Research
Table of contents
Book
- R. Chill and E. Fašangová, “Gradient Systems,” Lecture Notes of the 13th International Internet Seminar, Matfyzpress, Prague, 2010.
Published papers
- T. Bárta and E. Fašangová, Convergence to equilibrium for solutions of an abstract wave equation with general damping function, J. Differential Equations no. 260 (3) (2016), 2259-2274.
- J. Esterle and E. Fašangová, A Banach algebra approach to the weak spectral mapping theorem for locally compact abelian groups, In: Operator semigroups meet complex analysis, harmonic analysis and mathematical physics, Oper. Theory Adv. Appl. 250, Birkhäuser/Springer, Cham, 2015, 155-170.
- S. Boussandel, R. Chill and E. Fašangová, Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow, Czechoslovak Math. J. 62 (2) (2012), 335-346.
- T. Bárta, R. Chill and E. Fašangová, Every ordinary differential equation with a strict Lyapunov function is a gradient system, Monatsh. Math. no. 166 (1) (2012), 57-72.
- W. Desch, E. Fašangová, J. Milota and G. Propst, Spectrum of a viscoelastic boundary damping problem, Journal of Integral Equations and Applications no. 23 (4) (2011), 521-539.
- W. Desch, E. Fašangová, J. Milota and G. Propst, Stabilization through viscoelastic boundary damping, Semigroup Forum no. 80 (2010), 405-415.
- E. Fašangová and P. Miana, Hilbert, Dirichlet and Fejer families of operators arising from C0-groups and cosine functions, Semigroup Forum no. 80 (2010), 33-60.
- R. Chill, E. Fašangová and R. Schätzle, Willmore blow-ups are never compact, Duke Math. J. no. 147 (2009), 345-376.
- R. Chill, E. Fašangová and J. Prüss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Mathematische Nachrichten no. 279 (2006), 1448-1462.
- R. Chill, E. Fašangová, G. Metafune and D. Pallara, Sector of analyticity of nonsymmetric submarkovian semigroups generated by elliptic operators, C. R. Acad. Sci. Paris. no. 342 (2006), 909-914.
- W. Desch and E. Fašangová, Stress obtained by interpolation methods for a boundary value problem in linear viscoelasticity, Journal of Differential Equations no. 217 (2005), 282-304.
- R. Chill, E. Fašangová, G. Metafune and D. Pallara, The sector of analyticity of the Ornstein-Uhlenbeck semigroup on Lp spaces with respect to invariant measure, Journal of the London Mathematical Society no. 71 (2005), 703-722.
- E. Fašangová and P. J. Miana, Spectral mapping inclusions for the Phillips functional calculus in Banach spaces and algebras, Studia Mathematica no. 167 (2005), 219-226.
- R. Chill and E. Fašangová, Convergence to steady states of solutions of semilinear evolutionary integral equations, Calculus of Variations and Partial Differential Equations no. 22 (2005), 321-342.
- W. Desch and E. Fašangová, Stress boundary value problem in linear viscoelasticity, Rendiconti dell'Istituto di Matematica dell'Universita di Trieste no. 35 (2003), 69-80.
- A. Bátkai and E. Fašangová, The spectral mapping theorem for Davies' functional calculus, Rev. Roumaine Math. Pures Appl. no. 48 (2003), 365-372.
- A. Bátkai, E. Fašangová and R. Shvydkoy, Hyperbolicity of delay equations via Fourier multipliers, Acta. Sci. Math. Szeged no. 69 (2003), 131-145.
- E. Fašangová, Spectral mapping theorem for the functional calculus of an operator having BIP, Ulmer Seminare Heft 8 (2003), 184-189.
- E. Fašangová, Spectral mapping theorems and spectral space - independence, In: Evolution Equations: Applications to physics, Industry, Life Sciences and Economics, Progress in Nonlinear Diff. Eq. Appl. 55, M. Ianelli, G. Lumer Eds., Birkhäuser, Basel, 2003, 157-168.
- W. Desch, E. Fašangová and J. Milota, Unbounded observers and Riccati operators in nonreflexive spaces, International Series of Numerical Mathematics 143 (2002), 121-136 (Proceedings of Conference on Control and Estimation of Distributed Parameter Systems 2001).
- W. Desch, E. Fašangová, J. Milota and W. Schappacher, Riccati operators in non-reflexive spaces, Differential and Integral Equations no. 15 (2002), 1493-1510.
- R. Chill and E. Fašangová, Equality of two spectra arising in harmonic analysis and semigroup theory, Proc. Amer. Math. Soc. no. 130 (2002), 675-681.
- W. Desch, E. Fašangová, J. Milota and W. Schappacher, Infinite horizon Riccati operators in nonreflexive spaces, In: Evolution Equations and Their Applications in Physical and Life Sciences, Lecture Notes in Pure and Applied Mathematics Series 215, Eds.: G. Lumer, L. Weis, Marcel Dekker, 2001, 247-254.
- E. Fašangová and J. Prüss, Asymptotic behaviour of a viscoelastic beam model, Archiv der Mathematik no. 77 (2001), 488-497.
- E. Fašangová, A Banach algebra approach to the weak spectral mapping theorem for C0-groups, Ulmer Seminare Heft 5 (2000), 174-181.
- E. Fašangová and J. Prüss, Evolution equations with dissipation of memory type, Progress in Nonlinear Diff. Eq. Appl. 35, Birkhäuser, Basel, 1999, 213-250.
- E. Fašangová and E. Feireisl, The long-time behaviour of solutions to parabolic problems on unbounded intervals: the influence of boundary conditions, Proc. Royal Soc. Edinburgh no. 129A (1999), 319-329.
- E. Fašangová, Asymptotic analysis for a nonlinear parabolic equation on R, Comm. Math. Univ. Carolinae no. 39 (1998), 525-544.
- E. Fašangová, Attractor for a beam equation with weak damping, Applicable Analysis no. 59 (1996), 1-13.