
Tivoli Storage Manager and Localization
Localization Considerations Using the Linux and UNIX Backup -
Archive Client

By Peter Symonds and J.P. (Jim) Smith
Version 1.0

iii

Copyright Notice

Copyright IBM Corporation 2008. All rights reserved. May only be used pursuant
to a Tivoli Systems Software License Agreement, an IBM Software License
Agreement, or Addendum for Tivoli Products to IBM Customer or License
Agreement. No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any computer
language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual, or otherwise, without prior written permission of
IBM Corporation. IBM Corporation grants you limi ted permission to make hardcopy
or other reproductions of any machine -readable documentation for your own use,
provided that each such reproduction shall carry the IBM Corporation copyright
notice. No other rights under copyright are granted without prior written
permission of IBM Corporation. The document is not intended for production and
is furnished “as is” without warranty of any kind. All warranties on this
document are hereby disclaimed, including the warranties of merchantability and
fitness for a particular purpose.

U.S. Government Users Restricted Rights -- Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corporation.

Trademarks

IBM, the IBM logo, Tivoli, the Tivoli logo, AIX, Cross -Site, NetView, OS/2,
Planet Tivoli, RS/6000, Tivoli Certified, Tivoli Enterprise, Tivoli Enterprise
Console, Tivoli Ready, and TME are trademarks or registered trademarks of
International Business Machines Corporation or Tivoli Systems Inc. in the
United States, other countries, or both.

Lotus is a registered trademark of Lotus Development Corporation. Microsoft,
Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both. UNIX is a
registered trademark of The Open Group i n the United States and other
countries. C-bus is a trademark of Corollary, Inc. in the United States, other
countries, or both. PC Direct is a trademark of Ziff Communications Company in
the United States, other countries, or both and is used by IBM Corpo ration
under license. ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks
of Intel Corporation in the United States, other countries, or both. For a
complete list of Intel trademarks, see
http://www.intel.com/sites/corporate/trademarx.htm . SET and the SET Logo are
trademarks owned by SET Secure Electronic Transaction LLC. For further
information, see http://www.setco.org/aboutmark.html. Java and all Java-based
trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of
others.

Notices

References in this publication to Tivoli Systems or IBM products, programs, or
services do not imply that they will be available in all countries in which
Tivoli Systems or IBM operates. Any reference to these products, programs, or
services is not intended to imply that only Tivoli Systems or IBM products,
programs, or services can be used. Subject to valid intellectual property or
other legally protectable right of Tivoli Systems or IBM, any functionally
equivalent product, program, or service can be used instead of the referenced
product, program, or service. The evaluation and verification of operation in
conjunction with other products, except those expressly designated by Tivoli
Systems or IBM, are the responsibility of the user. Tivoli Systems or IBM may
have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director
of Licensing, IBM Corporation, North Castle Drive, Armonk, New York 10504 -1785,

U.S.A.

http://www.intel.com/sites/corporate/trademarx.htm
http://www.setco.org/aboutmark.html

v

About the Tivoli Field Guides

Sponsor
Tivoli Customer Support sponsors the Tivoli Field Guide program.

Authors
Those who write field guides belong to one of these three groups:

 Tivoli Support and Services Engineers who work directly with customers
 Tivoli Customers and Business Partners who have experience using Tivoli software in a

production environment
 Tivoli developers, testers, and architects

Audience
The field guides are written for all customers, both new and existing. They are applicable to
external audiences including executives, project leads, technical leads, team members, and to
internal audiences as well.

Types of Field Guides
Two types of Tivoli Field Guides describe how Ti voli products work and how they are used in real
life situations:

 Field Guides for technical issues are designed to address specific technical scenarios or
concepts that are often complex to implement or difficult to understand, for example:
endpoint mobility, migration, and heartbeat monitoring.

 Field Guides for business issues are designed to address specific business practices that
have a high impact on the success or failure of an ESM project, for example: change
management, asset Management, and deployment phases.

Purposes
The Field Guide program has two major purposes:

 To empower customers & business partners to succeed with Tivoli software by
documenting and sharing product information that provides accurate and timely
information on Tivoli products and the business issues that impact an enterprise systems
management project

 To leverage the internal knowledge within Tivoli Customer Support and Services and the
external knowledge of Tivoli customers and Business Partners

Availability
All completed field guides are available free to registered customers and internal IBM employees
at the following Web site:
http://www.ibm.com/software/sysmgmt/products/support/Field_Guid es.html

Authors can submit proposals and access papers by e -mail:
mailto:Tivoli_eSupport_Feedback@us.ibm.com

http://www.ibm.com/software/sysmgmt/products/support/Field_Guides.html

vii

Table of Contents
LOCALIZATION CONSIDERATIONS USING THE LINUX AND UNIX
BACKUP-ARCHIVE CLIENT ... I

Sponsor................................v
Authorsv
Audiencev
Types of Field Guides v
Purposes................................v
Availability v

LOCALIZATION CONSIDERATIONS USING THE LINUX AND UNIX
BACKUP-ARCHIVE CLIENT .. 1

1. INTRODUCTION: THE LOCALIZATION PROBLEM AND
STORAGE MANAGEMENT .. 1

DO I REALLY NEED TO WORRY ABOUT LOCALIZATION? 1

LOCALIZATION 101................................ 1

Message Translation 2
Character Representation2

2. ABOUT THE ORGANIZATION OF THIS DOCUMENT 3

3. WHAT IS MY CHARACTER ENCODING? ... 4

4. SCENARIO 1: ISO 8859-1 AND OTHER SINGLE BYTE
CHARACTER ENCODINGS .. 5

SUMMARY 5

HOW DO I KNOW I’M IN THIS ENVIRONMENT? 5

BACKUP PROCESSING 6

RESTORE PROCESSING 6

INCLUDE-EXCLUDE PROCESSING 6

MESSAGES 6

EXAMPLES 7

5. SCENARIO 2: DOUBLE- AND MULTI-BYTE CHARACTER SET
ENCODINGS ... 9

mailto:Tivoli_eSupport_Feedback@us.ibm.com

viii

SUMMARY 9

HOW DO I KNOW I’M IN THIS ENVIRONMENT? 9

BACKUP PROCESSING 9

RESTORE PROCESSING 9

INCLUDE-EXCLUDE PROCESSING 10

MESSAGES 10

EXAMPLES 10

6. SCENARIO 3: UTF-8 ENCODING .. 12

SUMMARY 12

HOW DO I KNOW I’M IN THIS ENVIRONMENT? 12

BACKUP PROCESSING 12

RESTORE PROCESSING 13

INCLUDE-EXCLUDE PROCESSING 13

MESSAGES 13

EXAMPLES 13

7. SCENARIO 4A: MIXED ENCODINGS – EXECUTING IN A
MULTIPLE-BYTE LOCALE .. 18

SUMMARY 18

HOW DO I KNOW I’M IN THIS ENVIRONMENT? 18

BACKUP PROCESSING 19

RESTORE PROCESSING 19

INCLUDE-EXCLUDE PROCESSING 19

MESSAGES 20

EXAMPLES 20

8. SCENARIO 4B: MIXED ENCODINGS – EXECUTING IN SINGLE-
BYTE LOCALE ... 25

SUMMARY 25

HOW DO I KNOW I’M IN THIS ENVIRONMENT? 25

BACKUP PROCESSING 25

RESTORE PROCESSING 25

INCLUDE-EXCLUDE PROCESSING 26

ix

MESSAGES 26

EXAMPLES 26

EXAMPLES USING JA_JP.EUCJP ENCODED FILES 30

9. APPENDIX A – SYSTEM CONFIGURATION USED FOR THIS
PAPER .. 33

10. APPENDIX B – LOCALES ... 36

11. APPENDIX C – ISO 8859-1 AND VARIATIONS 37

12. APPENDIX D – UNICODE AND UTF-8 ... 38

13. APPENDIX E – JAPANESE EXTENDED UNIX CODE 40

14. APPENDIX F – LOCALE AND THE UNIX SHELL 41

1

Tivoli Storage Manager and Localization
Localization Considerations Using the Linux and UNIX Backup -
Archive Client

1. Introduction: The Localization Problem and
Storage Management
Who in the world would have a computer file named “ f¡le.txt”? Or how about a file named
“fíle.txt”? The second letter in the second name is a Latin small letter “I” with an acute accent. The
first name is actually a rendering of the same name in the Windows 1252 code page. You don’t
have to be an expert in character encoding to see that the two names are different. What you do
need to understand is that each file name is recorded in the file system as a string of bits. More
importantly, you want to be assured that if you needed to recover a file, your storage
management product would correctly restore the name as the same exact sequence of bits.

This paper discusses the Tivoli Storage Manager for Linux and UNIX Backup -Archive Client in
the context of localization and addresses the three central issues that should most concern a
storage administrator in this context: backup, recovery, and error reporting. Deployed correctly,
the Backup-Archive Client will provide desired protection. The Tivoli Storage Manager Linux
and UNIX Backup-Archive Client Version 5.4 and above can be configured to properly
protect all files regardless of their file name or the encoding used to represent the file
name. This paper is to help you understand local ization issues and the best way to achieve your
desired results with Tivoli Storage Manager.

Do I Really Need to Worry about Localization?
What are characters used in the file names of the files on your file servers? If the characters are
exclusively basic Latin characters (A-Z, a-z, 0-9, etc.), localization is not a concern. As soon as
you start seeing extended Latin characters (e.g., í, ñ, etc.), Greek, Cyrillic, Arabic, Chinese, or
other characters, you need to take a long hard look at localization. I f your file server is serving
clients in Amsterdam, Athens, Beijing, or Berlin, chances are you have left the comfortable world
of basic Latin and should read on.

If you have the Tivoli Storage Manager Backup -Archive Client deployed and have encountered
this error during a backup operation , you should definitely review this document:

ANS1228E Sending of object /mixed/f£ failed
ANS4042E Object name /mixed/file£ contains one or more unrecognized
characters and is not valid

Localization 101
Localization is a general term for the process of customizing the display and keyboard
characteristics of a computer for a particular country or location. Localization frequently involves
message translation, character and font representation, keyboard usage and date, time and
number formats.

2

Message Translation
Software products that have been internationalized, such as the Tivoli Storage Manager Client,
provide message catalogs that have been translated into multiple languages. Users of
internationalized products have the option to specify the language used during product
interaction. The locale environment variables are used to specify the language to be used.

The Tivoli Storage Manager Client provides message catalogs in fourteen languages: English,
Czech, French, German, Hungarian, Italian, Polish, Portuguese, Russian, Spanish, Japanese,
Korean and Chinese (simplified and traditional).

Character Representation
As stated in the introduction, file names on a computer system are typically strings of characters
that can be entered on the keyboard and displayed on the computer monitor. Each character
displayed on the screen is encoded in a binary representation on the file system. The mapping
between the character representation displayed on the computer monitor and its bina ry
representation in the file system is defined by a character encoding standard. There are a
number of standards. For example, the ISO 8859 standard maps the character ‘A’ as the eight bit
byte 0x41.

The basic Latin characters (A-Z, a-z, 0-9, etc.) compose the seven bit ASCII characters (the high
order bit of the eight bit byte for these characters is always zero), and they have the same
encoding in all supported locales. If your file names are composed exclusively of these
characters, the file names wil l always appear the same regardless of the locale. However,
characters that have a binary encoding that is greater than 0x80 have different mappings in
different character encoding standards. For example, the binary encoding 0xA3 in the ISO 8859 -1
standard represents the character ‘£’. The same binary encoding represents the character ‘ Ł’ in
the ISO 8859-3 standard.

This document discusses files with names defined according to the following standards.

1. The single byte ASCII standards ISO 8859 -1 through ISC8859-16
2. The Japanese double byte character set (DBCS) standard ja_JP.eucJP.
3. The Korean double byte character set standard ko_KR.
4. The Chinese double byte character set standards zh_CN and zh_TW
5. The Unicode multiple byte standard for UTF -8.

For more information about locale see Appendix B.

3

2. About the Organization of this Document
This document is intended to provide guidance when running the Tivoli Storage Manager Client in
the four common character encoding environments. For each of these environments, we will
discuss basic localization considerations for using the Tivoli Storage Manager Backup -Archive
Client:

1. Summary will give a quick summary of the Backup -Archive client considerations
2. How do I know if I’m in this environme nt will discuss how you can determine which one
of the basic character encoding environments is running on your computers.
3. Backup processing will discuss considerations for processing backup and archive
operations, both at the logical volume level and a single-file or single-directory level.
4. Restore processing will discuss considerations for querying files stored on the Tivoli
Storage Manager Server and restoring and retrieving the files using the different interfaces
provided by the Tivoli Storage Manager Backup-Archive client.
5. Include-exclude processing will discuss considerations for properly including or
excluding file names from backup processing
6. Messages will discuss considerations for properly viewing messages produced by the
Tivoli Storage Manager Backup-Archive client
7. Examples are also included to illustrate the points above in each section.

For more information about the file system configuration established to demonstrate these four
environments, please see Appendix A.

4

3. What Is My Character Encoding?
Most UNIX file systems are insensitive to the character encoding of a file name. File names are
arbitrary strings of binary bytes that can vary in value between 0x01 to 0xff with one exception; no
file name can contain an imbedded directory delimiter, the ‘/’character.

The character encoding of a file name is an interpretation of the binary bytes making up the file
name that defines how the file name is displayed on a graphics device. The character e ncoding of
a file name is determined by the application used to create the file name. If the shell is used to
create the file using a command such as touch, the encoding of the file name is determined by
the locale of the shell. For example, issuing touch f£ in the ISO8857-1 locale will create a file
name with the binary encoding 0x66A3. The same command in a UTF -8 locale will create a file
name with the binary encoding 0x66C2A3.

If the file is created by an application program, such as the file manager, the application program
will determine the encoding of the file created. In Linux systems such as SUSE 10, the file
manager application typically creates the file name with a UTF -8 encoding.

For more information about locales and UNIX shell see Appendix F.

5

4. Scenario 1: ISO 8859-1 and Other Single Byte
Character Encodings
A single byte character set encoding locale, such as the ISO 8859-1 encoding of the Latin
alphabet provides the simplest character encoding environment. All file names are assumed to
have the same single-byte character set encoding and the locale matches the file name
encoding. In such an environment the file names are displayed corre ctly and the characters can
easily be entered by the keyboard.

This environment is fully supported by the Tivoli Storage Manager client.

Note that ISO 8859 has other encodings which are implicitly covered in this section, for example
ISO 8859-2 encoding for Central and Eastern European Languages and ISO 8859 -5 for Slavic
languages based on the Cyrillic alphabet.

Summary
In environments that use single byte encodings exclusively , there should be no localization
concerns using the Tivoli Storage Mana ger Backup-Archive client. All aspects of backup,
recovery and messaging should behave as expected.

How do I know I’m in this environment?
The locale command will return the name of a single byte character set locale such as en_US,
de_DE, or one of the ISO 8859 variants. Commands that deal with file names, such as ls will
correctly display all file names.

Language Locale

English en_US

Czech cs_CZ

French fr_FR

German de_DE

Hungarian hu_HU

Italian it_IT

Polish pl_PL

Portuguese pt_BR

Russian ru_RU

Spanish es_ES

6

Backup processing
There are no special considerations for backup processing in this environment. File names can
always be entered on the Backup-Archive command-line client and all files meeting the selection
criteria will be backed up.

Note that there are sixteen separate ISO 8859 locales. File names containing special characters,
such as '¢' may have different encodings in the different ISO 8859 locales. For example, the file
with the name “file3¢” in the ISO 8859 -1 locale would display as “file3Ђ” when displayed in an
ISO 8859-5 locale. The Tivoli Storage Manager client will backup and restore this file correctly in
either locale because the actual binary encoding of existing file names does not change if the
locale is changed. However switching between the two different locales could cause users
confusion as to which file is being accessed.

Restore processing
There are no special considerations for restore processing in this environment. File names can
always be entered on the Tivoli Stor age Manager Client command line and all files meeting the
selection criteria will be restored up.

Include-exclude processing
There are no special considerations for include -exclude processing in this environment.

Tivoli Storage Manager Client include -exclude processing is fully supported in this environment.
All file names can be specified and they will be processed correctly.

The following two dsm.sys file statements illustrate how the Tivoli Storage Manager Client
include/exclude processing can be conf igured.

The Tivoli Storage Manager Client processes the statements sequentially. The first statement
“exclude /fileData/* excludes all files in the directory “/fileData”. The second statement “include
/fileData/file* overrides the exclude statement and al lows all files beginning with the characters
“file” in the directory /fileData to be included in the backup processing.

exclude /fileData/*
include /fileData/file*

Messages
There are no special considerations for displaying messages produced by the Tivoli Storage
Manager Backup-Archive client in this environment.

The Tivoli Storage Manager client automatically detects the language specified by the system
locale and displays in that language. For example, in a French operating system where the LANG
environment variable is “LANG=fr_FR”, the Tivoli Storage Manager Client attempts to use the
French message catalog. If the Tivoli Storage Manager Client cannot load the French message
catalog, or if the client is running on an unsupported language/locale combinati on, such as
French/Canada (LANG=fr_CA) (fr for ISO 8859-1 French and CA for Canada), the Tivoli Storage

7

Manager Client defaults to the United States English message catalog , and all messages will
appear in English.

Examples
The following examples show the Tivoli Storage Manager Backup-Archive Client in an ISO 8859-
1 environment.

Example 1: The ls command listing of the file names
>ls -l /testData/en_US_files

total 16

-rw-r--r-- 1 symonds users 21 2007-10-02 10:07 file1

-rw-r--r-- 1 symonds users 22 2007-10-02 10:07 file2

-rw-r--r-- 1 symonds users 16 2007-10-02 10:07 file3¢

-rw-r--r-- 1 symonds users 13 2007-10-02 10:07 file4£

Example 2: Include-exclude statements

The include-exclude statements in the dsm.sys configuration file are also in the ISO 8859-1
locale.

exclude /testData/en_US_files/*

include /testData/en_US_files/file1

include /testData/en_US_files/file2

include /testData/en_US_files/file3¢

include /testData/en_US_files/file4£

Example 3: Execution of a selective backup operation
>dsmc sel /testData/en_US_files/*

Selective Backup function invoked.

Directory--> 144 /testData/en_US_files [Sent]

Directory--> 120 /testData [Sent]

Normal File--> 21 /testData/en_US_files/file1 [Sent]

Normal File--> 22 /testData/en_US_files/file2 [Sent]

Normal File--> 16 /testData/en_US_files/file3¢ [Sent]

Normal File--> 13 /testData/en_US_files/file4£ [Sent]

Selective Backup processing of '/testData/en_US_files/* ' finished without failure

Example 4: Execution of a restore operation.

In this single byte environment all of the files can be restored and the names of files to be
restored can always be explicitly specified.

>dsmc rest /testData/en_US_files/file¢

Restoring 16 /testData/en_US_files/file¢ [Done].

The Tivoli Storage manager GUI displays all single byte en_US encoded files correctly when the
dsmcad is started in the en_US single byte locale.

8

9

5. Scenario 2: Double- and Multi-byte Character
Set Encodings
An environment with double byte character set encoding , such the Japanese ja_JP.eucJP locale
or the Chinese zh_CN locale, provides a more complicated environment. The characters which
comprise the file names can consist of one or more bytes .

In this example, the files were created in the ja_JP.eucJP locale. All file names have the same
ja_JP.eucJP encoding, and the locale matches the file name encoding. In such a n environment,
all of the file names are displayed correctly and the characters ca n easily be entered by the
keyboard.

Summary
In environments that use double- and multi-byte encodings, there are minor localization concerns
when entering file specifications for backup and restore operations on the command -line client.
All other aspects of backup, recovery and messaging should behave as expected.

How do I know I’m in this environment?
The locale command will return the name of a double byte character set locale such as or
ja_JP.eucJP. Commands that deal with file names, such a s ls will correctly display all file names.

Language Locale

Simplified Chinese zh_CN

Traditional Chinese zh_TW

Japanese ja_JP

Korean ko_KR

Backup processing
Tivoli Storage Manager Client backup processing is supported with some restrictions in this
environment. All files meeting the selection criteria will be backed up when running in a consistent
multiple byte character set environment.

File names can always be entered on the dsmc command line if “editor no” is specified in the
dsm.sys configuration file. If “editor no” is not specified in the dsm.sys configuration file, Chinese,
Japanese or Korean pictorial characters can not be entered.

Restore processing
Tivoli Storage Manager Client restore processing in this environment is supported with the sa me
restrictions as backup processing; “editor no” must be specified in the dsm.sys configuration file
to enter file names containing double byte character set encoded characters. If “editor no” is

10

specified, file names can always be entered on the Tivoli S torage Manager Client command line ,
and all files meeting the selection criteria will be restored .

Include-exclude processing
Tivoli Storage Manager Client include -exclude processing is fully supported in this environment.
All file names can be specified and they will be processed correctly .

Messages
The Tivoli Storage Manager Client simplified Chinese, traditional Chinese, Japanese and Korean
message catalogs are fully supported this environment .

Examples
The following examples show the Tivoli Storag e Manager Client in a ja_JP.eucJP environment.

Example 1: The ls command listing of the test file names
>ls -l /testData/ja_JP_files/*

-rw-r--r-- 1 symonds users 19 2007-10-02 10:08 file1

-rw-r--r-- 1 symonds users 24 2007-10-02 10:08 file2

-rw-r--r-- 1 symonds users 26 2007-10-02 10:08 file3

-rw-r--r-- 1 symonds users 25 2007-10-02 10:08 file4

Example 2: Editor no and Include-Exclude statements

The include-exclude statements in the dsm.sys configuration file in this example are also in the
double byte ja_JP.eucJP character set.

Notice the statement editor no. This statement is required when running the Tivoli Storage
Manager client in a double byte character set locale such as ja_JP.eucJP. If this statement is not
added to the dsm.sys file, single b yte ascii characters such as 'f' can be entered on the Tivoli
Storage Manager client command line, but double byte ch aracters such as the Japanese
character '右' will not be processed correctly.

editor no

exclude /testData/ja_JP_files/*

include /testData/testData/ja_JP_files /file1

include /testData/testData/ja_JP_files /file2

include /testData/testData/ja_JP_files /file3

include /testData/testData/ja_JP_files /file4

Example 3: Execution of a selective backup operation
>dsmc sel /testData/ja_JP_files/*

Selective Backup function invoked.

Directory--> 144 /testData/ja_JP_files [Sent]

Normal File--> 19 /testData/ja_JP_files/file1 [Sent]

Normal File--> 24 /testData/ja_JP_files/file2 [Sent]

11

Normal File--> 26 /testData/ja_JP_files/file3 [Sent]

Normal File--> 25 /testData/ja_JP_files/file4 [Sent]

Selective Backup processing of '/testData/ja_JP_files/*' finished without failure.

Example 4: Execution of a restore operation .

In a Tivoli Storage Manager Backup-Archive Client supported DBCS environment such as
ja_JP.eucJP, the names of the files to be restored can be explicitly specified if “editor no” is
specified in the dsm.sys file.

>dsmc rest /testData/ja_JP_files/file4右

Restoring 26 /testData/ja_JP_files/file4右 [Done]

Example 5: Tivoli Storage Manager GUI

The Tivoli Storage Manager GUI displays all file names correctly when the dsmcad is started in
the same ja_JP.eucJP double byte character set locale as t he encoding of the file names.

12

6. Scenario 3: UTF-8 Encoding
An environment with UTF-8 character set encoding is similar to the double byte character
environment described in the previous scenario; the characters which comprise the file names
can consist of one or more bytes. However UTF-8 is a character set coding system designed to
support all of the modern languages and many of the ancient languages in a single encoding
scheme.

In this scenario, all file names have the same UTF-8 encoding and a UTF-8 locale has been set.
In such an environment, all of the file names are displayed correctly and the characters can easily
be entered by the keyboard.

Summary
In environments that use UTF-8 encodings exclusively, there are minor localization concerns
when entering file specifications for backup and restore operations on the command -line client.
Messages produced by the Tivoli Storage Manager Backup -Archive client will not always be
readable when the program is executed in a UTF -8 locale. With all other aspects of backup,
recovery should behave as expected.

How do I know I’m in this environment?
The locale command will return the name of locale with “.UTF-8” appended. Some examples:

Language Locale

English en_US.UTF-8

Czech cs_CZ.UTF-8

Japanese ja_JP.UTF-8

Korean ko_KR.UTF-8

The locale command will return the name of a multiple byte character set locale such as
en_US.UTF-8, de_DE.UTF-8 or ja_JP.UTF-8. Commands that deal with file names, such as ls,
will correctly display all file names.

Backup processing
The en_US.UTF-8 locale can always be used for file backup and restore processing because
UTF-8 encoding is a “universal” character set encoding. Every UTF -8 encoded character has a
unique UTF-8 encoding that is independent of the cou ntry-specific locale. When running in the
en_US.UTF-8 locale, not only are all English characters processed correctly by the Tivoli Storage
Manager client, but Chinese, Japanese, Korean and all other UTF -8 characters are also
processed correctly. The same would be true when running in a de_DE.UTF -8, ja_JP.UTF-8 or
any other UTF-8 locale.

Tivoli Storage Manager Client backup processing is supported with some restrictions in this
environment. All files meeting the selection criteria will be backed up wh en running in a consistent
UTF-8 character set environment.

13

File names can always be entered on the Tivoli Storage Manager Client command line if “editor
no” is specified in the dsm.sys configuration file. If “ editor no” is not specified in the dsm.sys
configuration file, multiple byte characters such as '¢' (or any Chinese, Japanese or Korean
pictorial character) can not be entered.

Restore processing
Tivoli Storage Manager Client restore processing is supported with the same restrictions on
entering file names containing multiple byte character set encoded characters discussed in the
above section on “Backup processing”.

Include-exclude processing
Tivoli Storage Manager Client include -exclude processing is fully supported in this environment.
All file names can be specified, and they will be processed correctly.

Messages
The Tivoli Storage Manager Client does not provide any UTF-8 message catalogs. When running
in a UTF-8 locale, the equivalent Tivoli Storage Manager Client will choose the equivalent single
byte character set or DBCS message catalog . If no equivalent Tivoli Storage Manager Client
message catalog is found, the English (United States) language pack will be used.

However, if the equivalent locale is a DBCS language, such as Japane se, the Tivoli Storage
Manager client DBCS message text will be displayed incorrectly in this locale because DBCS
character encoding and UTF-8 character encoding are incompatible. For this reason, the
en_US.UTF-8 locale should always be used to provide val id Tivoli Storage Manager Client single
byte character set messages when processing file names encoded in a Japanese, Chinese or
Korean UTF-8 character set encoding. The en_US.UTF-8 locale is used because messages in
the English message catalog are displayed correctly in all locales.

Tivoli Storage Manager Client messages are supported with restrictions that are locale -
dependent.

UTF-8 European locales such as de_DE.UTF -8

When running in a European UTF-8 locale such as de_DE.UTF-8, the corresponding Tivoli
Storage Manager Client single byte character set message catalog will be used.

In this UTF-8 locale, all file names will be displayed correctly, but message text containing
multiple byte characters such the German character 'ä' may not be displaye d correctly.

UTF-8 Asian locales such as ja_JP.UTF -8

It is not advisable to run the Tivoli Storage Manager Client in the Japanese, Chinese or Korean
UTF-8 locales. Instead switch to a UTF-8 locale that has a corresponding Tivoli Storage Manager
Client provided single byte character set message catalog such as en_US.UTF -8.

Examples
The following examples show the Tivoli Storage Manager Backup-Archive client in a UTF-8
environment.

14

Example 1: The ls command listing of the file names

Notice that the UTF-8 file names (file1, file2, file3¢, file4 £) look similar to the previous single byte
ISO 8859 locale. However, because the locale is now a multiple byte UTF -8 locale, the binary
encoding of the file names is different. Characters in the range of hex 01 to he x 7f are the same
in both environments. However , the characters '¢' and '£' have different encodings in the UTF -8
locale; in this UTF-8 locale, they now take up two bytes.

>ls -l /testData/en_US.UTF-8_files

total 16

-rw-r--r-- 1 symonds users 19 2007-10-02 10:08 file1

-rw-r--r-- 1 symonds users 24 2007-10-02 10:08 file2

-rw-r--r-- 1 symonds users 26 2007-10-02 10:08 file3¢

-rw-r--r-- 1 symonds users 25 2007-10-02 10:08 file4£

-rw-r--r-- 1 symonds users 21 2007-10-02 10:08 file5Œ

>ls -l /testData/ja_JP.UTF-8_files

total 16

-rw-r--r-- 1 symonds users 21 2007-10-17 15:08 file1

-rw-r--r-- 1 symonds users 22 2007-10-17 15:08 file2

-rw-r--r-- 1 symonds users 29 2007-10-17 14:53 file3

-rw-r--r-- 1 symonds users 29 2007-10-17 14:54 file4

Example 2: Include-Exclude statements

The include-exclude statements in the dsm.sys configuration file in this example are also in the
multiple byte en_US.UTF-8 character set.

Notice the additional statement editor no. This statement is required when running the Tivoli
Storage Manager client in a UTF-8 multiple byte character locale or a Tivoli St orage Manager
client supported multiple byte character set such as ja_JP.eucJP If this statement is not added to
the dsm.sys file, single byte characters such as 'f' can be entered on the Tivoli Storage Manager
client command line, but multiple byte UTF -8 characters such as '¢', and Japanese, Chinese or
Korean characters such as '語' will not be processed correctly.

editor no

exclude /testData/en_US.UTF-8_files/*

include /testData/en_US.UTF-8_files/file1

include /testData/en_US.UTF-8_files/file2

include /testData/en_US.UTF-8_files/file3¢

include /testData/en_US.UTF-8_files/file4£

include /testData/en_US.UTF-8_files/file5Œ

exclude /testData/ja_JP.UTF-8_files/*

include /testData/testData/ja_JP.UTF-8_files /file1

include /testData/testData/ja_JP.UTF-8_files /file2

include /testData/testData/ja_JP.UTF-8_files /file3

include /testData/testData/ja_JP.UTF-8_files /file4

Example 3: Execution of a selective backup operation of both Japanese and English UTF -8
encoded file names

15

>dsmc sel /testData/en_US.UTF-8_files/* /testData/ja_JP.UTF-8_files/*

Selective Backup function invoked.

Directory--> 144 /testData/ja_JP.UTF-8_files [Sent]

Normal File--> 21 /testData/ja_JP.UTF-8_files/file1 [Sent]

Normal File--> 22 /testData/ja_JP.UTF-8_files/file2 [Sent]

Normal File--> 29 /testData/ja_JP.UTF-8_files/file3 [Sent]

Normal File--> 29 /testData/ja_JP.UTF-8_files/file4 [Sent]

Selective Backup processing of '/testData/ja_JP.UTF -8_files/*' finished without
failure.

Directory--> 168 /testData/en_US.UTF-8_files [Sent]

Normal File--> 19 /testData/en_US.UTF-8_files/file1 [Sent]

Normal File--> 24 /testData/en_US.UTF-8_files/file2 [Sent]

Normal File--> 26 /testData/en_US.UTF-8_files/file¢ [Sent]

Normal File--> 25 /testData/en_US.UTF-8_files/file£ [Sent]

Normal File--> 21 /testData/en_US.UTF-8_files/fileŒ [Sent]

Selective Backup processing of '/testData/en_US.UTF -8_files/*' finished without
failure.

Example 4: Execution of a restore operation.

In a multiple byte UTF-8 environment, the names of the files to be restored can be expl icitly
specified if editor no is specified in the dsm.sys file.

>dsmc rest /testData/en_US.UTF-8_files/file3¢

Restoring 26 /testData/en_US.UTF -8_files/file3¢ [Done]

Example 5: Tivoli Storage Manager GUI

The Tivoli Storage Manager GUI displays all UTF -8 file names correctly when the dsmcad is
started in a UTF-8 locale. In this example, the dsmcad was started in en_US.UTF-8. The
examples below show both English UTF-8 files and UTF-8 Japanese files:

16

Example 6: Tivoli Storage Manager GUI and files names not encoded in UTF -8

Note that files containing invalid characters or multiple byte encoded characters that are not
encoded in UTF-8 are not shown in the display.

17

18

7. Scenario 4a: Mixed Encodings – Executing in
a Multiple-byte Locale
The operating system allows for file names with different encodings in the same file sy stem or
directory. If your environment does not standardize a single locale for creation of all files and
directories (for example, if there are mixed UTF-8 and multi-byte encodings), backing up and
restoring files is more complicated.

It is important to understand that actual binary encoding of file names on the Tivoli St orage
Manager server are independent of the locale used to backup or restore the files. The encoding
of file names on the Tivoli Storage Manager server are always identical to the file names on the
file system. A mismatch between the binary encoding of the file names and the locale used to run
the Tivoli Storage Manager Client may cause files to be skipped during backup operations:
however, the locale of the Tivoli Storage Manager Client has no effect on the binary encoding of
the file names on the Tivoli Storage Manager server.

Summary
In environments that have mixed encodings (for example, both UTF-8 and multi-byte encodings),
you can chose to execute the Tivoli Storage Manager Backup -Archive Client in either a single-
byte locale or a multi-byte (including UTF-8) locale. This summary is for executing the client in a
multi-byte (including UTF-8) locale. There are significant restrictions for backup and restore
operations, include-exclude processing and messages produced by the client. The main
advantage for running in a multi -byte locale in this environment is the ability for the client GUI to
display file names more accurately.

If you cannot guarantee that all files and all directories are in the same locale, you should always
run your scheduled backups using a single byte character s et locale so that no files are skipped
due to the file name containing characters that are not defined in the current locale.

How do I know I’m in this environment?
It is not always easy to determine that you are running in this environment. The locale command
will return the name of a multiple byte character set locale such as en_US.UTF -8, de_DE.UTF-8
or ja_JP.eucJP. Commands that deal with file names, such as ls will not always display all file
names correctly.

If the backup of files in a file system occasionally fails with the following message, then the Tivoli
Storage Manager Client is running in the wrong multiple byte character set l ocale for the specified
file name.

ANS4042E Object name '/testData/en_US_files/file3?' contains one or more un -recognized
characters and is not valid.

In this case, set the locale to either a UTF -8 locale, or to one of the supported DBCS l ocals. If
that fixes the problem, and errors are no longer detected when backing up the file systems, then
you are running in a pure UTF-8 or DBCS environment.

If some backups continue fail with the above message, while other files are backed up
successfully, then you are probably running in an environment where the file system names are
encoded in two or more incompatible multiple b yte character set encodings.

19

Another way to detect an environment where file system names are encoded in two or more
incompatible multiple byte character set encodings is to start two or more instances of the Tivoli
Storage Manager Client GUI (dsmcad). Start one dsmcad in the single byte character set locale
en_US, and start the second dsmcad in the suspected multiple byte locale of the file sy stem. If
some of the file system names are garbled in the dsmcad started in the single byte en_US locale,
and all of the file names are correctly displayed in the Tivoli Storage Manager Client GUI, then
you are probably running in a pure UTF -8 or DBCS environment. If some file system names are
displayed correctly when viewed from the Tivoli Storage Manager Client GUI, while other file
names are missing from the display, then you are probably running in an environment where the
file system names are encoded in two or more incompatible multiple byte character set
encodings.

Backup processing
Tivoli Storage Manager Client backup processing is supported with significant restrictions in this
environment. Files may be skipped when running a backup in a multiple byte character set locale
on a system containing file names composed of characters that are not valid in the multiple byte
character set locale.

If you can not guarantee that all files and all directories will be created with the same locale, you
should always run your scheduled backups using a single byte character set l ocale so that no
files are skipped due to the file name containing characters that are not defined in the current
locale. When you restore files, you should attempt to run in the same locale as the name of t he
file or files to be restored. However , any file that has been backed up can always be restored
regardless of the locale.

All multiple byte characters can be entered if “ editor no” is specified in the dsm.sys configuration
file, and all single byte ISO 8859 characters in the range of hexadecimal '00' to '7F' can be
entered. (Single byte ISO 8859 characters in the range of hexadecimal '00' to '7F' are part of
both the UTF-8 definition and the Tivoli Storage Manager Client supported DBCS locales.).

Single byte ISO 8859 characters in the range of hexadecimal 'A0' to 'FF' can not be entered on
the command or backed up when running in a multiple byte character set environment because
they are not valid UTF-8 or DBCS characters, and any attempt to process a file containing these
special characters when running in a multiple byte locale will fail with th e message

ANS4042E Object name '/testData/en_US_files/file3?' contains one or more un -
recognized characters and is not valid.

Restore processing
Tivoli Storage Manager Client restore processing is supported with significant restrictions in this
environment. The same file name restrictions discussed in the section of “Backup processing”
also apply to restore processing. And, of course, the files that could not be backed up because
they contained invalid characters in their names cannot be restored.

Include-exclude processing
Tivoli Storage Manager Client include -exclude processing is supported with significant
restrictions. File names containing invalid UTF -8 or DBCS characters will be ignored. Only valid
multiple byte character set file names will be proc essed correctly.

20

Messages
Tivoli Storage manager messages are supported with restrictions that are locale dependent.

UTF-8 European locales such as de_DE.UTF -8

When running in a European UTF-8 locale such as de_DE.UTF-8, the corresponding Tivoli
Storage Manager Client single byte character set message catalog will be used. In this locale, all
file names will be displayed correctly, but message text containing multiple byte characters such
the German character 'ä' may not be displayed correctly.

Tivoli Storage Manager Client supported DBCS locales such as ja_JP.eucJP

The Tivoli Storage Manager Client message catalogs fully support this environment.

UTF-8 Asian locales such as ja_JP.UTF -8

It is not advisable to run the Tivoli Storage Manager Client in the Japanese, Chinese or Korean
UTF-8 locales. Instead switch to a UTF-8 locale that has a corresponding Tivoli Storage Manager
Client provided single byte character set message catalog such as en_US.UTF -8. The Tivoli
Storage Manager Client processing of U TF-8 file names is valid in any UTF-8 locale, and by
running in a locale where the single byte character set message catalog is available, the Tivoli
Storage Manager Client messages will be displayed properly.

Examples
The following example shows the Tivol i Storage Manager Client in a UTF-8 locale where some
files have valid UF-8 names and some files have ISO 8859 character names that are not valid in
the UTF-8 locale.

The files in the directory /testData/en_US_files were created in a single byte en_US l ocale, and
the files in the directory /testdata/en_US.UTF -8_files were created in a multiple byte en_US.UTF -
8 locale.

Notice that some of the single byte en_US file names are not displayed correctly when running in
the en_US.UTF-8 locale, and the invalid characters are displayed as '?'.

Example 1: The ls command listing of the file names

>ls -l /testData/en_US.UTF-8_files/

total 16

-rw-r--r-- 1 symonds users 19 2007-10-02 10:08 file1

-rw-r--r-- 1 symonds users 24 2007-10-02 10:08 file2

-rw-r--r-- 1 symonds users 26 2007-10-02 10:08 file3¢

-rw-r--r-- 1 symonds users 25 2007-10-02 10:08 file4£

-rw-r--r-- 1 symonds users 21 2007-10-02 10:08 file5Œ

> ls -l /testData/en_US_files

total 16

-rw-r--r-- 1 symonds users 21 2007-10-02 10:07 file1

-rw-r--r-- 1 symonds users 22 2007-10-02 10:07 file2

-rw-r--r-- 1 symonds users 16 2007-10-02 10:07 file3?

21

-rw-r--r-- 1 symonds users 13 2007-10-02 10:07 file4?

Example 2: Include-exclude statements

In the example below, notice when the dsm.sys configuration fil e contains a mixture of
incompatible encodings. In this case, the vi editor display switches to a single byte locale and
shows all characters as single byte characters even though it was invoked in a multiple byte
locale. In the case of the multiple byte character, 'Œ', the multiple byte encoding is does not
correspond to two displayable single byte characters, so the file name in the vi editor display is
garbled.

When the dsm.sys file is processed by the Tivoli Storage Manager client in the multiple byte , all
the files names containing valid multiple byte characters are processed correctly and the files are
included in the backup.

However, the file names containing characters that are not valid in the multiple byte ch aracter set
locale such as (file3¢ and file4£ in the directory /testData/en_US_files), will not be included in the
backup by the Tivoli Storage Manager client.

editor no

exclude /testData/en_US.UTF-8_files/*

exclude /testData/en_US_files/*

include /testData/en_US.UTF-8_files/file1

include /testData/en_US.UTF-8_files/file2

include /testData/en_US.UTF-8_files/file3Â¢

include /testData/en_US.UTF-8_files/file4Â£

include /testData/en_US.UTF-8_files/file5Å~R

include /testData/en_US_files/file1

include /testData/en_US_files/file2

include /testData/en_US_files/file3¢

include /testData/en_US_files/file4£

Example 3: Execution of a selective backup operation

If you try to backup files with names containing characters that are not valid in the UTF -8 locale,
errors occur, and the Tivoli Storage Manager c lient will not the backup those files.

>dsmc sel /testData/* -su=yes

Selective Backup function invoked.

ANS1228E Sending of object '/testData/en_US_files/file' failed

ANS4042E Object name '/testData/en_US_files/file' contains one or more
unrecognised characters and is not valid.

ANS1228E Sending of object '/testData/en_US_files/file' failed

ANS4042E Object name '/testData/en_US_files/file' contains one or more
unrecognised characters and is not valid.

ANS1228E Sending of object '/testData/ja_JP_files/fil e4' failed

ANS4042E Object name '/testData/ja_JP_files/file4' contains one or more
unrecognised characters and is not valid.

Directory--> 192 /testData [Sent]

Directory--> 168 /testData/en_US.UTF-8_files [Sent]

Directory--> 144 /testData/en_US_files [Sent]

22

Directory--> 144 /testData/ja_JP.UTF-8_files [Sent]

Directory--> 144 /testData/ja_JP_files [Sent]

Normal File--> 19 /testData/en_US.UTF-8_files/file1 [Sent]

Normal File--> 24 /testData/en_US.UTF-8_files/file2 [Sent]

Normal File--> 26 /testData/en_US.UTF-8_files/file¢ [Sent]

Normal File--> 25 /testData/en_US.UTF-8_files/file£ [Sent]

Normal File--> 21 /testData/en_US.UTF-8_files/fileŒ [Sent]

Normal File--> 21 /testData/en_US_files/file1 [Sent]

Normal File--> 22 /testData/en_US_files/file2 [Sent]

Normal File--> 21 /testData/ja_JP.UTF-8_files/file1 [Sent]

Normal File--> 22 /testData/ja_JP.UTF-8_files/file2 [Sent]

Normal File--> 29 /testData/ja_JP.UTF-8_files/file3? [Sent]

Normal File--> 29 /testData/ja_JP.UTF-8_files/file4? [Sent]

Normal File--> 21 /testData/ja_JP_files/file1 [Sent]

Normal File--> 22 /testData/ja_JP_files/file2 [Sent]

Normal File--> 15 /testData/ja_JP_files/file3 [Sent]

ANS1804E Selective Backup processing of '/testData/*' finished with failures.

Example 4: Execution of a restore operation.

In a multiple byte locale environment, files whose names do not have a valid multiple byte
encoding cannot be restored using the Tivoli Storage Manager Client single file restore command
because the file name cannot be specified on the command line.

dsmc rest /testdata/en_US_files/file3?

The Tivoli Storage Manager Client must be run in the locale corresponding to the encoding of the
file name for the file name to be correctly entered. However, all of the files can be restore d by
using a wild card qualified no-query restore as shown in the example below.

dsmc> rest /testData/en_US/*

Restore function invoked.

Restoring 144 /testData/en_US_files [Done]

Restoring 21 /testData/en_US_files/file1 [Don e]

Restoring 22 /testData/en_US_files/file2 [Done]

Restoring 16 /testData/en_US_files/file? [Done]

Restoring 13 /testData/en_US_files/file? [Done]

Restore processing finished.

This example of a no-query restore illustrates an interesting difference between backup
processing and restore processing. The equivalent backup command,

dsmc sel “/testdata/en_US_files/*”

will fail to backup the files containing characters in their name that are invalid in the multiple byte
character set locale. That is because i nclude/exclude processing is performed as part of the Tivoli
Storage Manager Client backup logic. If a file name contains characters that are invalid in the
current locale, the include/exclude processing always excludes that file.

The Tivoli Storage Manager Client restore operation does not involve any include/exclude
processing, so files names containing invalid characters can always be restored when performing
a no-query restore.

23

Example 5: Execution of a restore operation with a file list

The filelist option cannot be used to restore individual files whose names are not valid in the
multiple byte character set locale.

dsmc> rest -filelist=fileList1

Restore function invoked.

 ** Unsuccessful **

ANS1345E No objects on server match '/testData/en_US_files/file?'

 ** Unsuccessful **

ANS1345E No objects on server match '/testData/en_US_files/file?'

>dsmc rest /testData/en_US_files/file3¢

ANS1302E No objects on server match query

Example 6: The client GUI started in a UTF-8 locale

The Tivoli Storage Manager GUI displays all file names correctly when the dsmcad is started in
the same multiple byte character set locale as the encoding of the file names if the correct fonts
are used.

When the Tivoli Storage manager dsmcad is running in a multiple byte character set l ocale, the
GUI does not display files whose names contain characters that are invalid in the multiple byte
locale.

24

Notice that the files with invalid UTF -8 names are not displayed.

Example 7: The client GUI started in ja_JP.eucJP locale

This example shows the GUI when the dsmcad was started in the ja_JP.eucJP l ocale. The
ja_JP.eucJP characters may appear different from those displayed in the terminal emulator
depending upon the fonts being used. However as long as the dsmcad was started in the same
locale as the files to be displayed, all of the files will be shown and none will be skipped.

25

8. Scenario 4b: Mixed Encodings – Executing in
Single-byte Locale

Summary
In environments that have mixed encodings (for example, both UTF-8 and multi-byte encodings),
you can chose to execute the Tivoli Storage Manager Backup -Archive Client in either a single-
byte locale or a multi-byte (including UTF-8) locale. This summary is for executing the client in a
single-byte locale. By executing in a single -byte locale, you can ensure that all files and
directories will be processed during scheduled backup operations and during restores of entire
volumes or directories. Messages produced by the c lient will always be readable. The
disadvantages of this environment will be when specifying explicit file names for backup and
restore operations and displaying files in the GUI might not show the correct name.

How do I know I’m in this environment?
The locale command will return the name of a single byte character set locale such as en_US,
de_DE, or one of the ISO 8859 variants. Commands that deal with file names, such as ls, will not
always display all file names correctly.

Backup processing
Tivoli Storage Manager Client backup processing is supported with some restrictions in this
environment. The error

“ANS4042E Object name '/testData/en_US_files/file3?' contains one or more un -
recognized characters and is not valid.”

will not occur in this environment, and all files meeting the selection criteria will be backed up.

File names cannot always be entered on the Tivoli Storage Manager Client command line. All
single byte ISO 8859 characters can be specified ; however, UTF-8 multiple byte characters and
Chinese, Japanese or Korean DBCS characters can not be entered on the command line.

Entering multiples byte characters in a single byte character set locale

The Tivoli Storage Manager Client filelist option can be used to get around the above restrictions
on entering multiple byte UTF-8 or DBCS characters when running in a single byte character set
locale. If the ls command is issued in a single byte ISO 8859 locale, a DBCS locale such as
js_JP.eucJP or a UTF-8 locale and the output is sent to a file, and the resulting list of file names
can be used as the filelist input for either backup and restore processing. This works because the
ls command sends the binary representation of the file names to the output file or display.

Restore processing
Tivoli Storage Manager Client restore processing is supported with some restrictions in this
environment. The same file name restrictions discussed in the above section on “Backup
processing” also apply to restore processing.

26

Include-exclude processing
Tivoli Storage Manager Client include-exclude processing is fully supported.

Messages
Only the Tivoli Storage Manager Client single byte character set messages catalogs are
supported in this environment. The Tivoli Storage Manager Client DBCS messages catalogs for
the Chinese, Japanese and Korean languages are not supported in this environment. The default
is to use the single byte character set English en_US message catalog.

Examples
The following example shows the Tivoli Storage Manager client in an ISO 8859 locale.

Notice that file names containing multiple byte en_US.UTF -8 characters that are composed of
two or more valid ISO 8859 characters, such as “file¢” and “file£ ,” are displayed as a sequence of
two single byte characters, “file3Â¢” and “file4Â£,” when running in a single byte character set
locale. When a multiple byte character in a file name contains an invalid ISO 8859 byte, the
invalid byte is replaced with the character '?'. For example, the file named “ fileŒ” is displayed as
“file5?”

Example 1: The ls command listing of the test file names
>ls -l /testData/en_US.UTF-8_files/

total 16

-rw-r--r-- 1 symonds users 19 2007-10-02 10:08 file1

-rw-r--r-- 1 symonds users 24 2007-10-02 10:08 file2

-rw-r--r-- 1 symonds users 26 2007-10-02 10:08 file3Â¢

-rw-r--r-- 1 symonds users 25 2007-10-02 10:08 file4Â£

-rw-r--r-- 1 symonds users 21 2007-10-02 10:08 file5Å?

> ls -l /testData/en_US_files

total 16

-rw-r--r-- 1 symonds users 21 2007-10-02 10:07 file1

-rw-r--r-- 1 symonds users 22 2007-10-02 10:07 file2

-rw-r--r-- 1 symonds users 16 2007-10-02 10:07 file3¢

-rw-r--r-- 1 symonds users 13 2007-10-02 10:07 file4£

Example 2: Execution of a selective backup operation

All files can be backed up when running in a single byte locales.

>dsmc sel /testData/* -su=yes

Selective Backup function invoked.

Directory--> 192 /testData [Sent]

Directory--> 168 /testData/en_US.UTF-8_files [Sent]

Directory--> 144 /testData/en_US_files [Sent]

Directory--> 144 /testData/ja_JP.UTF-8_files [Sent]

Directory--> 144 /testData/ja_JP_files [Sent]

Normal File--> 19 /testData/en_US.UTF-8_files/file1 [Sent]

27

Normal File--> 24 /testData/en_US.UTF-8_files/file2 [Sent]

Normal File--> 26 /testData/en_US.UTF-8_files/fileÂ¢ [Sent]

Normal File--> 25 /testData/en_US.UTF-8_files/fileÂ£ [Sent]

Normal File--> 21 /testData/en_US.UTF-8_files/fileÅ [Sent]

Normal File--> 16 /testData/en_US_files/file¢ [Sent]

Normal File--> 13 /testData/en_US_files/file£ [Sent]

Normal File--> 21 /testData/en_US_files/file1 [Sent]

Normal File--> 22 /testData/en_US_files/file2 [Sent]

Normal File--> 21 /testData/ja_JP.UTF-8_files/file1 [Sent]

Normal File--> 22 /testData/ja_JP.UTF-8_files/file2 [Sent]

Normal File--> 29 /testData/ja_JP.UTF-8_files/file3ç [Sent]
¡ [Sent]

Normal File--> 29 /testData/ja_JP.UTF-8_files/file4å³ [Sent]

Normal File--> 21 /testData/ja_JP_files/file1 [Se nt]

Normal File--> 22 /testData/ja_JP_files/file2 [Sent]

Normal File--> 12 /testData/ja_JP_files/file4±¦ [Sent]

Normal File--> 15 /testData/ja_JP_files/file3Ìµ [Sent]

Selective Backup processing of '/testData/*' finished without failure.

Example 3: Query file backup in single -byte character locale

A query backup when running in the same single byte character set locale displays all of the files
that were backed up. Of course, since we are running in a single byte locale, the names of files
with multiple byte character set encoded characters are not displayed co rrectly.

dsmc> q ba /testData/* -su=yes

Size A/I File

---- --- ----

 168 A /testData/en_US.UTF-8_files

 144 A /testData/en_US_files

 144 A /testData/ja_JP.UTF-8_files

 144 A /testData/ja_JP_files

 19 A /testData/en_US.UTF-8_files/file1

24 A /testData/en_US.UTF-8_files/file2

26 A /testData/en_US.UTF-8_files/fileÂ¢

 25 A /testData/en_US.UTF-8_files/fileÂ£

 21 A /testData/en_US.UTF-8_files/fileÅ

 21 A /testData/en_US_files/file1

 22 A /testData/en_US_files/file2

 16 A /testData/en_US_files/file¢

 13 A /testData/en_US_files/file£

21 A /testData/ja_JP.UTF-8_files/file1

 22 A /testData/ja_JP.UTF-8_files/file2

 29 A /testData/ja_JP.UTF-8_files/file3ç

 29 A /testData/ja_JP.UTF-8_files/file4å³

 21 A /testData/ja_JP_files/file1

 22 A /testData/ja_JP_files/file2

 15 A /testData/ja_JP_files/file3Ìµ

28

12 A /testData/ja_JP_files/file4±¦

Example 4: Query file backup in a UTF -8 locale

The same query for all of the backed up files is different when run in a UTF -8 locale. Notice that
the file names containing characters that are not valid in the UTF -8 locale
(/testData/en_US_files/file¢, /testData/en_US_files/file£ and /testData/ja_JP_files/file4右) are not
shown in the list of files. These files can neither be queried nor restored when running in a locale
where the file names contain invalid characters. They can only be restored (with a single file
restore) in the locale corresponding to their encoding, or in a single byte locale where all byte
encodings are valid.

dsmc> q ba /testData/* -su=yes

Size A/I File

---- --- ----

 168 A /testData/en_US.UTF-8_files

 144 A /testData/en_US_files

 144 A /testData/ja_JP.UTF-8_files

 144 A /testData/ja_JP_files

 19 A /testData/en_US.UTF-8_files/file1

 24 A /testData/en_US.UTF-8_files/file2

26 A /testData/en_US.UTF-8_files/file¢

 25 A /testData/en_US.UTF-8_files/file£

21 A /testData/en_US.UTF-8_files/fileŒ

 21 A /testData/en_US_files/file1

 22 A /testData/en_US_files/file2

 21 A /testData/ja_JP.UTF-8_files/file1

 22 A /testData/ja_JP.UTF-8_files/file2

29 A /testData/ja_JP.UTF-8_files/file3無

 29 A /testData/ja_JP.UTF-8_files/file4右

 21 A /testData/ja_JP_files/file1

22 A /testData/ja_JP_files/file2

 15 A /testData/ja_JP_files/file3

Example 5: Executing a restore operation

The Tivoli Storage Manager Client should normally be run in the same locale as that of the file to
be restored. However when multiple files with names that are encoded with different incompatible
locales are to be restored in a single operation, it is possible (in a single byte character set locale
such as en_US) to use the filelist option explicitly to restore such files.

ls /testData/en_US.UTF-8_files/* > fileList1

Now edit fileList1 to remove all lines except the lin e for the file to be restored,
“/testData/en_US.UTF-8_files/file5Œ”, and then use fileList1 as input to the restore command.

>dsmc rest -filelist=fileList1

Restoring 21 /testData/en_US.UTF -8_files/file5Å

29

Example 6: The client GUI

The Tivoli Storage Manager GUI shows all file names when the dsmcad is started in a single byte
locale. File names containing single byte character set characters will be di splayed correctly.

File names containing UTF-8 multiple byte characters will be shown, but multiple byte characters
in the file names displayed will be garbled.

30

File names containing DBCS characters will be shown, but multiple byte characters in the file
names displayed will be garbled.

Examples using ja_JP.eucJP encoded files
The following example shows the Tivoli Storage Manager client in an ISO 8859 locale.

Notice that file names containing multiple byte ja_JP.eucJP characters that are composed of two
or more valid ISO 8859 characters are displayed as a sequence of two single byte characters
“file3É¹” and “file4Î³ ” when running i n a single byte character set locale. When a multiple byte
character in a file name contains an invalid ISO 8859 byte, the invalid byte is replaced with the
character '?'.

Example 1: The ls command listing of the test file names
>ls -l /testData/ja_JP_files/

total 16

-rw-r--r-- 1 symonds users 21 2007-10-02 10:08 file1

-rw-r--r-- 1 symonds users 22 2007-10-02 10:08 file2

-rw-r--r-- 1 symonds users 50 2007-10-02 10:08 file3É¹

-rw-r--r-- 1 symonds users 31 2007-10-02 10:08 file4Î³

Example 2: Include-Exclude statements

The Tivoli Storage Manager include/exclude processing works correctly for these ja_JP.eucJP
files even though the client is running in a single byte ISO 8859 locale. In this example the file
named file3É¹ is excluded even though we are ru nning in a single byte character set locale.

The dsm.sys configuration file can contain a mixture of single byte and multiple byte characters.
Notice the include statement for the DBCS file “ /testData/ja_JP_files/file4右”is commented out.

31

exclude /testData/ja_JP_files/*

include /testData/ja_JP_files/ja_file1

include /testData/ja_JP_files/ja_file2

include /testData/ja_JP_files/ja_file4Î³

* include /testData/ja_JP_files/ja_file3É¹

Example 3: Executing a selective backup o peration

The Tivoli Storage Manager Client include/exclude processing works correctly for all files
including those with multiple byte characters in their names. In the example below, all of the
included files, including those with multiple byte characte rs in their names, are backed up.

>dsmc sel /testData/ja_JP_files/*

Selective Backup function invoked.

ANS1115W File '/testData/ja_JP_files/ja_file3É¹' excluded by Include/Exclude list

Directory--> 160 /testData/ja_JP_files [Sent]

Normal File--> 21 /testData/ja_JP_files/file1 [Sent]

Normal File--> 22 /testData/ja_JP_files/file2 [Sent]

Normal File--> 31 /testData/ja_JP_files/ja_file4Î³ [Sent]

Selective Backup processing of '/testData/ja_JP_files/*' finished without failure.

If the “*” is removed from the include statement for the file file3É¹ , that file is also backed up.

tsm> sel /testData/ja_JP_files/*

Selective Backup function invoked.

Directory--> 160 /testData/ja_JP_files [Sent]

Normal File--> 21 /testData/ja_JP_files/file1 [Sent]

Normal File--> 22 /testData/ja_JP_files/file2 [Sent]

Normal File--> 50 /testData/ja_JP_files/ja_file3É¹ [Sent]

Normal File--> 31 /testData/ja_JP_files/ja_file4Î³ [Sent]

Selective Backup processing of '/testData/ja_JP_files/*' finished without failure.

Example 4: Query backup files

The files backed up in the directory “/testData/ja_JP_files” can be queried with the Tivoli Storage
manager client command

>dsmc q ba /testData/ja_JP_files/*

Size A/I File

---- --- ----

21 A /testData/ja_JP_files/ja_file1

22 A /testData/ja_JP_files/ja_file2

50 A /testData/ja_JP_files/ja_file3¦Ã

31 A /testData/ja_JP_files/ja_file4¦Ã

Notice that the names of the files returned does not match either the correct ja_JP.eucJP name
or the name returned by the ls command.

32

Example 5: Executing a restore operation

These files can be restored while running in a single byte character set locals such as en_US by
using a wild card specification; however, it is recommended to run the Tivoli Storage Manager
Client in the same locale as that of the file to be restored.

>dsmc rest /testData/ja_JP_files/*

Restore function invoked.

ANS1247I Waiting for files from the server...

Restoring 160 /testData/ja_JP_files [Done]

Restoring 21 /testData/ja_JP_files/file1 [Done]

Restoring 22 /testData/ja_JP_files/file2 [Done]

Restoring 50 /testData/ja_JP_files/ja_file3É¹ [Done]

Restoring 31 /testData/ja_JP_files/ja_file4Î³ [Done]

Restore processing finished.

Example 6: The client GUI

The ja_JP.eucJP names displayed by the Tivoli Stora ge Manager GUI managed by a dsmcad
started in a single byte character set locale are not displayed correctly, but they can be selected
and will be processed correctly for a backup or restore operation .

33

9. Appendix A – System Configuration Used for
This Paper
This paper is divided into four basic character encoding environments:

1. A pure ISO 8859 environment where all of the file names have the same single byte ISO
8859 encoding.
2. A pure DBCS multiple byte environment all of the file names have a singl e DBCS
encoding, such as ja_JP.eucJP.
3. A pure UTF-8 environment where all of the file names are encoded according to the
Unicode UTF-8 standard.
4. A mixed environment where the file names are encoded in two of more incompatible
character sets (such as ISO 8859 and UTF-8, or different DBCS locales such as ja_JP.eucJP
and zh_CN, or a DBCS locale such as ja_JP and UTF -8).

The following file system configuration was established to demonstrate working in these four
different environments.

 en_US_files

 ja_JP_files

 en_US.UTF-8_files

ja_JP.UTF-8_files

The directory /testData/en_US_files con tains files with the following ISO 8859-1 (en_US)
encoded names.

File Name Locale Hexadecimal encoding

file1 en_US 66 69 6C 65 31

file2 en_US 66 69 6C 65 32

file3¢ en_US 66 69 6C 65 33 A2

filee4£ en_US 66 69 6C 65 34 A3

The directory /testData/ja_JP_files contains files with the following DBCS ja_JP.eucJP encoded
names.

File Name Locale Hexadecimal encoding

file1 ja_JP.eucJP 66 69 6C 65 31

file2 ja_JP. eucJP 66 69 6C 65 32

34

File Name Locale Hexadecimal encoding

file3無 ja_JP. eucJP 66 69 6C 65 33 CC B5

file4右 ja_JP. eucJP 66 69 6C 65 34 B1 A6

The directory /testData/en_US.UTF -8_files contains files with the following English UTF -8
encoded names.

File Name Locale Hexadecimal encoding

file1 en_US.UTF-8 66 69 6C 65 31

file2 en_US.UTF-8 66 69 6C 65 32

file3¢ en_US.UTF-8 66 69 6C 65 33 C3 A2

file4£ en_US.UTF-8 66 69 6C 65 34 C3 A3

file5Œ en_US.UTF-8 66 69 6C 65 35 C5 92

The directory /testData/ja_JP.UTF-8_files contains files with the following Japanese UTF -8
encoded names.

File Name Locale Hexadecimal encoding

file1 ja_JP.UTF-8 66 69 6C 65 31

file2 ja_JP.UTF-8 66 69 6C 65 32

file3無 ja_JP.UTF-8 66 69 6C 65 33 E7 84 A1

file4右 ja_JP.UTF-8 66 69 6C 65 34 E5 8F B3

These names of the files were chosen to help the reader understand the difference b etween ISO
8859 encoding, UTF-8 encoding, and a DBCS encoding such as ja_JP.

Notice that the files named “file3¢” and “file4£” look the same in both the en_US_files directory
and the en_US.UTF-8_files directory, and the files file3無 and file4右 appear the same in the
ja_JP_files and the ja_JP.UTF-8 directory; however, the encoding of these multiple byte
characters differs in the different locales , and the file names are actually quite different.

The character 'Œ' does not correspond to a valid single byte ISO 8859 character, so a file with
the name “file5Œ” could not be created when running in a single byte character set locale.

35

The file names in these examples all have a unique numeric identifier in their name. This is very
helpful when running in a mixed locale enviro nment because it provides a way to identify the file
when the file name contains characters that cannot be displayed correctly in the current locale.

36

10. Appendix B – Locales
The locale determines the internationalization characteristics of the computer. The default system
locale is defined in a system configuration file such as /etc/environment. Individual user locales
that override the system default are set in the user login configuration files such as .profile.

The current locale can be discovered by issuing the command locale.

>locale

LANG=en_US

LC_COLLATE=en_US

LC_CTYPE=en_US

LC_MONETARY=en_US

LC_NUMERIC=en_US

LC_TIME=en_US

LC_MESSAGES=en_US

LC_ALL=

Locale variables are defined as follows:

LANG - This variable corresponds to the “locale” as used in this document. It determines the
character set encoding used for displays and for file names created during the session running
under that locale.

LC_MESSAGES - This variable determines the format for affirmative and negative system
responses.

LC_COLLATE - This variable defines character or string collation inform ation.

LC_CTYPE - This variable defines character classification, case conversion, and other character
attributes.

LC_MONETARY -This variable defines rules and symbols for formatting monetary numeric
information.

LC_NUMERIC - This variable defines rules and symbols for formatting non-monetary numeric
information.

LC_TIME -This variable defines rules for formatting date and time items.

LC_ALL - This variable is used to set all of the above environment v ariables except LANG.

Other pertinent notes about locale:

1. The locales supported by the system can be discovered by issuing the command locale -a
2. The locale for a system or login session is set by exporting the above environment
variables.
3. The locale can be changed at any time by exporting a diffe rent value for LC_ALL or LANG.

37

11. Appendix C – ISO 8859-1 and Variations
ISO 8859-1 is a standard character encoding of the Latin alphabet. Byte values 0 to 31(decimal)
are not assigned in this standard, byte values 32 to 127 correspond to standard Latin characters
(i.e., the English alphabet and numeric digits), and the byte values 128 to 159 are also not
assigned.

This means that in a single byte ISO 8859 locale, any byte with a value from 32 to 127, or from
160 to 255, can be displayed as a character in an ISO 8859 locale. Characters outside of that
range cannot be displayed. Attempts to display these characters will no rmally be replaced with
the '?' character.

It should be obvious that 256 characters are inadequate to encode all of the European languages :
English, French, German, Polish, Croatian, Latvian, Russian, Greek, Arabic, Hebrew, etc.

Because a single standard for the 8 bit ASCII characters can not encode the characters for all of
these languages, there are 16 variations of this encoding standard, ISO 8859-1 to ISO 8859-16.
Each of these 16 variants has different definitions for the characters corresponding to 160 to 255.
The existence of 16 different variations of the ISO 8859 standard means that the same binary
encoded file name may appear different in different locales. For instance , the character x'A2' is
the character '¢' in ISO 8859-1; however, it is the character ' Ђ' in ISO 8859-5 and 'ą' is ISO
8859-16.

38

12. Appendix D – Unicode and UTF-8
The Unicode standard was defined to resolve the complexities of multiple code pages . The
Unicode Standard is a character set coding system designed to support all of the modern
languages and many of the ancient l anguages in a single encoding scheme. The Unicode
standard is continually evolving as new characters and code points are added.

The original Unicode standard defined a 16 -bit encoding for 16,000 different characters. This
original standard has been extended to support more tha n 16,000 characters and to support
systems such a UNIX that define strings as sequences of eight bit bytes.

The latest Unicode standard defines three different encodings for each character in the standard.

 The UTF-8 encoding for each character is composed of one or more eight bit bytes. UTF -
8 is commonly found on UNIX systems.

 The UTF-16 encoding for each character is composed of one of more 16 bit values. UTF-
16 is used on Microsoft Windows systems.

 The UTF-32 encoding for each character is composed of one 32 bit value for each
character.

All three of these encodings are equivalent in that any one of the three encodings can be
converted into either of the other two usi ng a computer algorithm. There is no need for a table
lookup to convert from one to another.

For more information on the Unicode standard, refer to the Unicode Standard.

For an excellent discussion on the three different encodings of Unicode, refer to “Forms of
Unicode”.

The encoding for seven bit ASCII characters (in the range hexadecimal 00 to hexadeci mal 7F) is
the same in both ISO 8859 and UTF-8. That is why names such as “file1” have the same
encoding in both ISO 8859 and UTF-8.

All other characters required at least two bytes when encoded in UTF -8.

Each of the individual bytes in a multiple byte UTF -8 character always has a value greater than
hexadecimal 7F. This restriction is important because the UTF -8 encoding of the seven bit ASCII
characters is the same as the ISO 8859 encoding. If one of the bytes in a multiple byte UTF -8
character had the same value as a seven bit AS CII character, there would be no fool -proof way to
determine if the byte was part of the multiple byte chara cter or if it was a stand-alone character.

A second implication of this restriction on the values of individual bytes in a UTF -8 multiple byte
character is that in a single byte character set locale, the display of a multiple byte UTF-8
character frequently shows as two or more ISO 8859 special characters. However, not all UTF -8
multiple byte characters can be displayed as two or more single byte s pecial characters. This is
because byte values in the range hexadecimal 80 to he xadecimal 9F are not defined in ISO 8859.

In the previous examples, the character ' ¢' has an ISO 8859-1 value of hexadecimal 'A2' and a
UTF-8 multiple byte character value of hexadecimal 'C3 A2'. The UTF-8 multiple byte encoding is
the same as the ISO 8859-1 encoding with 'Â' in front of it.

This correspondence between the display of ISO 8859 characters and UTF-8 characters is not
generally true. All individual UTF-8 multiple byte character byte values are in the range of

39

hexadecimal '80' to 'FF'; however, bytes in the range of hexadecimal '80' through '9F' do not
correspond to displayable characters in ISO 8859. Any UTF-8 character containing a byte within
this range cannot be displayed as two or more ISO 8859 single byte characters. In the previous
example, the character 'Œ' has the hexadecimal value 'C5 92'. The byte hexadecimal 'C5'
corresponds to the ISO 8859 character 'Å', but the byte hexadecimal '92' does not c orrespond to
an ISO 8859 character and cannot be displayed. Frequently the invalid character is displayed as
'?'.

UTF-8 encodes each character in one to four octets (8 -bit bytes):

1. One byte is needed to encode the 128 US -ASCII characters (Unicode range U+0000 to
U+007F).
2. Two bytes are needed for Latin letters with diacritics and for characters from Greek,
Cyrillic, Armenian, Hebrew, Arabic, Syriac and Thaana alphabets (Unicode range U+0080 to
U+07FF).
3. Three bytes are needed for the rest of the Ba sic Multilingual Plane (which contains virtually
all characters in common use).
4. Four bytes are needed for characters in the other planes of Unicode, which are rarely used
in practice.

40

13. Appendix E – Japanese Extended UNIX
Code
Extended Unix Code (EUC) is a multiple byte character encoding system used primarily for
Japanese, Korean and simplified Chinese. This encoding scheme allows the easy mixing of 7 -bit
ASCII and multiple byte 8-bit Japanese characters. The Tivoli Storage Manager cli ent supports
ja_JP.eucJP, which is incompatible with UTF-8.

1. Conversion between ISO 8859 and UTF-8

Cut and paste operations between terminal emulator windows attempt to convert between ISO
8859 and UTF-8. If a character such as '¢' that is valid in both locales is copied from an ISO 8859
locale to a UTF-8 locale, the character ' will be converted to its UTF -8 representation. However, if
the character such as 'Œ' that is valid in the UTF-8 but not the ISO 8859 locale is copied from the
UTF-8 locale to an ISO 8859 locale, the paste operation will not succeed, and no character will be
pasted into the ISO 8859 window.

2. Conversion to wide characters

In order to do internal string comparisons, the TSM client converts the character strings to wide
character strings for processing include/exclude statements and comparing with o bjects
previously backed up to TSM server.

Conversion of the character string to a wide character string is dependent on the locale that TSM
client is running under. If a character can not be converted to a valid wide character under the
locale TSM client is running, TSM client will skip that object for backup processing, or if the
problem character is within an include/exclude statement, TSM client will ignore that
include/exclude statement.

The recommendation is to run TSM client using a SBCS Locale like en_US because single byte
locales will never fail the wide character string conversion.

41

14. Appendix F – Locale and the UNIX Shell
It is important to realize that programs take on the loc ale that they are launched in, and once a
program has been launched, modifying the locale environment variables does not change the
locale of already-launched programs.

This subtlety is important because the UNIX shell is a program, and once it has been l aunched,
changing the locale environment variables does not change the locale of the shell. For example, if
the shell is launched in the en_US.UTF-8 locale and the locale environment variables are
changed so that the Tivoli Storage Manager Backup -Archive Client is launched in the en_US
locale, then the locale of the shell and the locale of the Tivoli Storage Manager client will be out of
sync. The locale of the shell would continue to be en_US.UTF-8; only the locale of the Tivoli
Storage Manager Client would be changed. All of the characters in commands issued from the
shell, such as dsmc sel f£ are in en_US.UTF-8, even though the Tivoli Storage manager client is
running in the en_US locale. In this case, the shell command dsmc sel f£ would backup the file
whose name is encoded with the UTF -8 binary encoding 0x66C2A3 even though the Tivoli
Storage Manager Client is running in a en_US locale.

Conversely, if the shell is running in the en_US locale, and the locale environment variables are
modified so that the Tivoli Storage Manager Client is running in the en_US.UTF-8 locale, the shell
command dsmc sel f£ would attempt to backup the file whose name is encoded with the ISO
8857-1 binary encoding 0x66A3. In this case, the command would fail with the following error
message because the ISO 8857-1 file name is not a valid UTF-8 name:

ANS4042E Object name '/testData/en_US_f?' contains one or more un -
recognized characters and is not valid.

The following examples illustrate the results of invoking the Tivoli Storage Manager Client in
different shell and client locales. Xterm1 is started i n a UTF-8 locale (for example, en_US.UTF-8),
and xterm2 is started in the single byte character set en_US locale. The UTF-8 xterm1 creates a
512-byte file whose name is encoded in UTF -8, “/mixed/f£” (the last two characters of the name
are encoded as 0x66C2A3), and the single byte character set en_US xterm2 creates a 256-byte
file whose name is encoded in en_US, “/mixed/f£” (the last two characters of the name are
encoded as 0x66A3).

This example shows the output when both the shell and the Tivoli Stor age Manager Client are in
the same en_US.UTF-8 locale. Notice that the 512-byte en_US.UTF-8 file name is displayed
correctly while the 256-byte en_US file name is not displayed correctly. The 512 -byte UTF-8 file is
backed up in response to the command dsmc sel /mixed/f£. A wild carded selective command to
back up both files backs up the 512-byte en_US.UTF-8 file, but not the 256-byte en_US file:

ls -l /mixed/*

-rw-rw-r-- 1 symonds symonds 512 Jan 7 19:48 /mixed/f£
-rw-rw-r-- 1 symonds symonds 256 Jan 7 19:50 /mixed/f?

dsmc sel /mixed/f£
Normal File--> 512 /mixed/f£ [Sent]

dsmc sel /mixed/*
ANS1228E Sending of object /mixed/f? failed
ANS4042E Object name /mixed/file? contains one or more unrecognized
characters and is not valid
Normal File--> 512 /mixed/f£ [Sent]

42

Now change the locale environment variables to en_US. The Tivoli Storage Manager Client is
now running in a single byte locale. Notice that the ls command still has the same output, and the
command dsmc sel /mixed/f£ continues to backup the 512-byte UTF-8 file. However the Tivoli
Storage Manager Client’s wild carded selective command successfully backs up both files and
does not encounter any failures.

export LANG=en_US
export LC_ALL=en_US

ls -l /mixed/*

-rw-rw-r-- 1 symonds symonds 512 Jan 7 19:48 /mixed/f£
-rw-rw-r-- 1 symonds symonds 256 Jan 7 19:50 /mixed/f?

dsmc sel /mixed/f£
Normal File--> 512 /mixed/f£ [Sent]

dsmc sel /mixed/*
Normal File--> 256 /mixed/f? [Sent]
Normal File--> 512 /mixed/f£ [Sent]

This example shows the output when both the shell and the Tivoli Storage Manager Client are in
the same en_US single byte locale. Notice that the 256-byte en_US file name is displayed
correctly and the 512-byte en_US.UTF-8 file name is displayed as a combination of three
characters, the character 'f', the first byte in the multiple byte character 'Â' followed by the second
byte in that character, '£'.

Also notice that in this case, the 256 -byte en_US file is backed up in response to the command
dsmc sel /mixed/f£, and the Tivoli Storage Manager Client wild carded selective command does
not encounter any failures.

ls -l /mixed/*

-rw-rw-r-- 1 symonds symonds 256 Jan 7 19:48 /mixed/f £
-rw-rw-r-- 1 symonds symonds 512 Jan 7 19 :50 /mixed/fÂ£

dsmc sel /mixed/f£
Normal File--> 256 /mixed/f £ [Sent]

dsmc sel /mixed/*
Normal File--> 256 /mixed/f £ [Sent]
Normal File--> 512 /mixed/f Â£ [Sent]

Now change the locale environment variables to en_US.UTF-8. Notice that the ls command still
has the same output (the file f£ is still displayed as a combination of three characters, the
character 'f', the first byte in the multiple byte character 'Â' followed by the second byte in that
character '£').

However, now the 512-byte en_US.UTF-8 file is backed up in response to the command dsmc
sel /mixed/f£ and the wild carded selective command to back up both files now only backs up the
512-byte en_US.UTF-8 file, but not the 256-byte en_US file.

export LANG=en_US.UTF-8
export LC_ALL=en_US.UTF-8

ls -l /mixed/*

-rw-rw-r-- 1 symonds symonds 512 Jan 7 19:48 /mixed/fÂ£
-rw-rw-r-- 1 symonds symonds 256 Jan 7 19:50 /mixed/f?

43

dsmc sel /mixed/f£
Normal File--> 512 /mixed/f£ [Sent]

dsmc sel /mixed/*
ANS1228E Sending of object /mixed/f£ failed
ANS4042E Object name /mixed/file£ contains one or more unrecognized
characters and is not valid
Normal File--> 512 /mixed/fÂ£ [Sent]

