dsmDeleteObj(

dsUint32_t dsmHandle,
dsmDelType delType,
dsmDelInfo delInfo

);
extern dsInt16_t DSMLINKAGE dsmDeleteFS(

dsUint32_t dsmHandle,
char *fsName,
dsUint8_t repository

);
extern dsInt16_t DSMLINKAGE dsmEndGetData(

dsUint32_t dsmHandle
);
extern dsInt16_t DSMLINKAGE dsmEndGetDataEx(

dsmEndGetDataExIn_t *dsmEndGetDataExInP,
dsmEndGetDataExOut_t *dsmEndGetDataExOutP

);
extern dsInt16_t DSMLINKAGE dsmEndGetObj(

dsUint32_t dsmHandle
);
extern dsInt16_t DSMLINKAGE dsmEndQuery(

dsUint32_t dsmHandle
);
extern dsInt16_t DSMLINKAGE dsmEndSendObj(

dsUint32_t dsmHandle
);
extern dsInt16_t DSMLINKAGE dsmEndSendObjEx(

dsmEndSendObjExIn_t *dsmEndSendObjExInP,
dsmEndSendObjExOut_t *dsmEndSendObjExOutP

);
extern dsInt16_t DSMLINKAGE dsmEndTxnEx(

dsmEndTxnExIn_t *dsmEndTxnExInP,
dsmEndTxnExOut_t *dsmEndTxnExOutP

);
extern dsInt16_t DSMLINKAGE dsmEndTxn(

dsUint32_t dsmHandle,
dsUint8_t vote,
dsUint16_t *reason

);
extern dsInt16_t DSMLINKAGE dsmGetData(

dsUint32_t dsmHandle,
DataBlk *dataBlkPtr

);
extern dsInt16_t DSMLINKAGE dsmGetBufferData(

getBufferDataIn_t *dsmGetBufferDataInP,
getBufferDataOut_t *dsmGetBufferDataOutP

);
extern dsInt16_t DSMLINKAGE dsmGetNextQObj(

dsUint32_t dsmHandle,
DataBlk *dataBlkPtr

) ;
extern dsInt16_t DSMLINKAGE dsmGetObj(

dsUint32_t dsmHandle,
ObjID *objIdP,
DataBlk *dataBlkPtr

);
extern dsInt16_t DSMLINKAGE dsmGroupHandler(

dsmGroupHandlerIn_t *dsmGroupHandlerInP,
dsmGroupHandlerOut_t *dsmGroupHandlerOutP

);
extern dsInt16_t DSMLINKAGE dsmInit(

dsUint32_t *dsmHandle,
dsmApiVersion *dsmApiVersionP,
char *clientNodeNameP,
char *clientOwnerNameP,
char *clientPasswordP,

188 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

char *applicationType,
char *configfile,
char *options

);
extern dsInt16_t DSMLINKAGE dsmInitEx(

dsUint32_t *dsmHandleP,
dsmInitExIn_t *dsmInitExInP,
dsmInitExOut_t *dsmInitExOutP

);
extern dsInt16_t DSMLINKAGE dsmLogEvent(

dsUint32_t dsmHandle,
logInfo *lopInfoP

);
extern dsInt16_t DSMLINKAGE dsmLogEventEx(

dsUint32_t dsmHandle,
dsmLogExIn_t *dsmLogExInP,
dsmLogExOut_t *dsmLogExOutP

);
extern dsInt16_t DSMLINKAGE dsmQueryAccess(

dsUint32_t dsmHandle,
qryRespAccessData **accessListP,
dsUint16_t *numberOfRules

);
extern void DSMLINKAGE dsmQueryApiVersion(

dsmApiVersion *apiVersionP
);
extern void DSMLINKAGE dsmQueryApiVersionEx(

dsmApiVersionEx *apiVersionP
);
extern dsInt16_t DSMLINKAGE dsmQueryCliOptions(

optStruct *optstructP
);
extern dsInt16_t DSMLINKAGE dsmQuerySessInfo(

dsUint32_t dsmHandle,
ApiSessInfo *SessInfoP

);
extern dsInt16_t DSMLINKAGE dsmQuerySessOptions(

dsUint32_t dsmHandle,
optStruct *optstructP

);
extern dsInt16_t DSMLINKAGE dsmRCMsg(

dsUint32_t dsmHandle,
dsInt16_t dsmRC,
char *msg

);
extern dsInt16_t DSMLINKAGE dsmRegisterFS(

dsUint32_t dsmHandle,
regFSData *regFilespaceP

);
extern dsInt16_t DSMLINKAGE dsmReleaseBuffer(

releaseBufferIn_t *dsmReleaseBufferInP,
releaseBufferOut_t *dsmReleaseBufferOutP

);
extern dsInt16_t DSMLINKAGE dsmRenameObj(

dsmRenameIn_t *dsmRenameInP,
dsmRenameOut_t *dsmRenameOutP

);
extern dsInt16_t DSMLINKAGE dsmRequestBuffer(

requestBufferIn_t *dsmRequestBufferInP,
requestBufferOut_t *dsmRequestBufferOutP

);
extern dsInt16_t DSMLINKAGE dsmRetentionEvent(

dsmRetentionEventIn_t *dsmRetentionEventInP,
dsmRetentionEventOut_t *dsmRetentionEventOutP

);
extern dsInt16_t DSMLINKAGE dsmSendBufferData(

sendBufferDataIn_t *dsmSendBufferDataInP,

Appendix C. API function definitions source file 189

sendBufferDataOut_t *dsmSendBufferDataOutP
);
extern dsInt16_t DSMLINKAGE dsmSendData(

dsUint32_t dsmHandle,
DataBlk *dataBlkPtr

) ;
extern dsInt16_t DSMLINKAGE dsmSendObj(

dsUint32_t dsmHandle,
dsmSendType sendType,
void *sendBuff,
dsmObjName *objNameP,
ObjAttr *objAttrPtr,
DataBlk *dataBlkPtr

);
extern dsInt16_t DSMLINKAGE dsmSetAccess(

dsUint32_t dsmHandle,
dsmAccessType accessType,
dsmObjName *objNameP,
char *node,
char *owner

);
extern dsInt16_t DSMLINKAGE dsmSetUp(

dsBool_t mtFlag,
envSetUp *envSetUpP

);
extern dsInt16_t DSMLINKAGE dsmTerminate(

dsUint32_t dsmHandle
);
extern dsInt16_t DSMLINKAGE dsmUpdateFS(

dsUint32_t dsmHandle,
char *fs,
dsmFSUpd *fsUpdP,
dsUint32_t fsUpdAct

);
extern dsInt16_t DSMLINKAGE dsmUpdateObj(

dsUint32_t dsmHandle,
dsmSendType sendType,
void *sendBuff,
dsmObjName *objNameP,
ObjAttr *objAttrPtr,
dsUint32_t objUpdAct

);
extern dsInt16_t DSMLINKAGE dsmUpdateObjEx(

dsmUpdateObjExIn_t *dsmUpdateObjExInP,
dsmUpdateObjExOut_t *dsmUpdateObjExOutP

);
#endif /* ifdef DYNALOAD */
#if defined(__cplusplus)

}
#endif
#endif /* _H_DSMAPIFP */

This section contains the function definitions for the API. It is a copy of the
tsmapifp.h header file.

Note: DSMLINKAGE is defined differently for each operating system. See the
definitions in the tsmapips.h file for your specific operating system.

/***
* Tivoli Storage Manager *
* API Client Component *
* *
* (C) Copyright IBM Corporation 1993,2008 *
***/
/**/
/* Header File Name: tsmapifp.h */
/* */

190 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

/* Descriptive-name: Tivoli Storage Manager API function prototypes */
/**/
#ifndef _H_TSMAPIFP
#define _H_TSMAPIFP
#if defined(__cplusplus)
extern "C" {
#endif
#ifdef DYNALOAD_DSMAPI
/* function will be dynamically loaded */
#include "dsmapidl.h"
#else
/* functions will be implicitly loaded from library */
/*==*/
/*P U B L I C F U N C T I O N S */
/*==*/
typedef void tsmQueryBuff;
extern dsInt16_t DSMLINKAGE tsmBeginGetData(

dsUint32_t tsmHandle,
dsBool_t mountWait,
tsmGetType getType,
dsmGetList *dsmGetObjListP

);
extern dsInt16_t DSMLINKAGE tsmBeginQuery(

dsUint32_t tsmHandle,
tsmQueryType queryType,
tsmQueryBuff *queryBuffer

);
extern dsInt16_t DSMLINKAGE tsmBeginTxn(

dsUint32_t tsmHandle
);
extern dsInt16_t DSMLINKAGE tsmBindMC(

dsUint32_t tsmHandle,
tsmObjName *objNameP,
tsmSendType sendType,
tsmMcBindKey *mcBindKeyP

);
extern dsInt16_t DSMLINKAGE tsmChangePW(

dsUint32_t tsmHandle,
dsChar_t *oldPW,
dsChar_t *newPW

);
extern dsInt16_t DSMLINKAGE tsmCleanUp(

dsBool_t mtFlag
);
extern dsInt16_t DSMLINKAGE tsmDeleteAccess(

dsUint32_t tsmHandle,
dsUint32_t ruleNum

);
extern dsInt16_t DSMLINKAGE tsmDeleteObj(

dsUint32_t tsmHandle,
tsmDelType delType,
tsmDelInfo delInfo

);
extern dsInt16_t DSMLINKAGE tsmDeleteFS(

dsUint32_t tsmHandle,
dsChar_t *fsName,
dsUint8_t repository

);
extern dsInt16_t DSMLINKAGE tsmEndGetData(

dsUint32_t tsmHandle
);
extern dsInt16_t DSMLINKAGE tsmEndGetDataEx(

tsmEndGetDataExIn_t *tsmEndGetDataExInP,
tsmEndGetDataExOut_t *tsmEndGetDataExOutP

);
extern dsInt16_t DSMLINKAGE tsmEndGetObj(

dsUint32_t tsmHandle

Appendix C. API function definitions source file 191

);
extern dsInt16_t DSMLINKAGE tsmEndQuery(

dsUint32_t tsmHandle
);
extern dsInt16_t DSMLINKAGE tsmEndSendObj(

dsUint32_t tsmHandle
);
extern dsInt16_t DSMLINKAGE tsmEndSendObjEx(

tsmEndSendObjExIn_t *tsmEndSendObjExInP,
tsmEndSendObjExOut_t *tsmEndSendObjExOutP

);
extern dsInt16_t DSMLINKAGE tsmEndTxn(

dsUint32_t tsmHandle,
dsUint8_t vote,
dsUint16_t *reason

);
extern dsInt16_t DSMLINKAGE tsmEndTxnEx(

tsmEndTxnExIn_t *tsmEndTxnExInP,
tsmEndTxnExOut_t *tsmEndTxnExOutP

);
extern dsInt16_t DSMLINKAGE tsmGetData(

dsUint32_t tsmHandle,
DataBlk*dataBlkPtr

);
extern dsInt16_t DSMLINKAGE tsmGetBufferData(

getBufferDataIn_t *tsmGetBufferDataInP,
getBufferDataOut_t *tsmGetBufferDataOutP

);
extern dsInt16_t DSMLINKAGE tsmGetNextQObj(

dsUint32_t tsmHandle,
DataBlk*dataBlkPtr

) ;
extern dsInt16_t DSMLINKAGE tsmGetObj(

dsUint32_t tsmHandle,
ObjID *objIdP,
DataBlk *dataBlkPtr

);
extern dsInt16_t DSMLINKAGE tsmGroupHandler(

tsmGroupHandlerIn_t *tsmGroupHandlerInP,
tsmGroupHandlerOut_t *tsmGroupHandlerOutP

);
extern dsInt16_t DSMLINKAGE tsmInitEx(

dsUint32_t *tsmHandleP,
tsmInitExIn_t *tsmInitExInP,
tsmInitExOut_t *tsmInitExOutP

);
extern dsInt16_t DSMLINKAGE tsmLogEventEx(

dsUint32_t tsmHandle,
tsmLogExIn_t *tsmLogExInP,
tsmLogExOut_t *tsmLogExOutP

);
extern dsInt16_t DSMLINKAGE tsmQueryAccess(

dsUint32_t tsmHandle,
tsmQryRespAccessData **accessListP,
dsUint16_t *numberOfRules

);
extern void DSMLINKAGE tsmQueryApiVersionEx(

tsmApiVersionEx *apiVersionP
);
extern dsInt16_t DSMLINKAGE tsmQueryCliOptions(

tsmOptStruct *optstructP
);
extern dsInt16_t DSMLINKAGE tsmQuerySessInfo(

dsUint32_t tsmHandle,
tsmApiSessInfo *SessInfoP

);
extern dsInt16_t DSMLINKAGE tsmQuerySessOptions(

192 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

dsUint32_t tsmHandle,
tsmOptStruct *optstructP

);
extern dsInt16_t DSMLINKAGE tsmRCMsg(

dsUint32_t tsmHandle,
dsInt16_t tsmRC,
dsChar_t *msg

);
extern dsInt16_t DSMLINKAGE tsmRegisterFS(

dsUint32_t tsmHandle,
tsmRegFSData *regFilespaceP

);
extern dsInt16_t DSMLINKAGE tsmReleaseBuffer(

releaseBufferIn_t *tsmReleaseBufferInP,
releaseBufferOut_t *tsmReleaseBufferOutP

);
extern dsInt16_t DSMLINKAGE tsmRenameObj(

tsmRenameIn_t *tsmRenameInP,
tsmRenameOut_t *tsmRenameOutP

);
extern dsInt16_t DSMLINKAGE tsmRequestBuffer(

requestBufferIn_t *tsmRequestBufferInP,
requestBufferOut_t *tsmRequestBufferOutP

);
extern dsInt16_t DSMLINKAGE tsmRetentionEvent(

tsmRetentionEventIn_t *tsmRetentionEventInP,
tsmRetentionEventOut_t *tsmRetentionEventOutP

);
extern dsInt16_t DSMLINKAGE tsmSendBufferData(

sendBufferDataIn_t *tsmSendBufferDataInP,
sendBufferDataOut_t *tsmSendBufferDataOutP

);
extern dsInt16_t DSMLINKAGE tsmSendData(

dsUint32_t tsmHandle,
DataBlk *dataBlkPtr

);
extern dsInt16_t DSMLINKAGE tsmSendObj(

dsUint32_t tsmHandle,
tsmSendType sendType,
void *sendBuff,
tsmObjName *objNameP,
tsmObjAttr *objAttrPtr,
DataBlk *dataBlkPtr

);
extern dsInt16_t DSMLINKAGE tsmSetAccess(

dsUint32_t tsmHandle,
tsmAccessType accessType,
tsmObjName *objNameP,
dsChar_t *node,
dsChar_t *owner

);
extern dsInt16_t DSMLINKAGE tsmSetUp(

dsBool_t mtFlag,
tsmEnvSetUp *envSetUpP

);
extern dsInt16_t DSMLINKAGE tsmTerminate(

dsUint32_t tsmHandle
);
extern dsInt16_t DSMLINKAGE tsmUpdateFS(

dsUint32_t tsmHandle,
dsChar_t *fs,
tsmFSUpd *fsUpdP,
dsUint32_t fsUpdAct

);
extern dsInt16_t DSMLINKAGE tsmUpdateObj(

dsUint32_t tsmHandle,
tsmSendType sendType,

Appendix C. API function definitions source file 193

void *sendBuff,
tsmObjName *objNameP,
tsmObjAttr *objAttrPtr,
dsUint32_t objUpdAct

);
extern dsInt16_t DSMLINKAGE tsmUpdateObjEx(

tsmUpdateObjExIn_t *tsmUpdateObjExInP,
tsmUpdateObjExOut_t *tsmUpdateObjExOutP

);
#if _OPSYS_TYPE == DS_NETWARE
extern void dsmAbort();
#endif
#endif /* ifdef DYNALOAD */
#if defined(__cplusplus)

}
#endif
#endif /* _H_TSMAPIFP */

194 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Appendix D. The X/Open Backup Services API

The X/Open Backup Services API (XBSA) is a set of function definitions, data
structures, and return codes that the Open Group developed to present a
standardized interface between applications that need to perform backup or
archive operations, and the enterprise solutions that provide these services. Tivoli
Storage Manager is such a solution.

See http://www.opengroup.org/publications for more information.

TSM supports the Open Group Technical Standard. See the header files included
with the Tivoli Storage Manager client package for details on the implementation

The X/Open API contains the following operations:
v Start or end a Tivoli Storage Manager session
v Assign management classes to objects before storing them on a Tivoli Storage

Manager server
v Backup or archive objects to a Tivoli Storage Manager server
v Restore or retrieve objects from a Tivoli Storage Manager server
v Query a Tivoli Storage Manager server for information about objects that are

stored on the server
v Delete backed-up and archived objects from a Tivoli Storage Manager server

The X/Open API for Tivoli Storage Manager is available on the following
platforms:
v AIX
v HP-UX
v Solaris

See the platform README_api_enu for specific information.

When you, as an application developer, install the X/Open API, you receive the
following:
v The source code for the three X/Open API header files that your application

needs
v The source code for a sample application and the makefile to build it
v The following files that an end user of an application would need:

– The X/Open API shared library
– Sample client options files
– Documentation

For information about installing the X/Open API, see the Tivoli Storage Manager
Installation and Using Guide for your operating system.

© Copyright IBM Corp. 1993, 2010 195

http://www.opengroup.org/publications

Setting up X/Open API options files
Use the options files to set the conditions and boundaries under which your Tivoli
Storage Manager session runs.

The Tivoli Storage Manager administrator, the end user, or you can set the
available options. The values of various options permit you to:
v Set up the connection to a Tivoli Storage Manager server
v Control which objects are sent to the server and with what management class

they are associated

The same option can appear in more than one options file. When this happens, the
file with the highest priority takes precedence. The options files, in order of
decreasing priority, include:
1. Administrator options. Options that a Tivoli Storage Manager administrator

sets, whether on the client or the server, override any options that are set by
you or the end user. For example, the administrator can specify whether or not
objects can be compressed before being sent to a Tivoli Storage Manager server.
In this case, setting the compression option in the client options file has no
effect. The administrator can also decide that the client should decide to permit
compression. Setting the compression option in the client options file then
determines if objects are compressed before they are stored.

2. The Tivoli Storage Manager options files on the UNIX or Linux platform
include the user options file (dsm.opt) and the system options file (dsm.sys).
The end user sets up these files when the API is first installed on the user's
workstation.

For more information on the options available, see the Tivoli Storage Manager
Installation and Using Guide for your operating system.

Building the X/Open API sample application
The API package that you receive includes a sample application. This sample
application demonstrates the use of the X/Open API function calls in context.
Install the sample application and view its source code to understand how you can
use the function calls.

The files listed in Table 63 comprise the source files and other files that you need
to build the sample application included with the X/Open API.

Table 63. Files available to build X/Open API sample application

File Name Description

custom.h Platform custom integer definitions header file

xbsa.h Header file containing constants, return codes, structure and
type definitions, and function prototypes for the Data
Movement function group

policy.h Header file containing structure definitions relating to policy

dsmapitd.h Header file containing general type definitions

dsmapips.h Header file containing platform-specific type definitions

196 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Table 63. Files available to build X/Open API sample application (continued)

File Name Description

xapidata.h
xapint64.h
xapint64.c
xapipref.c
xapipref.h
xapiqry.c
xapiqry.h
xapismp.c
xapiutil.h
xapiutil.c
xapicont.c
xapidef.h
xapidel.c

xapidel.h
xapidisp.c
xapidisp.h
xapilist.c
xapilist.h
xapiour.c
xapiour.h
xapirecv.c
xapirecv.h
xapisend.c
xapisend.h
xapisess.c
xapisess.h

Modules for the command-line-driven sample application

libXApi.xxx Platform-specific suffix

makexapi.aix
makexapi.sol
Makexapi.hp

Makefile to build xapismp for AIX
Makefile to build xapismp for Solaris

xapismp X/Open API sample program

When you run the application, remember the following:
v You must run the Signon action before other actions.
v When you enter the object space name or the pathname, prefix them with the

correct path delimiter. This is true even if you are specifying the asterisk (*)
wildcard character.

v The sample application creates its own data streams when backing up or
archiving objects. The object name does not correspond to any file on your
workstation. The “Seed string” you enter is used to generate a pattern that can
be verified when the object is restored or retrieved.

Follow these steps to compile the sample application and test the installation.

Note: Several steps have slight variations, depending on which UNIX or Linux
platform you are using. See the README_api_enu file for specific information.
1. Copy the API library to the /usr/lib directory or create a symbolic link to the

file from the /usr/lib directory.
2. Copy the sample application files to the target directory.
3. Copy the header files to the target directory.
4. Copy the makefile to the target directory.
5. Compile the sample.
6. Ensure that your environment variables, especially DSMI_DIR, and options files

are set up. See the Tivoli Storage Manager Installation and User's Guide for your
operating system.

7. Log on as root the first time for password registration.
8. Run xapismp to start the sample application.
9. Follow the instructions that appear on the screen.

Appendix D. The X/Open Backup Services API 197

Tivoli Storage Manager X/Open API design considerations
Before beginning the design of an X/Open application, you need to have a broad
understanding of many aspects of that API.

This section describes how to use the X/Open Application Programming Interface.
You should be familiar with this section before you design or write an application
that uses the X/Open API.

The Tivoli Storage Manager X/Open API supports the functions in XBSA Data
Movement function group. These functions include the following:

Functions
BSABeginTxn BSAGetNextQueryObject
BSAChangeToken BSAGetObject
BSACreateObject BSAInit
BSADeleteObject BSAMarkObjectInactive
BSAEndData BSAQueryApiVersion
BSAEndTxn BSAQueryObject
BSAGetData BSASendData
BSAGetEnvironment BSATerminate

The X/Open API also supports the BSAResolveLifecycleGroup. See the X/Open
Specification for detailed information on each function.

Note: The following functions are part of the XBSA Data Movement function
group, but are not currently used in the X/Open API. Calls to these functions
return the code, BSA_RC_BAD_CALL_SEQUENCE.

BSACreateObjectF
BSAGetObjectF
BSASetEnvironment

The API package that you receive includes a sample application (see “Building the
X/Open API sample application” on page 196). Review the source code for the
sample application to see examples of the X/Open API functions in context.

X/Open to Tivoli Storage Manager data field mapping
You need to know the mappings of X/Open data fields to Tivoli Storage Manager
data fields.

Included here is a mapping between the X/Open data fields and the
corresponding Tivoli Storage Manager fields:

X/Open fields Tivoli Storage Manager fields
BSAObjectOwner Node name
AppObjectOwner Session owner name
SecurityToken Password
objectspaceName Filespace name
Left part of pathname High-level name
Rightmost part of pathname Low-level name
LifecycleGroup Management class
ResourceType FileSpaceType and objInfo

198 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Maintaining version control in the X/Open API
All APIs have some form of version control, and X/Open is no exception. Ensure
that the version of the X/Open API you are using in your application is
compatible with the version of the X/Open API library that the end users have
installed on their workstations.

The first API call that is issued when using the X/Open API should be
BSAQueryApiVersion. This call:
v Confirms that the X/Open API library is installed and available on the end

user's system.
v Returns the version level of the X/Open API library that the application

accesses.

The X/Open API is upwardly compatible. Applications written to older versions or
releases of the X/Open API library still operates correctly if the end user is
running a newer version.

Determining the release of the X/Open API library is very important because some
releases might have different memory requirements and data structure definitions.
Downward compatibility might be possible on an individual basis. However, it is
not recommended. Downward compatibility, if a requirement, is the responsibility
of the application client.

The X/Open API library and the Trusted Communication Agent module (dsmtca)
must be at the same level.

The BSAQueryApiVersion call returns the version of the X/Open API library that
is installed on the end user's workstation. You can then compare the returned
value with the version of the X/Open API with which the application client was
built.

The version number of the application client's API is entered in the compiled object
code as a set of three constants:

BSA_API_VERSION
BSA_API_RELEASE
BSA_API_LEVEL

These constants are defined in the header file custom.h. The application client's
API version should usually be less than, or equal to, the X/Open API library
installed on the user's system. Be careful with any other condition.

The BSAQueryApiVersion call can be made at any time, whether the API session
has been started or not.

Starting or ending a session
Tivoli Storage Manager is a session-based product, and all activities must be
performed within a Tivoli Storage Manager session. To start a session, the
application starts the BSAInit call. This call must be performed prior to any other
API call except BSAQueryApiVersion.

The BSAInit function sets up a session with the Tivoli Storage Manager server as
indicated in that are passed in the call or are defined in the options files. Values in
the environment pointer field are currently ignored.

Appendix D. The X/Open Backup Services API 199

Note: The application client only registers new nodes with a Tivoli Storage
Manager server if the server has closed registration. If a server has open
registration, any nodes that are already registered with the server are accepted by
the application. However, if a server has open registration and BSAInit tries to
register a new node, the return code, BSA_AUTH_FAILURE is generated.
Application designers should tell their customers about this requirement so that
customers can configure their servers accordingly.

The ObjectOwner fields are particularly important to a Tivoli Storage Manager
session. The BSAObjectOwner is used as the Tivoli Storage Manager node name.
The AppObjectOwner contains the Tivoli Storage Manager session owner name.
The node name and password are used for session authentication with the Tivoli
Storage Manager server. The session owner name is used to determine which
objects can be accessed during the session.

Two modes for handling passwords, prompt and generate, are set in the
passwordaccess option in the client options file. For the prompt mode, the
node/owner/password must be supplied in the call to BSAInit. For the generate
mode, the Tivoli Storage Manager trusted agent decides on the node and owner
name. The password is stored in a file.

If the user's dsm.sys file sets passwordaccess to prompt, then the Tivoli Storage
Manager node and password (security token) must be supplied. The session owner
can be whatever name you select. An empty string for the session owner ([0]='\0')
is used to mean the root owner. The application has control of the object owner
values.

If the user's dsm.sys file sets passwordaccess to generate, then a value is not supplied
for BSAObjOwner or AppObjOwner. These fields must be empty strings. The
node name that is used is the machine name, and the session owner is the login
user's name. The security token field is ignored in this situation.

If an application passes either node or session owner values when the mode is
generate, it receives a return code of TSM_RC_PSWD_GEN. In this case, if your
application supports passwordaccess set to generate, BSAInit must be issued again
with empty ObjectOwner fields. If your application requires passwordaccess set to
prompt, then stop and tell the user to change the option in their dsm.sys file.

You should follow BSAInit with a call to BSAGetEnvironment to retrieve the
actual node and owner that is used for the session. If dsm.sys has passwordaccess
set to generate, these values are node = hostname, and owner = login user.

When passwordaccess is set to generate, the root user must start the first Tivoli
Storage Manager session. This is necessary to create the file where the password is
stored.

End a session with a BSATerminate call. This causes the X/Open API to close any
connection with the Tivoli Storage Manager server and free all resources associated
with this session.

Note: Only one session can be active per call of the API. However, applications on
UNIX or Linux platforms can circumvent this restriction by running with multiple
processes, with each process owning its own Tivoli Storage Manager session.

200 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Passwordaccess option
If the end user has set passwordaccess to generate in the client options file, and that
user is not the root user, then the Trusted Communication Agent (dsmtca) child
process is forced to manage the session with the Tivoli Storage Manager server.
The SIGCLD signal is used during ending. If you set passwordaccess to prompt, then
a child process is not used.

Session security
Tivoli Storage Manager, a session-based system, has security components that
permit applications to start sessions in a secure manner. These security measures
prohibit unauthorized access to the server and help insure system integrity.

Every session that the server starts must complete a sign-on process. This sign-on
process requires a password that, when coupled with the node name of the client,
insures proper authorization when connecting to the server. The application client
is responsible for providing this password to the X/Open API for session
initialization.

Passwords have expiration periods associated with them. If a BSAInit call fails
with the password-expired return code (BSA_RC_TOKEN_EXPIRED), update the
password before you can successfully establish the session.

Only the root session owner can change the password. First, make the BSAInit call
with an empty string in the appObjectOwner field. Then, call BSAChangeToken to
update the password.

Objects stored in the system also have ownerships associated with them. See
“Identifying the object using X/Open API” on page 211 to understand how an
application can take advantage of this to support multi-user applications. The
application client is responsible for insuring that security and ownership rules are
met once a session is started.

Determining the session parameters using X/Open API
After the BSAInit function is called to start a session, the application can make a
call to BSAGetEnvironment to determine the parameters set for the session. The
BSAGetEnvironment call returns such items as the node, owner, and server names
used for the session, and the maximum number of objects that can be created in a
single transaction.

The objectOwner.bsaObjectOwner field contains the Tivoli Storage Manager node
name. This corresponds to the BSAObjOwner field when passwordaccess is set to
prompt. When passwordaccess is set to generate, this field contains the machine name.

The objectOwner.appObjectOwner field contains the Tivoli Storage Manager
owner name. This corresponds to the AppObjOwner field when passwordaccess is
set to prompt. When passwordaccess is set to generate, this field contains the login
name.

The calling application must allocate an array of ADSM_ENV_STRS elements with
strings of size BSA_MAX_DESC for the environment output. The application must
also allocate an array of character pointers with ADSM_ENV_STRS+1 elements.
The extra element is for the NULL termination pointer.

Appendix D. The X/Open Backup Services API 201

The format of the output is:
envStrs[0] = "TSMSRVR=xxx"
envStrs[1] = "TSMMAXOBJ=xx"
envStrs[1] = "TSMSRVRSTANZA=xx"

where:
v TSMSRVR is the Tivoli Storage Manager server name.
v TSMMAXOBJ is the number of objects that can be created within a single

transaction.
v TSMSRVRSTANZA is the adsmServerName value.

Associating a management class with objects using X/Open
API

One of the primary features that Tivoli Storage Manager offers is the use of
policies (management classes) to define how objects are stored and managed in
Tivoli Storage Manager storage.

A management class is associated with an object when the object is backed up or
archived. This management class determines the following:
v How many versions of the object are kept if they are backed up
v How long to keep archive copies
v Where the object is inserted in the storage hierarchy on the server

Management classes have two components: backup copy group and an archive
copy group. A copy group is a set of attributes that define the management
policies for an object that is backed up or archived. If a backup operation is being
performed, the attributes in the backup copy group apply. If an archive is being
performed, the attributes in the archive copy group apply.

Because the use of policy is a very important component of Tivoli Storage
Manager, the API requires all objects that are sent to the server first be assigned to
a management class. There are two ways to do this.
v Use an include-exclude list. The Tivoli Storage Manager product uses an

include-exclude list to perform management class binding. The
BSACreateObject and BSAResolveLifecycleGroup calls check the object that is
stored against the include-exclude list. When it finds an include statement that
matches the name of the object, the management class specified in the statement
is assigned to the object. If a management class is not specified, or the object is
not explicitly listed in the include-exclude list, the object is assigned to the
default management class.

v Override the include-exclude list. The BSACreateObject call takes an
ObjectDescriptor as an input parameter. You can assign a particular
management class to an object by placing the name of the management class in
the LGName field of the ObjectDescriptor.

char *envP[ADSM_ENV_STRS+1];
char envStrs[ADSM_ENV_STRS] [BSA_MAX_DESC];
for (i=0; i<ADSM_ENV_STRS; i++)

envP[i] = envStrs[i];

envP[i] = NULL;
rc = BSAGetEnvironment(bsaHandle, &objOwner, envP);

Figure 21. An example of BSAGetEnvironment

202 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Note: The backup or archive copy group in a particular management class can be
empty or NULL. If an object is bound to the NULL backup copy group, then that
object cannot be backed up. If an object is bound to the NULL archive copy group,
the object cannot be archived.

The transaction model
All data sent to, received from, or deleted from Tivoli Storage Manager storage by
the X/Open API is performed within a transaction. This provides a high level of
data integrity for the Tivoli Storage Manager product, but it does impose some
restrictions that an application client must take into consideration.

Start a transaction with a call to BSABeginTxn and end it with a call to
BSAEndTxn.

A single transaction is an atomic action. Data sent or received within the bounds of
a transaction either is all committed at the end of the transaction, or all rolled back
if the transaction ends prematurely.

The Tivoli Storage Manager product supports the use of only a single operation
type within a transaction. For example, you cannot perform both a send and a get
operation within the bounds of a single transaction. The one exception is during a
get operation, where you precede the get with a query operation.

Transactions can consist of either single objects or multiple objects. Smaller objects
should be sent or received in a multiple object transaction. This greatly improves
total system performance, because transaction overhead is decreased. The
application client determines whether single or multiple transactions are
appropriate.

All objects within a multiple object transaction must be sent to, or received from,
the same copy destination. If you must send an object to, or receive it from, a
different destination than the previous object, end the current transaction and start
a new one. Within the new transaction, you can send or receive the object to the
new copy destination.

The Tivoli Storage Manager product limits the number of objects that can be sent
or received in a multiple object transaction. You can find this limit by calling
BSAGetEnvironment and examining the MAXOBJ value.

The application client must keep track of the objects sent or received within a
transaction in order to perform retry processing or error processing if the
transaction is ended prematurely. Either the server or the client can stop a
transaction at any time. The application client must be prepared to handle sudden
transaction ends that it did not start.

Querying the Tivoli Storage Manager system
The X/Open API permits an application client to query a Tivoli Storage Manager
server for information on the records stored there. You can define a set of criteria
that the records on the server must meet in order to be returned by the query. All
query operations must be done within the bounds of a transaction.

See “The transaction model.”

A query operation consists of the following steps:
1. Make the BSABeginTxn call to start a transaction.

Appendix D. The X/Open Backup Services API 203

2. Define the parameters of your query. Use the data fields in the QueryDescriptor
structure to specify the parameters of your query. Start by setting the copyType
field to backup, archive, or any, depending on whether you want to query only
backup copies, only archive versions, or both.
For all queries, you can specify an object name in the objName field, or use
wildcard characters to identify a group of objects. For backup queries, use the
status field to specify only active or inactive copies, or both. For archive
queries, specify the description in the description field and set the upper and
lower boundaries of the create and expiration times in these fields:
createTimeLB, createTimeUB, expireTimeLB, and expireTimeUB.

3. Make the BSAQueryObject call. To start the query operation,make the
BSAQueryObject call, passing in the QueryDescriptor structure. One of the
following three codes is returned:
v BSA_RC_MORE_DATA. More than one object satisfied the search

parameters. The object descriptor for the first object is returned in the
ObjectDescriptor field. Go to step 4.

v BSA_RC_NO_MORE_DATA. Only one object satisfied the search parameters.
The object descriptor for the object is returned in the ObjectDescriptor field.
Go to step 5.

v BSA_RC_NO_MATCH. There were no objects that satisfied the search
parameters. Go to step 5.

4. Make the BSAGetNextQueryObject call. If more than one object satisfied the
query parameters, then a BSAGetNextQueryObject call must be made to
obtain each object after the first. The object descriptor for each object is added
to the ObjectDescriptor structure.
After each object is returned, check the return code. If the
BSAGetNextQueryObject call returns the code BSA_RC_MORE_DATA, make
the BSAGetNextQueryObject call again. If there is no more data, go to the
next step.

5. Make the BSAEndTxn call to end the transaction. When all query data has
been retrieved or no further query data is needed, the BSAEndTxn call must be
made to end the transaction and stop the query process. This causes the
X/Open API to flush any remaining data from the query stream and release
any resources utilized for the query.

Flowchart example for X/Open query operations
You can use a visual example on using X/Open functions for query operations.

Figure 22 on page 205 displays the flowchart for performing query operations.

204 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Sending data to a server using X/Open API
The X/Open API permits application clients to send data to Tivoli Storage
Manager server storage. Data can be either backed up or archived. All send
operations must be performed within the bounds of a transaction. See “The
transaction model” on page 203.

The backup component of the Tivoli Storage Manager system supports multiple
versions of named objects that are stored on the server. Any object that is backed
up to the server with the same name as an object which is already stored on the
server from that client is subject to version control. Objects are considered to be in
active or inactive states on the server. The latest copy of an object on the server
that has not been deactivated is in the active state. Any other object, whether it is
an older version or a deactivated copy, is considered to be inactive. Different
management criteria defined by the management class constructs are assigned to
active and inactive objects on the server.

The archive component of the Tivoli Storage Manager system stores objects on the
server with retention or expiration period controls instead of version control. Each
object stored is considered to be unique, even though its name might be the same
as an object already archived. This permits an application to archive the same
object multiple times, but with different expiration times that are assigned to each
copy of the object.

Figure 22. Flowchart for query operations

Appendix D. The X/Open Backup Services API 205

The value of the compression option in the end user's dsm.sys file determines
whether Tivoli Storage Manager compresses the object during a send operation.

Some types of data (for example, data that is already compressed) might actually
grow larger when processed with the compression algorithm. When this happens,
the return code, TSM_RC_ERROR, is generated and added to the Tivoli Storage
Manager error log (dsierror.log). If you recognize that this might happen, but want
the send operation to continue anyway, tell the end users to specify the following
option in their options file before the application runs:

COMPRESSAlways Yes

A send operation consists of the following steps:
1. Make the BSABeginTxn call to start a transaction.
2. Make the BSAResolveLifecycleGroup call.

This call is optional. Use it to associate a particular management class with an
object that you are storing on the Tivoli Storage Manager server. If you do not
call BSAResolveLifecycleGroup, a management class is associated with the
object during the call to BSACreateObject. For more information, see
“Associating a management class with objects using X/Open API” on page 202.

3. Make the BSACreateObject call.
The BSACreateObject call takes an ObjectDescriptor structure as an input
parameter. This structure contains information about the object that is stored,
such as the name of the object, and if it is backed up or archived.
The ObjectDescriptor.Owner.bsaObjectOwner value must match the value that
is used on the BSAInit call. The ObjectDescriptor.Owner.appObjectOwner
value must also match the one that is used on the BSAInit call, unless it was
an empty string, signifying that the session was started with the root owner. In
this case the object owner can be any value.
The sizes of the objInfo and desc fields in the ObjectDescriptor structure are
set by Tivoli Storage Manager. These sizes are determined by the constants
TSM_MAX_OBJINFO and TSM_MAX_DESC in the custom.h header file.
BSACreateObject can also send the first block of data to the Tivoli Storage
Manager server. If the object has more data, go to the next step. If there is no
more data, go to step 5.

4. Make the BSASendData call.
Repeat this call as many times as necessary until the entire object has been sent
to the Tivoli Storage Manager server.

5. Make the BSAEndData call.
The BSAEndData call signifies that there is no more data for a particular
object.

6. If you want to send more than one object to the Tivoli Storage Manager server,
repeat steps 3 through 5 for each object. Note that all objects sent within the
same transaction must be for the same objectspaceName.
Tivoli Storage Manager limits the number of objects that can be sent in one
transaction. The limit is determined by the constant MAXOBJ. You can get this
value by calling BSAGetEnvironment.

7. Make the BSAEndTxn call to end the transaction.

206 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Flowchart example for X/Open backup or archive operations
You can use a visual example on using X/Open functions for performing backup
or archive operations within a transaction.

Figure 23 displays the flowchart for performing backup or archive operations
within a transaction.

The primary feature in this diagram is the loop between the following X/Open
API calls from within a transaction:
v BSACreateObject

v BSASendData

Figure 23. Flowchart for backup and archive operations

Appendix D. The X/Open Backup Services API 207

v BSAEndData

Receiving data from a server using the X/Open API

The X/Open API permits application clients to receive data from Tivoli Storage
Manager storage using the restore and retrieve functions of the product. Restore
accesses objects that were previously backed up, and retrieve accesses objects that
were previously archived. All restore and retrieve operations must be performed
within the bounds of a transaction. See “The transaction model” on page 203.

Note: Only the API can restore or retrieve objects that were backed up or archived
with API calls.

Once a session is established with the Tivoli Storage Manager server, use the
following procedure to restore or retrieve data:
1. Make the BSABeginTxn call to start a transaction.
2. Make the BSAQueryObject call to query the Tivoli Storage Manager server for

backup or archive data. (This step can be performed outside the transaction.)
Before beginning a restore or retrieve operation, query the Tivoli Storage
Manager server to determine what objects can be received from storage. To
issue the query, first fill in the applicable fields in the QueryDescriptor
structure with the desired search parameters. Then make the BSAQueryObject
call with the QueryDescriptor.
If the session was started with a NULL owner name, it is not necessary to
specify the owner field. If the session was started with an explicit owner name,
then only objects that explicitly have that owner name associated with them are
returned.
The query returns all information in an ObjectDescriptor structure. Different
information is returned depending on whether the object was originally backed
up or archived. For example, a query on backup objects returns information on
whether an object is active or inactive, while a query on archive objects returns
information such as the object descriptions.
All queries return all information that was originally stored with the object, in
addition to the following:

copyid
The copyid value provides an eight-byte number that uniquely
identifies this object for this node in Tivoli Storage Manager storage.
Use this ID to request a specific object from storage for restore or
retrieve processing.

restoreOrder
The restoreOrder value provides a mechanism for receiving objects
from Tivoli Storage Manager storage in the most efficient manner
possible. Sort the objects to restore on this value to insure that tapes are
mounted only once and are read from front to back.

Keep some or all of the query information for later processing. Keep the copyid
and restoreOrder fields because they are needed for the actual restore
operation. Keep any other information that is needed to properly open a data
file or identify a destination.

3. Determine the objects to restore or retrieve from the server. Once the backup or
archive query has been performed, the application client must determine which
objects, if any, are to be restored or retrieved.

4. If more than one object is selected, sort the objects on the restore order field.

208 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Once the objects to restore or retrieve are selected, they must be sorted in
ascending order (low to high) by the restoreOrder field. This sorting is critical
to the performance of the restore operation. Sorting the objects on the
restoreOrder field means that the data is read from the server in the most
efficient order. All data on disk is restored first, followed by data on media
classes that require volume mounts (such as tape). The restoreOrder field also
insures that data on tape is read in order with processing starting at the front
of a tape and progressing towards the end.
Properly sorting on the restoreOrder field means that duplicate tape mounts
and unnecessary tape rewinds do not occur.

5. Make the BSAGetObject call.
The BSAGetObject call uses the copyType and copyid fields of the
ObjectDescriptor to begin obtaining the first object from the system. The call
begins a restore or retrieve operation by identifying the object that is requested
from the data stream.
BSAGetObject obtains the first block of data that is associated with the object.
If the object has more data, go to the next step. If the return code is
BSA_RC_NO_MORE_DATA, go to step 7.

6. Make the BSAGetData call.
Repeat this call as many times as necessary until the object has been received
from the Tivoli Storage Manager server.

7. Make the BSAEndData call.
The BSAEndData call signifies that there is no more data for a particular
object.

8. If you want to receive more than one object from the Tivoli Storage Manager
server, repeat steps 5 through 7 for each object.

9. Make the BSAEndTxn call to end the transaction.
After all data for all requested objects has been received, the BSAEndTxn call
must be made. You can also use this call to discard any remaining data in the
restore stream for objects not yet received.

Flowchart example for X/Open restore or retrieve operations
You can use a visual example on using X/Open functions for restore or retrieve
operations.

Figure 24 on page 210 displays the flowchart for performing restore or retrieve
operations.

Appendix D. The X/Open Backup Services API 209

Deleting objects from the server using X/Open API
The X/Open API applications can make calls to either delete objects that were
archived or deactivate objects that were backed up. The former is dependent on
the node authorization that is given when a Tivoli Storage Manager administrator
registered the node. Administrators can specify whether nodes can delete archive
objects.

The BSADeleteObject call is used for deleting archive objects, and the
BSAMarkObjectInactive call is used for deactivating backup objects.

Figure 24. Flowchart for restore and retrieve operations

210 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

When deleting an archive object, the object is marked in Tivoli Storage Manager
storage for deletion when the system next performs its object expiration cycle.
Once an archive object is deleted from the server, it cannot be retrieved.

When a backup object on the Tivoli Storage Manager server is deactivated, the
object moves from an active state to an inactive state. These states have different
retention policies associated with them that are based on the management class
assigned.

Note: A call to BSAMarkObjectInactive affects all objects with the same objType
and the same name.

A call to BSADeleteObject or to BSAMarkObjectInactive is always made within
the bounds of a transaction. The flowcharts in Figure 25 show how a call to
BSADeleteObject or BSAMarkObjectInactive is preceded by a call to
BSABeginTxn and followed by a call to BSAEndTxn.

Identifying the object using X/Open API
The Tivoli Storage Manager server can be viewed as an object storage server whose
main goal is to efficiently store and retrieve named objects.

The server has two main storage areas:
v The database contains all metadata (name, attributes, and so forth) associated

with an object.
v The data storage contains the actual object data. The data storage is actually a

storage hierarchy that the system administrator defines. Data is efficiently stored
and managed on either online or offline media, depending on cost and access
needs.

Each object stored on the server has a name associated with it. The client controls
the following key components of the name:
v Object space name
v Pathname
v Object type

Figure 25. Flowcharts for delete archive (left) and deactivate backup (right) operations

Appendix D. The X/Open Backup Services API 211

When making decisions about naming objects for an application, remember that it
might be necessary to externalize the full object names to the end user. Specifically,
the end user might need to specify the object in an include or exclude statement
when the application is run.

The following example demonstrates what the application client would code on a
UNIX or Linux platform:

/myobjspace/pathname

Object space name
The object space name is a very important component. This name can be the name
of a file system, disk drive, or any other high-level qualifier that groups related
data together.

Tivoli Storage Manager uses the object space to identify the file system or disk
drive the data is located on. Actions can be performed on all entities within an
object space with relative ease, such as querying all objects within a specified
object space.

The Tivoli Storage Manager server has administrative commands to query the
object spaces on a given node in Tivoli Storage Manager storage, and delete them
if necessary. All data that the application client stores must have an object space
name associated with it. Select the name carefully to group similar data together in
the system.

An application client should select different object space names than the file system
names a backup-archive client would use, in order to avoid possible interference.
The application client should publish its object space names, so that end users can
identify the objects for include and exclude statements, if necessary.

Pathnames
Another component of the object name is the pathname. The pathname consists of
the directory path the object belongs in, and the actual name of the object in that
directory path. When the object space name and pathname are concatenated, they
must form a syntactically correct name on the operating system on which the client
is running.

It is not necessary for the name to exist as an object on the system or resemble the
actual data on the local file system. However, the name must meet the standard
naming rules in order to be properly processed for management classes.

Object types in X/Open API
The object type identifies the object as either a file or a directory. A file is an object
that contains both attributes and binary data. A directory is an object that contains
only attributes.

Tivoli Storage Manager also accepts the value BSAObjectType_DATABASE but
treats it as BSAObjectType_FILE.

212 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Setting the owner name
Each object has an owner name associated with it. The rules governing what
objects can be accessed depend on what owner name is used when a session is
started. This object owner value can be used to control access to the object.

If a session is started with an empty string for the owner, that session owner is
treated with session, (or root) authority. This session can perform any action on
any object that is owned by this node regardless of the actual owner of that object.
The session owner is set during the call to BSAInit in the AppObjectOwner field
of the ObjectOwner structure.

If a session is started with a specific owner name, the session can only perform
actions on objects that have that owner name associated with them. Backups or
archives into the system all must have this owner name associated with them. Any
queries performed only return values that have this owner name associated with
them. The object owner value is set during the BSACreateObject call in the Owner
field of the ObjectDescriptor structure.

Table 64 summarizes the conditions under which a user has access to an object.

Table 64. Summary of user access to objects
Session owner Object owner User access
“ ” (empty string) (root, system owner) “ ” (empty string) Yes
“ ” (empty string) (root, system owner) specific name Yes
specific name “ ” (empty string) No
specific name same name Yes
specific name different name No

Using X/Open functions with Tivoli Storage Manager
You need to understand how to use specific X/Open functions with Tivoli Storage
Manager.

Table 65 describes the following X/Open functions and considerations on how to
use them with Tivoli Storage Manager.

Table 65. X/Open function considerations

X/Open function Consideration

BSAChangeToken Only the root session owner, or TSM-Authorized session owner
can run this function.

Appendix D. The X/Open Backup Services API 213

Table 65. X/Open function considerations (continued)

X/Open function Consideration

BSACreateObject Multiple CreateObject calls within a single transaction must be
for the same objectspaceName. Tivoli Storage Manager considers
all fields in the ObjectDescriptor to be input fields and does not
alter them.

The ObjectDescriptor.resourceType field is used as the Tivoli
Storage Manager file space fsType value, and is also stored in
the Tivoli Storage Manager objInfo area.

The ObjectDescriptor.Owner.bsaObjectOwner value must
match that value that is used on the BSAInit.

The ObjectDescriptor.Owner.appObjectOwner value must
match that which was used on the BSAInit if it was not root
(blank). If BSAInit starts a session with the root owner, then the
object owner can be any value. The following fields from the
ObjectDescriptor are used:

v owner.bsaObjectOwner

v owner.appObjectOwner

v objName.objectSpaceName

v objName.pathName

v copyType

v lGName (management class)

v Size

v resourceType

v objectType (for backup, this can be FILE, DIRECTORY,
DATABASE (which is treated like FILE); for archive, this can
be FILE or DIRECTORY)

v desc

v mdobjInfo

For BSACreateObject, Tivoli Storage Manager has a limit on the
number of objects that can be created in a single transaction.
Tivoli Storage Manager returns the value on the
BSAGetEnvironment call with the TSMMAXOBJ keyword.

BSADeleteObject With Tivoli Storage Manager, this call is only meaningful for
archive objects. For backup objects, use BSAMarkObjectInactive.

BSAGetEnvironment Tivoli Storage Manager returns the server name and maximum
objects per transaction. See Figure 21 on page 202 for an
example.

BSAGetObject The following fields from objectDescriptor are used:

v copyType

v copyid

The object name fields are not used. Precede the BSAGetObject
call with a BSAQueryObject call to obtain the copyid value.

214 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Table 65. X/Open function considerations (continued)

X/Open function Consideration

BSAInit The BSAObjectOwner field is used as the Tivoli Storage
Manager node name. The AppObjectOwner field is used as the
Tivoli Storage Manager session owner name.

Tivoli Storage Manager has two modes, prompt or generate, to
handle passwords. For the prompt mode, the
node/owner/password values must be supplied. For the
generate mode, the password is saved in a file that the root or
TSM-Authorized user must start. Thereafter,
node/owner/password values should not be passed on the
BSAInit. Values passed on the environmentPtr are ignored.

BSAQueryObject The ObjectDescriptor.Owner.bsaObjectOwner value must
match that which was used on the BSAInit. The
ObjectDescriptor.Owner.appObjectOwner value must match
that which was used on the BSAInit if it was not root (blank). If
BSAInit started a session with the root owner, then the object
owner can be any value.

For copyType Backup, the following fields are used:

v owner.bsaObjectOwner

v owner.appObjectOwner

v objName.objectSpaceName

v objName.pathName

v objectType (DATABASE is treated as FILE)

v status

For Archive, the following fields are used:

v owner.bsaObjectOwner

v owner.appObjectOwner

v objName.objectSpaceName

v objName.pathName

v createTime

v expireTime

v objectType

v desc

Tivoli Storage Manager changes to the XBSA header files
The X/Open API contains the header files custom.h, xbsa.h, and policy.h. Tivoli
Storage Manager uses these header files with some changes.

Appendix D. The X/Open Backup Services API 215

Changes to custom.h
The Tivoli Storage Manager X/Open API supports the following additional
constants and return codes in custom.h.

Changes to policy.h
The Tivoli Storage Manager X/Open API supports the following changes to the
function prototypes in policy.h.

Changes to xbsa.h
The Tivoli Storage Manager X/Open API supports the following changes to the
type definitions in xbsa.h.

/* Constants used
*/

#define TSM_MAX_DESC 100 /* TSM max Desc size */
#define TSM_MAX_OBJINFO 100 /* TSM max object information size*/
#define TSM_LOWEST_BOUND 0x0000 /* value for LowerBound max */
#define TSM_HIGHEST_BOUND 0xFFFF /* value for UpperBound max */
#define TSM_ENV_STRS 2 /* number of env strings */
#define ObjectDescriptorVersion 1 /* ver for ObjectDescriptor */
#define UserDescriptorVersion 1 /* ver for UserDescriptor */
#define BSAObjectType_DATABASE 4 /* ObjectType for Databases */

/* Return Codes Used
*/

#define BSA_RC_OK 0x00
#define BSA_RC_SUCCESS 0x00

#define TSM_RC_ERROR 0x60 /* see TSM error log */
#define TSM_RC_INVALID_NODE 0x61 /* BSAObjOwner not match Init*/
#define TSM_RC_INVALID_COPYTYPE 0x62 /* invalid copyType */
#define TSM_RC_INVALID_OBJTYPE 0x63 /* invalid objectType */
#define TSM_RC_INVALID_STATUS 0x64 /* invalid object status */
#define TSM_RC_INVALID_ST_VER 0x65 /* invalid structure version */
#define TSM_RC_OWNER_TOO_LONG 0x66 /* owner too long */
#define TSM_RC_PSWD_TOO_LONG 0x67 /* pswd too long */
#define TSM_RC_PSWD_GEN 0x68 /* pswd access = generate */

/* For the function prototypes, int and long have been */
/* replaced with typedefs from custom.h. */
/* */
/* BSAGetNextQueryObject defined in xbsa.h because it should be part */
/* of the Data Movement subset. */

/* Changed tm typedef to 'struct tm' for AIX compiler */
/* ref BSAEvent, ObjectDescriptor, QueryDescriptor, Schedule */
/* */
/* For the function prototypes, int and long have been */
/* replaced with typedefs from custom.h. */
/* */
/* Included BSAGetNextQueryObject function prototype here since it was */
/* accidentally omitted from the Data movement subset. */

216 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Appendix E. Accessibility features for Tivoli Storage Manager

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

Accessibility features

The following list includes the major accessibility features in Tivoli Storage
Manager:
v Keyboard-only operation
v Interfaces that are commonly used by screen readers
v Keys that are discernible by touch but do not activate just by touching them
v Industry-standard devices for ports and connectors
v The attachment of alternative input and output devices
v User documentation provided in HTML and PDF format. Descriptive text is

provided for all documentation images.

The Tivoli Storage Manager Information Center, and its related publications, are
accessibility-enabled.

Keyboard navigation

The Tivoli Storage Manager for Windows Console follows Microsoft conventions
for all keyboard navigation and access. Drag and Drop support is managed using
the Microsoft Windows Accessibility option known as MouseKeys. For more
information about MouseKeys and other Windows accessibility options, please
refer to the Windows Online Help (keyword: MouseKeys).

Tivoli Storage Manager follows AIX operating system conventions for keyboard
navigation and access.

Tivoli Storage Manager follows HP-UX operating-system conventions for keyboard
navigation and access.

Tivoli Storage Manager follows Linux operating-system conventions for keyboard
navigation and access.

Tivoli Storage Manager follows Sun Solaris operating-system conventions for
keyboard navigation and access.

Tivoli Storage Manager follows z/OS operating-system conventions for keyboard
navigation and access.

Vendor software

Tivoli Storage Manager includes certain vendor software that is not covered under
the IBM license agreement. IBM makes no representation about the accessibility
features of these products. Contact the vendor for the accessibility information
about its products.

© Copyright IBM Corp. 1993, 2010 217

|
|

Related accessibility information

You can view the publications for Tivoli Storage Manager in Adobe® Portable
Document Format (PDF) using the Adobe Acrobat Reader. You can access these or
any of the other documentation PDFs at the IBM Publications Center at
http://www.ibm.com/shop/publications/order/.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility: http://www.ibm.com/able.

218 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|
|

http://www.ibm.com/shop/publications/order/
http://www.ibm.com/able

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1993, 2010 219

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs. Each copy
or any portion of these sample programs or any derivative work, must include a

220 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

|

|
|
|
|
|
|
|
|
|
|
|

copyright notice as follows: © (your company name) (year). Portions of this code
are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the
year or years_.

If you are viewing this information in softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript®, and the PostScript logo is a registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 221

|
|
|

http://www.ibm.com/legal/copytrade.shtml

222 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Glossary

This glossary includes terms and definitions for IBM Tivoli Storage Manager.

To view glossaries for other IBM products, go to
http://www.ibm.com/software/globalization/
terminology/.

The following cross-references are used in this
glossary:
v See refers the reader from a term to a preferred

synonym, or from an acronym or abbreviation
to the defined full form.

v See also refers the reader to a related or
contrasting term.

A

absolute mode
In storage management, a backup
copy-group mode that specifies that a file
is considered for incremental backup even
if the file has not changed since the last
backup. See also modified mode.

access control list (ACL)
In computer security, a list associated
with an object that identifies all the
subjects that can access the object and
their access rights. For example, an access
control list is associated with a file that
identifies the users who can access that
file and their access rights.

access mode
An attribute of a storage pool or a storage
volume that specifies whether the server
can write to or read from the storage pool
or storage volume. The access mode can
be read/write, read-only, or unavailable.
Volumes in primary storage pools can
also have an access mode of destroyed.
Volumes in copy storage pools can also
have an access mode of offsite.

acknowledgment
The transmission of acknowledgment
characters as a positive response to a data
transmission.

ACL See access control list.

activate
To validate the contents of a policy set
and then make it the active policy set.

active-data pool
A named set of storage pool volumes that
contain only active versions of client
backup data.

active file system
A file system to which space management
has been added. With space management,
tasks for an active file system include
automatic migration, reconciliation,
selective migration, and recall. Contrast
with inactive file system.

active policy set
The activated policy set that contains the
policy rules in use by all client nodes that
are assigned to the policy domain. See
also policy domain and policy set.

active version
The most recent backup copy of a file
stored. The active version of a file cannot
be deleted until a backup process detects
that the user has either replaced the file
with a newer version or has deleted the
file from the file server or workstation.
Contrast with inactive version.

activity log
A log that records normal activity
messages that are generated by the server.
These messages include information about
server and client operations, such as the
start time of sessions or device I/O errors.

adaptive subfile backup
A type of backup that sends only changed
portions of a file to the server, instead of
sending the entire file. Adaptive subfile
backup reduces network traffic and
increases the speed of the backup.

administrative client
A program that runs on a file server,
workstation, or mainframe that
administrators use to control and monitor
the Tivoli Storage Manager server.
Contrast with backup-archive client.

administrative command schedule
A database record that describes the
planned processing of an administrative

© Copyright IBM Corp. 1993, 2010 223

http://www.ibm.com/software/globalization/terminology/
http://www.ibm.com/software/globalization/terminology/

command during a specific time period.
See also client schedule.

administrative privilege class
See privilege class.

administrative session
A period of time during which an
administrator user ID communicates with
a server to perform administrative tasks.
Contrast with client node session.

administrator
A user who is registered to the server as
an administrator, and who is authorized
to perform tasks and issue commands
through the assignment of an
administrative privilege class.

Advanced Program-to-Program Communication
(APPC)

An implementation of the SNA LU 6.2
protocol that allows interconnected
systems to communicate and share the
processing of programs.

agent node
A client node that has been granted proxy
authority to perform operations on behalf
of another client node, which is the target
node.

aggregate
An object, stored in one or more storage
pools, consisting of a group of logical files
that are packaged together. See also logical
file and physical file.

aggregate data transfer rate
A performance statistic that indicates the
average number of bytes that were
transferred per second while processing a
given operation.

APPC See Advanced Program-to-Program
Communication.

application client
A program that is installed on a system to
protect an application. The Tivoli Storage
Manager server provides backup services
to an application client.

archive
To copy programs, data, or files to
another storage media, usually for
long-term storage or security. Contrast
with retrieve.

archive copy
A file or group of files that was archived
to server storage.

archive copy group
A policy object containing attributes that
control the generation, destination, and
expiration of archived files.

archive-retention grace period
The number of days that the storage
manager retains an archived file when the
server is unable to rebind the file to an
appropriate management class. See also
bind.

association
(1) The defined relationship between a
client node and a client schedule. An
association identifies the name of a
schedule, the name of the policy domain
to which the schedule belongs, and the
name of a client node that performs
scheduled operations.

(2) On a configuration manager, the
defined relationship between a profile and
an object such as a policy domain. Profile
associations define the configuration
information that is distributed to a
managed server when it subscribes to the
profile.

audit To check for logical inconsistencies
between information that the server has
and the actual condition of the system.
The storage manager can audit
information about items such as volumes,
libraries, and licenses. For example, when
a storage manager audits a volume, the
server checks for inconsistencies between
information about backed-up or archived
files that are stored in the database and
the actual data that are associated with
each backup version or archive copy in
server storage.

authentication
The process of checking a user's password
before permitting user access to the Tivoli
Storage Manager server. Authentication
can be turned on or off by an
administrator with system privilege.

authentication rule
A specification that another user can use
to either restore or retrieve files from
storage.

224 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

authority
The right to access objects, resources, or
functions. See also privilege class.

authorization rule
A specification that permits another user
to either restore or retrieve a user's files
from storage.

authorized user
A user who has administrative authority
for the Tivoli Storage Manager client on a
workstation. This user changes
passwords, performs open registrations,
and deletes file spaces.

AutoFS
See automounted file system.

automatic detection
A feature that detects, reports, and
updates the serial number of a drive or
library in the database when the path
from the local server is defined.

automatic migration
The process that is used to automatically
move files from a local file system to
storage, based on options and settings
that are chosen by a root user on a
workstation. See also threshold migration
and demand migration.

automatic reconciliation
The process that is used to reconcile file
systems at regular intervals. The intervals
are set by a user with root user authority.
See also reconciliation.

automounted file system (AutoFS)
A file system that is managed by an
automounter daemon. The automounter
daemon monitors a specified directory
path, and automatically mounts the file
system to access data.

B

backup-archive client
A program that runs on a workstation or
file server and provides a means for users
to back up, archive, restore, and retrieve
files. Contrast with administrative client.

backup copy group
A policy object containing attributes that
control the generation, destination, and
expiration of backup versions of files. A
backup copy group belongs to a
management class.

backup-retention grace period
The number of days the storage manager
retains a backup version after the server
is unable to rebind the file to an
appropriate management class.

backup set
A portable, consolidated group of active
versions of backup files that are generated
for a backup-archive client.

backup set collection
A group of backup sets that are created at
the same time and which have the same
backup set name, volume names,
description, and device classes. The server
identifies each backup set in the collection
by its node name, backup set name, and
file type.

backup version
A file or directory that a client node
backed up to server storage. More than
one backup version can exist in server
storage, but only one backup version is
the active version. See also active version
and inactive version.

bind To associate a file with a management
class name. See rebind.

bindery
A database that consists of three system
files for a NetWare server. The files
contain user IDs and user restrictions.

C

cache To place a duplicate copy of a file on
random access media when the server
migrates a file to another storage pool in
the hierarchy.

cache file
A snapshot of a logical volume created by
Logical Volume Snapshot Agent. Blocks
are saved immediately before they are
modified during the image backup and
their logical extents are saved in the cache
files.

CAD See client acceptor.

central scheduler
A function that permits an administrator
to schedule client operations and
administrative commands. The operations
can be scheduled to occur periodically or
on a specific date. See client schedule and
administrative command schedule.

Glossary 225

client A software program or computer that
requests services from a server.

client acceptor
An HTTP service that serves the Java
applet for the Web client to Web
browsers. On Windows systems, the client
acceptor is installed and run as a service.
On AIX, UNIX, and Linux systems, the
client acceptor is run as a daemon, and is
also called the client acceptor daemon
(CAD).

client acceptor daemon (CAD)
See client acceptor.

client domain
The set of drives, file systems, or volumes
that the user selects to back up or archive
data, using the backup-archive client.

client node
A file server or workstation on which the
backup-archive client program has been
installed, and which has been registered
to the server.

client node session
A session in which a client node
communicates with a server to perform
backup, restore, archive, retrieve, migrate,
or recall requests. Contrast with
administrative session.

client options file
An editable file that identifies the server
and communication method, and
provides the configuration for backup,
archive, hierarchical storage management,
and scheduling.

client option set
A group of options that are defined on
the server and used on client nodes in
conjunction with client options files.

client-polling scheduling mode
A method of operation in which the client
queries the server for work. Contrast with
server-prompted scheduling mode.

client schedule
A database record that describes the
planned processing of a client operation
during a specific time period. The client
operation can be a backup, archive,
restore, or retrieve operation, a client
operating system command, or a macro.
See also administrative command schedule.

client/server
Pertaining to the model of interaction in
distributed data processing in which a
program on one computer sends a request
to a program on another computer and
awaits a response. The requesting
program is called a client; the answering
program is called a server.

client system-options file
A file, used on AIX, UNIX, or Linux
system clients, containing a set of
processing options that identify the
servers to be contacted for services. This
file also specifies communication methods
and options for backup, archive,
hierarchical storage management, and
scheduling. This file is also called the
dsm.sys file. See also client user-options file.

client user-options file
A file that contains the set of processing
options that the clients on the system use.
The set can include options that
determine the server that the client
contacts, and options that affect backup
operations, archive operations,
hierarchical storage management
operations, and scheduled operations.
This file is also called the dsm.opt file.
For AIX, UNIX, or Linux systems, see also
client system-options file.

closed registration
A registration process in which only an
administrator can register workstations as
client nodes with the server. Contrast
with open registration.

collocation
The process of keeping all data belonging
to a single-client file space, a single client
node, or a group of client nodes on a
minimal number of sequential-access
volumes within a storage pool.
Collocation can reduce the number of
volumes that must be accessed when a
large amount of data must be restored.

collocation group
A user-defined group of client nodes
whose data is stored on a minimal
number of volumes through the process
of collocation.

commit point
A point in time when data is considered
consistent.

226 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Common Programming Interface for
Communications (CPI-C)

A call-level interface that provides a
consistent application programming
interface (API) for applications that use
program-to-program communications.
CPI-C uses LU 6.2 architecture to create a
set of interprogram services that can
establish and end a conversation, send
and receive data, exchange control
information, and notify a partner program
of errors.

communication method
The method by which a client and server
exchange information. See also
Transmission Control Protocol/Internet
Protocol.

communication protocol
A set of defined interfaces that permit
computers to communicate with each
other.

compression
A function that removes repetitive
characters, spaces, or strings of characters
from the data being processed and
replaces the repetitive characters with
control characters. Compression reduces
the amount of storage space that is
required for the data.

configuration manager
A server that distributes configuration
information, such as policies and
schedules, to managed servers according
to their profiles. Configuration
information can include policy and
schedules. See also managed server and
profile.

conversation
A connection between two programs over
a session that allows them to
communicate with each other while
processing a transaction.

copy backup
A full backup in which the transaction log
files are not deleted so that backup
procedures that use incremental or
differential backups are not disrupted

copy group
A policy object containing attributes that
control how backup versions or archive
copies are generated, where backup
versions or archive copies are initially

located, and when backup versions or
archive copies expire. A copy group
belongs to a management class. See also
archive copy group, backup copy group,
backup version, and management class.

copy storage pool
A named set of volumes that contain
copies of files that reside in primary
storage pools. Copy storage pools are
used only to back up the data that is
stored in primary storage pools. A copy
storage pool cannot be a destination for a
backup copy group, an archive copy
group, or a management class (for
space-managed files). See also primary
storage pool and destination.

CPI-C See Common Programming Interface for
Communications.

D

daemon
A program that runs unattended to
perform continuous or periodic functions,
such as network control.

damaged file
A physical file in which Tivoli Storage
Manager has detected read errors.

data access control mode
A mode that controls whether a command
can access a migrated file, see a migrated
file as zero-length, or receive an
input/output error if it attempts to access
a migrated file. See also execution mode.

database backup series
One full backup of the database, plus up
to 32 incremental backups made since
that full backup. Each full backup that is
run starts a new database backup series.
A number identifies each backup series.

database snapshot
A complete backup of the entire database
to media that can be taken off-site. When
a database snapshot is created, the current
database backup series is not interrupted.
A database snapshot cannot have
incremental database backups associated
with it. See also database backup series.
Contrast with full backup.

data deduplication
A method of reducing storage needs by
eliminating redundant data. Only one
instance of the data is retained on storage

Glossary 227

media. Other instances of the same data
are replaced with a pointer to the retained
instance.

data manager server
A server that collects metadata
information for client inventory and
manages transactions for the storage
agent over the local area network. The
data manager server informs the storage
agent with applicable library attributes
and the target volume identifier.

data mover
A device that moves data on behalf of the
server. A network-attached storage (NAS)
file server is a data mover.

data storage-management application-
programming interface (DSMAPI)

A set of functions and semantics that can
monitor events on files, and manage and
maintain the data in a file. In an HSM
environment, a DSMAPI uses events to
notify data management applications
about operations on files, stores arbitrary
attribute information with a file, supports
managed regions in a file, and uses
DSMAPI access rights to control access to
a file object.

default management class
A management class that is assigned to a
policy set. This class is used to govern
backed up or archived files when a file is
not explicitly associated with a specific
management class through the
include-exclude list.

deduplication
See data deduplication.

demand migration
The process that is used to respond to an
out-of-space condition on a file system for
which hierarchical storage management
(HSM) is active. Files are migrated to
server storage until space usage drops to
the low threshold that was set for the file
system. If the high threshold and low
threshold are the same, one file is
migrated.

desktop client
The group of backup-archive clients that
includes clients on Microsoft Windows,
Apple, and Novell NetWare operating
systems.

destination
A copy group or management class
attribute that specifies the primary storage
pool to which a client file will be backed
up, archived, or migrated.

device class
A named set of characteristics that are
applied to a group of storage devices.
Each device class has a unique name and
represents a device type of disk, file,
optical disk, or tape.

device configuration file
(1) For a server, a file that contains
information about defined device classes,
and, on some servers, defined libraries
and drives. The information is a copy of
the device configuration information in
the database.

(2) For a storage agent, a file that contains
the name and password of the storage
agent, and information about the server
that is managing the SAN-attached
libraries and drives that the storage agent
uses.

device driver
A program that provides an interface
between a specific device and the
application program that uses the device.

disaster recovery manager (DRM)
A function that assists in preparing and
using a disaster recovery plan file for the
server.

disaster recovery plan
A file that is created by the disaster
recovery manager (DRM) that contains
information about how to recover
computer systems if a disaster occurs and
scripts that can be run to perform some
recovery tasks. The file includes
information about the software and
hardware that is used by the server, and
the location of recovery media.

domain
A grouping of client nodes with one or
more policy sets, which manage data or
storage resources for the client nodes. See
policy domain or client domain.

DRM See disaster recovery manager.

DSMAPI
See data storage-management
application-programming interface.

228 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

dynamic serialization
A type of copy serialization in which a
file or folder is backed up or archived on
the first attempt regardless of whether it
changes during a backup or archive.

E

EA See extended attribute.

EB See exabyte.

EFS See Encrypted File System.

Encrypted File System (EFS)
A file system that uses file system-level
encryption.

enterprise configuration
A method of setting up servers so that the
administrator can distribute the
configuration of one of the servers to the
other servers, using server-to-server
communication. See also configuration
manager, managed server, profile, and
subscription.

enterprise logging
The process of sending events from a
Tivoli Storage Manager server to a
designated event server. The event server
routes the events to designated receivers,
such as to a user exit. See also event.

error log
A data set or file that is used to record
error information about a product or
system.

estimated capacity
The available space, in megabytes, of a
storage pool.

event (1) An administrative command or a
client operation that is scheduled to be
run using Tivoli Storage Manager
scheduling.

(2) A message that an Tivoli Storage
Manager server or client issues. Messages
can be logged using Tivoli Storage
Manager event logging.

event record
A database record that describes actual
status and results for events.

event server
A server to which other servers can send
events for logging. The event server
routes the events to any receivers that are
enabled for the sending server's events.

exabyte (EB)
For processor storage, real and virtual
storage, and channel volume, 1 152 921
504 606 846 976 bytes. For disk storage
capacity and communications volume, 1
000 000 000 000 000 000 bytes.

exclude
The process of identifying files in an
include-exclude list. This process prevents
the files from being backed up or
migrated whenever a user or schedule
enters an incremental or selective backup
operation. A file can be excluded from
backup and space management, backup
only, or space management only.

exclude-include list
See include-exclude list.

execution mode
A mode that controls the
space-management related behavior of
commands that run under the dsmmode
command.

expiration
The process by which files, data sets, or
objects are identified for deletion because
their expiration date or retention period
has passed.

expiring file
A migrated or premigrated file that has
been marked for expiration and removal
from storage. If a stub file or an original
copy of a premigrated file is deleted from
a local file system, or if the original copy
of a premigrated file is updated, the
corresponding migrated or premigrated
file is marked for expiration the next time
reconciliation is run.

extend
To increase the portion of available space
that can be used to store database or
recovery log information.

extended attribute (EA)
Names or value pairs that are associated
with files or directories. There are three
classes of extended attributes: user
attributes, system attributes, and trusted
attributes.

extent The part of a file that is created during
the data-deduplication process. Extents
are compared with other file extents to
identify duplicates.

Glossary 229

external library
A type of library that is provided by
Tivoli Storage Manager that permits
LAN-free data movement for StorageTek
libraries that are managed by Automated
Cartridge System Library Software
(ACSLS). To activate this function, the
Tivoli Storage Manager library type must
be EXTERNAL.

F

file access time
On AIX, UNIX, or Linux systems, the
time when the file was last accessed.

file age
For migration prioritization purposes, the
number of days since a file was last
accessed.

file device type
A device type that specifies the use of
sequential access files on disk storage as
volumes.

file server
A dedicated computer and its peripheral
storage devices that are connected to a
local area network that stores programs
and files that are shared by users on the
network.

file space
A logical space in server storage that
contains a group of files that have been
backed up or archived by a client node,
from a single logical partition, file system,
or virtual mount point. Client nodes can
restore, retrieve, or delete their file spaces
from server storage. In server storage,
files belonging to a single file space are
not necessarily stored together.

file space ID (FSID)
A unique numeric identifier that the
server assigns to a file space when it is
stored in server storage.

file state
The space management mode of a file
that resides in a file system to which
space management has been added. A file
can be in one of three states: resident,
premigrated, or migrated. See also resident
file, premigrated file, and migrated file.

file system migrator (FSM)
A kernel extension that intercepts all file
system operations and provides any space

management support that is required. If
no space management support is
required, the operation is passed to the
operating system, which performs its
normal functions. The file system
migrator is mounted over a file system
when space management is added to the
file system.

file system state
The storage management mode of a file
system that resides on a workstation on
which the hierarchical storage
management (HSM) client is installed. A
file system can be in one of these states:
native, active, inactive, or global inactive.

frequency
A copy group attribute that specifies the
minimum interval, in days, between
incremental backups.

FSID See file space ID.

FSM See file system migrator.

full backup
The process of backing up the entire
server database. A full backup begins a
new database backup series. See also
database backup series and incremental
backup. Contrast with database snapshot.

fuzzy backup
A backup version of a file that might not
accurately reflect what is currently in the
file because the file was backed up at the
same time as it was being modified.

fuzzy copy
A backup version or archive copy of a file
that might not accurately reflect the
original contents of the file because it was
backed up or archived the file while the
file was being modified. See also backup
version and archive copy.

G

General Parallel File System
A high-performance shared-disk file
system that can provide data access from
nodes in a cluster environment.

gigabyte (GB)
In decimal notation, 1 073 741 824 when
referring to memory capacity; in all other
cases, it is defined as 1 000 000 000.

global inactive state
The state of all file systems to which

230 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

space management has been added when
space management is globally deactivated
for a client node. When space
management is globally deactivated,
hierarchical storage management (HSM)
cannot perform migration, recall, or
reconciliation. However, a root user can
update space management settings and
add space management to additional file
systems. Users can access resident and
premigrated files.

Globally Unique Identifier (GUID)
An algorithmically determined number
that uniquely identifies an entity within a
system.

GPFS™

See General Parallel File System.

GPFS node set
A mounted, defined group of GPFS file
systems.

group backup
The backup of a group containing a list of
files from one or more file space origins.

GUID See Globally Unique Identifier.

H

hierarchical storage management (HSM)
A function that automatically distributes
and manages data on disk, tape, or both
by regarding devices of these types and
potentially others as levels in a storage
hierarchy that range from fast, expensive
devices to slower, cheaper, and possibly
removable devices. The objectives are to
minimize access time to data and
maximize available media capacity.

hierarchical storage management (HSM) client
A client program that works with the
Tivoli Storage Manager server to provide
hierarchical storage management (HSM)
for a system. See also hierarchical storage
management and space manager client.

HSM See hierarchical storage management.

HSM client
See hierarchical storage management client.

I

ILM See information lifecycle management.

image A file system or raw logical volume that
is backed up as a single object.

image backup
A backup of a full file system or raw
logical volume as a single object.

inactive file system
A file system for which space
management has been deactivated.
Contrast with active file system.

inactive version
A backup version of a file that is either
not the most recent backup version, or
that is a backup version of a file that no
longer exists on the client system. Inactive
backup versions are eligible for expiration
processing according to the management
class assigned to the file. Contrast with
active version.

include-exclude file
A file containing statements to determine
the files to back up and the associated
management classes to use for backup or
archive. See also include-exclude list.

include-exclude list
A list of options that include or exclude
selected files for backup. An exclude
option identifies files that should not be
backed up. An include option identifies
files that are exempt from the exclusion
rules or assigns a management class to a
file or a group of files for backup or
archive services.

incremental backup
(1) A copy of all database data that has
changed since the most recent successful
full backup operation. An incremental
backup is also known as a cumulative
backup image because each incremental
backup includes the contents of the
previous incremental backup.

(2) The process of backing up information
in the database that is new or changed
since the last full backup. Contrast with
full backup. See also database backup series.

(3) For Data Protection for Microsoft
Exchange Server, a backup in which the
transaction logs are backed up and then
cleared.

individual mailbox restore
See mailbox restore.

information lifecycle management (ILM)
GPFS policy-based file management for
storage pools and file sets.

Glossary 231

i-node The internal structure that describes the
individual files on AIX, UNIX, or Linux
systems. An i-node contains the node,
type, owner, and location of a file.

i-node number
A number specifying a particular i-node
file in the file system.

IP address
A unique address for a device or logical
unit on a network that uses the IP
standard.

J

job file
A generated file that contains
configuration information for a migration
job. The file is XML format and can be
created and edited in the hierarchical
storage management (HSM) client for
Windows client graphical user interface.

journal-based backup
A method for backing up Windows clients
and AIX clients that exploits the change
notification mechanism in a file to
improve incremental backup performance
by reducing the need to fully scan the file
system.

journal daemon
On AIX, UNIX, or Linux systems, a
program that tracks change activity for
files residing in file systems.

journal service
In Microsoft Windows, a program that
tracks change activity for files residing in
file systems.

K

kilobyte (KB)
For processor storage, real and virtual
storage, and channel volume, 210 or 1 024
bytes. For disk storage capacity and
communications volume, 1 000 bytes.

L

LAN See local area network.

LAN-free data movement
The movement of client data between a
client system and a storage device on a
storage area network (SAN), bypassing
the local area network. This process is
also referred to as LAN-free data transfer.

LAN-free data transfer
See LAN-free data movement.

leader data
Bytes of data, from the beginning of a
migrated file, that are stored in the file's
corresponding stub file on the local file
system. The amount of leader data that is
stored in a stub file depends on the stub
size that is specified.

library
(1) A repository for demountable recorded
media, such as magnetic disks and
magnetic tapes.

(2) A collection of one or more drives, and
possibly robotic devices (depending on
the library type), which can be used to
access storage volumes.

library client
A server that uses server-to-server
communication to access a library that is
managed by another storage management
server. See also library manager.

library manager
A server that controls device operations
when multiple storage management
servers share a storage device. See also
library client.

local Pertaining to a device, file, or system that
is accessed directly from a user's system,
without the use of a communication line.

local area network (LAN)
A network that connects several devices
in a limited area (such as a single
building or campus) and that can be
connected to a larger network.

local shadow volumes
Data that is stored on shadow volumes
localized to a disk storage subsystem.

LOFS See loopback virtual file system.

logical file
A file that is stored in one or more server
storage pools, either by itself or as part of
an aggregate. See also aggregate and
physical file.

logical occupancy
The space that is used by logical files in a
storage pool. This space does not include
the unused space created when logical

232 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

files are deleted from aggregate files, so it
might be less than the physical
occupancy.

logical unit (LU)
An access point through which a user or
application program accesses the Systems
Network Architecture (SNA) network to
communicate with another user or
application program.

logical unit number (LUN)
In the Small Computer System Interface
(SCSI) standard, a unique identifier that is
used to differentiate devices, each of
which is a logical unit (LU).

logical volume
A portion of a physical volume that
contains a file system.

logical volume backup
A back up of a file system or logical
volume as a single object.

Logical Volume Snapshot Agent (LVSA)
Software that can act as the snapshot
provider for creating a snapshot of a
logical volume during an online image
backup.

loopback virtual file system (LOFS)
A file system that is created by mounting
a directory over another local directory,
also known as mount-over-mount. A
LOFS can also be generated using an
automounter.

LU See logical unit.

LUN See logical unit number.

LVSA See Logical Volume Snapshot Agent.

M

macro file
A file that contains one or more storage
manager administrative commands,
which can be run only from an
administrative client using the MACRO
command. Contrast with Tivoli Storage
Manager command script.

mailbox restore
A function that restores Microsoft
Exchange Server data (from IBM Data
Protection for Exchange backups) at the
mailbox level or mailbox-item level.

managed object
In Tivoli Storage Manager, a definition in

the database of a managed server that
was distributed to the managed server by
a configuration manager. When a
managed server subscribes to a profile, all
objects that are associated with that
profile become managed objects in the
database of the managed server. In
general, a managed object cannot be
modified locally on the managed server.
Objects can include policy, schedules,
client option sets, server scripts,
administrator registrations, and server
and server group definitions.

managed server
A Tivoli Storage Manager server that
receives configuration information from a
configuration manager using a
subscription to one or more profiles.
Configuration information can include
definitions of objects such as policy and
schedules. See also configuration manager,
subscription, and profile.

management class
A policy object that users can bind to each
file to specify how the server manages the
file. The management class can contain a
backup copy group, an archive copy
group, and space management attributes.
See also copy group, space manager client,
bind, and rebind.

maximum transmission unit
The largest possible unit of data that can
be sent on a given physical medium in a
single frame. For example, the maximum
transmission unit for Ethernet is 1500
bytes.

MB See megabyte.

megabyte (MB)
(1) 1 048 576 bytes (two to the twentieth
power) when used in this publication.

(2) For processor storage, real and virtual
storage, and channel volume, 2 to the
power of 20 or 1 048 576 bits. For disk
storage capacity and communications
volume, 1 000 000 bits.

metadata
Data that describes the characteristics of
data; descriptive data.

migrate
To move data from one storage location to
another. In Tivoli Storage Manager
products, migrating can mean moving

Glossary 233

data from a client node to server storage,
or moving data from one storage pool to
the next storage pool defined in the
server storage hierarchy. In both cases the
movement is controlled by policy, such as
thresholds that are set. See also migration
threshold.

migrated file
A file that has been copied from a local
file system to Tivoli Storage Manager
storage. For HSM clients on UNIX or
Linux systems, the file is replaced with a
stub file on the local file system. On
Windows systems, creation of the stub file
is optional. See also stub file and resident
file. For HSM clients on UNIX or Linux
systems, contrast with premigrated file.

migrate-on-close recall mode
A mode that causes a migrated file to be
recalled back to its originating file system
temporarily. Contrast with normal recall
mode and read-without-recall recall mode.

migration job
A specification of files to migrate, and
actions to perform on the original files
after migration. See also job file.

migration threshold
High and low capacities for storage pools
or file systems, expressed as percentages,
at which migration is set to start and
stop.

mirroring
The process of writing the same data to
multiple locations at the same time.
Mirroring data protects against data loss
within the recovery log.

mode A copy group attribute that specifies
whether to back up a file that has not
been modified since the last time the file
was backed up. See modified mode and
absolute mode.

modified mode
In storage management, a backup
copy-group mode that specifies that a file
is considered for incremental backup only
if it has changed since the last backup. A
file is considered a changed file if the
date, size, owner, or permissions of the
file have changed. See also absolute mode.

mount limit
The maximum number of volumes that
can be simultaneously accessed from the

same device class. The mount limit
determines the maximum number of
mount points. See also mount point.

mount point
On the Tivoli Storage Manager server, a
logical drive through which volumes in a
sequential access device class are
accessed. For removable-media device
types, such as tape, a mount point is a
logical drive that is associated with a
physical drive. For the file device type, a
mount point is a logical drive that is
associated with an I/O stream. The
number of mount points for a device class
is defined by the value of the mount limit
attribute for that device class. See also
mount limit.

mount retention period
The maximum number of minutes that
the server retains a mounted
sequential-access media volume that is
not being used before it dismounts the
sequential-access media volume.

mount wait period
The maximum number of minutes that
the server waits for a sequential-access
volume mount request to be satisfied
before canceling the request.

MTU See maximum transmission unit.

N

Nagle algorithm
An algorithm that reduces congestion of
TCP/IP networks by combining smaller
packets and sending them together.

named pipe
A type of interprocess communication
that permits message data streams to pass
between peer processes, such as between
a client and a server.

NAS See network-attached storage.

NAS node
A client node that is a network-attached
storage (NAS) file server. Data for the
NAS node is transferred by a NAS file
server that is controlled by the network
data management protocol (NDMP). A
NAS node is also called a NAS file server
node.

native file system
A file system that is locally added to the
file server and is not added for space

234 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

management. The hierarchical storage
manager (HSM) client does not provide
space management services to the file
system.

native format
A format of data that is written to a
storage pool directly by the Tivoli Storage
Manager server. Contrast with non-native
data format.

NDMP
See Network Data Management Protocol.

NetBIOS
See Network Basic Input/Output System.

network-attached storage (NAS) file server
A dedicated storage device with an
operating system that is optimized for
file-serving functions. A NAS file server
can have the characteristics of both a
node and a data mover.

Network Basic Input/Output System (NetBIOS)
A standard interface to networks and
personal computers that is used on local
area networks to provide message,
print-server, and file-server functions.
Application programs that use NetBIOS
do not have to handle the details of LAN
data link control (DLC) protocols.

Network Data Management Protocol (NDMP)
A protocol that allows a network
storage-management application to
control the backup and recovery of an
NDMP-compliant file server, without
installing vendor-acquired software on
that file server.

network data-transfer rate
A rate that is calculated by dividing the
total number of bytes that are transferred
by the data transfer time. For example,
this rate can be the time that is spent
transferring data over a network.

node A file server or workstation on which the
backup-archive client program has been
installed, and which has been registered
to the server.

node name
A unique name that is used to identify a
workstation, file server, or PC to the
server.

node privilege class
A privilege class that gives an
administrator the authority to remotely

access backup-archive clients for a specific
client node or for all clients in a policy
domain. See also privilege class.

non-native data format
A format of data that is written to a
storage pool that differs from the format
that the server uses for operations.

normal recall mode
A mode that causes a migrated file to be
copied back to its originating file system
when it is accessed.

O

offline volume backup
A backup in which the volume is locked
so that no other system applications can
access it during the backup operation.

online volume backup
A backup in which the volume is
available to other system applications
during the backup operation.

open registration
A registration process in which users can
register their workstations as client nodes
with the server. Contrast with closed
registration.

operator privilege class
A privilege class that gives an
administrator the authority to disable or
halt the server, enable the server, cancel
server processes, and manage removable
media. See also privilege class.

options file
A file that contains processing options. On
Windows and NetWare systems, the file is
called dsm.opt. On AIX, UNIX, Linux,
and Mac OS X systems, the file is called
dsm.sys.

originating file system
The file system from which a file was
migrated. When a file is recalled using
normal or migrate-on-close recall mode, it
is always returned to its originating file
system.

orphaned stub file
A file for which no migrated file can be
found on the Tivoli Storage Manager
server that the client node is contacting
for space management services. For
example, a stub file can be orphaned
when the client system-options file is

Glossary 235

modified to contact a server that is
different than the one to which the file
was migrated.

out-of-space protection mode
A mode that controls whether the
program intercepts out-of-space
conditions. See also execution mode.

P

pacing
In SNA, a technique by which the
receiving system controls the rate of
transmission of the sending system to
prevent overrun.

packet In data communication, a sequence of
binary digits, including data and control
signals, that is transmitted and switched
as a composite whole.

page A defined unit of space on a storage
medium or within a database volume.

partial-file recall mode
A recall mode that causes the hierarchical
storage management (HSM) function to
read just a portion of a migrated file from
storage, as requested by the application
accessing the file.

password generation
A process that creates and stores a new
password in an encrypted password file
when the old password expires.
Automatic generation of a password
prevents password prompting. Password
generation can be set in the options file
(passwordaccess option). See also options
file.

path An object that defines a one-to-one
relationship between a source and a
destination. Using the path, the source
accesses the destination. Data can flow
from the source to the destination, and
back. An example of a source is a data
mover (such as a network-attached
storage [NAS] file server), and an
example of a destination is a tape drive.

pattern-matching character
See wildcard character.

physical file
A file that is stored in one or more
storage pools, consisting of either a single
logical file, or a group of logical files that
are packaged together as an aggregate.
See also aggregate and logical file.

physical occupancy
The amount of space that is used by
physical files in a storage pool. This space
includes the unused space that is created
when logical files are deleted from
aggregates. See also physical file, logical file,
and logical occupancy.

plug-in
A self-contained software component that
modifies (adds, or changes) the function
in a particular system. When a plug-in is
added to a system, the foundation of the
original system remains intact.

policy domain
A grouping of policy users with one or
more policy sets, which manage data or
storage resources for the users. The users
are client nodes that are associated with
the policy domain.

policy privilege class
A privilege class that gives an
administrator the authority to manage
policy objects, register client nodes, and
schedule client operations for client
nodes. Authority can be restricted to
certain policy domains. See also privilege
class.

policy set
A group of rules in a policy domain. The
rules specify how data or storage
resources are automatically managed for
client nodes in the policy domain. Rules
can be contained in management classes.
See also active policy set and management
class.

premigrated file
A file that has been copied to Tivoli
Storage Manager storage, but has not
been replaced with a stub file on the local
file system. An identical copy of the file
resides both on the local file system and
in Tivoli Storage Manager storage.
Premigrated files occur on UNIX and
Linux file systems to which space
management has been added. Contrast
with migrated file and resident file.

premigrated files database
A database that contains information
about each file that has been premigrated
to Tivoli Storage Manager storage. The
database is stored in a hidden directory

236 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

named .SpaceMan in each file system to
which space management has been
added.

premigration
The process of copying files that are
eligible for migration to Tivoli Storage
Manager storage, but leaving the original
file intact on the local file system.

premigration percentage
A space management setting that controls
whether the next eligible candidates in a
file system are premigrated following
threshold or demand migration.

primary storage pool
A named set of volumes that the server
uses to store backup versions of files,
archive copies of files, and files migrated
from client nodes. See also destination and
copy storage pool.

privilege class
A level of authority that is granted to an
administrator. The privilege class
determines which administrative tasks the
administrator can perform. See also node
privilege class, operator privilege class, policy
privilege class, storage privilege class, and
system privilege class.

profile
A named group of configuration
information that can be distributed from a
configuration manager when a managed
server subscribes. Configuration
information can include registered
administrator IDs, policies, client
schedules, client option sets,
administrative schedules, storage manager
command scripts, server definitions, and
server group definitions. See also
configuration manager and managed server.

Q

quota (1) For HSM on AIX, UNIX, or Linux
systems, the limit (in megabytes) on the
amount of data that can be migrated and
premigrated from a file system to server
storage.

(2) For HSM on Windows systems, a
user-defined limit to the space that is
occupied by recalled files.

R

randomization
The process of distributing schedule start

times for different clients within a
specified percentage of the schedule's
startup window.

raw logical volume
A portion of a physical volume that is
comprised of unallocated blocks and has
no journaled file system (JFS) definition.
A logical volume is read/write accessible
only through low-level I/O functions.

read-without-recall recall mode
A mode that causes hierarchical storage
management (HSM) to read a migrated
file from storage without storing it back
on the local file system. The last piece of
information read from the file is stored in
a buffer in memory on the local file
system. Contrast with normal recall mode
and migrate-on-close recall mode.

rebind
To associate a backed-up file with a new
management class name. For example,
rebinding occurs when the management
class associated with a file is deleted. See
also bind.

recall In Tivoli Storage Manager, to copy a
migrated file from server storage back to
its originating file system using the space
management client. See also transparent
recall, selective recall, and recall mode.

recall mode
A mode that is assigned to a migrated file
with the dsmattr command that
determines how the file is processed
when it is recalled. It determines whether
the file is stored on the local file system,
is migrated back to Tivoli Storage
Manager storage when it is closed, or is
read from Tivoli Storage Manager storage
without storing it on the local file system.

receiver
A server repository that contains a log of
server and client messages as events. For
example, a receiver can be a file exit, a
user exit, or the Tivoli Storage Manager
server console and activity log. See also
event.

reclamation
The process of consolidating the
remaining data from many
sequential-access volumes onto fewer,
new sequential-access volumes.

Glossary 237

reclamation threshold
The percentage of space that a
sequential-access media volume must
have before the server can reclaim the
volume. Space becomes reclaimable when
files are expired or are deleted.

reconciliation
The process of synchronizing a file system
with the Tivoli Storage Manager server,
and then removing old and obsolete
objects from the Tivoli Storage Manager
server.

recovery log
A log of updates that are about to be
written to the database. The log can be
used to recover from system and media
failures. The recovery log consists of the
active log (including the log mirror) and
archive logs.

register
To define a client node or administrator
ID that can access the server.

registry
A repository that contains access and
configuration information for users,
systems, and software.

resident file
On a Windows system, a complete file on
a local file system that might also be a
migrated file because a migrated copy can
exist in Tivoli Storage Manager storage.
On a UNIX or Linux system, a complete
file on a local file system that has not
been migrated or premigrated, or that has
been recalled from Tivoli Storage Manager
storage and modified. Contrast with stub
file and premigrated file. See migrated file.

restore
To copy information from its backup
location to the active storage location for
use. For example, to copy information
from server storage to a client
workstation.

retention
The amount of time, in days, that inactive
backed-up or archived files are kept in the
storage pool before they are deleted.
Copy group attributes and default
retention grace periods for the domain
define retention.

retrieve
To copy archived information from the

storage pool to the workstation for use.
The retrieve operation does not affect the
archive version in the storage pool.

roll back
To remove changes that were made to
database files since the last commit point.

root user
A system user who operates without
restrictions. A root user has the special
rights and privileges needed to perform
administrative tasks.

S

SAN See storage area network.

schedule
A database record that describes client
operations or administrative commands to
be processed. See administrative command
schedule and client schedule.

scheduling mode
The type of scheduling operation for the
server and client node that supports two
scheduling modes: client-polling and
server-prompted.

scratch volume
A labeled volume that is either blank or
contains no valid data, that is not defined,
and that is available for use.

script A series of commands, combined in a file,
that carry out a particular function when
the file is run. Scripts are interpreted as
they are run. Contrast with Tivoli Storage
Manager command script.

Secure Sockets Layer (SSL)
A security protocol that provides
communication privacy. With SSL,
client/server applications can
communicate in a way that is designed to
prevent eavesdropping, tampering, and
message forgery.

selective backup
The process of backing up certain files or
directories from a client domain. The files
that are backed up are those that are not
excluded in the include-exclude list. The
files must meet the requirement for
serialization in the backup copy group of
the management class that is assigned to
each file. Contrast with incremental backup.

selective migration
The process of copying user-selected files

238 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

from a local file system to Tivoli Storage
Manager storage and replacing the files
with stub files on the local file system.
Contrast with threshold migration and
demand migration.

selective recall
The process of copying user-selected files
from Tivoli Storage Manager storage to a
local file system. Contrast with transparent
recall.

serialization
The process of handling files that are
modified during backup or archive
processing. See dynamic serialization, static
serialization, shared static serialization, and
shared dynamic serialization.

server A software program or a computer that
provides services to other software
programs or other computers.

server options file
A file that contains settings that control
various server operations. These settings
affect such things as communications,
devices, and performance.

server-prompted scheduling mode
A client/server communication technique
where the server contacts the client node
when tasks must be done. Contrast with
client-polling scheduling mode.

server storage
The primary, copy, and active-data storage
pools that are used by the server to store
user files such as backup versions, archive
copies, and files migrated from space
manager client nodes (space-managed
files). See also active-data pool, primary
storage pool, copy storage pool, storage pool
volume, and volume.

session
A logical or virtual connection between
two stations, software programs, or
devices on a network that allows the two
elements to communicate and exchange
data.

session resource usage
The amount of wait time, processor time,
and space that is used or retrieved during
a client session.

shared dynamic serialization
A value for serialization that specifies that
a file must not be backed up or archived

if it is being modified during the
operation. Tivoli Storage Manager retries
the backup or archive operation a number
of times; if the file is being modified
during each attempt, Tivoli Storage
Manager will back up or archive the file
on its last try. See also serialization.
Contrast with dynamic serialization, shared
static serialization, and static serialization.

shared library
A library device that is used by multiple
storage manager servers.

shared static serialization
A copy-group serialization value that
specifies that a file must not be modified
during a backup or archive operation.
Tivoli Storage Manager attempts to retry
the operation a number of times. If the
file is in use during each attempt, the file
is not backed up or archived. See also
serialization. Contrast with dynamic
serialization, shared dynamic serialization,
and static serialization.

snapshot
An image backup type that consists of a
point-in-time view of a volume.

space-managed file
A file that is migrated from a client node
by the space manager client. The space
manager client recalls the file to the client
node on demand.

space management
The process of keeping sufficient free
storage space available on a local file
system for new data by migrating files to
server storage. Synonymous with
hierarchical storage management.

space manager client
A program that runs on a UNIX or Linux
system to manage free space on the local
file system by migrating files to server
storage. The program can recall the files
either automatically or selectively. Also
called hierarchical storage management
(HSM) client.

space monitor daemon
A daemon that checks space usage on all
file systems for which space management
is active, and automatically starts
threshold migration when space usage on
a file system equals or exceeds its high
threshold.

Glossary 239

sparse file
A file that is created with a length greater
than the data it contains, leaving empty
spaces for the future addition of data.

special file
On AIX, UNIX, or Linux systems, a file
that defines devices for the system, or
temporary files that are created by
processes. There are three basic types of
special files: first-in, first-out (FIFO);
block; and character.

SSL See Secure Sockets Layer.

stabilized file space
A file space that exists on the server but
not on the client.

stanza A group of lines in a file that together
have a common function or define a part
of the system. Each stanza is identified by
a name that occurs in the first line of the
stanza. Depending on the type of file, a
stanza is ended by the next occurrence of
a stanza name in the file, or by an explicit
end-of-stanza marker. A stanza can also
be ended by the end of the file.

startup window
A time period during which a schedule
must be initiated.

static serialization
A copy-group serialization value that
specifies that a file must not be modified
during a backup or archive operation. If
the file is in use during the first attempt,
the storage manager cannot back up or
archive the file. See also serialization.
Contrast with dynamic serialization, shared
dynamic serialization, and shared static
serialization.

storage agent
A program that enables the backup and
restoration of client data directly to and
from storage attached to a storage area
network (SAN).

storage area network (SAN)
A dedicated storage network that is
tailored to a specific environment,
combining servers, systems, storage
products, networking products, software,
and services.

storage hierarchy
(1) A logical order of primary storage
pools, as defined by an administrator. The

order is typically based on the speed and
capacity of the devices that the storage
pools use. The storage hierarchy is
defined by identifying the next storage
pool in a storage pool definition. See also
storage pool.

(2) An arrangement of storage devices
with different speeds and capacities. The
levels of the storage hierarchy include:
main storage, such as memory and
direct-access storage device (DASD)
cache; primary storage (DASD containing
user-accessible data); migration level 1
(DASD containing data in a space-saving
format); and migration level 2 (tape
cartridges containing data in a
space-saving format).

storage pool
A named set of storage volumes that are
the destination that is used to store client
data. A storage pool contains backup
versions, archive copies, and files that are
migrated from space manager client
nodes. A primary storage pool is backed
up to a copy storage pool. See also
primary storage pool, copy storage pool, and
active-data pool.

storage pool volume
A volume that has been assigned to a
storage pool. See also volume, active-data
pool, copy storage pool, and primary storage
pool.

storage privilege class
A privilege class that gives an
administrator the authority to control how
storage resources for the server are
allocated and used, such as monitoring
the database, the recovery log, and server
storage. See also privilege class.

stub A shortcut on the Windows file system
that is generated by the hierarchical
storage management (HSM) client for a
migrated file that allows transparent user
access. A stub is the sparse file
representation of a migrated file, with a
reparse point attached.

stub file
A file that replaces the original file on a
local file system when the file is migrated
to storage. A stub file contains the
information that is necessary to recall a
migrated file from Tivoli Storage Manager
storage. It also contains additional

240 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

information that can be used to eliminate
the need to recall a migrated file.

stub file size
The size of a file that replaces the original
file on a local file system when the file is
migrated to Tivoli Storage Manager
storage. The size that is specified for stub
files determines how much leader data
can be stored in the stub file. The default
for stub file size is the block size defined
for a file system minus 1 byte.

subscription
In a Tivoli environment, the process of
identifying the subscribers that the
profiles are distributed to. For Tivoli
Storage Manager, a subscription is the
process by which a managed server
receives configuration information
associated with a particular profile on a
configuration manager. See also managed
server, configuration manager, and profile.

system privilege class
A privilege class that gives an
administrator the authority to issue all
server commands. See also privilege class.

Systems Network Architecture (SNA)
The description of the logical structure,
formats, protocols, and operational
sequences for transmitting information
through and controlling the configuration
and operation of networks.

T

tape library
A set of equipment and facilities that
support an installation's tape
environment. The tape library can include
tape storage racks, mechanisms for
automatic tape mounting, a set of tape
drives, and a set of related tape volumes
mounted on those drives.

tape volume prefix
The high-level-qualifier of the file name
or the data set name in the standard tape
label.

target node
A client node for which other client nodes
(called agent nodes) have been granted
proxy authority. The proxy authority
allows the agent nodes to perform
operations such as backup and restore on
behalf of the target node, which owns the
data.

TCA See trusted communications agent.

TCP/IP
See Transmission Control Protocol/Internet
Protocol.

threshold migration
The process of moving files from a local
file system to Tivoli Storage Manager
storage based on the high and low
thresholds that are defined for the file
system. Contrast with demand migration,
selective migration, and migration job.

throughput
In storage management, the total bytes in
the workload, excluding overhead, that
are backed up or restored, divided by
elapsed time.

timeout
A time interval that is allotted for an
event to occur or complete before
operation is interrupted.

timestamp control mode
A mode that determines whether
commands preserve the access time for a
file or set it to the current time.

Tivoli Storage Manager command script
A sequence of Tivoli Storage Manager
administrative commands that are stored
in the database of the Tivoli Storage
Manager server. The script can run from
any interface to the server. The script can
include substitution for command
parameters and conditional logic.

tombstone object
A small subset of attributes of a deleted
object. The tombstone object is retained
for a specified period, and at the end of
the specified period, the tombstone object
is permanently deleted.

Transmission Control Protocol/Internet Protocol
(TCP/IP)

An industry-standard, nonproprietary set
of communication protocols that provides
reliable end-to-end connections between
applications over interconnected networks
of different types.

transparent recall
The process that is used to automatically
recall a file to a workstation or file server
when the file is accessed. See also recall
mode. Contrast with selective recall.

Glossary 241

trusted communications agent (TCA)
A program that handles the sign-on
password protocol when clients use
password generation.

U

UCS-2 A 2-byte (16-bit) encoding scheme based
on ISO/IEC specification 10646-1. UCS-2
defines three levels of implementation:
Level 1-No combining of encoded
elements allowed; Level 2-Combining of
encoded elements is allowed only for
Thai, Indic, Hebrew, and Arabic; Level
3-Any combination of encoded elements
are allowed.

UNC See Universal Naming Convention name.

Unicode
A character encoding standard that
supports the interchange, processing, and
display of text that is written in the
common languages around the world,
plus some classical and historical texts.
The Unicode standard has a 16-bit
character set defined by ISO 10646.

Unicode-enabled file space
Unicode file space names provide support
for multilingual workstations without
regard for the current locale.

Unicode transformation format 8
Unicode Transformation Format (UTF),
8-bit encoding form, which is designed
for ease of use with existing ASCII-based
systems. The CCSID value for data in
UTF-8 format is 1208.

Universal Naming Convention (UNC) name
A name that is used to access a drive or
directory containing files shared across a
network. The UNC name includes the
system name and a SharePoint name that
represents the shared drive or directory.

Universally Unique Identifier (UUID)
The 128-bit numerical identifier that is
used to ensure that two components do
not have the same identifier.

UTF-8 See Unicode transformation format 8.

UUID See Universally Unique Identifier.

V

validate
To check a policy set for conditions that
can cause problems if that policy set
becomes the active policy set. For

example, the validation process checks
whether the policy set contains a default
management class.

version
A backup copy of a file stored in server
storage. The most recent backup copy of a
file is the active version. Earlier copies of
the same file are inactive versions. The
number of versions retained by the server
is determined by the copy group
attributes in the management class.

virtual file space
A representation of a directory on a
network-attached storage (NAS) file
system as a path to that directory.

virtual volume
An archive file on a target server that
represents a sequential media volume to a
source server.

volume
A discrete unit of storage on disk, tape or
other data recording medium that
supports some form of identifier and
parameter list, such as a volume label or
input/output control. See also scratch
volume, and storage pool volume.

volume history file
A file that contains information about
volumes that have been used by the
server for database backups and for
export of administrator, node, policy, or
server data. The file also has information
about sequential-access storage pool
volumes that have been added, reused, or
deleted. The information is a copy of
volume information that is recorded in
the server database.

Volume Shadow Copy Service
A set of Microsoft application-
programming interfaces (APIs) that you
can use to create shadow copy backups of
volumes, exact copies of files, including
all open files, and so on.

VSS See Volume Shadow Copy Service.

VSS Backup
A backup operation that uses Microsoft
Volume Shadow Copy Service (VSS)
technology. The backup operation
produces an online snapshot
(point-in-time consistent copy) of
Exchange data. This copy can be stored

242 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

on local shadow volumes or on Tivoli
Storage Manager server storage.

VSS Fast Restore
A function that uses a Microsoft Volume
Shadow Copy Service (VSS) software
provider to restore VSS Backups (IBM
Data Protection for Exchange database
files and log files) that reside on local
shadow volumes.

VSS Instant Restore
A volume-level hardware-assisted
Microsoft Volume Shadow Copy Service
(VSS) function where target volumes that
contain the snapshot are copied back to
the original source volumes.

VSS offloaded backup
A backup operation that uses a Microsoft
Volume Shadow Copy Service (VSS)
hardware provider (installed on an
alternate system) to move IBM Data
Protection for Exchange data to the Tivoli
Storage Manager server. This type of
backup operation shifts the backup load
from the production system to another
system.

VSS Restore
A function that uses a Microsoft Volume
Shadow Copy Service (VSS) software
provider to restore VSS Backups (IBM
Data Protection for Exchange database
files and log files) that reside on Tivoli
Storage Manager server storage to their
original location.

W

wildcard character
A special character such as an asterisk (*)
or a question mark (?) that can be used to
represent one or more characters. Any
character or set of characters can replace
the wildcard character.

workstation
A configuration of input/output
equipment at which an operator works. A
workstation is a terminal or
microcomputer at which a user can run
applications and that is usually connected
to a mainframe or a network.

worldwide name
A 64-bit, unsigned name identifier that is
unique.

workload partition (WPAR)
A partition within a single operating
system instance.

Glossary 243

244 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

Index

Numerics
64-bit

APPC (not supported) 1
clio (not supported) 1
compiling 1
requirements 1

A
access to objects

by user 27, 213
accessibility features 217
accessing to objects

across nodes 27
active copies of objects 41, 205
active version

deleting 68
administrative user

creating 24
administrator options 2, 196
API

dsmInitEx
configuration file used by 3

environment setup 4
option string used by dsmInitEx 3
overview 1
sample applications 5
using Unicode 75

API configuration file
used by dsmInitEx 19

API installation command 6
API options list

used by dsmInitEx 19
ApiSessInfo xiii
application type 19, 103, 106
archDetailCG xiii
archive copy group 30, 202
archive files

how long retained 30
archive objects

deleting 210
expiration 32
release 32
suspend 32

archiveretentionprotection 33
archiving objects 41, 205
asnodename 73
authorization rule

dsmDeleteAccess function 87

B
backed up objects

deleting 210
backing up objects 41
backup

multiple nodes 73
using client node proxy 73

backup copy group 30, 202

backup or archive example
X/Open API 207, 209

backup-archive client
interoperability 71

backupDetailCG xiii
BSABeginTxn 203

flowchart 207
transaction model 203
X/Open function 203

BSABeginTxn X/Open function 208
BSAChangeToken 201
BSACreateObject 202

flowchart 207
include-exclude list 202

BSADeleteObject 210
flowchart 211

BSAEndData
flowchart 209
X/Open function 205

BSAEndData X/Open function 209
BSAEndTxn 203

flowchart 207
general description 209
X/Open function 203

BSAGetData
flowchart 209

BSAGetData X/Open function 209
BSAGetEnvironment 201
BSAGetNextQueryObject

X/Open function 203
BSAGetNextQueryObject function

flowchart 204
BSAGetObject

flowchart 209
BSAGetObject X/Open function 209
BSAInit 201

session owner, set 213
BSAInit function

X/Open API 199
BSAMarkObjectInactive 210

flowchart 211
BSAQueryApiVersion 199
BSAQueryObject 208

flowchart 209
X/Open function 203

BSAQueryObject function
flowchart 204

BSAQueryObject X/Open function
sending data 205

BSAResolveLifecycleGroup 202
flowchart 207
include-exclude list 202
object name 212

BSASendData
flowchart 207
sending data 205

BSATerminate function 200
buffer copy elimination

overview 42
restore and retrieve 43

C
callbuff

TSM buffer sample API
applications 5

callevnt
event-based retention 5

callhold
detention hold sample API

applications 5
callmt*

multithreaded sample API
applications 5

callmt1.c
sample 18

callret
data retention protection sample API

applications 5
capacity

file space 28
character sets 75
child process 201
client node proxy support 73
client owner authority 24
client-side data deduplication 49
code pages 75
commands

makemtu 75
compatibility

between versions of API 16
between versions of X/Open

API 199
compiling

Unicode 75
compressalways 3

option 9
compression 42, 60
configuration file

API 3
configuration sources

priority sequence 2
copy group 30

defined 202
CTRL+C 18
custom.h 216
customer support

contact ix

D
dapi*

single-threaded, interactive sample
API applications 5

data deduplication xiii, 48
data deduplication files

exclude 52
include 52

data protection 34
data retention 34
data structures

size limits 16, 37

© Copyright IBM Corp. 1993, 2010 245

data structures (continued)
version control 17

data transfer
LAN-free 39

DB Chg operation 13
DBAEndTxn 203
DBCS 75
deactivating objects on the server

X/Open API 210
definitions 223
delete archive 72
delete filespace 72
deleting objects

X/Open API 210
design recommendations 13
dir

object type 26
double-byte character set 75
dscenu.txt 4
dsierror.log 4
DSM_MAX_PLATFORM_LENGTH 19
dsm.opt 2

asnodename option 73
enablearchiveretentionprotection 33
encryptkey 45

dsm.sys 2, 4, 21
asnodename option 73
enablearchiveretentionprotection 33
encryptkey 45

dsmapifp.h
header file 77, 187

dsmapips.h header file 147
dsmapitd.h 16, 17, 102, 105

header file 111
dsmapitd.h header file 147
dsmApiVersion function

session 19
dsmBeginGetData function 60, 61, 64

buffer management 43
code example 66
dsmEndGetData function 90
dsmTerminate function 90
in flowchart 65
overview 79
return codes 80
state diagram 65, 69
syntax 80

dsmBeginQuery function
dsmEndQuery function 92
dsmGetNextQObj function 98
flowchart 36
management class 31
overview 81
querying 35
querying example 36
receiving data 61
return codes 83
sending data example 38
state diagram 35, 69
syntax 81

dsmBeginTxn 27
dsmBeginTxn function

buffer copy elimination 42
code example 56
deleting objects 68
deletion 32
dsmEndTxn function 93

dsmBeginTxn function (continued)
dsmRenameObj function 118
dsmRetentionEvent function 120
expiration 32
overview 84
retention policy 34
return codes 85
state diagram 69
syntax 84
transaction model 38

dsmBindMC
example 31

dsmBindMC function
buffer copy elimination 42
code example 56
dsmSendObj function 123
general description 55
include-exclude list 30
information returned by 30
management classes 31
object names 26
overview 85
return codes 86
state diagram 69
syntax 85

dsmChangePW
general description 69

dsmChangePW function
overview 86
return codes 87
session security 20
state diagram 69
syntax 86

dsmCleanUp function
dsmSetUp function 128
multithreading 18
overview 87
signals 18
syntax 87

dsmclientV3.cat 4
dsmDeleteAccess function

accessing objects 27
overview 87
syntax 87

dsmDeleteFS function
example code 28
file spaces 28
file system management 28
overview 88
return codes 89
state diagram 69
syntax 88

dsmDeleteObj function
deleting objects 68
dsmEndTxn function 93
dsmSendObj function

management class 13
object naming 13
objects 41
overview 89
return codes 90
state diagram 69
syntax 89

dsmEndGetData
stopping process 65

dsmEndGetData function 61
buffer management 43

dsmEndGetData function (continued)
code example 66
in flowchart 65
LAN-free 39
overview 90
state diagram 65, 69
syntax 90

dsmEndGetDataEx function
overview 91
syntax 91

dsmEndGetObj function 61
buffer management 43
code example 66
dsmBeginGetData function 79
in flowchart 65
overview 91
return codes 91
state diagram 65, 69
syntax 91

dsmEndQuery 35
general description 35

dsmEndQuery function 36
dsmGetNextQObj function 98
flowchart 36
overview 92
querying the server 61
state diagram 35, 69
syntax 92

dsmEndSendObj function
code example 56
dsmEndTxn function 93
dsmSendData function 122
dsmSendObj function 123
flowchart 54
overview 92
return codes 92
sending objects 40
state diagram 53, 69
syntax 92

dsmEndSendObjEx function 42
compression 42
encryption 45
LAN-free 39
overview 93
return codes 93
syntax 93

dsmEndSendObjExOut_t xiii
dsmEndTxn function 32, 120

buffer copy elimination 42
code example 56
deleting objects 68
dsmEndTxnEx function 95
dsmRenameObj function 118
dsmRetentionEvent function 120
dsmSendObj function 123
file grouping 58
flowchart 54
overview 93
return codes 94
simultaneous-write operations 39
state diagram 53, 69
syntax 94
transaction model 38

dsmEndTxnEx function
file grouping 58
overview 95
return codes 96

246 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

dsmEndTxnEx function (continued)
syntax 95

dsmEventType function
retention policy 34

dsmGetBufferData function 43
overview 97
return codes 97
syntax 97

dsmGetData 65
dsmGetData function

code example 66
in flowchart 65
in state diagram 65
overview 96
return codes 96
state diagram 69
syntax 96

dsmGetDataEx function
dsmReleaseBuffer function 117
dsmRequestBuffer function 119

dsmGetList function
dsmGetObj function 100

dsmGetNextObj
dsmDeleteObj function 89

dsmGetNextQObj 35
dsmEndQuery function 92

dsmGetNextQObj function 32, 35
dsmRetentionEvent function 120
flowchart 36
overview 98
querying example 36
return codes 99
state diagram 35, 69
syntax 98

dsmGetObj
receiving objects 65

dsmGetObj function 61
code example 66
dsmBeginGetData function 79
dsmEndGetObj function 91
dsmGetData function 96
in flowchart 65
overview 100
return codes 100
state diagram 65, 69
syntax 100

dsmGroupHandler function
dsmEndTxnEx function 95
file grouping 58
overview 101
return codes 102
syntax 101

dsmgrp.c 59
dsmgrp*

logical object grouping sample API
applications 5

dsmHandle 113, 114
dsmHandle function

session 19
DSMI_CONFIG environment variable 4
DSMI_DIR

environment variable 9
environment variable (OS400) 8

DSMI_DIR environment variable 4
DSMI_LOG environment variable 4
dsmInit function

overview 102

dsmInit function (continued)
retention protection 33
return codes 104
syntax 102

dsmInitEx function 27, 42
administrative user 24
asnodename option 73
dsmChangePW function 86
dsmEndGetData function 90
dsmGetBufferData function 97
dsmGetNextQObj function 98
dsmLogEvent function 109
dsmQueryCliOptions function 113
dsmQuerySessOptions 114
dsmReleaseBuffer function 117
dsmSetUp function 128
encryption 45
expired password 20
interoperability 73
multithreading 18
option string 3
overview 105
retention protection 33
return codes 108
session 19
session owner, set 26
session security 20
specifying options 2
starting session 19
state diagram 69
syntax 105

dsmIntitEx function
dsmQuerySessInfo function 113

dsmLogEvent function
overview 109
return codes 109
syntax 109

dsmLogEventEx function 68
overview 109
return codes 110
syntax 110

dsmQuery function
multiple nodes 73

dsmQueryAccess function 27
dsmDeleteAccess function 87
overview 111

dsmQueryApiVersion function
overview 111
state diagram 69
syntax 111

dsmQueryApiVersionEx function
overview 112
syntax 112
version control 16

dsmQueryAPIVersionEx function
multithreading 18

dsmQueryCliOptions function
dsmQuerySessOptions 114
overview 113
session 19
syntax 113

dsmQuerySessInfo
dsmDeleteFS function 88

dsmQuerySessInfo function
dsmRetentionEvent function 120
general description 20
overview 113

dsmQuerySessInfo function (continued)
return codes 114
state diagram 69
syntax 114
transaction model 38

dsmQuerySessOptions function
overview 114
syntax 114

dsmrc.h
header file 135

dsmRCMsg function
overview 115
return codes 116
syntax 115

dsmRegisterFS function
example code 28
file spaces 28
overview 116
return codes 117
state diagram 69
syntax 116

dsmReleaseBuffer function 42, 43
dsmGetBufferData function 97
dsmReleaseBuffer function 117
dsmRequestBuffer function 119
dsmSendBufferData function 121
overview 117
return codes 117
syntax 117

dsmRenameObj function
overview 118
return codes 119
syntax 118

dsmRequestBuffer function
buffer copy elimination 42
overview 119
return codes 120
syntax 119

dsmRetentionEvent function
deletion 32
expiration 32
overview 120
retention policy 34
return codes 121
syntax 120

dsmSendBufferData function
buffer copy elimination 42
overview 121
return codes 122
syntax 121

dsmSendData function
code example 56
compression 42
dsmEndSendObj function 92
dsmEndTxn function 93
dsmSendObj function 123
flowchart 54
multithreading 18
overview 122
performance 40
return codes 123
sending objects 40
state diagram 53, 69
syntax 122

dsmSendObj
retention policy 34

dsmSendObj function 34

Index 247

dsmSendObj function (continued)
accessing objects 26
backup copy group 31
code example 56
compression 42
copy groups 30
dsmEndTxn function 93
flowchart 54
in state diagram 53
object naming 13
overview 123
retention policy 34
sending objects 40
state diagram 69
syntax 124

dsmSendObjfunction
deleting objects 68

dsmSendType function
updating objects 67

dsmSetAccess funciton
return codes 127
syntax 127

dsmSetAccess function
accessing objects 27
overview 126

dsmSetUp function
LAN-free 13, 39
multithread 18
multithreading 18, 39
overview 128
passwordaccess 23
syntax 128

dsmtca 201
version control 16
X/Open 201
X/Open API 199

dsmTerminate 65
dsmTerminate function

buffer 42
buffer copy elimination 42
dsmInit function 102
dsmReleaseBuffer function 117
dsmRequestBuffer function 119
dsmSetUp function 128
general description 20
overview 129
session 19
signals 18
state diagram 69
syntax 129

dsmUpdateFS function
example code 28
file space management 28
file spaces 28
overview 129
return codes 130
state diagram 69
syntax 129

dsmUpdateObj function
change management class 30
overview 130
return codes 131
syntax 131

dsmUpdateObject(Ex) function
updating objects 67

dsmUpdateObjEx function
change management class 30

dsmUpdateObjEx function (continued)
overview 132
return codes 133
syntax 132

E
education

see Tivoli technical training vii
enablearchiveretentionprotection 34

dsm.opt 33
dsm.sys 33

encryption
application managed 45
authentication setting 44
interoperability 73
transparent 47

encryptkey 46
ending a session 19

with BSATerminate 200
with dsmTerminate 20

environment
setting up API 4

environment variables
by operating system 4
DSMI_CONFIG 4
DSMI_DIR 4
DSMI_LOG 4

envSetUp 128
errorlogretention

when to use 68
event

eventRetentionActivate 34
event logging 68
event-based

retention policy 34
eventRetentionActivate event 34
exclude data deduplication files 52
exclude objects 25

F
fast path 35
fast path queries 81
file aggregation 39
file grouping 58
file space

capacity 28
deleting 28
managing 28
registering 28

file space management
dsmUpdateFS 28

file space name
file aggregation 39
overview 25

file spaces
non-Unicode 75

file system management
dsmDeleteFS 28

files
configuration 2
object type 26
option 2

fixes, obtaining ix

flowchart
backup and archive example 53
restore and retrieve 65

fromowner option 27
function calls

short descriptions 77
function definitions, API 187, 190

G
glossary 223
group leader 58

H
header file dsmapips.h 147
header file dsmapitd.h 147
header file release.h 147
header file tsmapitd.h 147
header files

dsmapifp.h 187
dsmrc.h 135
policy.h changes 216
tsmapifp.h 190

high-level names
dsmRenameObj function 118

high-level qualifier 71
HP thread stack 18

I
IBM Software Support

submitting a problem xi
IBM Support Assistant viii
identifying the object

X/Open API 211
inactive copies of objects 41, 205
include data deduplication files 52
include objects 25

exclude objects
X/Open API 212

X/Open API 212
include-exclude

file 129
list 202

include-exclude list 30, 76, 202
InSession state 109
Internet, searching for problem

resolution viii, ix
interoperability

access to API objects 71
backup-archive client 71
commands 72
conventions

UNIX or Linux 71
Windows 71

naming API objects 71
operating system 73

K
knowledge bases, searching viii

248 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

L
LAN-free

data transfer 39
dsmEndGetDataEX function 91
dsmSetUp function 13

logging events 68
low-level names

dsmRenameObj function 118
low-level qualifier 71

M
makemtu 75
makesmp.os400.sh shell script 7
management class

associating objects 30
binding and rebinding to files 31
BSACreateObject 202
BSAResolveLifecycleGroup 202
dsmBindMC, assigned by 30
querying 31
X/Open 202

mbcs 75
messages

dsmRCMsg function 115
metadata

object naming 24
X/Open API 211

multi-user applications 201
multithreading

flag 13
mtflag value 18
multithread option 18
overview 18
restrictions 18

N
naming objects 212

X/Open API 211
nodes

accessing across owners 27
authorization 68
names 13
querying management classes 31
with client proxy support 73

NULL
backup or archive group 30

O
objAttr xiii
Objdeduplicated xiii
object

version control 41
object ids, overview 24
object naming

BSAResolveLifecycleGroup 212
dsmBindMC 26
examples by OS 26
file space name 25
high-level

object name 26
interoperability 71

object naming (continued)
low-level

object name 26
object space name 212
object type 26, 212
overview 24
owner name 213
pathname 212
X/Open API 211

object space name 212
object types 26

X/Open API 212
objectID values 13
objects

access rules 26
active copies 41
deleting 67
deleting from server 68
expiration cycle 68
inactive copies 41
turning off 68
updating 67

operating system interoperability 73
option list

format 104, 107
option string

API 3
fromowner 27

options
compressalways 3
enablearchiveretentionprotection 34
errorlogretention 68
fromnode 27
fromowner 27
not supported on API 2
passwordaccess 18, 102
servername 3
set by administrator 2, 196
setting in X/Open API 196
tcpbuffsize 40
tcpnodelay 40
tcpserveraddr 3

options files
user 3

options files, user 196
OS/400

installing API 6
sample application 5

build from command line 7
QShell environment 7

owner authority 24
owner name 13, 26, 213

NULL 26

P
partial object restore or retrieve 60
password 201
passwordaccess 201

generate 129
option 9, 13, 46
option in X/Open 201

passwordaccess option
dsmInit function 102
generate 20
multithreading 18
userNamePswd value 24

passwordaccess option (continued)
without TCA 23

passwordaccess prompt 20
passworddir option

in dsm.sys 23
path examples

by OS 26
path information

interoperability 71
pathname 212
performance considerations 40

dsmSendData function 40
policies to store data 30
policy

retention policy 34
X/Opens 202

policy.h 216
problem determination

describing problem for IBM Software
Support x

determining business impact for IBM
Software Support x

submitting a problem to IBM
Software xi

proxynode 74
publications

download v
order v
search v
Tivoli Storage Manager vi

Q
QANSAPI library 7
QCLSRC 7
qMCData structure 36
qryRespArchiveData xiii, 32
qryRespBackupData xiii

dsmDeleteObj function 89
qryRespBackupData structure 35
QSH

OS/400 command 7
QShell environment

OS/400 7
QSYS 3
queries, system 35
query

actlog 109
command 72
nodes with client proxy node

authority 73
query example

X/Open 204
querying

Tivoli Storage Manager 203

R
rcApiOut

example, details 20
rcApiOut function

session 19
receiving data from a server

general description 60
partial object restore or retrieve 60
procedure 61

Index 249

receiving data from a server (continued)
sorting objects by restore order 208
X/Open API 208

recommendations
dsmGetObject

large amounts of data 100
encryption and compression using

buffer copy elimination 44
installing signal handlers 18
setting HP thread stack 18
target nodes and traditional

nodes 74
registering file spaces 28
registration with server 199
release.h header file 147
restore 72

objects from a server 60
X/Open API objects 208

restrictions
encryption and compression using

buffer copy elimination 44
multithreading 18

retention protection 33
retrieve 72

objects from a server 60
X/Open API objects 208

return codes
obtaining through dsmRCMsg 115
source header file 135
TSM_RC_ERROR 206

RSTLICPGM 6

S
sample API applications

callbuff 5
callbuff - TSM buffer 5
callevnt 5
callevnt - event-based retention 5
callhold 5
callhold - detention hold 5
callmt* 5
callmt* - multithreaded sample API

applications 5
callmtu1.c 75
callmtu2.c 75
callret 5
callret - data retention protection

sample API applications 5
dapi* 5
dapi* - interactive, single-threaded 5
dsmgrp 5
dsmgrp* - object grouping sample 5
OS/400 5
UNIX or Linux 8
Windows 32-bit 10
Windows 64-bit 11
X/Open API 196

sample application
callmt1.c 18

sample code
dsmgrp.c 59

security 20, 201
selecting objects

to restore 62
sending data

to a server 205

sending data (continued)
to non-Unicode file spaces 75

sending data to a server 38
server

deleting objects from 68
server-side data deduplication 53
servername 3
session

owner 213
password 201

session 20
security 20, 201
starting with BSAInit 199
starting with dsmInitEx 19

set access 72
sign-on process 20, 201
signals, using 18
simultaneous-write operations

storage pools 39
size estimates 40
size limits

API data structures 16, 37
sizing objects 40
Software Support

contact ix
describing problem for IBM Software

Support x
determining business impact for IBM

Software Support x
sorting objects

by restore order 62
starting a session 19

X/Open API 199
state

InSession 109
state diagram

backup and archive example 53
restore and retrieve 65

stopping a session 19
X/Open API 199

storage pools
simultaneous-write operations 39

structure
qryRespBackupData 35
qryRespFSData function 28

structures
qMCData 36
size limits 16, 37

support information vii
system queries 35

T
TCA

session security 20
signals 19
version control 16
without passwordaccess 23

TCPport 21
TCPserver address 21
tcpserveraddr 3
Tivoli technical training vii
TMS-Authorized User 23
TotalDedupSize xiii
training, Tivoli technical vii
transaction model

dsmBeginTxn function 84

transaction model (continued)
X/Open API 203

Trusted Communication Agent
dsmtca 201
passwordaccess 23
session security 20
signals 19

TSM_RC_ERROR 206
TSM-Authorized 26, 213
tsmapifp.h 75
tsmapifp.h header file 190
tsmapitd.h 75
tsmapitd.h header file 147
turning off objects 68

U
Unicode

mbcs 75
non-Unicode file spaces 75
setting up 75
Windows 75

UNIX or Linux
sample API application 8

user
intervention 18

V
version control

API data structures 17
BSAQueryApiVersion, using 199
dsmQueryApiVersionEx, using 16
managing backed-up copies 41

versions
files retained 30

W
Windows 32-bit

sample application 10
Windows 64-bit

sample application 11

X
X/Open

query example 204
X/Open API

backing up objects 205
backup or archive example 207, 209
closed registration 199
corresponding TSM data fields 198
design considerations 198
managing backed-up copies 205
receiving data 208
sample API applications 196
version control 199, 205

X/Open Backup Services 195
X/Open functions

considerations 213
XBSA 195

250 IBM Tivoli Tivoli Storage Manager: Using the Application Programming Interface

����

Program Number: 5608-E02, 5608-E03, 5608-E04, 5608-E05, 5608-E06,
5608-E07, 5608-E10, 5608-E11, 5608-E12, 5608-ILD,
5698-B19, 5698-B21, 5698-B22

Printed in USA

SC23-9793-01

	Contents
	Preface
	Who should read this publication
	Publications
	Tivoli Storage Manager publications

	Support information
	Getting technical training
	Searching knowledge bases
	Searching the Internet
	Using IBM Support Assistant
	Finding product fixes
	Receiving notification of product fixes

	Contacting IBM Software Support
	Setting up a subscription and support contract
	Determining the business impact
	Describing the problem and gather background information
	Submitting the problem to IBM Software Support

	Conventions used in this publication

	New for IBM Tivoli Storage Manager Version 6.2
	Chapter 1. API overview
	Understanding configuration and options files
	Setting up the API environment

	Chapter 2. Building and running the sample API application
	OS/400 operating system sample application source files
	Installing the API on OS/400 or i5/OS
	Building the OS/400 sample application from the QShell
	Building the OS/400 sample application from the command line

	UNIX or Linux sample application source files
	Building the UNIX or Linux sample application

	Windows 32-bit sample application
	Windows 64-bit sample application

	Chapter 3. API design recommendations and considerations
	Determining size limits
	Maintaining API version control
	Using multithreading
	Using signals
	Starting or ending a session
	Session security
	Using passwordaccess generate without TCA
	Creating an administrative user with client owner authority

	Object names and IDs
	File space name
	High-level and low-level names
	Object type

	Accessing objects as session owner
	Accessing objects across nodes and owners
	Managing file spaces
	Associating objects with management classes
	Query management classes

	Expiration/deletion hold and release
	Archive data retention protection
	The enablearchiveretentionprotection option
	Event-based retention policy

	Querying the Tivoli Storage Manager system
	Example of querying the system

	Server efficiency
	Sending data to a server
	The transaction model
	File aggregation
	LAN-free data transfer
	Simultaneous-write operations
	API performance considerations

	Sending objects to the server
	Understanding backup and archive objects
	Compression
	Buffer copy elimination
	Buffer copy elimination and restore and retrieve

	API encryption
	Application managed encryption
	Using transparent encryption

	Data deduplication
	API client-side data deduplication
	Exclude files from data deduplication
	Include files for data deduplication

	Server-side data deduplication

	Example flow diagrams for backup and archive
	Code example of API functions that send data to Tivoli Storage Manager storage

	File grouping
	Receiving data from a server
	Partial object restore or retrieve
	Restoring or retrieving data
	Querying the server
	Selecting and sorting objects by restore order
	Starting the dsmBeginGetData call
	Receiving each object to restore or retrieve

	Example flow diagrams for restore and retrieve
	Code example of receiving data from a server

	Updating and deleting objects on the server
	Deleting objects from the server

	Logging events
	Putting it all together - a summary diagram

	Chapter 4. Understanding interoperability
	Backup-archive client interoperability
	Naming your API objects
	Backup-archive client commands you can use with the API

	Operating system interoperability
	Backing up multiple nodes with client node proxy support

	Chapter 5. Using the API with Unicode
	When you should use Unicode
	Setting up Unicode

	Chapter 6. API function calls
	dsmBeginGetData
	dsmBeginQuery
	dsmBeginTxn
	dsmBindMC
	dsmChangePW
	dsmCleanUp
	dsmDeleteAccess
	dsmDeleteFS
	dsmDeleteObj
	dsmEndGetData
	dsmEndGetDataEx
	dsmEndGetObj
	dsmEndQuery
	dsmEndSendObj
	dsmEndSendObjEx
	dsmEndTxn
	dsmEndTxnEx
	dsmGetData
	dsmGetBufferData
	dsmGetNextQObj
	dsmGetObj
	dsmGroupHandler
	dsmInit
	dsmInitEx
	dsmLogEvent
	dsmLogEventEx
	dsmQueryAccess
	dsmQueryApiVersion
	dsmQueryApiVersionEx
	dsmQueryCliOptions
	dsmQuerySessInfo
	dsmQuerySessOptions
	dsmRCMsg
	dsmRegisterFS
	dsmReleaseBuffer
	dsmRenameObj
	dsmRequestBuffer
	dsmRetentionEvent
	dsmSendBufferData
	dsmSendData
	dsmSendObj
	dsmSetAccess
	dsmSetUp
	dsmTerminate
	dsmUpdateFS
	dsmUpdateObj
	dsmUpdateObjEx

	Appendix A. API return codes source file dsmrc.h
	Appendix B. API type definitions source files
	Appendix C. API function definitions source file
	Appendix D. The X/Open Backup Services API
	Setting up X/Open API options files
	Building the X/Open API sample application
	Tivoli Storage Manager X/Open API design considerations
	X/Open to Tivoli Storage Manager data field mapping
	Maintaining version control in the X/Open API
	Starting or ending a session
	Passwordaccess option

	Session security
	Determining the session parameters using X/Open API
	Associating a management class with objects using X/Open API
	The transaction model
	Querying the Tivoli Storage Manager system
	Flowchart example for X/Open query operations

	Sending data to a server using X/Open API
	Flowchart example for X/Open backup or archive operations

	Receiving data from a server using the X/Open API
	Flowchart example for X/Open restore or retrieve operations

	Deleting objects from the server using X/Open API
	Identifying the object using X/Open API
	Object space name
	Pathnames
	Object types in X/Open API

	Setting the owner name

	Using X/Open functions with Tivoli Storage Manager
	Tivoli Storage Manager changes to the XBSA header files
	Changes to custom.h
	Changes to policy.h
	Changes to xbsa.h

	Appendix E. Accessibility features for Tivoli Storage Manager
	Notices
	Trademarks

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

