Hanne Hardering
I am a postdoc at the institute of numerical mathematics at the TU Dresden.
My scientific interests lie at the interface of numerics, partial differential equations and differential geometry, in particular in the area of finite element methods on surfaces and with values on Riemannian manifolds.
Contact
- Email: hanne.hardering - at - tu-dresden.de
- Office: Z21, 248
- Phone: (0351) 463 32002
Equal Opportunities
I am currently the Equal Opportunities Officer for the Faculty of Mathematics. Please email me at if you have a concern in this regard. You can also find general information on the relevant Faculty and Department pages.
Research Unit 3013
Within the DFG research unit 3013 Vector-and Tensor-Valued Surface PDEs I am a principal investigator of a subproject on Symmetry, Length, and Tangential Constraints.
Publications
H. Hardering and S. Praetorius. A Parametric Finite-Element Discretization of the Surface Stokes Equations. arXiv:2309.00931, 2023.
H. Hardering and S. Praetorius. Tangential errors of tensor surface finite elements. IMA Journal of Numerical Analysis, 43(3), May 2023, pages 1543–1585, [doi] [arXiv]
H. Hardering and B. Wirth. Quartic $L^p$-convergence of cubic Riemannian splines. IMA Journal of Numerical Analysis, 42(4):3360–3385, 2022, [doi] [arXiv]
H. Hardering and O. Sander: Geometric Finite Elements, in: Holler, Grohs, Weinmann (Eds.) Handbook of Variational Methods for Nonlinear Geometric Data, 2020.
P. Grohs, H. Hardering, O. Sander, M, Sprecher. Projection-Based Finite Elements for Nonlinear Function Spaces. SIAM J. Numer. Anal. (2019), 57(1), 404-428; Link
B. Brehm and H. Hardering. Sparips. arXiv:1807.09982, 2018.
H. Hardering. L2-Discretization Error Bounds for Maps into Riemannian Manifolds. Numerische Mathematik (2018), 139(2), 381-410; Link
H. Hardering. Numerical analysis for maps into a Riemannian manifold. In Oberwolfach Report No.20, 2018.
P. Grohs, H. Hardering, O. Sander. Optimal a priori discretization error bounds for geodesic finite elements. Found. Comput. Math. (2015), 15(6), pp. 1357-1411; Link
H. Hardering. Numerical approximation of capillary surfaces in a negative gravitational field. IFB 15 (2013), Nr. 3, pp. 263-280; Link
H. Hardering. The Aubin–Nitsche trick for semilinear problems. arXiv:1707.00963,
2017.
Degrees and Theses
- Dr. rer. nat.,
- Freie Universität Berlin, 2015
- Dissertation: "Intrinsic Discretization Error Bounds for Geodesic Finite Elements"
- Advisors: Prof. Dr. Ralf Kornhuber und Prof. Dr. Klaus Ecker
- Dipl.-Math.
- Freie Universität Berlin, 2010
- Diploma thesis: "Analysis and Numerical Approximation of Capillary Surfaces"
- Advisor: Prof. Dr. Ralf Kornhuber
-------------------------------------------------------------------------------------------
[Petit] J.P. Petit. Die Abenteuer des Anselm Wüßtegern: Das Geometrikon. Vieweg+Teubner Verlag, 1995.