Nico Strasdat
Research Associate
NameMr Nico Strasdat M.Sc.
Send encrypted mail via the SecureMail portal (for TUD external users only).
Visitor Address:
Willersbau, Room C 39 Zellescher Weg 12-14
01069 Dresden
Teaching
You can find information about my teaching activities here.
Scientific Interests
- Methods for machine learning, in particular Support Vector Machines and Deep Learning
- Application of convex optimization and duality
- Newton-type methods for the solution of optimization problems
- Integer-linear programming
- Treatment of application-related optimization problems
- Effective and efficient implementation of algorithms
Short CV
- Master of Science (Mathematik) at Technische Universität Dresden (10/2012 to 09/2014)
- Bachelor of Science (Mathematik) at Technische Universität Dresden (10/2009 to 08/2012)
Publications
- Martinovic, J., Strasdat, N., de Carvalho, J. V., & Furini, F. (2022). A Combinatorial Flow-based Formulation for Temporal Bin Packing Problems. European Journal of Operational Research (Optimization Online)
- Martinovic, J., & Strasdat, N. (2022). Worst-Case Analysis of Heuristic Approaches for the Temporal Bin Packing Problem with Fire-Ups. Preprint MATH-NM-03-2022, Technische Universität Dresden (Optimization Online)
- Korbacher, L., Irnich, S., Martinovic, J., & Strasdat, N. (2022). Solving the Skiving Stock Problem by a Combination of Stabilized Column Generation and the Reflect Arc-Flow Model. Technical Report LM-2022-02, Chair of Logistics Management, Johannes Gutenberg University, Mainz
- Martinovic, J., & Strasdat, N. (2022). Theoretical Insights and a New Class of Valid Inequalities for the Temporal Bin Packing Problem with Fire-Ups. Preprint MATH-NM-01-2022, Technische Universität Dresden (Optimization Online)
-
Martinovic, J., & Strasdat, N. (2022). A Heuristic-Based Reduction for the Temporal Bin Packing Problem with Fire-Ups. In International Conference on Operations Research (pp. 127-133). Springer, Cham.
-
Martinovic, J., Strasdat, N., Valério de Carvalho, J., & Furini, F. (2021). Variable and constraint reduction techniques for the temporal bin packing problem with fire-ups. Optimization Letters, 1-26. (Optimization Online)
-
Martinovic, J., Strasdat, N., & Selch, M. (2021). Compact integer linear programming formulations for the temporal bin packing problem with fire-ups. Computers & Operations Research, 132, 105288. (Optimization Online)
- Martinovic, J., Delorme, M., Iori, M., Scheithauer, G., & Strasdat, N. (2020). Improved flow-based formulations for the skiving stock problem. Computers & Operations Research, 113, 104770.
- Behling, R., Fischer, A., Schönefeld, K., & Strasdat, N. (2019). A special complementarity function revisited. Optimization, 68(1), 65-79.
- Fischer, A., Langensiepen, G., Luig, K., Strasdat, N., & Thies, T. (2015). Efficient optimization of hyper-parameters for least squares support vector regression. Optimization Methods and Software, 30(6), 1095-1108.
- Strasdat, N. (2014). Reduced-Set Support Vector Machines (Masterarbeit, Technische Universität Dresden)
- Strasdat, N. (2012). Random Forests und ihre Anwendung zur Regression (Bachelorarbeit, Technische Universität Dresden)
Recent and current projects
- Datengetriebene Generierung von Modellen und Sensitivitätsanalyse für Produktionsprozesse (BMBF, since 04/2020) im Verbundprojekt OptProDat
- Anspruchsvolle Freiformbeschichtung flächiger und 3-dimensionaler Substrate durch Inline-Sputtertechnick (since 08/2019)
- Newton-type Methods for Nonsmooth Equations with Nonisolated Solutions (DFG, 01/2017 to 12/2019)
- Optimierungstechniken für Klassifikation und Regression, Teil II (Industry, 01/2017 to 12/2017)
- Optimierungstechniken für Klassifikation und Regression (Industry, 10/2014 to 12/2016)
- Support-Vector-Methoden und multivariate Regression (Industry, 04/2013 to 09/2014)
- Support Vector Methoden (Industry, 09/2011 to 08/2013)