Mar 23, 2018
Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes
Researches from the Chair for Molecular Functional Materials of Prof. Xinliang Feng, and other research groups in Germany, China and Italy have recently published a paper in Nature Communications on 19th March 2018, titled “Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes”. This work reported a facile and scalable approach for the synthesis of acetylenic carbon-rich nanofibers (i.e. polytriethynylbenzene, PTEB) via Cu-surface mediated Glaser polycondensation. The as-prepared PTEB nanofibers on conductive substrates can be directly utilized as metal-free photocathodes in photoelectrochemical cells (PECs) for hydrogen production, and the photocurrent can be increased through the introduction of thienothiophene segment into the PTEB nanofibers. This work highlights the promise of utilizing acetylenic carbon-rich materials as efficient and sustainable photocathodes for hydrogen production.
Reference:
“Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes”. Tao Zhang, Yang Hou, Volodymyr Dzhagan, Zhongquan Liao, Guoliang Chai, Markus Löffler, Davide Olianas, Alberto Milani, Shunqi Xu, Matteo Tommasini, Dietrich R.T. Zahn, Zhikun Zheng, Ehrenfried Zschech, Rainer Jordan & Xinliang Feng. Nat. Commun., 2018, 9, 1140. Doi: 10.1038/s41467-018-03444-0
This work was financially supported by the ERC Grant 2DMATER, ESF Young Researcher Group ‘GRAPHD,’ and the EC under the Graphene Flagship (number CNECTICT-604391). The German Excellence Initiative via the Cluster of Excellence EXC1056 “Center for Advancing Electronics Dresden” (cfaed) is gratefully acknowledged.