Professor Dr.-Ing. habil. Daniel Balzani
Table of contents
Open-Topic Professor, Institute Director
NameDaniel Balzani
Institute of Mechanics and Shell Structures
Institute of Mechanics and Shell Structures
Visitors:
TU Dresden, Fakultät Bauingenieurwesen August-Bebel-Straße 30
01219 Dresden
Deutschland
On the 1st of October 2017 Prof. Balzani accepted a call to the Ruhr-Universität Bochum, Chair of Continuum Mechanics.
Career
since 10/2017 | Professor (W3) of Continuum Mechanics, Institute for Computational Engineering, Ruhr-Universität Bochum |
10/2016 | Director of the Institute of Mechanics and Shell Structures and Full Professor of Mechanics |
10/2016- 09/2017 | Open-Topic Tenure Track Professor (W3, life appointment) of Mechanics, Institute of Mechanics and Shell Structures, Faculty of Civil Engineering, Technische Universität Dresden |
05/2014- 09/2016 | Open-Topic Tenure Track Professor (W3) of Mechanics, Institute of Mechanics and Shell Structures, Faculty of Civil Engineering, Technische Universität Dresden |
12/2012 | Habilitation and Venia Legendi in "Mechanics" Topic: "Simulation of Micro-Heterogeneous Materials based on Multiscale Approaches using Statistical Microstructure Descriptions", Reviewers: J. Schröder, P. Wriggers, R. Müller |
05/2011- 04/2014 | "Akademischer Rat auf Zeit" at the Institute of Mechanics, Faculty of Engineering, Department Civil Engineering, Universität Duisburg-Essen |
09/2010- 03/2011 | Visiting research associate in the group of Prof. M. Ortiz, Graduate Aerospace Laboratories, California Institute of Technology in Pasadena (USA) |
04/2009- 03/2010 | Substitute Professor (W2) for Mechanics with emphasis on material theory, Institute of Mechanics and Computational Mechanics (IBNM), Leibniz Universität Hannover |
01/2006- 04/2011 | Research assistant, Institute of Mechanics, Faculty of Engineering, Department Civil Engineering, Universität Duisburg-Essen |
04/2006 | Doctoral degree (Dr.-Ing.), Faculty of Civil Engineering and Geodesy, Technische Universität Darmstadt Topic: "Polyconvex Anisotropic Energies and Modeling of Damage Applied to Arterial Walls" Reviewers: J. Schröder, D. Gross, P. Neff |
2003-2005 | Fellow in the "Graduiertenkolleg Modellierung, Simulation und Optimierung von Ingenieuranwendungen" at the Technische Universität Darmstadt |
03/2003 | Engineering degree (Diploma), Institute of Mechanics, Faculty of Engineering, Department of Civil Engineering, Universität Duisburg-Essen, Topic: "Modelling of Transversely Isotropic Soft Tissues Based on Polyconvex Free Energy Functions" |
Prizes and Awards
05/2013 | Gottschalk-Diederich Baedeker Award "... for his habilitation thesis in appreciation of his personal achievements with respect to the scientific reputation of the Universität Duisburg-Essen and his exemplary function in science." |
01/2013 | Admittance to the "Junges Kolleg" of the North Rhine-Westphalian Academy of Sciences, Humanities and the Arts: "The members of the "Junges Kolleg" are thematically, financially and ideally supported. They obtain a yearly fellowship of 10.000 Euro. Prerequisite for the membership are a dissertation and further outstanding scientific achievements at a university or other research facility in North Rhine-Westphalia." |
10/2011 | Admittance to the "Global Young Faculty": "The Global Young Faculty enables about 50 selected young researchers at the universities and non-university research facilities in the Ruhr-area to work together in interdisciplinary groups. For this purpose the "Stiftung Mercator" provides 650.000 EUR for the workgroups and individual travel expenses of 5.000 EUR for each member." |
05/2010 | Heinz Maier-Leibnitz Award "... for outstanding research achievements and for supporting prospective research activities. The award (16.000 EUR) is granted by the German National Science Foundation DFG (Deutsche Forschungsgemeinschaft)." |
02/2009 | Richard Von Mises Price "... for his scientific achievements on the field "Polyconvex strain energy functions and their application in the area of composite structures and biomaterials", Association of Applied Mathematics and Mechanics GAMM (Gesellschaft für angewandte Mathematik und Mechanik)" |
04/2009 | German-American Frontiers of Engineering: Invitation and participation at the "12th German-American Frontiers of Engineering Symposium" of the Alexander von Humboldt Foundation, April 22-25th, Potsdam, 2009. "Every year 30 young researchers in Germany and the United States of America working in engineering research at universities and industry are invited in order to support bilateral cooperations." |
06/2005 | M.I.T. Young-Researcher Fellowship Award "... for exemplary research in computational mechanics", granted by the Massachusetts Institute of Technology (MIT) in Boston, USA. The award pays for traveling and accomodation expenses for attending the III M.I.T. Conference on Computational Solid and Fluid Mechanics. |
Publications
Journal Articles, Dissertation Thesis, Book Chapters, 2014-2016
Journal Articles, Dissertation Thesis, Book Chapters, until 2014
Conference Proceedings, 2014-2016
Conference Proceedings, until 2014
Journal Articles, Dissertation Thesis, Book Chapters
2014-2016
[1] |
D. Balzani, L. Scheunemann, D. Brands, and J. Schröder. Construction of two- and three-dimensional statistically similar RVEs for coupled micro-macro simulations. Computational Mechanics, 54(5):1269–1284, 2014. |
[2] |
T. Schmidt, D. Balzani, and G.A. Holzapfel. Statistical approach for a micromechanically based continuum description of damage evolution in soft collagenous tissues. Computer Methods in Applied Mechanics and Engineering, 278:41–61, 2014. |
[3] |
J. Schröder, D. Balzani, and C. Nisters. Zur Modellierung dünner Schalen mit hyperelastisch isotropem und anisotropem Materialverhalten. In 2. Essener Membranbausymposium, September 26, Essen. Shaker-Verlag, 2014. |
[4] |
M. Tanaka, D. Balzani, and J. Schröder. Robust numerical schemes for an efficient implementation of tangent matrices: Application to hyperelasticity, inelastic standard dissipative materials and thermo-mechanics at finite strains. In K. Weinberg, editor, Proceedings of the IUTAM Conference |
[5] |
M. Tanaka, M. Fujikawa, D. Balzani, and J. Schröder. Robust numerical calculation of tangent moduli at finite strains based on complex-step derivative approximation and its application to localization analysis. Computer Methods in Applied Mechanics and Engineering, 269:454–470, 2014. |
[6] |
D. Balzani, D. Brands, and J. Schröder. Construction of statistically similar representative volume elements. In J. Schr ̈oder and K. Hackl, editors, Plasticity and Beyond, CISM Lecture Notes 550, pages 355–400. Springer, 2013. |
[7] |
D. Kardas, U. Nackenhorst, and D. Balzani. Computational model for the cell-mechanical response of the osteocyte-cytoskeleton based on self-stabilizing tensegrity structures. Biomechanics and Modeling in Mechanobiology, 12:167–183, 2013. |
[8] |
B. Kiefer, C. Niederhaus, D. Balzani, C.A. Bobisch, E. Gerharz, H. Kruggel-Emden, A. Schwarz, P. Thielbörger, and G.N.F. Weiss. Anreizsysteme - Eine Möglichkeit zur Verbesserung der universitären Lehre. Journal Hochschuldidaktik, 1-2, 2013. |
[9] |
D. Balzani, D. Böse, D. Brands, R. Erbel, A. Klawonn, O. Rheinbach, and J. Schröder. Parallel simulation of patient-specific atherosclerotic arteries for the enhancement of intravascular ultrasound diagnostics. Engineering Computations, 29(8), 2012. |
[10] |
D. Balzani, S. Brinkhues, and G.A. Holzapfel. Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. Computer Methods in Applied Mechanics and Engineering, 213–216:139–151, 2012. |
[11] |
D. Balzani and M. Ortiz. Relaxed incremental variational formulation for damage at large strains with application to fiber-reinforced materials and materials with truss-like microstructures. Computer Methods in Applied Mechanics and Engineering, 92:551–570, 2012. |
[12] |
J. Schröder, D. Balzani, and D. Brands. Approximation of random microstructures by periodic statistically similar representative volume elements based on lineal-path functions. Archive of Applied Mechanics, 81:975–997, 2011. |
[13] |
J. Schröder, D. Balzani, N. Stranghöner, J. Uhlemann, F. Gruttmann, and K. Saxe. Membranstrukturen mit nicht-linearem anisotropem Materialverhalten - Aspekte der Materialprüfung und der numerischen Simulation. Der Bauingenieur, 86:381–389, 2011. |
[14] |
J. Schröder, P. Wriggers, and D. Balzani. A new mixed finite element based on different approximations of the minors of deformation tensors. Computer Methods in Applied Mechanics and Engineering, 200:3583–3600, 2011. |
[15] |
D. Balzani, D. Brands, A. Klawonn, O. Rheinbach, and J. Schröder. On the mechanical modeling of arterial walls using parallel solution strategies. Archive of Applied Mechanics, 80:479–488, 2010. |
[16] |
D. Balzani, D. Brands, J. Schröder, and C. Carstensen. Sensitivity analysis of statistical measures for the reconstruction of microstructures based on the minimization of generalized least-square functionals. Technische Mechanik, 30:297–315, 2010. |
[17] |
D. Balzani, J. Schröder, and D. Brands. FE2-simulation of micro-heterogeneous steels based on statistically similar RVEs. In K. Hackl, editor, Proceedings of the IUTAM Conference on Variational Concepts with Applications to the Mechanics of Materials, volume 21, pages 15–28, 2010. |
[18] |
D. Balzani, J. Schröder, and P. Neff. Applications of anisotropic polyconvex energies: thin shells and biomechanics of arterial walls. In J. Schröder and P. Neff, editors, Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, CISM Lecture Notes 516, pages 131–176. Springer, 2010. |
[19] |
V. Ebbing, D. Balzani, J. Schröder, P. Neff, and F. Gruttmann. Construction of anisotropic poly-convex energies and applications to thin shells. Computational Materials Science, 46:639–641, 2009. |
[20] |
D. Balzani, F. Gruttmann, and J. Schröder. Analysis of thin shells using anisotropic polyconvex energy densities. Computer Methods in Applied Mechanics and Engineering, 197:1015–1032, 2008. |
[21] |
D. Balzani. Simulation of deformation, damage and residual stresses in arterial walls. Advanced Engineering Materials, 10(4):315–321, 2008. |
[22] |
D. Balzani, J. Schröder, and D. Gross. Numerical simulation of residual stresses in arterial walls. Computational Materials Science, 39:117–123, 2007. |
[23] |
D. Balzani, P. Neff, J. Schröder, and G.A. Holzapfel. A polyconvex framework for soft biological tissues. adjustment to experimental data. International Journal of Solids and Structures, 43(20):6052–6070, 2006. |
[24] |
D. Balzani. Polyconvex Anisotropic Energies and Modeling of Damage Applied to Arterial Walls. PhD thesis, Technische Universität Darmstadt, 2006. Report No. 2 (2006) of the Institut für Mechanik, Universität Duisburg-Essen. |
[25] |
D. Balzani, J. Schröder, and D. Gross. Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries. Acta Biomaterialia, 2(6):609–618, 2006. |
[26] |
J. Schröder, D. Balzani, and D. Gross. Aspects of modeling and computer simulation of soft tissues: Applications to arterial walls. Materialwissenschaft und Werkstofftechnik, 36(12):795–801, 2005. |
[27] | J. Schröder, P. Neff, and D. Balzani. A variational approach for materially stable anisotropic hyperelasticity. International Journal of Solids and Structures, 42(15):4352–4371, 2005 |
Conference Proceedings
2014-2016
[1] |
D. Balzani, L. Scheunemann, D. Brands, and J. Schröder. Construction of 3D statistically similar RVEs for dual-phase steel microstructures. In XII International Conference on Computational Plasticity. Fundamentals and Applications, September 3-5, Barcelona, Spain, 2013. |
[2] |
D. Balzani, T. Schmidt, A.J. Schriefl, and G.A. Holzapfel. Constitutive modeling of damage mechanisms in arterial walls and related experimental studies. XLI APM Proceedings (Advanced Problems in Mechanics, St. Petersburg, Repino, July 1-6), 2013. |
[3] |
D. Balzani, J. Schröder, D. Brands, and L. Scheunemann. Simulation of dual phase steels based on three-dimensional statistically similar RVEs. In Proceedings of the 19th International Symposium on Plasticity and its Current Applications, Nassau, Bahamas, January 3-8, 2013. |
[4] |
L. Scheunemann, D. Balzani, D. Brands, and J. Schröder. Designing statistically similar rves for 3d dual phase steel microstructures. Proceedings of Applied Mathematics and Mechanics, 1:271–272, 2013. |
[5] |
L. Scheunemann, D. Balzani, D. Brands, J. Schröder, and D. Raabe. Statistically similar RVE construction based on 3D dual-phase steel microstructures. In SEMC - Fifth International Conference on Structural Engineering, Mechanics and Computation, September 2-4, Cape Town, South Africa, 2013. |
[6] |
T. Schmidt, D. Balzani, and G. Holzapfel. Comparative study of the influence of statistically distributed microscopic quantities on the damage in collagenous tissues. Proceedings of Applied Mathematics and Mechanics, 1:47–48, 2013. |
[7] |
T. Schmidt, D. Balzani, A.J. Schriefl, and G.A. Holzapfel. Material modeling of the damage behavior of arterial tissues. In Proceedings of the BMT - 3-Länder-Tagung D-A-CH, September 19-21, Graz, Austria, 2013. |
[8] |
T. Schmidt, D. Balzani, A.J. Schriefl, and G.A. Holzapfel. Modeling and experimental investigations of the stress-softening behavior of soft collagenous tissues. In XII International Conference on Computational Plasticity. Fundamentals and Applications, September 3-5, Barcelona, Spain, 2013. |
[9] |
A.J. Schriefl, T. Schmidt, D. Balzani, and G.A. Holzapfel. Determination of mechanical and microstructural tissue quantities for modeling damage in arterial tissues. In Proceedings of the BMT - 3-Länder-Tagung D-A-CH, September 19-21, Graz, Austria, 2013. |
[10] |
M. Tanaka, M. Fujikawa, D. Balzani, and J. Schröder. Complex-step derivative approximation schemes for the robust calculation of numerical constitutive tangent moduli. Proceedings of Applied Mathematics and Mechanics, 1:167–168, 2013. |
[11] |
D. Balzani and M. Ortiz. Relaxed incremental variational formulation for damage in fiber-reinforced materials. Proceedings of Applied Mathematics and Mechanics, 12(1):157–158, 2012. |
[12] |
D. Balzani, J. Schröder, and D. Brands. Construction of statistically similar representative volume elements for dual phase steels. In Proceedings of the 18th International Symposium on Plasticity and its Current Applications, San Juan, Puerto Rico, January 3-8, 2012. |
[13] |
D. Balzani, J. Schröder, and P. Wrigger. A new mixed finite element formulation based on different approximations of the minors of deformation tensors. In Report of the Workshop 1207 at the “Mathematisches Forschungsinstitut Oberwolfach” entitled “Advanced Computational Engineering”, organized by O. Allix, C. Carstensen, J. Schröder, P. Wriggers, 2012. |
[14] | L. Scheunemann, D. Balzani, D. Brands, and J. Schröder. Construction of statistically similar RVEs for 3D microstructures. Proceedings of Applied Mathematics and Mechanics, 12(1):429–420, 2012 |
[15] |
T. Schmidt, D. Balzani, T. Ricken, and D. Werner. A biphasic approach for the simulation of growth processes in soft biological tissues incorporating damage-induced stress softening. Proceedings of Applied Mathematics and Mechanics, 12(1):91–92, 2012. |
[16] |
J. Schröder, D. Balzani, D. Brands, and L. Scheunemann. On the incorporation of microstructural information of two-phase steels in FE-simulations of sheet metal forming. In Forming Technology Forum, June 5-6, IVP, ETH Zurich, Switzerland, 2012. |
[17] |
J. Schröder, B. Eidel, D. Brands, and D. Balzani. Nano to micro - perspectives for homogenization in crystalline solids. Proceedings of Applied Mathematics and Mechanics, 12(1):19–22, 2012. J. Schröder, B. Eidel, D. Brands, and D. Balzani. Nano to micro - perspectives for homogenization in crystalline solids. Proceedings of Applied Mathematics and Mechanics, 12(1):19–22, 2012. |
[18] |
D. Balzani, G.A. Holzapfel, and S. Brinkhues. Modeling of damage in soft biological tissues and application to arterial walls. In E. Onate and D.R.J. Owen, editors, XI International Conference on Computational Plasticity. Fundamentals and Applications, 2011. |
[19] |
D. Balzani, J. Schröder, and D. Brands. Simulation of two-phase steels based on statistically similar representative volume elements. Proceedings of Applied Mathematics and Mechanics, 11:939–242, 2011. |
[20] |
D. Balzani, J. Schröder, and D. Brands. Statistically similar rves for the simulation of two-phase steels based on lineal-path functions. In A.G. Malan, P. Nithiarasu, and B.D. Reddy, editors, Contribution to the Second African Conference on Computational Mechanics AfriCOMP11, January 5 - 8, 2011, Cape Town, South Africa, 2011. |
[21] |
D. Brands, D. Balzani, J. Schröder, and D. Raabe. Simulation of DP-steels based on statistically similar representative volume elements and 3d EBSD data. In E. Onate and D.R.J. Owen, editors, XI International Conference on Computational Plasticity. Fundamentals and Applications, 2011. |
[22] |
D. Brands, J. Schröder, D. Balzani, O. Dmitrieva, and D. Raabe. On the reconstruction and computation of dual-phase steel microstructures based on 3d-EBSD data. Proceedings of Applied Mathematics and Mechanics, 11:503–504, 2011. |
[23] |
D. Brands, J. Schröder, and D. Balzani. On the incorporation of microstructural information in dual phase steel simulations. In Proceedings of the 10th International Conference on Technology of Plasticity, September 25-30, 2011. |
[24] |
D. Brands, J. Schröder, and D. Balzani. Statistically similar reconstruction of dual-phase steel microstructures for engineering applications. In Proceedings of the 19th International Conference on Computer Methods in Mechanics (CMM), 2011. |
[25] |
J. Schröder, D. Balzani, and D. Brands. Efficient FE2 -simulations using statistically similar RVEs. In Proceedings of the 17th International Symposium on Plasticity and its Current Applications, Puerto Vallarta, Mexico, January 3-8, 2011. |
[26] |
D. Balzani, D. Brands, and J. Schröder. Construction of statistically similar representative volume elements for FE2 -simulations based on the lineal-path function. In Proceedings of the 4th European Conference on Computational Mechanics (ECCM), 2010. |
[27] |
D. Balzani, J. Schröder, and D. Brands. Statistically similar representative volume elements based on lineal-path functions. In Report of the Workshop 1011 at the “Mathematisches Forschungsinstitut Oberwolfach” entitled “Microstructures in Solids: From Quantum Models to Continua”, organized |
[28] |
D. Brands, D. Balzani, and J. Schröder. On the construction of statistically similar representative volume elements based on the lineal-path function. Proceedings of Applied Mathematics and Mechanics, 10:399–400, 2010. |
[29] |
J. Schröder, D. Balzani, and D. Brands. A FE2-homogenization technique for two-phase steels based on statistically similar representative volume elements. In Proceedings of the 16th International Symposium on Plasticity and its Current Applications, St. Kitts, USA, January 3-8. Neat press, 2010. |
[30] |
D. Balzani, S. Brinkhues, and G.A. Holzapfel. Comparative study of polyconvex strain-energy functions used for the modeling of damage hysteresis in overstretched arterial walls. In Proceedings of the 7th EUROMECH Solid Mechanics Conference, 2009. |
[31] |
D. Balzani, J. Schröder, D. Brands, and C. Carstensen. FE2-simulations in elasto-plasticity using statistically similar representative volume elements. Proceedings of Applied Mathematics and Mechanics, 9:39–42, 2009. |
[32] |
D. Balzani, J. Schröder, and D. Brands. Modeling of two-phase steels based on statistically similar microstructures. In M. Kuczma, K. Wilmanski, and W. Szajna, editors, Proceedings of the 18th International Conference on Computer Methods in Mechanics (CMM), pages 115–116. The University of Zielona Gora Press, 2009. ISGN: 978-83-7481-245-0. |
[33] |
D. Balzani, J. Schröder, and D. Brands. Statistically similar RVEs for FE2-simulations. In Report of the Workshop 29 at the “Mathematisches Forschungsinstitut Oberwolfach” entitled “Computational Multiscale Methods”, organized by C. Carstensen and B. Engquist, pages 1604–1606, 2009. |
[34] |
D. Balzani and J. Schröder. Reconstruction of statistically similar microstructures for FE2 -simulations in elasto-plasticity. In Proceedings of the International Symposium of Plasticity. Neat press, 2009. ISBN: 0-9659463-9-8. |
[35] |
S. Brinkhues, D. Balzani, and G.A. Holzapfel. Simulation of damage hysteresis in biological soft tissues. Proceedings of Applied Mathematics and Mechanics, 9:155–156, 2009. |
[36] |
D. Balzani and J. Schröder. Some basic ideas for the reconstruction of statistically similar microstructures for multiscale simulations. Proceedings of Applied Mathematics and Mechanics, 8:10533–10534, 2008. |
[37] |
J. Schröder and D. Balzani. Modeling of finite elasto-plasticity in DP-steels by discrete multiscale simulations. In Proceedings of the 3rd Greek-Serbian Symposium on Recent Advances in Mechanics, 2008. |
[38] | J. Schröder, D. Balzani, H. Richter, H.P. Schmitz, and L. Kessler. Simulation of microheterogeneous steels based on a discrete multiscale approach. In Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, pages 379–383, 2008 |
[39] |
D. Balzani, D. Brands, A. Klawonn, O. Rheinbach, and J. Schröder. Large-scale simulation of arterial walls: Mechanical modeling. Proceedings of Applied Mathematics and Mechanics, 7:4020017–4020018, 2007. |
[40] |
D. Balzani, A. Klawonn, O. Rheinbach, J. Schröder, and D. Brands. Simulation of arterial walls using feti domain decomposition methods. In Proceedings of the ECCOMAS conference Modelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineering, pages 104–105, 2007. |
[41] |
D. Balzani, J. Schröder, D. Brands, A. Klawonn, and O. Rheinbach. Computer simulation of damage in overstretched atherosclerotic arteries. In Proc. of the III International Congress on Computational Bioengineering, pages 209–214, 2007. |
[42] |
D. Balzani, J. Schröder, and F. Gruttmann. Polyconvex energy densities with applications to anisotropic thin shells. Proceedings of Applied Mathematics and Mechanics, 7:4060027–4060028, 2007. |
[43] |
D. Brands, J. Schröder, D. Balzani, A. Klawonn, and O. Rheinbach. Modeling and computational aspects of arterial wall. In E. Onate, D.R.J. Owen, and B. Suarez, editors, Computational Plasticity IX - Fundamentals and Applications, pages 261–264, 2007. |
[44] |
O. Rheinbach, A. Klawonn, J. Schröder, D. Balzani, and D. Brands. Simulation of arterial walls: An algebraic interface to iterative substructuring. In Proceedings of the III International Congress on Computational Bioengineering, pages 51–56, 2007. |
[45] |
J. Schröder, A. Klawonn, D. Balzani, O. Rheinbach, and D. Brands. On mechanical modeling of arterial walls and parallel solution strategies. In W. Ehlers and N. Karajan, editors, Proceedings of the 2nd GAMM Seminar on Continuum Biomechanics, pages 97–107, 2007. |
[46] |
D. Balzani, J. Schröder, and D. Gross. Computer simulation of anisotropic damage and residual stresses in atherosclerotic arteries. In Proceedings of the III European Conference on Computational Mechanics, 2006. |
[47] |
D. Balzani, J. Schröder, and D. Gross. Modeling of residual stresses and damage in arterial walls. Proceedings of Applied Mathematics and Mechanics, 6:127–128, 2006. |
[48] |
J. Schröder and D. Balzani. Simplified multiphase modeling of steel - theoretical overview. Technical Report Report No. 24, Institut für Mechanik, Fakultät für Ingenieurwissenschaften, Universität Duisburg-Essen, 2006. |
[49] |
D. Balzani, J. Schröder, and D. Gross. Modeling of anisotropic damage in arterial walls. Proceedings of Applied Mathematics and Mechanics, 5:287–288, 2005. |
[50] | D. Balzani, J. Schröder, and D. Gross. Modeling of anisotropic hyperelasticity and discontinuous damage in arterial walls based on polyconvex stored energy functions. In K.J. Bathe, editor, Proceedings Third MIT Conference on Computational Fluid and Solid Mechanics, pages 55–59, 2005 |
[51] |
D. Balzani, J. Schröder, and D. Gross. Modeling of hyperelasticity and anisotropic damage in arterial walls. In Contribution to the Biomechanica 2005, 2005. |
[52] |
D. Balzani, J. Schröder, D. Gross, and P. Neff. Modeling of anisotropic damage in arterial walls based on polyconvex stored energy functions. In D.R.J. Owen, E. Onate, and B. Suarez, editors, Computational Plasticity VIII, Fundamentals and Applications, Part 2, pages 802–805, 2005. |
[53] |
J. Schröder, D. Balzani, and J. Bluhm. Simplified multiphase modeling of steel - a feasibility study. Technical Report Report No. 23, Institut für Mechanik, Fakultät für Ingenieurwissenschaften, Universität Duisburg-Essen, 2005. |
[54] |
D. Balzani, J. Schröder, D. Gross, and P. Neff. Modellierung von Hyperelastizität und anisotroper diskontinuierlicher Schädigung in biologischen Geweben. In Contribution to the Symposium 2004 of the Austrian Society of Biomedical Engineering: Biomedizinische Technik, 2004. |
[55] |
D. Balzani, J. Schröder, and D. Gross. A simple model for anisotropic damage with applications to soft tissues. Proceedings of Applied Mathematics and Mechanics, 4:236–237, 2004. |
[56] |
D. Balzani. Modelling of transversely isotropic soft tissues based on polyconvex free energy functions, 2003. Preprint No. 8, Diploma thesis. |