Publikationen
2023 |
|
(126)* |
E. Caldera-Cruz, T. Tsuda, N. Kiriy, H. Thomas, P. Imbrasas, R. Tkachov, T. Achenbach, S. Reineke, A. Kiriy, and B. Voit, Macromolecules – Early View (2023). High Triplet Energy Polymers Containing Phosphine Oxide as Novel Hosts for Solution-Processable Organic Light-Emitting Diodes, DOI: https://doi.org/10.1021/acs.macromol.3c01438. |
(125) |
Y. Tsuji, N. Kanno, C. Goto, S. Katao, Y. Okajima, P. Reine, P. Imbrasas, S. Reineke, K. Shizu, T. Nakashima, H.i Kaji, T. Kawai, and M. Louis, J. Mater. Chem. C 11, 5968 (2023). A binaphthalimide motif as a chiral scaffold for thermally activated delayed fluorescence with circularly polarized luminescence activity, DOI: https://doi.org/10.1039/D3TC00316G. |
(124) |
J. Ràfols‐Ribé, C. Hänisch, C. Larsen, S. Reineke, and L. Edman, Adv. Mater. Technol. 8, 2202120 (2023). In Situ Determination of the Orientation of the Emissive Dipoles in Light-Emitting Electrochemical Cells, DOI: https://doi.org/10.1002/admt.202202120. |
(123) |
S.‐J. Wang, A. Kirch, M. Sawatzki, T. Achenbach, H. Kleemann, S. Reineke, and K. Leo, Adv. Funct. Mater. 33, 2213768 (2023). Highly Crystalline Rubrene Light-Emitting Diodes with Epitaxial Growth, DOI: https://doi.org/10.1002/adfm.202213768. |
(122) |
S.-J. Wang, A. Palatnik, M. Sudzius, F. Talnack, L. Barba, Z. Zhang, D. Pohl, I. Lashkov, C. Hänisch, A.n Kirch, J. Vahland, M. Otte, H. Kleemann, S. C. B. Mannsfeld, S. Reineke, and K. Leo, ACS Appl. Electron. Mater. 5, 375 (2023). Optical Properties of Crystalline Thin Films of the Organic Laser Gain Material 4,4′-Bis[(N-carbazole)styryl]biphenyl, DOI: https://doi.org/10.1021/acsaelm.2c01401. |
2022 |
|
(121) |
S. Hirata, S. Reineke, A. Patra, and W. Z. Yuan, Front. Chem. 10, 1025674 (2022). Editorial: Metal-free room-temperature phosphorescence, DOI: https://doi.org/10.3389/fchem.2022.1025674. |
(120) |
T. Tang, P. Dacha, K. Haase, J. Kreß, C. Hänisch, J. Perez, Y. Krupskaya, A. Tahn, D. Pohl, S. Schneider, F. Talnack, M. Hambsch, S. Reineke, Y. Vaynzof, and S. C. B. Mannsfeld, Adv. Funct. Mater. 33, 2207966 (2022). Analysis of the Annealing Budget of Metal Oxide Thin-Film Transistors Prepared by an Aqueous Blade-Coating Process, DOI: https://doi.org/10.1002/adfm.202207966. |
(119) |
P. Tholen, C. A. Peeples, M. M. Ayhan, L. Wagner, H. Thomas, P. Imbrasas, Y. Zorlu, C. Baretzky, S. Reineke, G. Hanna, and G. Yücesan, Small 18, (2022). Tuning Structural and Optical Properties of Porphyrin‐based Hydrogen‐Bonded Organic Frameworks by Metal Insertion, DOI: https://doi.org/10.1002/smll.202204578. |
(118) |
L.‐A. Lozano‐Hernández, J. Cameron, C. J. Riggs, S. Reineke, and P. J. Skabara, ChemPhotoChem e202200256 (2022). A Study on Varying the Number of Fluorene Units in 2, 1, 3-Benzothiadiazole-Containing Oligomers and the Effect on OLED Performance and Stability, DOI: https://doi.org/10.1002/cptc.202200256. |
(117) |
C. Hänisch, S. Lenk, and S. Reineke, Chem. Mater. 34, (2022). Long-Term Stability of Emitter Orientation in Organic Light-Emitting Diodes at Temperatures in the Range of the Active Layer Glass Transition, DOI: https://doi.org/10.1021/acs.chemmater.2c02314. |
(116) |
M. Albaladejo‐Siguan, D. Becker‐Koch, E. C. Baird, Y. J. Hofstetter, B. P. Carwithen, A. Kirch, S. Reineke, A. A. Bakulin, F. Paulus, and Y. Vaynzof, Adv. Energ. Mater. 12, 2202994 (2022). Interdot Lead Halide Excess Management in PbS Quantum Dot Solar Cells, DOI: https://doi.org/10.1002/aenm.202202994. |
(115) |
A. Kirch, T. Bärschneider, T. Achenbach, F. Fries, M. Gmelch, R. Werberger, C. Guhrenz, A. Tomkevičienė, J. Benduhn, A. Eychmüller, K. Leo, and S. Reineke, Adv. Mater. 34, 2205015, (2022). Accurate Wavelength Tracking by Exciton Spin Mixing, DOI: https://doi.org/10.1002/adma.202205015. |
(114) |
T. Antrack, M. Kroll, M. Sudzius, C. Cho, P. Imbrasas, M. Albaladejo‐Siguan, J. Benduhn, L. Merten, A. Hinderhofer, F. Schreiber, S. Reineke, Y. Vaynzof, and K. Leo, Adv. Sci. 9, 2200379 (2022). Optical Properties of Perovskite-Organic Multiple Quantum Wells, DOI: https://doi.org/10.1002/advs.202200379. |
(113) |
A. Kirch, A. Fischer, R. Werberger, S. Miri Aabi Soflaa, K. Maleckaite, P. Imbrasas, J. Benduhn, and S. Reineke, Phys. Rev. Applied 18, 034017 (2022). Simple Strategy to Measure the Contact Resistance between Metals and Doped Organic Films, DOI: https://doi.org/10.1103/PhysRevApplied.18.034017. |
(112) |
H. Thomas, K. Haase, T. Achenbach, T. Bärschneider, A. Kirch, F. Talnack, S. C. B. Mannsfeld, and S. Reineke, Front. Phys. 10, 841413 (2022). Impact of Fabrication Processes of Small-Molecule-Doped Polymer Thin-Films on Room-Temperature Phosphorescence, DOI: https://doi.org/10.3389/fphy.2022.841413. |
(111) |
Z. Wang, X. Jia, P. Zhang, Y. Liu, H. Qi, P. Zhang, U. Kaiser, S. Reineke, R. Dong, and X. Feng, Adv. Mater. 34, 2106073 (2022). Viologen‐Immobilized 2D Polymer Film Enabling Highly Efficient Electrochromic Device for Solar‐Powered Smart Window, DOI: https://doi.org/10.1002/adma.202106073. |
2021 |
|
(110) |
G. Ciccone, I. Meloni, R. G. Fernandez Lahore, J. Vierock, S. Reineke, H. Kleemann, P. Hegemann, K. Leo, and C. Murawski, Adv. Funct. Mater. 32, (2021). Tailoring Organic LEDs for Bidirectional Optogenetic Control via Dual-Color Switching, DOI: https://doi.org/10.1002/adfm.202110590. |
(109) |
M. Gmelch, T. Achenbach, A. Tomkeviciene, and S. Reineke, Adv. Sci. 8, 2102104 (2021). High-Speed and Continuous-Wave Programmable Luminescent Tags Based on Exclusive Room Temperature Phosphorescence (RTP), DOI: https://doi.org/10.1002/advs.202102104. |
(108) |
A. Kirch, A. Fischer, M. Liero, J. Fuhrmann, A. Glitzky, and S. Reineke, Adv. Funct. Mater. 31, 2106716 (2021). Electrothermal Tristability Causes Sudden Burn‐In Phenomena in Organic LEDs, DOI: https://doi.org/10.1002/adfm.202106716. |
(107) |
C. Hauenstein, X. De Vries, C. H. L. Weijtens, P. Imbrasas, P.-A. Will, S. Lenk, K. Ortstein, S. Reineke, P. A. Bobbert, R. Coehoorn, and H. Van Eersel, J. Appl. Phys. 130, 155501 (2021). Suppressing exciton deconfinement and dissociation for efficient thermally activated delayed fluorescence OLEDs, DOI: https://doi.org/10.1063/5.0062926. |
(106) |
P. Y. Ang, M. Čehovski, F. Lompa, C. Hänisch, D. Samigullina, S. Reineke, W. Kowalsky, and H.-H. Johannes, Polymers 13, 3566 (2021). Organic Dye-Doped PMMA Lasing, DOI: https://doi.org/10.3390/polym13203566. |
(105) |
X. Jia, E. C. Baird, J. Blochwitz-Nimoth, S. Reineke, K. Vandewal, and D. Spoltore, Nano Energy 89, 106404 (2021). Selectively absorbing small-molecule solar cells for self-powered electrochromic windows, DOI: https://doi.org/10.1016/j.nanoen.2021.106404. |
(104) |
Y. Li, L. Jiang, W. Liu, S. Xu, T.‐Y. Li, F. Fries, O. Zeika, Y. Zou, C. Ramanan, S. Lenk, R. Scholz, D. Andrienko, X. Feng, K. Leo, and S. Reineke, Adv. Mater. 33, 2101844 (2021). Reduced Intrinsic Non‐Radiative Losses Allow Room‐Temperature Triplet Emission from Purely Organic Emitters, DOI: https://doi.org/10.1002/adma.202101844. |
(103) |
Milan Kovačič, Dinara Samigullina, Felix Bouchard, Janez Krč, Benjamin Lipovšek, Marcos Soldera, Andrés Fabián Lasagni, Sebastian Reineke, Marko Topič, Opt. Express 29, 23701 (2021). Analysis and optimization of light outcoupling in OLEDs with external hierarchical textures, DOI: https://doi.org/10.1364/OE.428021. |
(102) |
H. Thomas, F. Fries, M. Gmelch, T. Bärschneider, M. Kroll, T. Vavaleskou, and S. Reineke, ACS Omega 6, 13087 (2021). Purely Organic Microparticles Showing Ultralong Room Temperature Phosphorescence, DOI: https://doi.org/10.1021/acsomega.1c00785. |
(101) |
M. C. Gather, B. Lüssem, S. Reineke, and M. Riede, Adv. Opt. Mater. 9, 2101108 (2021). Editorial: Organic Electronics and Beyond, DOI: https://doi.org/10.1002/adom.202101108. |
(100) |
C. Adachi, G. Xie, S. Reineke, and E. Zysman-Colman, Front. Chem. 8, 625910 (2021). Editorial: Recent Advances in Thermally Activated Delayed Fluorescence Materials, DOI: https://doi.org/10.3389/fchem.2020.625910. |
(99) |
Paulius Imbrasas, Ramūnas Lygaitis, Paul Kleine, Reinhard Scholz, Christian Hänisch, Stephanie Buchholtz, Katrin Ortstein, Felix Talnack, Stefan CB Mannsfeld, Simone Lenk, and Sebastian Reineke, Adv. Opt. Mater. 9, 2002153 (2021). Dimers or Solid-State Solvation? Intermolecular Effects of Multiple Donor–Acceptor Thermally Activated Delayed Fluorescence Emitter Determining Organic Light-Emitting Diode Performance, DOI: https://doi.org/10.1002/adom.202002153. |
(98) |
Q. Wei, P. Imbrasas, E. Caldera-Cruz, L. Cao, N. Fei, H. Thomas, R. Scholz, S. Lenk, B. Voit, S. Reineke, and Z. Ge, J. Phys. Chem. A 125, 1345 (2021). Conjugation-Induced Thermally Activated Delayed Fluorescence: Photophysics of a Carbazole-Benzophenone Monomer-to-Tetramer Molecular Series, DOI: https://doi.org/10.1021/acs.jpca.0c08977. |
2020 |
|
(97) |
D. L. Pastoetter, S. Xu, M. Borrelli, M. Addicoat, B. P. Biswal, S. Paasch, A. Dianat, H. Thomas, R. Berger, S. Reineke, E. Brunner, G. Cuniberti, M. Richter, and X. Feng, Angew. Chem. 59, 23620 (2020). Synthesis of Vinylene-Linked Two-Dimensional Conjugated Polymers via the Horner–Wadsworth–Emmons Reaction, DOI: https://doi.org/10.1002/anie.202010398. |
(96) |
C. Hänisch, S. Lenk, and S. Reineke, Phys. Rev. Applied 14, 064036 (2020). Refined Setup for Angle-Resolved Photoluminescence Spectroscopy of Thin Films, DOI: https://doi.org/10.1103/PhysRevApplied.14.064036. |
(95) |
L.-S. Cui, A. J. Gillett, S.-F. Zhang, H. Ye, Y. Liu, X.-K. Chen, Z.-S. Lin, E. W. Evans, W. K. Myers, T. K. Ronson, H. Nakanotani, S. Reineke, J.-L. Bredas, C. Adachi, and R. H. Friend, Nat. Photon. 14, 636 (2020). Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states, DOI: https://doi.org/10.1038/s41566-020-0668-z. |
(94) |
S. Xu, Y. Li, B. P. Biswal, M. A. Addicoat, S. Paasch, P. Imbrasas, S. Park, H. Shi, E. Brunner, M. Richter, S. Lenk, S. Reineke, and X. Feng, Chem. Mater. 32, 7985 (2020). Luminescent sp2-Carbon-Linked 2D Conjugated Polymers with High Photostability, DOI: https://doi.org/10.1021/acs.chemmater.0c02910. |
(93) |
D. Samigullina, P.-A. Will, L. Galle, S. Lenk, J. Grothe, S. Kaskel, and S. Reineke, J. Appl. Phys. 128, 185501 (2020). Parameter Optimization of Light Outcoupling Structures for High-Efficiency Organic Light-Emitting Diodes, DOI: https://doi.org/10.1063/5.0022497. |
(92) |
P. Lundberg, Q. Wei, Z. Ge, B. Voit, S. Reineke, and L. Edman, J. Phys. Chem. Lett. 11, 6227 (2020). Polymer Featuring Thermally Activated Delayed Fluorescence as Emitter in Light-Emitting Electrochemical Cells, DOI: https://dx.doi.org/10.1021/acs.jpclett.0c01506. |
(91) |
M. Louis, H. Thomas, M. Gmelch, F. Fries, A. Haft, J. Lindenthal, and S. Reineke, Adv. Opt. Mater. 8, 2000427 (2020). Biluminescence Under Ambient Conditions: Water-Soluble Organic Emitter in High-Oxygen-Barrier Polymer. DOI: https://doi.org/10.1002/adom.202000427. |
(90) |
H. Thomas, D. L. Pastoetter, M. Gmelch, T. Achenbach, A. Schlögl, M. Louis, X. Feng, and S. Reineke, Adv. Mater. 32, 2000880 (2020). Aromatic Phosphonates: A Novel Group of Emitters Showing Blue Ultralong Room Temperature Phosphorescence. DOI: https://doi.org/10.1002/adma.202000880. |
(89) |
R. Scholz, P. Kleine, R. Lygaitis, L. Popp, S. Lenk, M. K. Etherington, A. P. Monkman, and S. Reineke, J. Phys. Chem A 124, 1535 (2020). Investigation of Thermally Activated Delayed Fluorescence from a Donor–Acceptor Compound with Time-Resolved Fluorescence and Density Functional Theory Applying an Optimally Tuned Range-Separated Hybrid Functional. DOI: https://doi.org/10.1021/acs.jpca.9b11083. |
(88) |
F. Fries, M. Louis, R. Scholz, M. Gmelch, H. Thomas, A. Haft, and S. Reineke, J. Phys. Chem. A 124, 479 (2020). Dissecting Tetra-N-phenylbenzidine: Biphenyl as the Origin of Room Temperature Phosphorescence. DOI: https://doi.org/10.1021/acs.jpca.9b09148. |
(87) |
A. Kirch, A. Fischer, M. Liero, J. Fuhrmann, A. Glitzky, and S. Reineke, Light Sci. Appl. 9, 5 (2020). Experimental proof of Joule heating-induced switched-back regions in OLEDs. DOI: https://doi.org/10.1038/s41377-019-0236-9. |
(86) |
Y. Zheng, A. Fischer, M. Sawatzki, D. H. Doan, M. Liero, A. Glitzky, S. Reineke, S. C. B. Mannsfeld, Adv. Funct. Mater. 30, 1907119 (2020). Introducing pinMOS Memory: A Novel, Nonvolatile Organic Memory Device. DOI: https://doi.org/10.1002/adfm.20190711. |
(85) |
Paulius Imbrasas, Simone Lenk, Sebastian Reineke, Org. Electr. 78, 105558 (2020). Organic light-emitting diodes with split recombination zones: A concept for versatile color tuning. DOI: https://doi.org/10.1016/j.orgel.2019.105558. |
2019 |
|
(84) |
P. Y. Ang, P.A. Will, S. Lenk, A. Fischer, and S. Reineke, Sci. Rep. 9, 18601 (2019). Inside or outside: Evaluation of the efficiency enhancement of OLEDs with applied external scattering layers. DOI: https://doi.org/10.1038/s41598-019-54640-x. |
(83) |
Y. Li, Q. Wei, L. Cao, F. Fries, M. Cucchi, Z. Wu, R. Scholz, S. Lenk, B. Voit, Z. Ge, and S. Reineke, Front. Chem. 7, 66 (2019). Organic light-emitting diodes based on conjugation-induced thermally activated delayed fluorescence polymers: Interplay between intra-and intermolecular charge transfer states. DOI: https://doi.org/10.3389/fchem.2019.00688. |
(82) |
F. Fries and S. Reineke, Sci. Rep. 9, 15638 (2019). Statistical treatment of Photoluminescence Quantum Yield Measurements. DOI: https://doi.org/10.1038/s41598-019-51718-4. |
(81) |
M. Cucchi, T. Matulaitis, N. A. Kukhta, J. V. Grazulevicius, S. Reineke, and R. Scholz, Phys. Rev. Appl. 12, 044021 (2019). Influence of the Dielectric Constant around an Emitter on Its Delayed Fluorescence, DOI: https://doi.org/10.1103/PhysRevApplied.12.044021. |
(80) |
Y.-L. Zhang, Q. Ran, Q. Wang, Y. Liu, C. Hänisch, S. Reineke, J. Fan, and L. S. Liao, Adv. Mater. 31, 1902368 (2019). High‐Efficiency Red Organic Light‐Emitting Diodes with External Quantum Efficiency Close to 30% Based on a Novel Thermally Activated Delayed Fluorescence Emitter, DOI: https://doi.org/10.1002/adma.201902368. |
(79) |
G. Jiang, C. Guhrenz, A. Kirch, L. Sonntag, C. Bauer, X. Fan, J. Wang, S. Reineke, N. Gaponik, and A. Eychmüller, ACS Nano 13, 10386 (2019). Highly Luminescent and Water-Resistant CsPbBr3–CsPb2Br5 Perovskite Nanocrystals Coordinated with Partially Hydrolyzed Poly(methyl methacrylate) and Polyethylenimine, DOI: https://doi.org/10.1021/acsnano.9b04179. |
(78) |
S. Reineke, Nature Materials 18, 917 (2019). News & Views: Organic radical emitters: Radically more stable, DOI: https://doi.org/10.1038/s41563-019-0453-x. |
(77) |
L. Popp, R. Scholz, P. Kleine, R. Lygaitis, S. Lenk, and S. Reineke, Org. Electr. 75, 105365 (2019). High performance two-color hybrid TADF-phosphorescent WOLEDs with bimodal Förster and Dexter-type exciton distribution, DOI: https://doi.org/10.1016/j.orgel.2019.07.023. |
(76) |
Y. Liu, C. Hänisch, Z. Wu, P.-A. Will, F. Fries, J. Wu, S. Lenk, K. Leo, and S. Reineke, J. Mater. Chem. C 7, 8929 (2019). Locking excitons in two-dimensional emitting layers for efficient monochrome and white organic light-emitting diodes, DOI: https://doi.org/10.1039/C9TC02768H. |
(75) |
Y. Li, M. Kovačič, J. Westphalen, S. Oswald, Z. Ma, C. Hänisch, P.-A. Will, L. Jiang, M. Junghaehnel, R. Scholz, S. Lenk, and S. Reineke, Nature Communications 10, 2972 (2019). Tailor-made nanostructures bridging chaos and order for highly efficient white organic light-emitting diodes, DOI: https://doi.org/10.1038/s41467-019-11032-z. |
(74) |
A. Stellmacher, Y. Liu, M. Soldera, A. Rank, S. Reineke, and A. F. Lasagni, Mater. Lett. 252, 268 (2019). Fast and cost effective fabrication of microlens arrays for enhancing light out-coupling of organic light-emitting diodes, DOI: https://doi.org/10.1016/j.matlet.2019.05.133. |
(73) |
P.‐A. Will, M. Schmidt, K. Eckhardt, F. Wisser, S. Lenk, J. Grothe, S. Kaskel, and S. Reineke, Adv. Funct. Mater. 29, 1901748 (2019). Efficiency of Light Outcoupling Structures in Organic Light‐Emitting Diodes: 2D TiO2 Array as a Model System, DOI: https://doi.org/10.1002/adfm.201901748. |
(72) |
Y. Liu, B. Nell, K. Ortstein, Z. Wu, Y. Karpov, T. Beryozkina, S. Lenk, A. Kiriy, K. Leo, and S. Reineke, ACS Appl. Mater. Interfaces 11, 11660 (2019). High Electron Affinity Molecular Dopant CN6-CP for Efficient Organic Light-Emitting Diodes, DOI: https://doi.org/10.1021/acsami.8b21865. |
(71) |
S. Ullbrich, J. Benduhn, X. Jia, V. C. Nikolis, K. Tvingstedt, F. Piersimoni, S. Roland, Y. Liu, J. Wu, A. Fischer, D. Neher, S. Reineke, D. Spoltore, and K. Vandewal, Nature Materials 18, 459 (2019). Emissive and charge-generating donor–acceptor interfaces for organic optoelectronics with low voltage losses, DOI: https://doi.org/10.1038/s41563-019-0324-5. |
(70) |
M. Louis, H. Thomas, M. Gmelch, A. Haft, F. Fries, and S. Reineke, Adv. Mater. 31, 1807887 (2019). Blue‐Light‐Absorbing Thin Films Showing Ultralong Room‐Temperature Phosphorescence, DOI: https://doi.org/10.1002/adma.201807887. |
(69) |
M. Gmelch, H. Thomas, F. Fries, and S. Reineke, Science Advances 5, eaau7310 (2019). Programmable transparent organic luminescent tags, DOI: https://doi.org/10.1126/sciadv.aau7310. |
(68) |
J. Wu, A. Fischer, and S. Reineke, Adv. Opt. Mater. 7, 1801426 (2019). Investigating Free Charge‐Carrier Recombination in Organic LEDs Using Open‐Circuit Conditions, DOI: https://doi.org/10.1002/adom.201801426. |
(67) |
A. Kirch, M. Gmelch, and S. Reineke, J. Phys. Chem. Lett. 10, 310 (2019). Simultaneous Singlet–Singlet and Triplet–Singlet Förster Resonance Energy Transfer from a Single Donor Material, DOI: https://doi.org/10.1021/acs.jpclett.8b03668. |
(66) |
Y. Zheng, A. Fischer, N. Sergeeva, S. Reineke, and S. C. B. Mannsfeld, Org. Electr. 65, 82 (2019). Exploiting lateral current flow due to doped layers in semiconductor devices having crossbar electrodes, DOI: https://doi.org/10.1016/j.orgel.2018.10.040. |
(65) |
Y. Li, Z. Tang, C. Hänisch, P.‐A. Will, M. Kovačič, J.‐L. Hou, R. Scholz, K. Leo, S. Lenk, and S. Reineke, Adv. Opt. Mater. 7, 1801262 (2019). Ultrathin MoO3 Layers in Composite Metal Electrodes: Improved Optics Allow Highly Efficient Organic Light‐Emitting Diodes, DOI: https://doi.org/10.1002/adom.201801262. |
2018 |
|
(64) |
F. Fries, M. Fröbel, P. Y. Ang, S. Lenk, and S. Reineke, SID Symposium Digest of Technical Papers 49, 1143 (2018). Organic Light‐Emitting Diode Beam Shaping: Pixel Design for Variable Angular Emission Profile Control, DOI: https://doi.org/10.1002/sdtp.12108. |
(63) |
M. Fröbel, F. Fries, T. Schwab, S. Lenk, K. Leo, M. C. Gather, and S. Reineke, Sci. Rep. 8, 9684 (2018). Three-terminal RGB full-color OLED pixels for ultrahigh density displays, DOI: https://doi.org/10.1038/s41598-018-27976-z. |
(62) |
S. Jenatsch, S. Altazin, P.-A. Will, M. T. Neukom, E. Knapp, S. Züfle, S. Lenk, S. Reineke, and B. Ruhstaller, J. Appl. Phys. 124, 105501 (2018). Quantitative analysis of charge transport in intrinsic and doped organic semiconductors combining steady-state and frequency-domain data, DOI: https://doi.org/10.1063/1.5044494. |
(61) |
X.‐B. Shi, Y. Liu, Z. Yuan, X.‐K. Liu, Y. Miao, J. Wang, S. Lenk, S. Reineke, and F. Gao, Adv. Opt. Mater. 6, 1800667 (2018). Optical Energy Losses in Organic–Inorganic Hybrid Perovskite Light‐Emitting Diodes, DOI: https://doi.org/10.1002/adom.201800667. |
(60) |
A. Fischer, M. Pfalz, K. Vandewal, S. Lenk, M. Liero, A. Glitzky, and S. Reineke, Phys. Rev. Appl. 10, 014023 (2018). Full Electrothermal OLED Model Including Nonlinear Self-heating Effects, DOI: https://doi.org/10.1103/PhysRevApplied.10.014023. |
(59) |
F. Fries, M. Fröbel, P. Y. Ang, S. Lenk, and S. Reineke, Light Sci. Appl. 7, 18 (2018). Real-time beam shaping without additional optical elements, DOI: https://doi.org/10.1038/s41377-018-0014-0. |
(58) |
S. Ullbrich, A. Fischer, Z. Tang, J. Ávila, H. J. Bolink, S. Reineke, and K. Vandewal, Phys. Rev. Appl. 9, 051003 (2018). Electrothermal Feedback and Absorption-Induced Open-Circuit-Voltage Turnover in Solar Cells, DOI: https://doi.org/10.1103/PhysRevApplied.9.051003. |
(57) |
C. Murawski, C. Elschner, S. Lenk, S. Reineke, and M. C. Gather, Org. Electr. 53, 198 (2018). Investigating the molecular orientation of Ir(ppy)3 and Ir(ppy)2(acac) emitter complexes by X-ray diffraction, DOI: http://dx.doi.org/10.1016/j.orgel.2017.11.036. |
(56) |
J. Ràfols-Ribé, P.-A. Will, C. Hänisch, M. Gonzalez-Silveira, S. Lenk, J. Rodríguez-Viejo, and S. Reineke, Science Advances 4, eaar8332 (2018). High-performance organic light-emitting diodes comprising ultrastable glass layers, DOI: http://dx.doi.org/10.1126/sciadv.aar8332. |
(55) |
P.-A. Will, E. B. Schwarz, C. Fuchs, R. Scholz, S. Lenk, and S. Reineke, Org. Electr. 58, 250 (2018). Scattering quantified: Evaluation of corrugation induced outcoupling concepts in organic light-emitting diodes, DOI: http://dx.doi.org/10.1016/j.orgel.2018.04.016. |
(54) |
M. Zalibera, D. S. Krylov, D. Karagiannis, P.‐A. Will, F. Ziegs, S. Schiemenz, W. Lubitz, S. Reineke, A. Savitsky, and A. A. Popov, Angewandte Chemie 130, 283 (2018). Thermally Activated Delayed Fluorescence in a Y3N@C80 Endohedral Fullerene: Time‐Resolved Luminescence and EPR Studies, DOI: http://dx.doi.org/10.1002/ange.201710637. |
(53) |
M. Kovačič, P.-A. Will, B. Lipovšek, M. Topič, S. Lenk, S. Reineke, and J. Krč, ACS Photonics 5, 422 (2018). Coupled Optical Modeling for Optimization of Organic Light-Emitting Diodes with External Outcoupling Structures, DOI: http://dx.doi.org/10.1021/acsphotonics.7b00874. |
2017 |
|
(52) |
I. Slowik, A. Fischer, H. Fröb, S. Lenk, S. Reineke, and K. Leo, Org. Electr. 48, 132 (2017). Novel organic light-emitting diode design for future lasing applications, DOI: http://dx.doi.org/10.1016/j.orgel.2017.05.048. |
(51) |
M. Liero, J. Fuhrmann, A. Glitzky, T. Koprucki, A. Fischer, and S. Reineke, Optical and Quantum Electronics 49, 330 (2017). 3D electrothermal simulations of organic LEDs showing negative differential resistance, DOI: http://dx.doi.org/10.1007/s11082-017-1167-4. |
(50) |
C. Salas Redondo, P. Kleine, K. Roszeitis, T. Achenbach, M. Kroll, M. Thomschke, and S. Reineke, J. Phys. Chem. C 121, 14946 (2017). Interplay of Fluorescence and Phosphorescence in Organic Biluminescent Emitters, DOI: http://dx.doi.org/10.1021/acs.jpcc.7b04529. |
(49) |
Q. Wei, P. Kleine, Y. Karpov, X. Qiu, H. Komber, K. Sahre, A. Kiriy, R. Lygaitis, S. Lenk, S. Reineke, and B. Voit, Adv. Funct. Mater. 27, 1605051 (2017). Conjugation-Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non-TADF Units to TADF-Active Polymers, DOI: http://dx.doi.org/10.1002/adfm.201605051. |
(48) |
F. Fries, M. Fröbel, S. Lenk, and S. Reineke, Org. Electr. 41, 315 (2017). Transparent and color-tunable organic light-emitting diodes with highly balanced emission to both sides, DOI: http://dx.doi.org/10.1016/j.orgel.2016.11.022. |
2016 |
|
(47) |
M. Kovačič, P.-A. Will, B. Lipovšek, J. Krč, S. Lenk, S. Reineke, and M. Topič, Journal of Microelectronics, Electronic Components and Materials 46, 267 (2016). Combined optical model for micro-structured organic light-emitting diodes, http://www.midem-drustvo.si/Journal papers/MIDEM_46(2016)4p267.pdf. |
(46) |
R. Springer, B. Y. Kang, R. Lampande, D. H. Ahn, S. Lenk, S. Reineke, and J. H. Kwon, Optics Express 24, 28131 (2016). Cool white light-emitting three stack OLED structures for AMOLED display applications, DOI: http://dx.doi.org/10.1364/OE.24.028131. |
(45) |
S. Krotkus, D. Kasemann, S. Lenk, K. Leo, and S. Reineke, Light: Science & Applications 5, e16121 (2016). Adjustable white-light emission from a photo-structured micro-OLED array, DOI: http://dx.doi.org/10.1038/lsa.2016.121. |
(44) |
Q. Wei, R. Pötzsch, X. Liu, H. Komber, A. Kiriy, B. Voit, P.-A. Will, S. Lenk, and S. Reineke, Adv. Funct. Mater. 26, 2545 (2016). Hyperbranched Polymers with High Transparency and Inherent High Refractive Index for Application in Organic Light‐Emitting Diodes, DOI: http://dx.doi.org/10.1002/adfm.201504914. |
2015 |
|
(43) |
C. Fuchs, P.-A. Will, M. Wieczorek, M. C. Gather, S. Hofmann, S. Reineke, K. Leo, and R. Scholz, Phys. Rev. B 92, 245306 (2015). Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses, DOI: http://dx.doi.org/10.1103/PhysRevB.92.245306. |
(42) |
J. Lee, T.-W. Koh, H. Cho, S. Hofmann, S. Reineke, J.-H. Lee, J.-I. Lee, S. Yoo, K. Leo, and M. C. Gather, Org. Electr. 26, 334 (2015). Color temperature tuning of white organic light-emitting diodes via spatial control of micro-cavity effects based on thin metal strips, DOI: http://dx.doi.org/10.1016/j.orgel.2015.08.002. |
(41) |
S. Lenk, T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, M. C. Gather, and S. Reineke, Appl. Phys. Lett. 107, 163302 (2015). White organic light-emitting diodes with 4 nm metal electrode, DOI: http://dx.doi.org/10.1063/1.4934274. |
(40) |
S. Reineke, Nature Materials 14, 459 (2015). Commentary: Complementary LED technologies, DOI: http://dx.doi.org/10.1038/nmat4277. |
(39) |
W. Chang, D. N. Congreve, E. Hontz, M. E. Bahlke, D. McMahon, S. Reineke, T. Wu, V. Bulovic, T. Van Voorhis, and M. A. Baldo, Nature Communications 6, 6415 (2015). Spin-dependent charge transfer state design rules in organic photovoltaics, DOI: http://dx.doi.org/10.1038/ncomms7415. |
(38) |
C. S. Redondo and S. Reineke, SPIE newsroom (2015). Simultaneous fluorescence and phosphorescence from organic molecules, DOI: http://dx.doi.org/10.1117/2.1201508.006066. |
(37) |
M. C. Gather and S. Reineke, Journal of Photonics for Energy 5, 057607 (2015). Recent advances in light outcoupling from white organic light-emitting diodes, DOI: http://dx.doi.org/10.1117/1.JPE.5.057607. |
2014 |
|
(36) |
S. Reineke, Nature Photonics 8, 269 (2014). News & Views: Organic light-emitting diodes: Phosphorescence meets its match, DOI: http://dx.doi.org/10.1038/nphoton.2014.78. |
(35) |
N. J. Thompson, E. Hontz, D. N. Congreve, M. E. Bahlke, S. Reineke, T. Van Voorhis, and M. A. Baldo, Adv. Mater. 26, 1366 (2014). Nanostructured Singlet Fission Photovoltaics Subject to Triplet-Charge Annihilation, DOI: http://dx.doi.org/10.1002/adma.201304588. |
(34) |
S. Reineke and M. A. Baldo, Sci. Rep. 4, 3797 (2014). Room temperature triplet state spectroscopy of organic semiconductors, DOI: http://dx.doi.org/10.1038/srep03797. |
2013 |
|
(33) |
J. Lee, H. Cho, T.-W. Koh, S. Hofmann, Y. H. Kim, C. Yun, T. Schwab, S. Reineke, B. Lüssem, J.-I. Lee, S. Yoo, K. Leo, and M. Gather, Org. Electr. 14, 2444 (2013). Straight-forward control of the degree of micro-cavity effects in organic light-emitting diodes based on a thin striped metal layer, DOI: http://dx.doi.org/10.1016/j.orgel.2013.06.008. |
(32) |
N. B. Shustova, A. F. Cozzolino, S. Reineke, M. A. Baldo, and M. Dinca, J. Am. Chem. Soc. 135, 13326 (2013). Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal–organic frameworks with open metal sites, DOI: http://dx.doi.org/10.1021/ja407778a. |
(31) |
S. Reineke, N. Seidler, S. R. Yost, F. Prins, W. A. Tisdale, and M. A. Baldo, Appl. Phys. Lett. 103, 093302 (2013). Highly efficient, dual state emission from an organic semiconductor, DOI: http://dx.doi.org/10.1063/1.4819444. |
(30) |
D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, M. E. Bahlke, S. Reineke, T. Van Voorhis, and M. A. Baldo, Science 340, 334 (2013). External quantum efficiency above 100% in a singlet-exciton-fission–based organic photovoltaic cell, DOI: http://dx.doi.org/10.1126/science.1232994. |
(29) |
S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, Rev. Mod. Phys. 85, 1245 (2013). White organic light-emitting diodes: Status and perspective, DOI: http://dx.doi.org/10.1103/RevModPhys.85.1245. |
2012 |
|
(28) |
S. Reineke and Marc A. Baldo, Physica Status Solidi A 209, 2341 (2012). Recent progress in the understanding of exciton dynamics within phosphorescent OLEDs, DOI: http://dx.doi.org/10.1002/pssa.201228292. |
(27) |
C. Weichsel, L. Burtone, S. Reineke, S. I. Hintschich, M. C. Gather, K. Leo, and B. Lüssem, Phys. Rev. B 86, 075204 (2012). Storage of charge carriers on emitter molecules in organic light-emitting diodes, DOI: http://dx.doi.org/10.1103/PhysRevB.86.075204. |
(26) |
M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, Nano Letters 12, 424 (2012). Highly Efficient White Top-Emitting Organic Light-Emitting Diodes Comprising Laminated Microlens Films, DOI: http://dx.doi.org/10.1021/nl203743p. |
(25) |
C. Weichsel, S. Reineke, M. Furno, B. Lüssem, and K. Leo, J. Appl. Phys. 111, 033102 (2012). Organic light-emitting diodes for lighting: High color quality by controlling energy transfer processes in host-guest-systems, DOI: http://dx.doi.org/10.1063/1.3679549. |
(24) |
A. A. Zakhidov, S. Reineke, B. Lüssem, and K. Leo, Org. Electr. 13, 356 (2012). Hydrofluoroethers as heat-transfer fluids for OLEDs: Operational range, stability, and efficiency improvement, DOI: http://dx.doi.org/10.1016/j.orgel.2011.12.004. |
2011 |
|
(23) |
S. Mladenovski, S. Hofmann, S. Reineke, L. Pennick, T. Verschueren, and K. Neyts, J. Appl. Phys. 109, 083114 (2011). Integrated optical model for organic light-emitting devices, DOI: http://dx.doi.org/10.1063/1.3576114. |
(22) |
S. Mladenovski, L. Pennick, K. Neyts, and S. Reineke, Journal of the Society for Information Display 19, 80 (2011). Detailed analysis of exciton decay time change in organic light-emitting devices caused by optical effects, DOI: http://dx.doi.org/10.1889/JSID19.1.80. |
(21) |
V. Gohri, S. Hofmann, S. Reineke, T. Rosenow, M. Thomschke, M. Levichkova, B. Lüssem, and K. Leo, Org. Electr. 12, 2126 (2011). White top-emitting organic light-emitting diodes employing a heterostructure of down-conversion layers, DOI: http://dx.doi.org/10.1016/j.orgel.2011.09.002. |
2010 |
|
(20) |
K. Leo, B. Lüssem, A. Polte, and S. Reineke, Optik & Photonik 5, 32 (2010). Leuchtende Zukunft für effiziente weiße OLEDs, DOI: http://dx.doi.org/10.1002/opph.201190076. |
(19) |
S. Reineke, T.C. Rosenow, B. Lüssem, and K. Leo, Adv. Mater. 22, 3189 (2010). Improved High‐Brightness Efficiency of Phosphorescent Organic LEDs Comprising Emitter Molecules with Small Permanent Dipole Moments, DOI: http://dx.doi.org/10.1002/adma.201000529. |
(18) |
N. Seidler, S. Reineke, B. Lüssem, and K. Leo, Appl. Phys. Lett. 96, 093304 (2010). Influence of the hole blocking layer on blue phosphorescent organic light-emitting devices using 3, 6-di (9-carbazolyl)-9-(2-ethylhexyl) carbazole as host material, DOI: http://dx.doi.org/10.1063/1.3350890. |
(17) |
T.C. Rosenow, M. Furno, S. Reineke, S. Olthof, B. Lüssem, and K. Leo, J. Appl. Phys. 108, 113113 (2010). Highly efficient white organic light-emitting diodes based on fluorescent blue emitters, DOI: http://dx.doi.org/10.1063/1.3516481. |
(16) |
P. Freitag, S. Reineke, S. Olthof, M. Furno, B. Lüssem, and K. Leo, Org. Electr. 11, 1676 (2010). White top-emitting organic light-emitting diodes with forward directed emission and high color quality, DOI: http://dx.doi.org/10.1016/j.orgel.2010.07.017. |
(15) |
J. Wünsche, S. Reineke, B. Lüssem, and K. Leo, Phys. Rev. B 81, 245201 (2010). Measurement of triplet exciton diffusion in organic light-emitting diodes, DOI: http://dx.doi.org/10.1103/PhysRevB.81.245201. |
2009 |
|
(14) |
S. Reineke (Dissertation), Controlling Excitons: Concepts for Phosphorescent Organic LEDs at High Brightness, http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-39520. |
(13) |
S. Reineke, B. Lüssem, and K. Leo, Physik in unserer Zeit 40, 170 (2009). Zeit für eine neue Lichtquelle, DOI: http://dx.doi.org/10.1002/piuz.200990065. |
(12) |
S. Mladenovski, S. Reineke, K. Neyts, Optics Letters 34, 1375 (2009). Measurement and simulation of exciton decay times in organic light-emitting devices with different layer structures, DOI: http://dx.doi.org/10.1364/OL.34.001375. |
(11) |
S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature459, 234 (2009). White organic light-emitting diodes with fluorescent tube efficiency, DOI: http://dx.doi.org/10.1038/nature08003. |
(10) |
S. Reineke, G. Schwartz, K. Walzer, and K. Leo, Physica Status Solidi – RRL 3, 67 (2009). Direct observation of host–guest triplet–triplet annihilation in phosphorescent solid mixed films, DOI: http://dx.doi.org/10.1002/pssr.200802266. |
(9) |
G. Schwartz, S. Reineke, T.C. Rosenow, K. Walzer, and K. Leo, Adv. Funct. Mater. 19, 1319 (2009). Triplet harvesting in hybrid white organic Light‐Emitting Diodes, DOI: http://dx.doi.org/10.1002/adfm.200801503. |
(8) |
S. Reineke, G. Schwartz, K. Walzer, M. Falke, and K. Leo, Appl. Phys. Lett. 94, 163305 (2009). Highly phosphorescent organic mixed films: The effect of aggregation on triplet-triplet annihilation, DOI: http://dx.doi.org/10.1063/1.3123815. |
2008 |
|
(7) |
R. Meerheim, S. Scholz, S. Olthof, G. Schwartz, S. Reineke, K. Walzer, and K. Leo, J. Appl. Phys. 104, 014510 (2008). Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices, DOI: http://dx.doi.org/10.1063/1.2951960. |
(6) |
S. Reineke, F. Lindner, Q. Huang, G. Schwartz, K. Walzer, and K. Leo, Physica status solidi B 245, 804 (2008). Measuring carrier mobility in conventional multilayer organic light emitting devices by delayed exciton generation, DOI: http://dx.doi.org/10.1002/pssb.200743447. |
(5) |
G. Schwartz, S. Reineke, K. Walzer, and K. Leo, Appl. Phys. Lett. 92, 053311 (2008). Reduced efficiency roll-off in high-efficiency hybrid white organic light-emitting diodes, DOI: http://dx.doi.org/10.1063/1.2836772. |
2007 |
|
(4) |
G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer, and K. Leo, Adv. Mater. 19, 3672, (2007). Harvesting Triplet Excitons from Fluorescent Blue Emitters in White Organic Light‐Emitting Diodes, DOI: http://dx.doi.org/10.1002/adma.200700641. |
(3) |
S. Reineke, K. Walzer, and K. Leo, Phys. Rev. B 75, 125328 (2007). Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters, DOI: http://dx.doi.org/10.1103/PhysRevB.75.125328. |
(2) |
S. Reineke, G. Schwartz, K. Walzer, and K. Leo, Appl. Phys. Lett. 91, 123508 (2007). Reduced efficiency roll-off in phosphorescent organic light emitting diodes by suppression of triplet-triplet annihilation, DOI: http://dx.doi.org/10.1063/1.2786840. |
2006 |
|
(1) |
Q. Huang, S. Reineke, K. Walzer, M. Pfeiffer, and K. Leo, Appl. Phys. Lett. 89, 263512 (2006). Quantum efficiency enhancement in top-emitting organic light-emitting diodes as a result of enhanced intrinsic quantum yield, DOI: http://dx.doi.org/10.1063/1.2425014. |