Seminar Geometrie / Graduate Lectures
Im Rahmen des Seminars Geometrie finden Vorträge von Gästen des Instituts, Graduate Lectures der Fakultät für Mathematik zu aktuellen Themen sowie Vorträge der Doktorand*innen und Verteidigungen von Abschlussarbeiten der Studierenden statt. Anstehende Termine werden über die Mailing-Liste des Seminars bekanntgegeben.
Alle Interessent*innen sind herzlich eingeladen.
Sofern nicht anders angegeben wird unser Seminar um 13:30 im WIL C/103 abgehalten.
26.11.2024 (Di) WIL C/103 13:30 |
Giulio Zucal (MPI-CBG Dresden) |
19.11.2024 (Di) WIL C/103 13:30 |
Daniel Tolosa (MPI-CBG Dresden) Loop Spaces |
12.11.2024 (Di) WIL C/103 13:30 |
Dmitrii Pavlov (TU Dresden) Santaló geometry of convex polytopes Abstract: The Santaló point of a convex polytope is the interior point which leads to a polar dual of minimal volume. This minimization problem is relevant in interior point methods for convex optimization, where the logarithm of the dual volume is known as the universal barrier function. When translating the facet hyperplanes, the Santaló point traces out a semi-algebraic set. In my talk I will describe this geometry and dive into connections with statistics, optimization and physics. This is joint work with Simon Telen. |
05.11.2024 (Di) WIL C/103 13:30 |
Henrik Kreidler (Wuppertal)
Geometric Representation of Structured Extensions in Ergodic Theory |
29.10.2024 (Di) Ort: MPI-CBG 14:00 |
Ulrike Tillmann |
22.10.2024 (Di) WIL C 104 13:30 |
Andreas Thom (TU Dresden) Abstract: Alexander Leibman introduced a notion of discrete derivative for maps between groups. This leads to a notion of polynomial, where a polynomial of degree $n$ is defined to be a map such that all discrete derivatives have degree $n-1$. Maps of degree zero are defined to be constant. It turns out that every polynomial map of degree $1$ is essentially a homomorphism. We study polynomial maps of higher degree and obtain partial results. One of our results says that any polynomial map defined on a perfect group is essentially a homomorphism. This nicely complements results of Leibman which apply mostly to nilpotent groups. (This is joint work with Asgar Jamneshan and Jakob Schneider.) |
15.10.2024 (Di) |
Georgy Scholten (MPI-CBG Dresden) Abstract: In this talk, we will look at the univariate moment problem of piecewise-constant density functions on the interval [0,1] and its consequences for an inference problem in population genetics. We show that, up to closure, any collection of n moments is achieved by a step function with at most n−1 breakpoints and that this bound is tight. We use this to show that any point in the nth coalescence manifold in population genetics can be attained by a piecewise constant population history with at most n−2 changes. Both the moment cones and the coalescence manifold are projected spectrahedra and we describe the problem of finding a nearest point on them as a semidefinite program. |
Für weitere Vorträge der Fakultät siehe auch Veranstaltungskalender Mathematik.
Eine Übersicht über Vorträge vergangener Semester ist im Archiv zu finden.