

Dr. Christoph Lehmann Zentrum für Informationsdienste und Hochleistungsrechnen – TU Dresden

Al for Teaching

Cloud-Computing, Data Management and High Performance Computing

Dresden, 15 October 2020

Introduction – Agenda

Introduction

Use Cases

Organisational Issues

01 Introduction

- Goal: teaching methods and approaches from areas as simulation, data analytics, machine learning etc.
- today's audience: teachers, not: developers
- students should be able to work on practical examples themselves
- Common main requirements:
 - 1. unified software environment
 - 2. appropriate hardware
 - 3. central access to course material, esp. prepared examples, data sets, source codes etc.
- different modes for permission and access rights:
 - anonymous use, no change of data
 - personalized use, TU Dresden login (aka ZIH login) necessary
 - (i) changing data is possible, results are not kept permanently
 - (ii) changing data is possible, results are kept permanently
 - HPC login needed: can be personalized, but also temporary logins possible
- no universal approach, typically individual combination of tools and services depending on application and number of students

01 Introduction

- today's goal: provide some ideas about tools and services and how to combine them
- provide the overall picture, nevertheless there are some details behind the scenes
- starting point: what students will see and how to make this reality
- all use cases are real world examples (already tested and applied)
- typically, there is some effort needed by the teacher (installation, configuration etc.)

Use Cases – Agenda

Introduction

Use Cases

Use Case I – Simple Demonstrator
Use Case II – Advanced Interactivity
Use Case III – Interactivity on HPC
Hints for HPC

Organisational Issues

02 Use Case I – Simple Demonstrator

- students get in first touch with a topic; only a few degrees of freedom for interactivity
- accessible within the TU Dresden data network, anonymous use
- typically some kind of web app using web frameworks as e. g. flask (for Python) or shiny (for R)
- level of interactivity strongly depends on the web app itself
- is running on a virtual machine (VM)
- example for shiny app based on R: http://172.24.249.12:3405/

02 Use Case I – Simple Demonstrator

- VM configuration: RAM 4GB, 2 CPUs, HDD 40GB, Ubuntu 18.04.
- setting was applied successfully with approximately 20-30 students
- prerequisites and effort:
 - 1. create web app
 - 2. apply for a VM (research cloud or enterprise cloud)
 - 3. install and configure VM according to the app's requirements
 - 4. move web app to VM
 - 5. maintain/update VM and your web app if necessary
- helpful links:
 - a) cloud services at ZIH: https://selfservice.zih.tu-dresden.de/...cloud_dienste/
 - b) web framework shiny for R: https://mastering-shiny.org/, https://shiny.rstudio.com/tutorial/
 - c) web frameworks for Python: https://palletsprojects.com/p/flask/, http://bottlepy.org/

02 Cloud Service at ZIH - Create Virtual Machine

- How to create a VM? (example research cloud)
 - 1. application form: https://selfservice.zih.tu-dresden/.../cloud_dienste/vm_create

- select an operating system that matches your needs (currently available: some Linux distros and Windows Server 2016/2019)
- 3. newly created VM in research cloud is available within a couple of minutes
- 4. check your VMs at: https://selfservice.zih.tu-dresden.de/.../cloud_dienste/vm

Name A	Host	Datacenter	State	Lease Control		Action	
Data analysis demo	172.	Zentrum für Informationsdienste/HLR(ZIH)	Stoped	2020-12-19			
Image Retrieval Demo	172.	Zentrum für Informationsdienste/HLR(ZIH)	Running	2021-08-05			

02 Cloud Service at ZIH - Create Virtual Machine

 choose "configure" (red circle, see slide above) to select final settings (number of CPUs and RAM) that fit your needs https://selfservice.zih.tu-dresden.de/.../cloud_dienste/vm

 hint: default resources are limited to 2 CPUs, 8 GB RAM, 100 GB disk space (if necessary it is possible to get more)

02 Cloud Service at ZIH - Create Virtual Machine

- you will be notified by mail when the VM is available
- after starting the VM at the management page, it can be accessed by ssh (for Windows users: use an ssh-client or VMware)
- login credentials can be found at https://selfservice.zih.tu-dresden.de/.../cloud_Dienste/task
- general hints for the research cloud (details can be found at https://selfservice.zih.tu-dresden.de/.../cloud_dienste/AGB)
 - VMs are allowed only to be used for research, teaching and administration tasks for TU Dresden
 - VM-lifetime is limited to one year (can be extended)
 - processing of personal data is not allowed
 - VMs are no systems for high availability (this is different for the enterprise cloud)
 - VMs are not protected by ZIH-firewalls and the teacher/originator is responsible for updates and maintenance of the operating system
 - research cloud VM can be transformed into enterprise cloud VM: use research cloud for prototyping

02 Agenda

Introduction

Use Cases

Use Case I – Simple Demonstrator
Use Case II – Advanced Interactivity
Use Case III – Interactivity on HPC
Hints for HPC

Organisational Issues

HPC Project and Resources Login and Project Managemen Reservation

02 Use Case II - Advanced Interactivity

- students should be able to interact and try things out (including failures)
- working through prepared examples to get a deeper understanding or developing on their own
- a uniform software environment forms the basis, here: Python environment within a jupyterhub
- jupyterhub allows personalized access to jupyter notebooks and allows for user-specific workspace on shared resources
- remarks:
 - 1. login management comes into play as jupyterhub considers different users
 - 2. jupyterhub and the notebooks are not restricted to Python (more on that later)
- Thanks to Jens Brose, who provided this use case.
- live-demo example: jupyterhub for study of physics with login management via OPAL, https://bildungsportal.sachsen.de/opal/.../22770614272/

02 Use Case II - Advanced Interactivity

- VM (enterprise cloud) configuration: RAM 8GB, 4 CPUs
- sufficient resources for parallel access of ≈ 20 students, overall ≈ 400 students over the semester, 2 virtual experiments per student
- prerequisites and effort:
 - 1. create jupyter notebook(s) with your teaching content
 - 2. apply for a VM (research cloud or enterprise cloud)
 - 3. install and configure necessary software packages and jupyterhub on VM
 - use connection to OPAL course for login management by using the LTI module (https://www.bps-system.de/help/display/LMS/LTI-Tool)
 - 5. maintain/update VM and your notebook(s) if necessary
- helpful links:
 - a) cloud services at ZIH: https://selfservice.zih.tu-dresden.de/.../cloud_dienste/
 - b) jupyterhub: https://jupyter.org/hub
 - c) great flexibility for jupyter notebooks; available kernels: https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

02 Agenda

Introduction

Use Cases

Use Case I – Simple Demonstrator
Use Case II – Advanced Interactivity
Use Case III – Interactivity on HPC
Hints for HPC

Organisational Issues

HPC Project and Resources Login and Project Management Reservation

02 Use Case III - Interactivity on HPC

- students should be able to interact and try things out (including failures) based on strong hardware, e.g. using multiple CPUs, GPUs and/or large memory
- working through prepared examples to get a deeper understanding or developing on their own
- basis here: uniform Python environment within a jupyterhub on HPC machine (taurus)
- login management for HPC machine necessary
- Thanks to Simon Stone, who provided this use case.
- live-demo example: jupyterhub for "Praktikum, Angewandte Intelligente Signalverarbeitung"
- this example is uses data from github repo https://github.com/nullpunktTUD/tud-ais
 - 1. request resources at https://taurus.hrsk.tu-dresden.de/jupyter/hub/home
 - 2. pull data from github repo into user home: https://taurus.hrsk.tu-dresden.de/jupyter/hub/user-redirect/ git-pull?repo=https%3A%2F%2Fgithub.com %2FnullpunktTUD%2Ftud-ais&urlpath=lab%2Ftree%2Ftud-ais%2F

02 Use Case III - Interactivity on HPC

- resources were used by ≈ 20 students
- used a weekly reservation (8 weeks) for 90min, 120 CPUs
- prerequisites and effort (details on resources, login and reservation see slides 24, 26, 28):
 - 1. create jupyter notebook(s) with your teaching content
 - 2. apply for an HPC project according to your resource needs
 - 3. install and configure software packages for your project if necessary (e.g. create new kernels)
 - 4. apply for reservation
 - 5. provide link for students to join the HPC project
 - 6. maintain/update your own kernels and notebook(s) if necessary
- helpful links:
 - a) general hints for HPC project in teaching: https://tu-dresden.de/zih/hochleistungsrechnen/zugang/hpclehre
 - b) apply for HPC project: https://hpcprojekte.zih.tu-dresden.de/
 - c) general hints for jupyterhub on taurus: https://doc.zih.tu-dresden.de/.../Compendium/JupyterHub
 - d) details for jupyterhub in teaching: https://doc.zih.tu-dresden.de/.../JupyterHubForTeaching

02 Agenda

Introduction

Use Cases

Use Case I – Simple Demonstrator Use Case II – Advanced Interactivity Use Case III – Interactivity on HPC

Hints for HPC

Organisational Issues

HPC Project and Resources Login and Project Managemen Reservation

02 Hints for HPC – Available Software

 check available software from module system on Taurus at: https://doc.zih.tu-dresden.de/hpc-wiki/.../SoftwareModulesList

Tol	lang	2020-08-11	8.6.9 8.6.8 8.6.7 8.6.10
TensorFlow	Ib	2020-03-20	2.1.0 2.0.0 1.8.0 1.15.0 1.10.0
Tk	vis	2020-08-11	8.6.9 8.6.8 8.6.10
Tkinter	lang	2020-08-11	3.8.2 3.7.4 3.7.2

Pillow	vis	2020-06-24	6.2.1
PowerAI	data	2019-12-10	1.7.0.a0 1.6.1
PyTorch	devel	2020-09-29	1.6.0 1.3.1 1.1.0
PyTorch-Geometric	devel	2020-09-29	1.6.1
PyYAML	lib	2020-02-18	5.1.2 3.13
Python	lang	2020-07-30	3.7.4 3.7.2 3.6.6 3.6.4 2.7.16 2.7.15 2.7.14
PythonAnaconda	lang	2019-12-10	3.7

- especially available python modules on jupyterhub: check out package list-link on jupyterhub spawner page (https://taurus.hrsk.tu-dresden.de/jupyter/hub/home)
- possibility to create own kernel/environment for jupyterhub: see docs at https://doc.zih.tu-dresden.de/hpc-wiki/.../JupyterHub#Creating_and_using_your_own_environment

02 Hints for HPC - Urls for Jupyterhub

- url alchemy with jupyterhub: support students to start notebooks with the right configuration
- login at jupyterhub (https://taurus.hrsk.tu-dresden.de/jupyter/hub/home) on taurus before
- link examples
 - a) use git pull and open single file + jupyterlab with python (tensorflow example):

 https://taurus.hrsk.tu-dresden.de/jupyter/hub/user-redirect/
 git-pull?repo=https%3A%2F%2Fgitlab.hrz.tu-chemnitz.de%2Fclehm-tu-dresden.de%2Fai-for-teaching-r.git

 &urlpath=lab %2Ftree%2Fai-for-teaching-r.git/tensorflow-python/testing_tensorflow.ipynb/%2F&branch=master
 - b) use git pull + rstudio + resource request with GPU (spawn parameters) (keras example): https://taurus.hrsk.tu-dresden.de/jupyter/hub/user-redirect/
 git-pull?repo=https%3A%2F%2Fgitlab.hrz.tu-chemnitz.de%2Fclehm-tu-dresden.de

 %2Fai-for-teaching-r.git &urlpath=rstudio %2F&branch=master #/~(environment~'test~partition~'gpu2~gres~'gpu:1)
 remark; for RStudio choose environment 'test' as it is available only there

02 Hints for HPC - Urls for Jupyterhub

- these links work within TU Dresden data network
- see the docs at https://doc.zih.tu-dresden.de/hpc-wiki/.../JupyterHubForTeaching
- link generator for nbgittpuller: https://jupyterhub.github.io/nbgitpuller/link.html
 - (i) https://taurus.hrsk.tu-dresden.de/jupyter/ in field JupyterHub URL
 - (ii) especially for using gitlab from TU Chemnitz add .git to the repo address in the final link

Organisational Issues – Agenda

Introduction

Use Cases

Organisational Issues
HPC Project and Resources
Login and Project Management
Reservation

03 Organizational Issues

- preparation effort: prior knowledge, installation, configuration, maintenance
- HPC project and resources
- login management
- reservation of HPC resources

03 Agenda

Introduction

Use Cases

Use Case I – Simple Demonstrator
Use Case II – Advanced Interactivity
Use Case III – Interactivity on HPC
Hints for HPC

Organisational Issues

HPC Project and Resources

Login and Project Management Reservation

03 HPC Project and Resources

- apply for HPC project (ZIH login needed) at: https://hpcprojekte.zih.tu-dresden.de/
- resources example:
 - 20 students, 2 hours per week (weekly event), 16 weeks (approx. one semester)
 - every student should have 5 cores for a job
 - you would apply for a total of: 20 students $\times 5 \frac{\text{cores}}{\text{student}} \times 2 \frac{\text{hours}}{\text{week}} \times 16 \text{ weeks} = 3200 \text{ CPU hours}$
- up to 5000 CPU hours: no detailed project description is necessary (make clear that it is for teaching)
- think about your memory (RAM and storage) needs as well
- project home can be small: for storage of large data use workspaces (see the docs at https://doc.zih.tu-dresden.../WorkSpaces)

03 Agenda

Introduction

Use Cases

Use Case I – Simple Demonstrator
Use Case II – Advanced Interactivity
Use Case III – Interactivity on HPC
Hints for HPC

Organisational Issues

HPC Project and Resources

Login and Project Management

Reservation

03 Login and Project Management

- HPC access for teaching purposes: students join HPC project
- joining an HPC project requires personal ZIH login and project activation link
- use HPC project management (login only for project originator) at https://hpcprojekte.zih.tu-dresden.de/managers/
 - a) get activation link to join project
 - b) remove students from project
- further information for HPC project management: https://doc.zih.tu-dresden.de/hpc-wiki/.../ProjectManagement
- if not all students have ZIH login, please contact us at hpcsupport@zih.tu-dresden.de

03 Agenda

Introduction

Use Cases

Use Case I – Simple Demonstrator Use Case II – Advanced Interactivity Use Case III – Interactivity on HPC Hints for HPC

Organisational Issues

HPC Project and Resources Login and Project Management

Reservation

03 Reservation

- for immediate job processing during classroom sessions use reservations for your project (at latest 7-8 days beforehand via hpcsupport@zih.tu-dresden.de), repetitive reservations are possible
- more details on reservations: https://doc.zih.tu-dresden.de/.../Slurm#Reservations

Conclusions – Agenda

Introduction

Use Cases

Organisational Issues

04 Conclusions

overview on use cases

	use case I – simple	use case II – ad- vanced	use case III – HPC
hardware	VM (research cloud)	VM (enterprise cloud)	HPC machine
data	static	dynamic (git)	dynamic (git)
save changes	no	temporary	permanent
login management	no	yes	yes
access	anonymous	personalized	personalized

- Think carefully about your goals and needs, referring software, data and hardware.
- Scalability of an approach (login management, hardware): What if the number of students/users doubled or tripled?
- trade-off between powerful hardware for certain time slots vs. availability and flexibility of VMs

- tools ecosystems are changing dynamically, esp. with HPC systems it is hard to react immediately
- everything shown should act as inspiration for own ideas
- Contact us with your own ideas and wishes! We will check what is possible.

Thanks for your attention

Christoph Lehmann +49 351 - 463 42489 christoph.lehmann@tu-dresden.de

Dresden, Germany

