Virtual library
This page is intended as a virtual library for the use of the condensed matter theory group and of students and researchers in related fields at the TU Dresden and elsewhere. The selection and the comments are entirely subjective and are based on Prof. Timm's interests and probably lack of understanding. Prof. Timm and the TU Dresden do not endorse the content of any of the papers this page links to. We would be delighted if anyone finds this page useful. Please note that the English version is updated less frequently than the German one.
The collection is grouped into (a) pedagogical introductions, lecture notes etc., (b) review articles and dedicated journal issues, and (c) research papers. Each category is again divided by topic.
Pedagogical Introductions, Lecture Notes
Quantum mechanics
 C. K. Zachos, Deformation Quantization: Quantum Mechanics Lives and Works in PhaseSpace, hepth/0110114, Int. J. Mod. Phys. A 17, 297 (2002) (GroenewoldMoyal formulation of quantum mechanics based on WignerWeyl transform, includes historical bibliography)
 D. Cohen, Lecture Notes in Quantum Mechanics, quantph/0605180 (extensive, including a number of advanced topics, revised 2012)
Manybody theory
 A. Auerbach, Quantum Magnetism Approaches to Strongly Correlated Electrons, condmat/9801294 (renormalization group approach to the Hubbard model, spin path integrals, various useful mappings)
 D. Belitz, and T. R. Kirkpatrick, Quantum phase transitions, condmat/9811058, in Dynamics: Models and Kinetic Methods for NonEquilibrium Many Body Systems, edited by J. Karkheck, (Kluwer, Dordrecht, 2000), p. 399
 J. Kroha and P. Wölfle, Fermi and NonFermi Liquid Behavior in Quantum Impurity Systems: Conserving Slave Boson Theory, condmat/9811074, Acta Phys. Pol. B 29, 3781 (1998)
 A. M. J. Schakel, Quantum Phase Transitions in 2d Quantum Liquids, condmat/9811393 (also discusses the functional integral method, superfluidity, superconductivity, ChernSimonsGinzburgLandau theory)
 C. P. Burgess, An Ode to Effective Lagrangians, hepph/9812470 (explains why effective lowenergy theories often work surprisingly well)
 A. E. Ruckenstein, Bose Condensation Without Broken Symmetries, condmat/0104010
 G. Sierra, Integrability and Conformal Symmetry in the BCS model, hepth/0111114 (relationships between Richardson's pairing model, integrable models, CFT, and ChernSimons theory)
 E. H. Lieb and F. Y. Wu, The onedimensional Hubbard model: A reminiscence, condmat/0207529, Physica A 321, 1 (2003) (filling in the details of the wellknown exact solution of 1968)
 M. Paulsson, Non Equilibrium Green's Functions for Dummies: Introduction to the One Particle NEGF equations, condmat/0210519 (short tutorial, aims to provide intuitive understanding, not Keldysh but singleparticle resolvent; method is probably more general)
 I. V. Lerner, Nonlinear Sigma Model for Normal and Superconducting Systems: A Pedestrian Approach, condmat/0307471
 J. Richter, J. Schulenburg, and A. Honecker, Quantum magnetism in two dimensions: From semiclassical Neel order to magnetic disorder, Lect. Notes Phys. 645, 85 (2004); condmat/0412662 (Heisenberg antiferromagnet on the 11 Archimedean lattices) !
 C. Di Castro and R. Raimondi, Disordered Electron Systems, condmat/0402203
 M. Greiter, Is electromagnetic gauge invariance spontaneously violated in superconductors?, condmat/0503400
 L. Balents, L. Bartosch, A. Burkov, S. Sachdev, and K. Sengupta, Competing Orders and nonLandauGinzburgWilson Criticality in (Bose) Mott transitions, condmat/0504692
 F. D. M. Haldane, Luttinger's Theorem and Bosonization of the Fermi Surface, condmat/0505529 (hard to find set of lectures on bosonization of the Fermi liquid, in particular in higher dimensions)
 V. L. Libero and K. Capelle, Densityfunctional treatment of model Hamiltonians: basic concepts and application to the Heisenberg model, condmat/0506206
 P. Bruno, Berry phase effects in magnetism, condmat/0506270
 S. Forte, Spin in quantum field theory, hepth/0507291 (spin, statistics, path integrals)
 F. Alet, A. M. Walczak, and M. P. A. Fisher, Exotic quantum phases and phase transitions in correlated matter, condmat/0511516 !
 S. Andergassen, T. Enss, C. Karrasch, and V. Meden, A gentle introduction to the functional renormalization group: the Kondo effect in quantum dots, condmat/0612229
 S. Eggert, Onedimensional quantum wires: A pedestrian approach to bosonization, arXiv:0708.0003 (with detailed discussion of transport)
 A. Stern, Anyons and the quantum Hall effect  a pedagogical review, arXiv:0711.4697
 A. J. M. Schmets and W. Montfrooij, Teaching superfluidity at the introductory level, arXiv:0804.3086 (...as part of introductory modern physics)
 G. Misguich, Quantum spin liquids, arXiv:0809.2257
 I. Affleck, Quantum Impurity Problems in Condensed Matter Physics, arXiv:0809.3474 (emphasizing boundary conformal field theory)
 A. Kamenev and A. Levchenko, Keldysh technique and nonlinear sigmamodel: basic principles and applications, arXiv:0901.3586 (extensive introduction into the Keldysh formalism for fermions and bosons, application to the nonlinear sigma model for disordered systems)
 B. J. Powell, An introduction to effective lowenergy Hamiltonians in condensed matter physics and chemistry, arXiv:0906.1640
 L. Palova, P. Chandra, and P. Coleman, The Casimir Effect from a Condensed Matter Perspective, arXiv:0907.4976
 P. Coleman, Many Body Physics, http://www.physics.rutgers.edu/~coleman/mbody.html (an evolving textbook)
 D. Vollhardt, Dynamical MeanField Theory of Electronic Correlations in Models and Materials, arXiv:1004.5069, AIP Conf. Proc. 1297, 339 (2010)
 T. Kita, Introduction to Nonequilibrium Statistical Mechanics with Quantum Field, Prog. Theor. Phys. 123, 581 (2010) (interacting fermionic and bosonic systems outside of equilibrium; pedagogical introduction with large scope: Keldysh formalism, WignerMoyal formulation of quantum theory, Phiderivable approximation, the Boltzmann equation...)
 V. Dotsenko, One more discussion of the replica trick: the examples of exact solutions, arXiv:1010.3913
 S. Bravyi, D. DiVincenzo, and D. Loss, SchriefferWolff transformation for quantum manybody systems, arXiv:1105.0675
 N. Iqbal, H. Liu, and M. Mezei, Lectures on holographic nonFermi liquids and quantum phase transitions, arXiv:1110.3814 (gaugegravity duality)
 M. Potthoff, Static and dynamic variational principles for strongly correlated electron systems, arXiv:1202.4907
 J. Bünemann, The Gutzwiller Density Functional Theory, arXiv:1207.6456
 K. Schönhammer, Physics in one dimension: theoretical concepts for quantum manybody systems, arXiv:1212.1632, J. Phys.: Condens. Matter 25, 014001 (2013) (exact solutions, Luttinger liquid)
 P. Fulde, Wavefunctionbased electronicstructure calculations for solids, Nature Phys. 12, 106 (2016) (using cumulants and scattering theory)
 M. Oshikawa, JordanWigner Transformation in Higher Dimensions, Journal Club for Condens. Matter Phys. DOI:10.36471/JCCM_August_2021_01 (useful introduction and historical overview)
Density functional theory
 H. Eschrig, The Fundamentals of Density Functional Theory, book for download, revised version (2003)
 P. E. Blöchl, Theory and Practice of DensityFunctional Theory, arXiv:1108.1104
 C. A. Ullrich and Z.H. Yang, A brief compendium of timedependent densityfunctional theory, arXiv:1305.1388
Statistical physics
 R. Savit, Duality in field theory and statistical systems, Rev. Mod. Phys. 52, 453 (1980)
 S. F. Gull, Some Misconceptions about Entropy (1989) http://www.ucl.ac.uk/~ucejph/reality/entropy/text.html
 J. P. Sethna, Order Parameters, Broken Symmetry, and Topology, condmat/9204009 (updated 2009), 1991 Lectures in Complex Systems, edited by L. Nadel and D. Stein (Addison Wesley, 1992), p. 243
 J. Cardy, Renormalisation group approach to reactiondiffusion problems, condmat/9607163 (short review, also discusses analogies of the master equation and the Schrödinger equation and the basics of the fieldtheoretical formulation)
 Z. Gulácsi and M. Gulácsi, Theory of phase transitions in twodimensional systems, Adv. Phys. 47, 1 (1998)
 E. H. Lieb and J. Yngvason, A guide to entropy and the second law of thermodynamics, condmat/9805005
 H. Hinrichsen, Nonequilibrium Critical Phenomena and Phase Transitions into Absorbing States, Adv. Phys. 49, 815 (2000), condmat/0001070 (long review, discusses many specific examples, with good figures)
 K. Ghosh, K. Dill, M. M. Inamdar, E. Seitaridou, and R. Phillips, Teaching the Principles of Statistical Dynamics, condmat/0507388 (derivation of various dynamical laws from a maximum principle, similar to maximization of entropy in statics)
 C. Bustamante, J. Liphardt, and F. Ritort, The Nonequilibrium Thermodynamics of Small Systems, condmat/0511629 (long version of Physics Today 58, 43 (2005))
 W. Belzig, An introduction to Full Counting Statistics in Mesoscopic Electronics, http://www.lancs.ac.uk/users/esqn/nano2006/talks/Belzig.pdf, Lancaster School on Counting Statistics, January 2006
 G. De Chiara, M. Rizzi, D. Rossini, and S. Montangero, Density Matrix Renormalization Group for Dummies, condmat/0603842, J. Comput. Theor. Nanosci. 5, 1277 (2008)
 Yu. Holovatch, Introduction to renormalization, condmat/0606139, Condens. Matter Phys. 9, 325 (2006) (introduction and application to nonideal, e.g., frustrated or disordered, spin models)
 K. J. Wiese and P. Le Doussal, Functional Renormalization for Disordered Systems, Basic Recipes and Gourmet Dishes, condmat/0611346
 M. Mobilia, T. Reichenbach, H. Hinsch, T. Franosch, and E. Frey, Generic principles of active transport, condmat/0612516 (discussing, among other things, the total asymmetric exclusion process [TASEP])
 W. Janke and A. M. J. Schakel, Spacetime Approach to Phase Transitions, condmat/0612655 (extensive lecture notes on pathintegral approach to thermal phase transitions)
 J. Cardy, Conformal Field Theory and Statistical Mechanics, arXiv:0807.3472, Les Houches summer school
 J. Kurchan, Six out of equilibrium lectures, arXiv:0901.1271, Les Houches summer school 2008
 H. G. Katzgraber, Introduction to Monte Carlo Methods, arXiv:0905.1629, summer school on modern computational science, Oldenburg 2009
 M. Kastner, Monte Carlo methods in statistical physics: Mathematical foundations and strategies, arXiv:0906.0858
 L. P. Kadanoff, Theories of Matter: Infinities and Renormalization, arXiv:1002.2985 (on the theory of phase transitions)
 C. Gogolin, Pure State Quantum Statistical Mechanics, arXiv:1003.5058 (pedagogical review on how statistical physics arises from quantum mechanics, also contains new results)
 F. S. Nogueira, Introduction to the field theory of classical and quantum phase transitions, arXiv:1009.1603
 C. R. Laumann, R. Moessner, A. Scardicchio, and S. L. Sondhi, Statistical mechanics of classical and quantum computational complexity, arXiv:1009.1635, Les Houches, 2009
 H. M. Jaeger and A. J. Liu, FarFromEquilibrium Physics: An Overview, arXiv:1009.4874
 N. Reshetikhin, Lectures on the integrability of the 6vertex model, arXiv:1010.5031, Les Houches 2008
 A. W. Sandvik, Computational Studies of Quantum Spin Systems, AIP Conf. Proc. 1297, 135 (2010) (extensive lecture notes)
 M. Campisi, P. Hänggi, and P. Talkner, Colloquium: Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83, 771 (2011)
 F. J. Sevilla and L. OlivaresQuiroz, Revisiting the concept of chemical potential in classical and quantum gases: A perspective from Equilibrium Statistical Mechanics, arXiv:1104.2611, Am. J. Phys.
 Á. Rivas and S. F. Huelga, Open Quantum Systems. An Introduction, arXiv:1104.5242 (Springer, Heidelberg, 2011)
 H. Touchette, A basic introduction to large deviations: Theory, applications, simulations, arXiv:1106.4146
 M. Bachmann, Monte Carlo Simulations, arXiv:1107.0329
 I. Peschel, Entanglement in solvable manyparticle models, arXiv:1109.0159, Brazilian School on Statistical Mechanics 2011
 T. Vojta, Phases and phase transitions in disordered quantum systems, arXiv:1301.7746 (and Griffiths phases)
Field theory
 G. Sierra and M. A. MartinDelgado, The Density Matrix Renormalization Group, Quantum Groups and Conformal Field Theory, condmat/9811170
 F. Gronwald, F. W. Hehl, and J. Nitsch, Axiomatics of classical electrodynamics and its relation to gauge field theory, physics/0506219
Solid state physics and applications
 Y. M. Galperin, Introduction to Modern Solid State Physics, http://folk.uio.no/yurig/fys448/Fys448.html
 C. B. Kellogg, An Introduction to Relativistic Electronic Structure Theory in Quantum Chemistry, http://zopyros.ccqc.uga.edu/~kellogg/docs/rltvt/node1.html
 T. Dietl, Lecture Notes on Semiconductor Spintronics, arXiv:0801.0145, in Modern Aspects of Spin Physics, Lecture Notes in Physics 712, ed. J. Fabian (Springer, Berlin, 2007), p. 1
 D. Xiao, M.C. Chang, and Q. Niu, Berry Phase Effects on Electronic Properties, arXiv:0907.2021
 J. T. Devreese, Lectures on Fröhlich Polarons from 3D to 0D  including detailed theoretical derivations, arXiv:1012.4576 (extensive lecture notes)
 N. A. Spaldin, A beginner's guide to the modern theory of polarization, arXiv:1202.1831 (electric polarization)
Transport theory
 Y. M. Galperin, Quantum Transport, http://folk.uio.no/yurig/quTpdf.pdf
 D. A. Ryndyk, R. Gutierrez, B. Song, and G. Cuniberti, Green function techniques in the treatment of quantum transport at the molecular scale, arXiv:0805.0628
 S. Kirino and K. Ueda, Nonlinear Transport through Quantum Dots Studied by the TimeDependent DMRG, arXiv:1105.1073
Other fields, interdisciplinary science
 A. K. Hartmann and M. Weigt, Introduction to graphs, condmat/0602129, in A. K. Hartmann and M. Weigt, Phase Transitions in Combinatorial Optimization Problems (WileyVCH, Berlin, 2005)
 G. Szabo and G. Fath, Evolutionary games on graphs, condmat/0607344 (tutorial on game theory for physicist, relating it to nonequilibrium statistical mechanics, with applications to three important cases discussed in detail)
 S. N. Majumdar, Random Matrices, the Ulam Problem, Directed Polymers & Growth Models, and Sequence Matching, condmat/0701193
 U. Krey, The AharonovBohmEffect, Noncommutative Geometry, Dislocation Theory, and Magnetism, arXiv:0711.0855 (short note sketching the connections between these topics)
 J. Preskill, Quantum Computation, http://www.theory.caltech.edu/people/preskill/ph229/ (also includes a review of quantum mechanics and quantum statistics)
 C. Gros, Complex and Adaptive Dynamical Systems: A Primer, arXiv:0807.4838, to be published by Springer (2008) (textbook on complexsystem theory, mostly focusing on dynamical networks)
 S. Mertens, Random Number Generators: A Survival Guide for Large Scale Simulations, arXiv:0905.4238 (how to do it in parallel simulations)
 V. E. Kravtsov, Random matrix theory: WignerDyson statistics and beyond, arXiv:0911.0639 (lecture notes, SISSA)
 A. Doikou, S. Evangelisti, G. Feverati, and N. Karaiskos, Introduction to Quantum Integrability, arXiv:0912.3350, Int. J. Mod. Phys. A 25, 3307 (2010) (in 1+1 dimension, mainly in Heisenbergtype models, algebraic Bethe ansatz)
 M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Gauge fields in graphene, arXiv:1003.5179 P
 R. Jackiw, Fractional and Majorana Fermions: The Physics of Zero Energy Modes, arXiv:1104.4486 (introductory)
 A. Gubin and L. F. Santos, Quantum chaos: an introduction via chains of spins1/2, arXiv:1106.5557
 F. Wilczek, Introduction to Quantum Matter, arXiv:1109.1523, Nobel symposium 2010
 M. E. J. Newman, Complex Systems: A Survey, arXiv:1112.1440, Am. J. Phys. 79, 800 (2011)
 P. Young, Everything you wanted to know about Data Analysis and Fitting but were afraid to ask, arXiv:1210.3781
 H. Skarke, Why is the Legendre Transformation Involutive?, arXiv:1209.6193 (geometric interpretation of the Legendre transformation)
 T. J. Phillips, Exotic atoms: Antimatter may matter, Nature 529, 294 (2016) (interesting but not meanstream comment on why repulsive gravitational interaction between matter and antimatter may solve many of today's mysteries)
 E. Witten, Symmetry and emergence, Nature Phys. 14, 116 (2018) (lucid discussion of global vs. gauge symmetries)
Reviews and Dedicated Journal Issues
General highly correlated systems
 D. Belitz and T. R. Kirkpatrick, The AndersonMott transition, Rev. Mod. Phys. 66, 261 (1994) (about the interplay of disorder and electronic correlations)
 S. Sachdev, Quantum phase transitions of correlated electrons in two dimensions, condmat/0109419, Physica A 313, 252 (2002)
 A. J. Millis, Whither Correlated Electron Theory?, condmat/0112508, Physica B P
 D. Belitz and T. R. Kirkpatrick, Why Quantum Phase Transitions are Interesting, J. Low Temp. Phys. 126, 1107 (2002)
 E. Dagotto, Complexity in Strongly Correlated Electronic Systems, Science 309, 257 (2005) (inhomogeneous equilibrium states)
 A. Auerbach, Computing Effective Hamiltonians of Doped and Frustrated Antiferromagnets By Contractor Renormalization, condmat/0510738
 P. Coleman, Theory Perspective: SCES '05 Vienna, condmat/0512463 (highlights from the SCES '05 conference on strongly correlated electron materials)
 P. Fulde, P. Thalmeier, and G. Zwicknagl, Strongly correlated electrons, condmat/0607165, Solid State Physics 60 (Elsevier, 2006) (highresolution copy)
 T. P. Devereaux and R. Hackl, Inelastic Light Scattering From Correlated Electrons, condmat/0607554, Rev. Mod. Phys.
 G. A. Fiete, The spinincoherent Luttinger liquid, condmat/0611597, Rev. Mod. Phys.
 I. Bloch, J. Dalibard, and W. Zwerger, ManyBody Physics with Ultracold Gases, arXiv:0704.3011
 S. Sachdev, Exotic phases and quantum phase transitions: model systems and experiments, arXiv:0901.4103
 J. K. Jain and P. W. Anderson, Beyond the Fermi Liquid Paradigm: Hidden Fermi Liquids, arXiv:0905.1105 (discussed for RVB state in HTSC and composite fermions in the fractional QHE)
 S. Sachdev, Finite temperature dissipation and transport near quantum critical points, arXiv:0910.1139
 E. C. Andrade, E. Miranda, and V. Dobrosavljevic, Quantum ripples in strongly correlated metals, arXiv:0910.1837 (Friedel oscillations are found to be suppressed by strong electronic correlations, method: slaveboson meanfield theory)
 D. J. Scalapino, E. Berg, and S. A. Kivelson, Mesoscopics and the High T_{c} Problem, arXiv:0911.3695 (a few example for what can be learned about the bulk systems from models in reduced dimensions)
 Q. Si and F. Steglich, Heavy Fermions and Quantum Phase Transitions, Science 329, 1161 (2010)
 P. Coleman, Quantum Criticality and Novel Phases: A panel discussion, arXiv:1001.0185, phys. stat. sol. (summary of panel discussion on quantum criticality and novel phases, Dresden 2009)
 A. A. Shashkin and S. V. Kravchenko, Quantum phase transitions in twodimensional electron systems, arXiv:1002.2629, in Quantum Phase Transitions, ed. by L. Carr (CRC Press / Taylor & Francis)
 S. Sachdev, The landscape of the Hubbard model, arXiv:1012.0299 (phases of the Hubbard model on various lattices)
 Special issue on strongly correlated electron systems, J. Phys.: Condens. Matter 23, issue 9 (2011)
 S. Sachdev and B. Keimer, Quantum Criticality, arXiv:1102.4628, edited version: Physics Today 64, 29 (2011)
 S. Sachdev, The quantum phases of matter, arXiv:1203.4565
 I. A. Zaliznyak and J. M. Tranquada, Neutron Scattering and Its Application to Strongly Correlated Systems, arXiv:1304.4214
 W. WitczakKrempa, G. Chen, Y. B. Kim, and L. Balents, Correlated quantum phenomena in the strong spinorbit regime, arXiv:1305.2193, Ann. Rev. Cond. Mat. Phys. (relevant for iridates)
 J. P. Eisenstein, Exciton Condensation in Bilayer Quantum Hall Systems, arXiv:1306.0584

B. Keimer and J. E. Moore, The physics of quantum materials, Nature Phys. 13, 1045 (2017) (entanglement and topology...)

Y. Tokura, M. Kawasaki, and N. Nagaosa, Emergent functions of quantum materials, Nature Phys. 13, 1056 (2017)

D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium: Manybody localization, thermalization, and entanglement, Rev. Mod. Phys. 91, 021001 (2019)
Methods for manybody theory
 K. Hallberg, Density Matrix Renormalization, condmat/9910082
 W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Quantum Monte Carlo simulations of solids, Rev. Mod. Phys. 73, 33 (2001)
 M. Potthoff, Dynamical variational principles for strongly correlated electron systems, condmat/0503715; Systematics of approximations constructed from dynamical variational principles, condmat/0511729
 M. A. Stephanov, J. J. M. Verbaarschot, and T. Wettig, Random Matrices, hepph/0509286, in Wiley Encyclopedia of Electrical and Electronics Engineering, Supp. 1 (2001) (discusses both hermitian and nonhermitian random matrices)
 M. N. Kiselev, Semifermionic representation for spin systems under equilibrium and nonequilibrium conditions, condmat/0601338 (introduction to and generalization of PopovFedetov representation of spins, mapping of spins onto particles with neither bosonic nor fermionic Matsubara frequencies)
 P. Kopietz, Bosonization of Interacting Fermions in Arbitrary Dimensions, condmat/0605402, Lecture Notes in Physics (Springer, Berlin, 1997) (long review, put on archive because currently out of print)
 U. Schollwöck and S. R. White, Methods for Time Dependence in DMRG, condmat/0606018, in Effective models for lowdimensional strongly correlated systems, edited by G. G. Batrouni and D. Poilblanc (AIP, Melville, New York, 2006), p. 155
 K. Hallberg, New Trends in Density Matrix Renormalization, condmat/0609039, Adv. Phys. 55 (2006)
 I. P. McCulloch, From densitymatrix renormalization group to matrix product states, condmat/0701428
 K. Held, O. K. Andersen, M. Feldbacher, A. Yamasaki, and Y.F. Yang, Bandstructure meets manybody theory: The LDA+DMFT method, arXiv:0801.2634, J. Phys.: Condensed Matter
 M. MineevWeinstein, M. Putinar, and R. Teodorescu, Random Matrices in 2D, Laplacian Growth and Operator Theory, arXiv:0805.0049 (2D here means 2D support of eigenvalues in the complex plane, i.e., for nonhermitian random matrices)
 D. Sénéchal, An introduction to quantum cluster methods, arXiv:0806.2690 (including cluster generalization of DMFT and M. Posthoff's selfenergy functional theory)
 S. Sachdev and M. Müller, Quantum criticality and black holes, J. Phys.: Condens. Matter 21, 164216 (2009) (review consequences of a duality between antide Sitter cosmology and conformal field theory for quantum critical points in certain systems); S. Sachdev, Condensed matter and AdS/CFT, arXiv:1002.2947; S. Sachdev, Strange metals and the AdS/CFT correspondence, arXiv:1010.0682; L. Huijse and S. Sachdev, Fermi surfaces and gaugegravity duality, arXiv:1104.5022; S. Sachdev, What can gaugegravity duality teach us about condensed matter physics?, arXiv:1108.1197, Annual Reviews of Condensed Matter Physics
 A. L. Kuzemsky, Statistical mechanics and the physics of manyparticle model systems, Phys. Part. Nucl. 40, 949 (2009) (extensive review on manyparticle theory, with many historical remarks)
 C. W. J. Beenakker, Applications of random matrix theory to condensed matter and optical physics, arXiv:0904.1432
 R. Resta, Electrical polarization and orbital magnetization: the modern theories, J. Phys.: Condens. Matter 22, 123201 (2010)
 M. Eckstein, A. Hackl, S. Kehrein, M. Kollar, M. Moeckel, P. Werner, and F. A. Wolf, New theoretical approaches for correlated systems in nonequilibrium, arXiv:1005.5097
 U. Schollwöck, The densitymatrix renormalization group in the age of matrix product states, arXiv:1008.3477
 D. W. Snoke, The Quantum Boltzmann Equation in Semiconductor Physics, arXiv:1011.3849
 E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Continuoustime Monte Carlo methods for quantum impurity models, arXiv:1012.4474
 A. W. Sandvik, Computational Studies of Quantum Spin Systems, arXiv:1101.3281, AIP Conf. Proc. 1297, 135 (2010) (extensive lecture notes)
 U. Schollwöck, The densitymatrix renormalization group: a short introduction, Philos. Transact. A Math. Phys. Eng. Sci. 369, 2643 (2011) (using language of matrixproduct states)
 A. L. Kuzemsky, Statistical Mechanics and the Physics of the ManyParticle Model Systems, arXiv:1101.3423, Phys. Part. Nuclei 40, 949 (2009)
 W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schönhammer, Functional renormalization group approach to correlated fermion systems, arXiv:1105.5289
 M. Potthoff, Selfenergyfunctional theory, arXiv:1108.2183, in Theoretical Methods for Strongly Correlated Systems, edited by A. Avella and F. Mancini (Springer, 2011)
 E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Generalized dynamical meanfield theory in physics of strongly correlated systems, arXiv:1109.2305
 D. Vollhardt, K. Byczuk, and M. Kollar, Dynamical MeanField Theory, arXiv:1109.4833
 I. Boettcher, J. M. Pawlowski, and S. Diehl, Ultracold atoms and the Functional Renormalization Group, arXiv:1204.4394
 J. E. Drut and A. N. Nicholson, Lattice methods for strongly interacting manybody systems, arXiv:1208.6556 (lattice field theory)
 A. Goetschy and S. E. Skipetrov, Euclidean random matrices and their applications in physics, arXiv:1303.2880 (euclidian random matrices: the components are deterministic functions of separations between random points in an euclidian space)

K. T. Williams et al., Direct Comparison of ManyBody Methods for Realistic Electronic Hamiltonians, Phys. Rev. X 10, 011041 (2020) (with transitionmetal atoms and ions; broad range of methods including HF, DFT variants, CI, MC, DMRG)
Density functional theory and its descendants
 P. Elliott, K. Burke, and F. Furche, Excited states from timedependent density functional theory, condmat/0703590
 C. A. Ullrich and V. Turkowski, Timedependent densityfunctional theory for electronic excitations in materials: basics and perspectives, arXiv:0808.2021
 R. C. Albers, N. E. Christensen, and A. Svane, HubbardU BandStructure Methods, arXiv:0907.1028 (also clarifying their conceptual position compared to fully abinitio and manyparticle approaches)
 P. Koskinen and V. Mäkinen, Densityfunctional tightbinding for beginners, arXiv:0910.5861, Comp. Mat. Sci. 47, 237 (2009) (note that an opensource program exists, called hotbit)
 P. GoriGiorgi and M. Seidl, Density functional theory for stronglyinteracting electrons: Perspectives for Physics and Chemistry, arXiv:1008.2327, Phys. Chem. Chem. Phys.
 N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys. 84, 1419 (2012)
 K. Burke, Perspective on density functional theory, arXiv:1201.3679 (also discussing its limitations)
 R. O. Jones, Density functional theory: Its origins, rise to prominence, and future, Rev. Mod. Phys. 87, 897 (2015)
Magnetism
Spintronics, diluted magnetic semiconductors, and defect magnetism
 I. Zutic, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 (2004)
 R. Janisch, P. Gopal, and N. A. Spaldin, Transition metaldoped TiO_{2} and ZnO  present status of the field, J. Phys.: Condens. Matter 17, R657 (2005) P
 S. Saikin, Y. V. Pershin, and V. Privman, Modeling for Semiconductor Spintronics, condmat/0504001 (a review on semiclassical modelling for spintronics)
 T. Fukumura, H. Toyosaki, and Y. Yamada, Magnetic oxide semiconductors, condmat/0504168, Semicond. Sci. Technol. 20, S103 (2005)
 E. I. Rashba, Spinorbit coupling and spin transport, condmat/0507007
 J. Sinova, S. Murakami, S.Q. Shen, and M.S. Choi, SpinHall effect: Back to the Beginning on a Higher Level, condmat/0512054 (summary of workshop, general agreement on what is understood and what is not)
 J. Schliemann, Spin Hall Effect, condmat/0602330, Int. J. Mod. Phys. B 20, 1015 (2006)
 T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A. H. MacDonald, Theory of ferromagnetic (III,Mn)V semiconductors, Rev. Mod. Phys. 78, 809 (2006)
 E. I. Rashba, Semiconductor Spintronics: Progress and Challenges, condmat/0611194
 W. J. M. Naber, S. Faez, and W. G. van der Wiel, Organic Spintronics, condmat/0703455
 Spin Electronics (special issue), J. Phys.: Condens. Matter 19, issue 16 (2007), contains several papers on DMS, including
 T. Dietl, Origin of ferromagnetic response in diluted magnetic semiconductors and oxides, ibid. 165204, also in arXiv:0711.0340
 T. C. Schulthess, W. M. Temmerman, Z. Szotek, A. Svane, and L. Petit, Firstprinciples electronic structure of Mndoped GaAs, GaP, and GaN semiconductors, ibid. 165207, also in condmat/0610378 (SICLSDA, supporting existing "standard models" for these DMS, in particular very different behavior of GaAs vs. GaN, with GaP intermediate)
 I. Zutic, J. Fabian, and S. C. Erwin, Bipolar spintronics: From spin injection to spincontrolled logic, arXiv:0706.2190
 M. Bibes and A. Barthelemy, Oxide spintronics, arXiv:0706.3015
 T. Dietl, Origin and control of ferromagnetism in dilute magnetic semiconductors and oxides, arXiv:0711.0343, 52nd MMM Conference 2007, J. Appl. Phys.
 J. Fabian, A. MatosAbiague, C. Ertler, P. Stano, and I. Zutic, Semiconductor Spintronics, arXiv:0711.1461, Acta Physica Slovaca 57, 565 (2007) (extensive review, mostly concerned with spin dynamics and spin transport, not with materialsscience aspects)
 H. Ohno and T. Dietl, Spintransfer physics and the model of ferromagnetism in (Ga,Mn)As, J. Magn. Magn. Mat. 320, 1293 (2008)
 Focus on Dilute Magnetic Semiconductors (focus issue), New J. Phys. 10, May issue (part) (2008) (not limited to IIIV compounds, mostly concerned with applied research)
 K. S. Burch, D. D. Awschalom, and D. N. Basov, Optical Properties of IIIMnV Ferromagnetic Semiconductors, arXiv:0810.3669
 C. Ertler, A. MatosAbiague, M. Gmitra, M. Turek, and J. Fabian, Perspectives in spintronics: magnetic resonant tunneling, spinorbit coupling, and GaMnAs, arXiv:0811.0500
 E. M. Hankiewicz and G. Vignale, SpinHall effect and spinCoulomb drag in doped semiconductors, J. Phys.: Condens. Matter 21 253202 (2009)
 V. L. Korenev, Comment on The Rise of Semiconductor Spintronics, arXiv:0904.3034; a comment on a timeline of spin physics published in Nature, pointing out that many important breakthroughs occured earlier than stated there
 D. Culcer, Steadystate spin densities and currents, arXiv:0906.5111
 K. Potzger and S. Zhou, NonDMS related ferromagnetism in transition metal doped zinc oxide, arXiv:0908.0645
 J.E. Wegrowe, Spin Transfer from the point of view of the ferromagnetic degrees of freedom, arXiv:0910.2890, Solid State Commun. (focus on dissipated power)
 N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010)
 A. Zunger, S. Lany, and H. Raebiger, The quest for dilute ferromagnetism in semiconductors: Guides and misguides by theory, Physics 3, 53 (2010) (possible pitfalls in applying DFT to diluted magnetic semiconductors, relatively long "Trends" article)
 A. Bonanni and T. Dietl, A story of hightemperature ferromagnetism in semiconductors, arXiv:1101.1981, Chem. Soc. Rev. 39, 528 (2010)
 T. Dietl, Ferromagnetism in semiconductors and oxides: prospects from a ten years' perspective, arXiv:1108.2582
 F. Natali, B. J. Ruck, N. O. V. Plank, H. J. Trodahl, S. Granville, C. Meyer, and W. R. L. Lambrecht, Rareearth mononitrides, arXiv:1208.2410 (review on recent experimental and theoretical progress from a spintronics point of view)
 M. I. Dyakonov, Spin Hall Effect, arXiv:1210.3200
 P. Esquinazi, W. Hergert, D. Spemann, A. Setzer, and A. Ernst, DefectInduced Magnetism in Solids, arXiv:1304.0137
 T. Dietl and H. Ohno, Dilute ferromagnetic semiconductors: Physics and spintronic structures, Rev. Mod. Phys. 86, 187 (2014) (extensive review on experiment and theory, focus on structured DMS)
 T. Jungwirth, J. Wunderlich, V. Novák, K. Olejnik, B. L. Gallagher, R. P. Campion, K. W. Edmonds, A. W. Rushforth, A. J. Ferguson, and P. Nemec, Spindependent phenomena and device concepts explored in (Ga,Mn)As, Rev. Mod. Phys. 86, 855 (2014)
 T. Dietl, K. Sato, T. Fukushima, A. Bonanni, M. Jamet, A. Barski, S. Kuroda, M. Tanaka, P. Nam Hai, and H. KatayamaYoshida, Spinodal nanodecomposition in semiconductors doped with transition metals, Rev. Mod. Phys. 87, 1311 (2015) (review on computational modeling and experiments, various classes of DMS, importance of morphology [formation of nanodots or nanocolumns] of transitionmetalrich material for hightemperature ferromagnetic response)
 T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Antiferromagnetic spintronics, Nature Nanotechnology 11, 231 (2016)

F. Hellman et al., Interfaceinduced phenomena in magnetism, Rev. Mod. Phys. 89, 025006 (2017) (very long author list, broad review)
Other magnetic systems and phenomena
 N. Andrei, K. Furuya, and J. H. Lowenstein, Solution of the Kondo problem, Rev. Mod. Phys. 55, 331 (1983) (reviews the solution via the Bethe ansatz, also generalizations to arbitrary impurity spin and to SU(N) symmetry)
 N. E. Bickers, Review of techniques in the largeN expansion for dilute magnetic alloys, Rev. Mod. Phys. 59, 845 (1987)
 D. Belitz, and T. R. Kirkpatrick, Quantum critical behavior of itinerant ferromagnets, condmat/9609070, J. Phys.: Cond. Matter 8, 9707 (1996) (also including disorder)
 M. Ulmke, P. J. H. Denteneer, V. Janis, R. T. Scalettar, A. Singh, D. Vollhardt, and G. T. Zimanyi, Disorder and Impurities in HubbardAntiferromagnets, Advances in Solid State Physics 38, 369 (Vieweg, Wiesbaden, 1999)
 M. Kiwi, Origin of the magnetic proximity effect, Mat.Res. Soc. Symp. Proc. 746, Q5.2.1 (2003) P
 O. Fruchart and A. Thiaville, Magnetism in reduced dimensions, condmat/0511362 (short review on selected topics)
 A. L. Kuzemsky, Physics of Complex Magnetic Materials: Quasiparticle ManyBody Dynamics, condmat/0512183 (short survey of author's works)
 D. I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity, condmat/0601696
 H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermiliquid instabilities at magnetic quantum phase transitions, condmat/0606317, Rev. Mod. Phys.
 P. Fröbrich and P. J. Kuntz, Manybody Green's function theory of Heisenberg films, condmat/0607675, Phys. Rep.
 P. Mavropoulos and I. Galanakis, A review of the electronic and magnetic properties of tetrahedrally bonded halfmetallic ferromagnets, condmat/0611006, J. Phys.: Condens. Matter (zincblende CrAs, CrTe etc.)
 D. Karevski, Ising Quantum Chains, condmat/0611327
 Half Metallic Ferromagnets (special issue), J. Phys.: Condens. Matter 19, issue 31 (2007)
 S. Jia, N. Ni, S. L. Bud'ko, and P. C. Canfield, Magnetic properties of Gd_{x}Y_{1x}Fe_{2}Zn_{20}: dilute, large, S moments in a nearly ferromagnetic Fermi liquid, arXiv:0708.1170 (magnetic moment per Gd is not enhanced, unlike in Gddoped DMS)
 S. Sachdev, Quantum magnetism and criticality, arXiv:0711.3015 (links wellknown magnetic phases with modern developments including deconfined criticality and emergent photons, also discusses superconductivity)
 N. A. Sinitsyn, Semiclassical theories of the anomalous Hall effect, J. Phys.: Condens. Matter 20, 023201 (2008)
 E. I. Rashba, Side jump contribution to spinorbit mediated Hall effects and Berry curvature, arXiv:0804.4181
 E. B. Sonin, Spin currents and spin superfluidity, arXiv:0807.2524 (a long review, updated March 2010)
 A. Auerbach and D. P. Arovas, Schwinger Bosons Approaches to Quantum Antiferromagnetism, arXiv:0809.4836, Trieste Summer School 2007, in Highly Frustrated Magnetism, C. Lacroix, P. Mendels, and F. Mila (Eds.)
 Multiferroics (special issue), J. Phys.: Condens. Matter 20, number 43 (2008)
 J. T. Chalker, Geometrically frustrated antiferromagnets: statistical mechanics and dynamics, arXiv:0901.3492, Trieste Summer School 2007, in Highly Frustrated Magnetism, C. Lacroix, P. Mendels, and F. Mila (Eds.)
 K. H. Bennemann, Magnetic nanostructures, J. Phys.: Condens. Matter 22, 243201 (2010) (review concentrating on works from own group)
 J. R. Friedman and M. P. Sarachik, Singlemolecule Nanomagnets, arXiv:1001.4194
 V. Yu. Irkhin, Ideas by S. V. Vonsovsky and Modern Model Treatment of Magnetism, arXiv:1006.0108
 A. Dutta, U. Divakaran, D. Sen, B. K. Chakrabarti, T. F. Rosenbaum, and G. Aeppli, Transverse field spin models: From Statistical Physics to Quantum Information, arXiv:1012.0653, Rev. Mod. Phys.
 Geometrically frustrated magnetism (special issue), J. Phys.: Condens. Matter 23, number 16 (2011)
 E. Abrahams and Q. Si, Quantum criticality in the iron pnictides and chalcogenides, J. Phys.: Condens. Matter 23, 223201 (2011) (short topical review)
 M. J. P. Gingras and P. Henelius, Collective Phenomena in the LiHo_{x}Y_{1x}F_{4} Quantum Ising Magnet: Recent Progress and Open Questions, arXiv:1103.1537, J. Phys.: Condensed Matter (relatively short theoretical and experimental review)
 J. Wen, G. Xu, G. Gu, J. M. Tranquada, and R. J. Birgeneau, Single crystal growth and properties of ironchalcogenide superconductors, arXiv:1104.0695 (magnetic and superconducting properties)
 T. Thonhauser, Theory of Orbital Magnetization in Solids, arXiv:1105.5251
 C. Castelnovo, R. Moessner, and S. L. Sondhi, Spin Ice, Fractionalization and Topological Order, arXiv:1112.3793
 Domain wall dynamics in nanostructures (special issue), J. Phys.: Condens. Matter 24, issue 2 (2012)
 Virtual Issue: Quantum Molecular Magnets, Editorial: Inorg. Chem. 51, 12055 (2012)
 D. Belitz and T. R. Kirkpatrick, A compilation of metallic systems that show a quantum ferromagnetic transition, arXiv:1204.0873 (short paper with a list of such systems, suggest that a butterflytype phase diagram with a tricritical point and two quantum critical end points is generic)
 L. Fritz and M. Vojta, The Physics of Kondo Impurities in Graphene, arXiv:1208.3113, Rep. Prog. Phys.
 P. Dai, J. Hu, and E. Dagotto, Magnetism and its microscopic origin in ironbased hightemperature superconductors, arXiv:1209.0381, Nature Phys. 8, 709 (2012)
 E. Dagotto, The Unexpected Properties of Alkali Metal Iron Selenide Superconductors, arXiv:1210.6501, Rev. Mod. Phys.
 C. Nisoli, R. Moessner, and P. Schiffer, Artificial Spin Ice: Designing and imaging magnetic frustration, Rev. Mod. Phys. 85, 1473 (2013) (giant spins of judiciously arranged singledomain particles; changed compared to original arXiv version)
 M. P. Sarachik, Magnetic Avalanches in Molecular Magnets, arXiv:1302.5100 (bulk, magnetic deflagration)
 W.C. Lee, W. Lv, and H. Z. Arham, Elementary Excitations due to Orbital Degrees of Freedom in Iron Based Superconductors, arXiv:1303.6295 (review focusing on orbital, as opposed to spinnematic, scenario of orthorhombic distortion)
 P. Subedi, B. Wen, Y. Yeshurun, M. P. Sarachik, A. J. Millis, and A. D. Kent, Quantum Fluctuations and LongRange Order in Molecular Magnets, arXiv:1305.4646
 R. M. Fernandes, A. V. Chubukov, and J. Schmalian, What drives nematic order in ironbased superconductors?, Nature Physics 10, 97 (2014)
 Z. Nussinov and J. van den Brink, Compass models: Theory and physical motivations, Rev. Mod. Phys. 87, 1 (2015)
 P. Dai, Antiferromagnetic order and spin dynamics in ironbased superconductors, Rev. Mod. Phys. 87, 855 (2015) (review of neutronscattering results)
 J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87, 1213 (2015)
 M. Brando, D. Belitz, F. M. Grosche, and T. R. Kirkpatrick, Metallic quantum ferromagnets, Rev. Mod. Phys. 88, 025006 (2016) (and their quantum phase transitions)
 M. Oshikawa, Experimental observations of the universal cascade of bound states in quantum Ising chain in a magnetic field and E_{8} symmetry, J. Club Condens. Matter. Phys., DOI: 10.36471/JCCM_September_2020_04 (review of theory and new experimental results on excitation mass spectrum, evidence for effective E_{8} field theory, appendix showing calculation of the mass spectrum)
Transport, mostly in mesoscopic and nanoscopic systems, disorder and localization
 J. Rammer and H. Smith, Quantum fieldtheoretical methods in transport theory of metals, Rev. Mod. Phys. 58, 323 (1986)
 D. C. Mattis and M. L. Glasser, The uses of quantum field theory in diffusionlimited reactions, Rev. Mod. Phys. 70, 979 (1998)
 M. A. Ratner, Introducing molecular electronics, Materials Today 5, 20 (2002); K. S. Kwok and J. C. Ellenbogen, Moletronics: future electronics, Materials Today 5, 28 (2002)
 D. Porath, G. Cuniberti, and R. Di Felice, Charge Transport in DNABased Devices, condmat/0403640, Topics in Current Chemistry 237, edited by G. Schuster, (Springer, Berlin, 2004), p. 183 (discusses experimental and theoretical situation)
 J. König, J. Martinek, J. Barnás, and G. Schön, Quantum Dots Attached to Ferromagnetic Leads: Exchange Field, Spin Precession, and Kondo Effect, condmat/0404509
 Y. Xue and M. A. Ratner, Molecular Electronics: From Physics to Computing, condmat/0508477, in Nanotechnology: Science and Computation, edited by J. Chen, N. Jonoska, and G. Rozenberg (Springer, Berlin, 2006)
 Ya. M. Blanter, Recent Advances in Studies of Current Noise, condmat/0511478
 M. Pustilnik, Kondo effect in nanostructures, condmat/0512671
 A. P. Jauho, Modelling of inelastic effects in molecular electronics, J. Phys.: Conf. Ser. 35, 313 (2006)
 S. Sanvito and A. Reily Rocha, MolecularSpintronics: the art of driving spin through molecules, condmat/0605239, J. Comput. Theor. Nanosci. 3, 624 (2006) P
 G. Stefanucci, S. Kurth, E. K. U. Gross, and A. Rubio, Time dependent transport phenomena, condmat/060733 (densityfunctional theory plus Keldysh formalism)
 F. Evers and K. Burke, Pride, Prejudice, and Penury of ab initio transport calculations for single molecules, condmat/0610413, in: CRC Handbook on Molecular and Nanoelectronics, edited by S. Lyshevski
 A. M. Bratkovsky, Current rectification, switching, polarons, and defects in molecular electronic devices, condmat/0611163, in: Polarons in Advanced Materials, edited by A. S. Alexandrov (Canopus/Springer, Bristol, 2007)
 M. Grobis, I. G. Rau, R. M. Potok, and D. GoldhaberGordon, Kondo Effect in Mesoscopic Quantum Dots, condmat/0611480, in: Handbook of Magnetism and Advanced Magnetic Materials, Vol. 5 (Wiley)
 M. Galperin, M. A. Ratner, and A. Nitzan, Molecular transport junctions: vibrational effects, J. Phys.: Condens. Matter 19, 103201 (2007)
 M. Koentopp, C. Chang, K. Burke, and R. Car, Density functional calculations of nanoscale conductance, J. Phys.: Condens. Matter 20, 083203 (2008), condmat/0703591, (how LDA/GGA fail for weak tunneling through molecules and how to use timedependent current DFT instead)
 Charge transport in nanoscale junctions (special issue), J. Phys.: Condens. Matter 20, number 37 (2008)
 D. R. Ward, G. D. Scott, Z. K. Keane, N. J. Halas, and D. Natelson, Electronic and optical properties of electromigrated molecular junctions, arXiv:0802.3902
 S. Datta, Nanoelectronic Devices: A Unified View, arXiv:0809.4460, Oxford Handbook on Nanoscience and Nanotechnology: Frontiers and Advances

K. Behnia, The Nernst effect and the boundaries of the Fermi liquid picture, J. Phys.: Condens. Matter 21, 113101 (2009)
 L. E. F. Foa Torres and G. Cuniberti, AC transport in carbonbased devices: challenges and perspectives, arXiv:0906.1664, C. R. Physique
 S. J. van der Molen and P. Liljeroth, Charge transport through molecular switches, J. Phys.: Condens. Matter 22, 133001 (2010) (discuss mostly experimental research)
 S. Andergassen, V. Meden, H. Schoeller, J. Splettstoesser, and M. R. Wegewijs, Charge transport through single molecules, quantum dots, and quantum wires, Nanotechn. 21, 272001 (2010) P
 N. M. R. Peres, Colloquium: The transport properties of graphene: An introduction, Rev. Mod. Phys. 82, 2673 (2010)
 G. D. Scott and D. Natelson, Kondo Resonances in Molecular Devices, arXiv:1003.1938
 W. Shinwari, J. Deen, E. Starikov, and G. Cuniberti, Electrical Conductance in Biological Molecules, arXiv:1003.4027
 B. Kramer, A. MacKinnon, T. Ohtsuki, and K. Slevin, Finite Size Scaling Analysis of the Anderson Transition, arXiv:1004.0285
 P. Wölfle and D. Vollhardt, SelfConsistent Theory of Anderson Localization: General Formalism and Applications, arXiv:1004.3238 (discuss weak and strong localization)
 E. R. Mucciolo and C. H. Lewenkopf, Disorder and Electronic Transport in Graphene, arXiv:1006.0255
 A. D. Mirlin, F. Evers, I. V. Gornyi, and P. M. Ostrovsky, Anderson Transitions: Criticality, Symmetries, and Topologies, arXiv:1007.0967
 D. Vuillaume, Molecular Nanoelectronics, arXiv:1009.0527, IEEE Proc.
 M. Dzero, J. Schmalian, and P. G. Wolynes, Glassiness in Uniformly Frustrated Systems, arXiv:1011.2261
 S. Karthauser, Control of moleculebased transport for future molecular devices, J. Phys.: Condens. Matter 23, 013001 (2011) (conceptually based on Landauer formula)
 S. Florens, A. Freyn, N. Roch, W. Wernsdorfer, F. Balestro, P. RouraBas, and A. A. Aligia, Universal transport signatures in twoelectron molecular quantum dots: gatetunable Hund's rule, underscreened Kondo effect and quantum phase transitions, J. Phys.: Condens. Matter 23, 243202 (2011)
 Yu. V. Pershin and M. Di Ventra, Memory effects in complex materials and nanoscale systems, Adv. Phys. 60, 145 (2011)
 M. Shiraishi and T. Ikoma, Molecular Spintronics, arXiv:1102.4151 (short review, surprisingly excluding magnetic molecules)
 S. Florens, A. Freyn, N. Roch, W. Wernsdorfer, F. Balestro, P. RouraBas, and A. A. Aligia, Universal transport signatures in twoelectron molecular quantum dots: gatetunable Hund's rule, underscreened Kondo effect and quantum phase transitions, arXiv:1103.4849
 T. Kernreiter, M. Governale, A. R. Hamilton, and U. Zülicke, Charge transport by modulating spinorbit gauge fields for quasionedimensional holes, arXiv:1104.4520
 A. L. Kuzemsky, Electronic Transport in Metallic Systems and Generalized Kinetic Equations, arXiv:1109.5532
 B. K. Nikolic, K. K. Saha, T. Markussen, and K. S. Thygesen, Firstprinciples quantum transport modeling of thermoelectricity in singlemolecule nanojunctions with graphene nanoribbon electrodes, arXiv:1111.0106 (review on transport calculations based on static DFT and NEGF)
 M. P. Das and F. Green, Nonequilibrium mesoscopic transport: a genealogy, J. Phys.: Condens. Matter 24, 183201 (2012) (short historical review)
 G. Parisi, Field theory and the physics of disordered systems, arXiv:1201.5813 (proceedings paper pointing out the difficulties in treating disordered systems and a possible diagrammatic solution)
 N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84, 1045 (2012)
 G. Allan, C. Delerue, C. Krzeminski, and M. Lannoo, Nanoelectronics, arXiv:1207.1829, also in Nanostructured Materials, Electronic Materials: Science & Technology 8, 161 (2004) (short review, note original publication year 2004)
 Molecular switches at surfaces (special section), J. Phys.: Condens. Matter 24, 390201 (2012) (experimental and theoretical papers, conformational and electronic switching)
 N. A. Zimbovskaya, Inelastic electron transport through molecular junctions, arXiv:1301.5569, in Handbook of Nanophysics (Büttiker model for inelastic transport, described as being less complicated and time consuming than NEGF)
 J.S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green's function method for quantum thermal transport, arXiv:1303.7317
 F. Haupt, M. Leijnse, H. L. Calvo, L. Classen, J. Splettstoesser, and M. R. Wegewijs, Heat, molecular vibrations, and adiabatic driving in nonequilibrium transport through interacting quantum dots, arXiv:1306.4343
 E. A. Laird, F. Kuemmeth, G. A. Steele, K. GroveRasmussen, J. Nygård, K. Flensberg, and L. P. Kouwenhoven, Quantum transport in carbon nanotubes, Rev. Mod. Phys. 87, 703 (2015)
 B. N. Narozhny and A. Levchenko, Coulomb drag, Rev. Mod. Phys. 88, 025003 (2016)

F. Evers, R. Korytár, S. Tewari, and J. M. van Ruitenbeek, Advances and challenges in singlemolecule electron transport, Rev. Mod. Phys. 92, 035001 (2020)

B. Bertini, F. HeidrichMeisner, C. Karrasch, T. Prosen, R. Steinigeweg, and M. Žnidarič, Finitetemperature transport in onedimensional quantum lattice models, Rev. Mod. Phys. 93, 025003 (2021) (spin and fermionic models)
Superconductivity (including relevant normalstate properties)
General
 H. Hosono and Z.A. Ren (editors), IronBased Superconductors (focus issue), New J. Phys. 11, 025003 et seq. (2009)
 P. Phillips, T.P. Choy, and R. G. Leigh, Mottness in HighTemperature CopperOxide Superconductors, arXiv:0905.4637, Rep. Prog. Phys. 72, 036501 (2009); P. Phillips, Mottness: Identifying the Propagating Charge Modes in doped Mott Insulators, arXiv:1001.5270, Rev. Mod. Phys. (2010)
 F. Steglich, J. Arndt, S. Friedemann, C. Krellner, Y. Tokiwa, T. Westerkamp, M. Brando, P. Gegenwart, C. Geibel, S. Wirth, and O. Stockert, Superconductivity versus quantum criticality: what can we learn from heavy fermions?, J. Phys.: Condens. Matter 22, 164202 (2010)
 J. A. Wilson, A perspective on the Febased superconductors, J. Phys.: Condens. Matter 22, 203201 (2010)
 M. D. Lumsden and A. D. Christianson, Magnetism in Febased superconductors, J. Phys.: Condens. Matter 22, 203203 (2010)
 M. R. Norman, Fermisurface reconstruction and the origin of hightemperature superconductivity, Physics 3, 86 (2010) (...in the underdoped regime)
 I. Mazin, Iron superconductivity weathers another storm, Physics 4, 26 (2011) (namely the discovery of superconductivity in K_{0.8}Fe_{2}Se_{2})
 J. A. Mydosh and P. M. Oppeneer, Colloquium: Hidden order, superconductivity, and magnetism: The unsolved case of URu2Si2, Rev. Mod. Phys. 83, 1301 (2011)
 H.H. Wen and S. Li, Materials and Novel Superconductivity in Iron Pnictide Superconductors, Ann. Rev. Condens. Mat. Phys. 2, 121 (2011)
 D. N. Basov and A. V. Chubukov, Manifesto for a higher Tc  lessons from pnictides and cuprates, arXiv:1104.1949
 G. R. Stewart, Superconductivity in Iron Compounds, arXiv:1106.1618 (iron pnictides and chalcogenides)
 M. R. Norman, Cuprates  An Overview, arXiv:1108.3140 (brief, mainly theoretical)
 A. V. Chubukov, Pairing mechanism in Febased superconductors, arXiv:1110.0052, Annual Rev. Cond. Matter Phys. 3, 57 (2012)
 J. Hu and C. Xu, Nematic orders in Ironbased superconductors, arXiv:1112.2713
 D. J. Scalapino, A Common Thread: The pairing interaction for the unconventional superconductors, Rev. Mod. Phys. 84, 1383 (2012), (spinfluctuationmediated pairing)
 H. Oh, J. Moon, D. Shin, C.Y. Moon, and H. J. Choi, Brief review on ironbased superconductors: are there clues for unconventional superconductivity?, arXiv:1201.0237, Progr. Supercond. 13, 65 (2011)
 O. Stockert, S. Kirchner, F. Steglich, and Q. Si, Superconductivity in Ce and Ubased "122" heavyfermion compounds, arXiv:1202.4114
 H.Y. Choi, Comments on the dwave pairing mechanism for cuprate high T_{c} superconductors: Higher is different?, arXiv:1203.4652 (what is the pairing glue? how can we find out experimentally?)
 S. Kivelson, Incipient CDW Order in the PseudoGap Phase of the Cuprates, JCCM_OCTOBER2012_01, commentary for Journal Club for Condensed Matter Physics
 E. Fradkin and S. A. Kivelson, Hightemperature superconductivity: Ineluctable complexity, News and Views, Nature Physics 8, 864 (2012) (discussion of significance of observation of CDW correlations in YBCO, comparision to stripes in LSCO and LBCO); J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. v. Zimmermann, E. M. Forgan, and S. M. Hayden, Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67, Nature Physics 8, 871 (2012)
 M. R. Norman, Unconventional Superconductivity, arXiv:1302.3176, in Novel Superfluids, vol. 2, edited by K. H. Bennemann and J. B. Ketterson (Oxford)
 T. Shibauchi, A. Carrington, and Y. Matsuda, Quantum critical point lying beneath the superconducting dome in ironpnictides, arXiv:1304.6387, Ann. Rev. Condens. Matter Phys.
 A. P. Mackenzie, T. Scaffidi, C. W. Hicks, and Y. Maeno, Even odder after twentythree years: the superconducting order parameter puzzle of Sr_{2}RuO_{4}, npj Quantum Materials 2, 40 (2017)

L. P. Gor'kov and V. Z. Kresin, Colloquium: High pressure and road to room temperature superconductivity, Rev. Mod. Phys. 90, 011001 (2018) (H_{3}S)

A. Kapitulnik, S. A. Kivelson, and B. Spivak, Colloquium: Anomalous metals: Failed superconductors, Rev. Mod. Phys. 91, 011002 (2019) (in two dimensional materials with disorder, occuring between localized and superconducting phases)

A. H. MacDonald, Trend: Bilayer Graphene’s Wicked, Twisted Road, Physics 12, 12 (2019)

N. P. Armitage, Superconductivity mystery turns 25, Nature 576, 386 (2019) (Sr_{2}RuO_{4}, short News & Views)
 B. Sacépé, M. Feigel’man, and T. M. Klapwijk, Quantum breakdown of superconductivity in lowdimensional materials, Nature Phys. 16, 734 (2020) (disorder and Josephsonjunction arrays)
 M. Smidman, M. B. Salamon, H. Q. Yuan, and D. F. Agterberg, Superconductivity and spin–orbit coupling in noncentrosymmetric materials: a review, Rep. Prog. Phys. 80, 036501 (2017) (contains discussion of pair density wave)
Experiment
 D. R. Harshman and A. P. Mills, Jr., Concerning the nature of highT_{c} superconductivity: Survey of experimental properties and implications for interlayer coupling, Phys. Rev. B 45, 10684 (1992) (contains tables of materials parameters for cuprates)
 M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Magnetic, transport, and optical properties of monolayer copper oxides, Rev. Mod. Phys. 70, 897 (1998) (discuss, among many other things, the doping dependence of the antiferromagnetic correlation length)
 J. C. Campuzano, M. R. Norman, and M. Randeria, Photoemission in the High T_{c} Superconductors, condmat/0209476, in Physics of Superconductors, Vol. II, ed. K. H. Bennemann and J. B. Ketterson (Springer, Berlin, 2004), p. 167 (includes a general introduction to photoemission)
 A. A. Kordyuk and S. V. Borisenko, ARPES on HTSC: simplicity vs. complexity, condmat/0510218
 J. M. Tranquada, Charge stripes in cuprate superconductors: The middle way, condmat/0510792; Neutron Scattering Studies of Antiferromagnetic Correlations in Cuprates, condmat/0512115; Stripes and Superconductivity in Cuprates, arXiv:1111.4268; Spins, Stripes, and Superconductivity in HoleDoped Cuprates, arXiv:1305.4118
 J. Fink, S. Borisenko, A. Kordyuk, A. Koitzsch, J. Geck, V. Zabalotnyy, M. Knupfer, B. Büchner, and H. Berger, Dressing of the charge carriers in highT_{c} superconductors, condmat/0512307 (ARPES)
 R. K. Kremer, J. S. Kim, and A. Simon, Carbon Based Superconductors, condmat/0701702 (carbides etc.)
 J. E. Sonier, M. Ilton, V. Pacradouni, C. V. Kaiser, S. A. SabokSayr, Y. Ando, S. Komiya, W. N. Hardy, D. A. Bonn, R. Liang, and W. A. Atkinson, Inhomogeneous MagneticField Response in YBa_{2}Cu_{3}O_{y} and La_{2x}Sr_{x}CuO_{4} Persisting Above the Bulk Superconducting Transition T_{c}, arXiv:0801.3481 (attributed to superconducting domains)
 Latest developments in Feoxypnictide superconductors, Supercond. Sci. Technol. 2021, virtual collection
 M. R. Norman, Hightemperature superconductivity in the iron pnictides, Physics 1, 21 (2008)
 C. Pfleiderer, Superconducting phases of felectron compounds, arXiv:0905.2625, Rev. Mod. Phys.
 K. Ishida, Y. Nakai, and H. Hosono, To What Extent IronPnictide New Superconductors Have Been Clarified: A Progress Report, arXiv:0906.2045, J. Phys. Soc. Jpn. 78, 062001 (2009) P
 J. A. Wilson, A perspective on pnictide superconductors, arXiv:0912.4201
 Y. Mizuguchi and Y. Takano, A review of Fechalcogenide superconductors: the simplest Febased superconductor, arXiv:1003.2696, J. Phys. Soc. Jpn.
 D. R. Garcia and A. Lanzara, Through a Lattice Darkly  Shedding Light on ElectronPhonon Coupling in the High T_{c} Cuprates, arXiv:1005.0970 (ARPES, role of electronphonon coupling)
 D. C. Johnston, The Puzzle of High Temperature Superconductivity in Layered Iron Pnictides and Chalcogenides, arXiv:1005.4392
 J. Paglione and R. L. Greene, Hightemperature superconductivity in ironbased materials, arXiv:1006.4618
 D. S. Inosov, J. T. Park, A. Charnukha, Y. Li, A. V. Boris, B. Keimer, and V. Hinkov, A crossover from weak to strong pairing in unconventional superconductors, arXiv:1012.4041 (overview over ratio of the gap to the transition temperature for many superconductors)
 D. Aoki and J. Flouquet, Ferromagnetism and Superconductivity in Uranium Compounds, arXiv:1108.4807
 S. E. Sebastian, G. G. Lonzarich, and N. Harrison, Towards resolution of the Fermi surface in underdoped highTc superconductors, arXiv:1112.1373
 N. Kimura and I. Bonalde, NonCentrosymmetric HeavyFermion Superconductors, arXiv:1201.1648, Lecture Notes in Physics 847
 L. Bretheau, C. Girit, L. Tosi, M. Goffman, P. Joyez, H. Pothier, D. Esteve, and C. Urbina, Superconducting Quantum Point Contacts, arXiv:1201.4739 (Josephson effect etc.)
 S. E. Sebastian, Quantum Oscillations in Iron Pnictide Superconductors, arXiv:1208.5862 (evolution of Fermi surfaces with doping, comparison to cuprates)
 M. Hashimoto, I. M. Vishik, R.H. He, T. P. Devereaux, and Z.X. Shen, Energy gaps in hightransitiontemperature cuprate superconductors, Nature Phys. 10, 483 (2014) (focus on ARPES)
 P. Dai, Antiferromagnetic order and spin dynamics in ironbased superconductors, Rev. Mod. Phys. 87, 855 (2015)
 Q. Si, Towards a Unified Description of the Electronic Orders in IronBased Superconductors: Insights from FeSe, Journal Club for Condensed Matter Physics July 2016, 2
Theory

M. Sigrist and K. Ueda, Phenomenological theory of unconventional superconductivity, Rev. Mod. Phys. 63, 239 (1991)
 W. Brenig, Aspects of electron correlations in the cuprate superconductors, Phys. Rep. 251, 153 (1995)
 P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The Physics Behind HighTemperature Superconducting Cuprates: The "Plain Vanilla" Version Of RVB, condmat/0311467; P. W. Anderson, Present status of the theory of high T_{c} cuprates, condmat/0510053
 C. M. Varma, Notes on RVBVanilla by Anderson et al., condmat/0312385 (critical discussion of preceding paper)
 J. Dukelsky, S. Pittel, and G. Sierra, Exactly solvable RichardsonGaudin models for manybody quantum systems, Rev. Mod. Phys. 76, 643 (2004)
 M. R. Norman, D. Pines, and C. Kallin, The pseudogap: friend or foe of high T_{c}?, to be published in Adv. in Physics, condmat/0507031 (summary of a summer 2004 Aspen workshop)
 S. A. Kivelson and E. Fradkin, How optimal inhomogeneity produces high temperature superconductivity, condmat/0507459
 F. Vidal, J. A. Veira, J. Maza, J. Mosqueira, and C. Carballeira, On the interplay between T_{c}inhomogeneities at long length scales and thermal fluctuations around the average superconducting transition in cuprates, condmat/0510467
 A. Mourachkine, RoomTemperature Superconductivity, condmat/0606187, book (Cambridge International Science Pub., Cambridge, 2004)
 T. H. Geballe, The never ending search for high temperature superconductivity, condmat/0608368
 D. J. Scalapino, Numerical Studies of the 2D Hubbard Model, condmat/0610710 (also note the addendum, which presents a broader overview over the field of cuprates)
 G. Baskaran, Superconductivity in optimally doped Cuprates: BZA Program works well & Superexchange is the Glue, condmat/0611548 (review of successes of RVB picture)
 P. Phillips, Mottness, condmat/0702348, Ann. Phys. 321, 1634 (2006)
 J. Spalek, tJ model then and now: A personal perspective from the pioneering times, arXiv:0706.4236
 P. A. Lee, From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics, arXiv:0708.2115
 S. Chakravarty, High temperature superconductivity: from complexity to simplicity, arXiv:0802.1216, longer version of Science 319, 735 (2008) (brief discussion of new trends in underdoped cuprates: hole and electron pockets in normal state)
 S. A. Kivelson and H. Yao, Febased superconductors: unity or diversity?, arXiv:0811.3973, corrected version of Nature Materials 7, 927 (2008) (short comparison of oxypnictide and cuprate physics)
 K. Le Hur and T. M. Rice, Superconductivity close to the Mott state: From condensedmatter systems to superfluidity in optical lattices, arXiv:0812.1581
 J. Zaanen, Condensedmatter physics: The pnictide code, Nature 457, 546 (2009)
 I. I. Mazin and J. Schmalian, Pairing Symmetry and Pairing State in Ferropnictides: Theoretical Overview, arXiv:0901.4790
 T. Senthil and P. A. Lee, A synthesis of the phenomenology of the underdoped cuprates, arXiv:0903.0870
 J. C. Phillips, Prediction of High Transition Temperatures in Ceramic Superconductors, arXiv:0903.1306 (contains an entertaining review of the history of hightemperature superconductivity outside of the main stream, predictions based on chemical trends, using Bayesian probability theory)
 V. Barzykin and D. Pines, Universal Behavior and the Twocomponent Character of Magnetically Underdoped Cuprate Superconductors, arXiv:0903.1835, Adv. Phys. 58, 1 (2009)
 S. Sachdev, Where is the quantum critical point in the cuprate superconductors?, arXiv:0907.0008, phys. stat. solidi, workshop on quantum criticality and novel phases, Dresden P; Quantum criticality and the phase diagram of the cuprates, arXiv:0910.0846 (similar shorter paper); Quantum phase transitions of antiferromagnets and the cuprate superconductors, arXiv:1002.3823, Les Houches (2009)
 M. Eschrig, C. Iniotakis, and Y. Tanaka, Theoretical aspects of Andreev spectroscopy and tunneling spectroscopy in noncentrosymmetric superconductors: a topical review, arXiv:1001.2486
 S. Chakravarty, Key issues in theories of high temperature superconductors, arXiv:1006.4180 (cuprates, focus on interpreration of magneticoscillation experiments)
 P. W. Anderson, Personal history of my engagement with cuprate superconductivity, 19862010, arXiv:1011.2736
 P. Phillips, Fractionalize This, arXiv:1012.1861, Nature Phys. 6, 931 (2010) (composite vs. fractionalized excitations in cuprates)
 J. Zaanen, A modern, but way too short history of the theory of superconductivity at a high temperature, arXiv:1012.5461 (reviews various important but contradictory approaches)
 A. MartínRodero and A. L. Yeyati, Josephson and Andreev transport through quantum dots, Adv. Phys. 60, 899 (2011) P
 A. S. Alexandrov, High Temperature Superconductivity: the explanation, arXiv:1102.2082, Physica Scripta
 Z.Y. Weng, Mott physics, sign structure, ground state wavefunction, and highTc superconductivity, arXiv:1110.0546
 E. Babaev, J. Carlstrom, J. Garaud, M. Silaev, and J. M. Speight, Type1.5 superconductivity in multiband systems: magnetic response, broken symmetries and microscopic theory. A brief overview, arXiv:1110.2744
 O. Narikiyo, A Diagrammer's Note on Superconducting Fluctuation Transport for Beginners: I. Conductivity and Thermopower, arXiv:1112.1513; A Diagrammer's Note on Superconducting Fluctuation Transport for Beginners: II. Hall and Nernst Effects with Perturbational Treatment of Magnetic Field, arXiv:1203.0127
 M. Vojta, Stripes and electronic quasiparticles in the pseudogap state of cuprate superconductors, arXiv:1202.1913
 S. Sachdev, M. A. Metlitski, and M. Punk, Antiferromagnetism in metals: from the cuprate superconductors to the heavy fermion materials, arXiv:1202.4760
 S. Maiti and A. V. Chubukov, Superconductivity from repulsive interaction, arXiv:1305.4609 (extensive)
 E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Theory of intertwined orders in high temperature superconductors, Rev. Mod. Phys. 87, 457 (2015)

J. Linder and A. V. Balatsky, Oddfrequency superconductivity, Rev. Mod. Phys. 91, 045005 (2019) (odd pairing under permutation of time coordinates)

C. M. Varma, Colloquium: Linear in temperature resistivity and associated mysteries including high temperature superconductivity, Rev. Mod. Phys. 92, 031001 (2020)
Topological insulators and superconductors, semimetals, spin liquids, etc.
 S. Ryu, A. Schnyder, A. Furusaki, and A. Ludwig, Topological insulators and superconductors: tenfold way and dimensional hierarchy, New J. Phys. 12, 065010 (2010) (extensive review of the ten generic Hamiltonian symmetry classes and the possibility of nontrivial topological [surface] states)
 M. Z. Hasan and C. L. Kane, Topological Insulators, arXiv:1002.3895, Rev. Mod. Phys. 82, 3045 (2010) (overview, not very technical)
 M. Stone, C.K. Chiu, and A. Roy, Symmetries, Dimensions, and Topological Insulators: the mechanism behind the face of the Bott clock, arXiv:1005.3213
 E. Prodan, Disordered Topological Insulators: A NonCommutative Geometry Perspective, arXiv:1010.0595
 M. Z. Hasan and J. E. Moore, ThreeDimensional Topological Insulators, arXiv:1011.5462 (from free electrons to strongly correlated systems); M. Z. Hasan, D. Hsieh, Y. Xia, L. A. Wray, S.Y. Xu, and C. L. Kane, A new experimental approach for the exploration of topological quantum phenomena: Topological Insulators and Superconductors, arXiv:1105.0396 (focus on ARPES)
 X.L. Qi and S.C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011)
 Y. Tanaka, M. Sato, and N. Nagaosa, Symmetry and Topology in Superconductors  Oddfrequency pairing and edge states , arXiv:1105.4700, J. Phys. Soc. Jpn. 81, 011013 (2012)
 G. A. Fiete, V. Chua, X. Hu, M. Kargarian, R. Lundgren, A. Ruegg, J. Wen, and V. Zyuzin, Topological Insulators and Quantum Spin Liquids, arXiv:1106.0013
 G. P. Alexander, B. Ginge Chen, E. A. Matsumoto, and R. D. Kamien, Disclination Loops, Hedgehogs, and All That, arXiv:1107.1169
 D. Culcer, Transport in threedimensional topological insulators: theory and experiment, arXiv:1108.3076, Physica E (transport in surface states, theoretical and experimental review)
 Y. Barlas, K. Yang, and A. H. MacDonald, Quantum Hall Effects in GrapheneBased TwoDimensional Electron Systems, arXiv:1110.1069
 G. E. Volovik, Topology of quantum vacuum, arXiv:1111.4627, Como summer school (analogies between the vacuum of the standard model and topological insulators and superconductors, emergence of gravity and gauge fields)
 T. Kitagawa, Topological phenomena in quantum walks; elementary introduction to the physics of topological phases, arXiv:1112.1882
 C. W. J. Beenakker, Search for Majorana fermions in superconductors, arXiv:1112.1950, Ann. Rev. Condensed Matter Phys. P
 Y. Okuda and R. Nomura, Surface Andreev bound states of superfluid ^{3}He and Majorana fermions, J. Phys.: Condens. Matter 24, 343201 (2012)
 J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, arXiv:1202.1293 (topological superconductivity due to proximity effect)
 M. Leijnse and K. Flensberg, Introduction to topological superconductivity and Majorana fermions, arXiv:1206.1736 (pedagogical review, focus on 1D)
 G. Tkachov and E. M. Hankiewicz, Spinhelical transport in normal and superconducting topological insulators, arXiv:1208.1466 (2D and 3D AII topological insulators)
 L. Müchler, F. Casper, B. Yan, S. Chadov, and C. Felser, Topological insulators and thermoelectric materials, arXiv:1209.6097
 H. Zhang and S.C. Zhang, Topological insulators from the Perspective of firstprinciples calculations, arXiv:1209.6446 (class AII)
 X.G. Wen, Topological order: from longrange entangled quantum matter to an unification of light and electrons, arXiv:1210.1281 (topological order as opposed to local symmetry breaking, light and electrons as emergent quasiparticles of a topologically ordered state) P
 J. C. Budich and B. Trauzettel, From the adiabatic theorem of quantum mechanics to topological states of matter, arXiv:1210.6672 (review on tenfoldway classification) P
 W. Feng and Y. Yao, Threedimensional topological insulators: A review on host materials, arXiv:1212.0602
 T. Grover, Y. Zhang, and A. Vishwanath, Entanglement entropy as a portal to the physics of quantum spin liquids, New J. Phys. 15, 025002 (2013)
 M. Hohenadler and F. F. Assaad, Correlation effects in twodimensional topological insulators, J. Phys.: Condens. Matter 25, 143201 (2013), (Haldane, KaneMele, KaneMeleHubbard models)
 A. M. Turner and A. Vishwanath, Beyond Band Insulators: Topology of Semimetals and Interacting Phases, arXiv:1301.0330 (1. topological states that are gapless in the bulk: mainly discuss Weyl semimetals and their topological protection by an invariant defined on a lowerdimensional manifold, list candidate materials, also mention nodal superconductors; 2. strongly interacting topological states)
 T. D. Stanescu and S. Tewari, Majorana Fermions in Semiconductor Nanowires: Fundamentals, Modeling, and Experiment, arXiv:1302.5433
 S. A. Parameswaran, R. Roy, and S. L. Sondhi, Fractional Quantum Hall Physics in Topological Flat Bands, arXiv:1302.6606
 Y. Ando, Topological Insulator Materials, arXiv:1304.5693
 O. Vafek and A. Vishwanath, Dirac Fermions in Solids  from High Tc cuprates and Graphene to Topological Insulators and Weyl Semimetals, arXiv:1306.2272
 Y. Yoshimura, K. Kobayashi, T. Ohtsuki, and K.I. Imura, Engineering Dirac electrons emergent on the surface of a topological insulator, Sci. Technol. Adv. Mater. 16, 014403 (2015)
 A. P. Schnyder and P. M. R. Brydon, Topological surface states in nodal superconductors, J. Phys.: Condens. Matter 27, 243201 (2015)
 J. Maciejko and G. A. Fiete, Fractionalized topological insulators, Nature Phys. 11, 385 (2015) P
 J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, W. Wang, R. J. Cava, N. P. Ong, Signature of the chiral anomaly in a Dirac semimetal: a current plume steered by a magnetic field, arXiv:1503.08179 (writeup of invited talk, mainly experimental perspective)
 C. W. J. Beenakker, Randommatrix theory of Majorana fermions and topological superconductors, Rev. Mod. Phys. 87, 1037 (2015) (starts with an introduction to noninteracting topological systems)
 A. Bansil, H. Lin, and T. Das, Colloquium: Topological band theory, Rev. Mod. Phys. 88, 021004 (2016) (based on DFT, close to specific materials)
 Topological matter (focus issue) Nature Phys. 12 (7), 615 (2016) (mainly focuses on nonelectronic systems)
 N. Goldman, J. C. Budich and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nature Phys. 12, 639 (2016)
 E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys. 88, 035001 (2016) (symmetryprotected fermionic phases, relation to AtiyahSinger index theorem and &theta term, focus on 2D and 3D topological insulators)
 C.K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88, 035005 (2016) (extensive, partially pedagogical introduction; mainly on effectively noninteracting models, covers gapped and nodal systems and also gapless states at surfaces and topological defects)
 A. Vishwanath, A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet
(Journal Club for Condensed Matter Physics) JCCM_December_2016_03 comments on recent experiments, also briefly reviews history) 
Y. Zhou, K. Kanoda, and T.K. Ng, Quantum spin liquid states, Rev. Mod. Phys. 89, 025003 (2017)

B. Yan and C. Felser, Topological Materials: Weyl Semimetals, Annu. Rev. Condens. Matter Phys. 8, 337 (2017)

N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three dimensional solids, Rev. Mod. Phys. 90, 015001 (2018)

X.G. Wen, Colloquium: Zoo of quantumtopological phases of matter, Rev. Mod. Phys. 89, 041004 (2017) (focus on manybody entanglement)

F. Guinea, Electronic bands of twisted graphene layers, Journal Club for Condensed Matter Physics, JCCM November 2018 03
 C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T. Senthil, Quantum spin liquids, Science 367, eaay0668 (2020)
 S. M. Frolov, M. J. Manfra, and J. D. Sau, Topological superconductivity in hybrid devices, Nature Phys. 16, 718 (2020) (superconductors and semiconductors with strong spinorbit coupling; evidence for Majorana modes)

E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of nonHermitian systems, Rev. Mod. Phys. 93, 015005 (2021)

B. Q. Lv, T. Qian, and H. Ding, Experimental perspective on threedimensional topological semimetals, Rev. Mod. Phys. 93, 025002 (2021)
Other superfluids, BoseEinstein condensates, and ultracold gases
 A. Gezerlis and J. Carlson, Terrestrial and Astrophysical Superfluidity: Cold Atoms and Neutron Matter, arXiv:1109.4946 (applied to neutronstar crusts)
 K. Levin and R. G. Hulet, The Fermi Gases and Superfluids: Short Review of Experiment and Theory for Condensed Matter Physicists, arXiv:1202.2146
 E. Varoquaux, Anderson's considerations on the flow of superfluid helium: Some offshoots, Rev. Mod. Phys. 87, 803 (2015)
Condensed matter, other topics and general
 V. V. Brazhkin, HighPressure Synthesized Materials: a Chest of Treasure and Hints, condmat/0605626
 M. I. Katsnelson, Graphene: carbon in two dimensions, condmat/0612534, slightly longer version in: Materials Today 10, 20 (2007)
 A. J. Masters, Virial expansions, J. Phys.: Condens. Matter 20, 283102 (2008) (applied to isotropic fluids and liquid crystals)
 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009)
 G. Malenkov, Liquid water and ices: understanding the structure and physical properties, J. Phys.: Condens. Matter 21, 283101 (2009)
 Graphene (special section), J. Phys.: Condens. Matter 21, issue 34 (2009)
 J. Moore, Solidstate physics: An insulator's metallic side, Nature 460, 1090 (2009) and papers discussed therein (short "News and Views" with concise introduction to topological insulators)
 A. K. Geim, Graphene: Status and Prospects, arXiv:0906.3799
 A. R. Oganov and V. L. Solozhenko, Boron: a Hunt for Superhard Polymorphs, arXiv:0911.3193 (short review of the history of elementary boron up to the present)
 L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, Resonant Inelastic Xray Scattering Studies of Elementary Excitations, arXiv:1009.3630 (experimental and theoretical review on RIXS)
 J. E. Drut, T. A. Lähde, and E. Tölö, Graphene: from materials science to particle physics, arXiv:1011.0643 (discuss, among other things, the nearby excitonic instability)
 W. A. de Heer, The Development of Epitaxial Graphene For 21st Century Electronics, arXiv:1012.1644 (... with a focus on work done by the Georgia Tech group; contains a very interesting history of graphene before Geim and Novoselov)
 R. Resta, The Insulating State of Matter: A Geometrical Theory, arXiv:1012.5776
 F. Molitor, J. Guttinger, C. Stampfer, S. Droscher, A. Jacobsen, T. Ihn, and K. Ensslin, Electronic properties of graphene nanostructures, J. Phys.: Condens. Matter 23, 243201 (2011)
 B. Uchoa, J. P. Reed, Y. Gan, Y. I. Joe, D. Casa, E. Fradkin, and P. Abbamonte, The electron manybody problem in graphene, arXiv:1109.1577
 H. Essen and M. C. N. Fiolhais, Meissner effect, diamagnetism, and classical physics  a review, arXiv:1109.1968 (review of arguments against the Bohrvon Leeuwen theorem and against Meissner's assertion that the MeissnerOchsenfeld effect cannot be understood classically)
 N. Nagaosa and Y. Tokura, Emergent electromagnetism in solids, arXiv:1109.4720
 D. R. Cooper et al., Experimental review of graphene, arXiv:1110.6557
 R. Lifshitz, Symmetry Breaking and Order in the Age of Quasicrystals, arXiv:1111.3004
 T. BartelsRausch et al., Ice structures, patterns, and processes: A view across the icefields, Rev. Mod. Phys. 84, 885 (2012) (broad review of water ice, including phase diagram and structures, lattice defects, glassy ice, sea ice, ice in the Earth's atmosphere, in the solar system, and in interstellar space)
 V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro Neto, ElectronElectron Interactions in Graphene: Current Status and Perspectives, Rev. Mod. Phys. 84, 1067 (2012)
 K. HyeonDeuk and O. V. Prezhdo, Photoexcited electron and hole dynamics in semiconductor quantum dots: phononinduced relaxation, dephasing, multiple exciton generation and recombination, J. Phys.: Condens. Matter 24, 363201 (2012)
 R. Comin and A. Damascelli, ARPES: A probe of electronic correlations, arXiv:1303.1438, in Strongly Correlated Systems: Experimental Techniques, Springer Series in SolidState Sciences (2013)
 A. G. Green, An Introduction to Gauge Gravity Duality and Its Application in Condensed Matter, arXiv:1304.5908 (introductory review)
 V. Meunier, A. G. Souza Filho, E. B. Barros, and M. S. Dresselhaus, Physical properties of lowdimensional sp^{2}based carbon nanostructures, Rev. Mod. Phys. 88, 025005 (2016) (graphene, nanotubes, also with edges)

Z. Lin et al., Flatbands and Emergent Ferromagnetic Ordering in Fe_{3}Sn_{2} Kagome Lattices, Phys. Rev. Lett. 121, 096401 (2018) (ARPES, STM, compared to DFT, with TersoffHamann approximation for STM modeling)
Molecular physics and chemistry
 W. R. Browne and B. L. Feringa, Light Switching of Molecules on Surfaces, Annu. Rev. Phys. Chem. 60, 407 (2009)
Field theory
 Z. Nussinov, C. D. Batista, and E. Fradkin, Intermediate Symmetries In Electronic Systems: Dimensional Reduction, Order Out Of Disorder, Dualities, And Fractionalization, condmat/0602569 (also contains introduction to local gauge symmetry)
 B. Schroer, String theory deconstructed (a detailed critique of the content of ST from an advanced QFT viewpoint), hepth/0611132, dedicated to Philip Anderson on the occasion of his 83rd birthday
 S. A. Hartnoll, Lectures on holographic methods for condensed matter physics, arXiv:0903.3246 (starting with an introduction to the antideSitter space/conformal field theory (AdS/CFT) correspondence; compare following reference)
 J. McGreevy, Holographic duality with a view toward manybody physics, arXiv:0909.0518 (lectures introducing the AdS/CFT correspondence; compare previous reference)
 N. Turok, Particle physics: Beyond Feynman's diagrams, Nature 469, 165 (2011) (short News & Views article on recent trends)

A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, Circuit quantum electrodynamics, Rev. Mod. Phys. 93, 025005 (2021)
Quantum mechanics and quantum information
 D. Aharonov, Quantum Computation, quantph/9812037, Annual Reviews of Computational Physics, vol. VI (World Scientific, 1998) (extensive review, includes clear discussions of the underlying concepts in theoretical computer science and of quantum algorithms)
 J. Tao, X. Gao, G. Vignale, and I. V. Tokatly, Linear Continuum Mechanics for Quantum ManyBody Systems, Phys. Rev. Lett. 103, 086401 (2009); S. Pittalis, G. Vignale, and I. V. Tokatly, Quantum continuum mechanics in a strong magnetic field, arXiv:1109.3644
 S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Circuit QED and engineering charge based superconducting qubits, arXiv:0912.3902, Phys. Scr. T 137, 014012 (2009)
 A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Introduction to quantum noise, measurement and amplification, Rev. Mod. Phys. 82, 1155 (2010), arXiv version with additional appendices: arXiv:0810.4729 (extensive, partly pedagogical review)
 J.S. Caux and J. Mossel, Remarks on the notion of quantum integrability, arXiv:1012.3587 (very useful review and discussion of various formulations of integrability, including failing ones)
 M.H. Yung, J. D. Whitfield, S. Boixo, D. G. Tempel, A. AspuruGuzik, Introduction to Quantum Algorithms for Physics and Chemistry, arXiv:1203.1331
 C. Kloeffel and D. Loss, Prospects for SpinBased Quantum Computing, arXiv:1204.5917
 N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014)
 X.s. Ma, J. Kofler, and A. Zeilinger, Delayedchoice gedanken experiments and their realizations, Rev. Mod. Phys. 88, 015005 (2016) (includes historical review)

F. Fröwis, P. Sekatski, W. Dür, N. Gisin, and N. Sangouard, Macroscopic quantum states: Measures, fragility, and implementations, Rev. Mod. Phys. 90, 025004 (2018) (defining macroscopic quantumness)

E. Chitambar and G. Gour, Quantum resource theories, Rev. Mod. Phys. 91, 025001 (2019)

R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, Quantum steering, Rev. Mod. Phys. 92, 015001 (2020) (from Schrödinger's original article to recent work)

S. Parameswaran, Taking the measure of quantum dynamics, Journal Club for Condensed Matter Physics, March 30, 2021 (lucid summary on evolution of random unitary circuits with measurements)
Statistical physics
 S. R. Finch, Several Constants Arising in Statistical Mechanics, math.CO/9810155 !
 B. M. McCoy, The 1999 Heineman Prize Address, Integrable models in statistical mechanics: The hidden field with unsolved problems, mathph/9904003
 T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, M. P. A. Fisher, 'Deconfined' quantum critical points, condmat/0311326; T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, M. P. A. Fisher, Deconfined criticality critically defined, condmat/0404718
 R. J. Baxter, The challenge of the chiral Potts model, condmat/0510683
 K. J. Wiese, Why one needs a functional renormalization group to survive in a disordered world, condmat/0511529, Pramana 64, 817 (2005) (dimensionalreduction theorem and its failure, relation to replicasymmetry breaking)
 R. Kenna, The XY Model and the BerezinskiiKosterlitzThouless Phase Transition, condmat/0512356 (review on recent progress, subtleties due to logarithmic corrections)
 V. N. Plechko, Fermions and Correlations in the TwoDimensional Ising Model, hepth/0512263 (mapping onto Majorana fermions etc.)
 G. E. Volovik, Quantum phase transitions from topology in momentum space, condmat/0601372 (Classification of QPT's according to codimension of set of zeroes of fermionic spectrum, many insightful remarks)
 T. Vojta, Rare region effects at classical, quantum, and nonequilibrium phase transitions, condmat/0602312 (Griffiths singularities etc.)
 R. Kenna, Homotopy in statistical physics, condmat/0602459, Cond. Matt. Phys. (includes an introduction to the relevant mathematics)
 M. GellMann and J. Hartle, Quasiclassical Coarse Graining and Thermodynamic Entropy, quantph/0609190
 Chemical Kinetics beyond the Textbook: Flucutations, ManyParticle Effects and Anomalous Dynamics, J. Phys.: Condens. Matter 19 (6) (special issue with many articles highlighting different aspects)
 S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical phenomena in complex networks, arXiv:0705.0010
 R. A. Blythe and M. R. Evans, Nonequilibrium Steady States of Matrix Product Form: A Solver's Guide, arXiv:0706.1678
 K. Huang, Protein Folding as a Physical Stochastic Process, arXiv:0707.2388
 L. M. Martyushev, Do Nonequilibrium Processes Have Features in Common?, arXiv:0709.0152 (short note)
 C. Vega, E. Sanz, J. L. F. Abascal, and E. G. Noya, Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins, J. Phys.: Condens. Matter 20, 153101 (2008)
 R. Frigg, A Field Guide to Recent Work on the Foundations of Statistical Mechanics, arXiv:0804.0399
 D. Mukamel, Statistical Mechanics of systems with long range interactions, arXiv:0811.3120
 A. L. Kuzemsky, Bogoliubov's vision: quasiaverages and broken symmetry to quantum protectorate and emergence, Int. J. Mod. Phys. B 24, 835 (2010)
 S. Ramaswamy, The Mechanics and Statistics of Active Matter, arXiv:1004.1933, Ann. Rev. Condens. Matter Phys. (2010)
 Z. Burda, J. Duda, J. M. Luck, and B. Waclaw, The various facets of random walk entropy, arXiv:1004.3667 (random walks on graphs)
 T. Vojta, Quantum Griffiths effects and smeared phase transitions in metals: theory and experiment, arXiv:1005.2707
 R. J. Baxter, Some comments on developments in exact solutions in statistical mechanics since 1944, arXiv:1010.0710
 L. P. Kadanoff, Relating Theories via Renormalization, arXiv:1102.3705 (historical overview)
 N. Singh, How and why does statistical mechanics work, arXiv:1103.4003 (concise critical review; ergodicity, chaos, statistial independence)
 B. Vanderheyden and A. D. Jackson, Random matrix models for phase diagrams, arXiv:1105.1291 (illustrated for QCD and highT_{c} materials)
 T. Chou, K. Mallick, and R. K. P. Zia, Nonequilibrium statistical mechanics: From a paradigmatic model to biological transport, arXiv:1110.1783, Rep. Prog. Phys. (long review on Markov processes and the Pauli master equation, contains detailed analysis of the totally asymmetric exclusion process including Betheansatz approach, also discusses biomolecular applications)
 R. E. Spinney and I. J. Ford, Fluctuation relations: a pedagogical overview, arXiv:1201.6381
 C. Xu, Unconventional Quantum Critical Points, arXiv:1202.6065 (topological transitions and direct secondorder transitions between competing orders)
 H.P. Breuer, Foundations and Measures of Quantum NonMarkovianity, arXiv:1206.5346
 N. Gray, D. Minic, and M. Pleimling, On nonequilibrium physics and string theory, arXiv:1301.6368
 Z. Nussinov and J. van den Brink, Compass and Kitaev models  Theory and Physical Motivations, arXiv:1303.5922
 E. Efrati, Z. Wang, A. Kolan, and L. P. Kadanoff, Realspace renormalization in statistical mechanics , Rev. Mod. Phys. 86, 647 (2014)
 C. Jarzynski, Diverse phenomena, common themes, Nature Phys. 11, 105 (2015) and references therein, published in the same issue, on nonequilibrium statistical physics; P. Hänggi and P. Talkner, The other QFT, Nature Phys. 11, 108 (2015) (review on fluctuation theorems for nonequilibrium systems); J. Eisert, M. Friesdorf, and C. Gogolin, Quantum manybody systems out of equilibrium, Nature Phys. 11, 124 (2015) (review on selfthermalization of closed systems)
 L. Bertini, A. De Sole, D. Gabrielli, G. JonaLasinio, and C. Landim, Macroscopic fluctuation theory, Rev. Mod. Phys. 87, 593 (2015) (review of this proposed theory of stationary nonequilibrium states)
 H.P. Breuer, E.M. Laine, J. Piilo, and B. Vacchini, Colloquium: NonMarkovian dynamics in open quantum systems, Rev. Mod. Phys. 88, 021002 (2016) (master equation)

I. de Vega and D. Alonso, Dynamics of nonMarkovian open quantum systems, Rev. Mod. Phys. 89, 015001 (2017) (detailed review of theoretical methods)

R. Moessner and S. L. Sondhi, Equilibration and order in quantum Floquet matter, Nature Phys. 13, 424 (2017)

H. Weimer, A. Kshetrimayum, and R. Orús, Simulation methods for open quantum manybody systems, Rev. Mod. Phys. 93, 015008 (2021) (broad overview of numerical methods)
Other fields, general and interdisciplinary physics
 P. Carruthers and F. Zachariasen, Quantum collision theory with phasespace distributions, Rev. Mod. Phys. 55, 245 (1983) (Wignerfunction approach)
 A. M. J. Schakel, TimeDependent GinzburgLandau Theory and Duality, condmat/9904092 (discussing BCS and BEC limits and duality)
 B. Mashhoon, F. Gronwald, and H. I. M. Lichtenegger, Gravitomagnetism and the Clock Effect, grqc/9912027 (gravitoelectromagnetic field, approximate derivation from GTR)
 A. Unzicker, What can Physics learn from Continuum Mechanics?, grqc/0011064 (topological defects, continuum mechanics, spacetime, and Einstein's teleparallel theory)
 G. E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003), http://ltl.tkk.fi/personnel/THEORY/volovik/book.pdf (book, common concepts in cosmology and condensedmatter theory); G. E. Volovik, Emergent physics on vacuum energy and cosmological constant, condmat/0507454 (ideas common to cosmology and condensedmatter theory), see also below (2010)
 C. M. Bender, Making Sense of NonHermitian Hamiltonians, hepth/0703096, Rep. Prog. Phys. (extensive review with lots of interesting details) !
 B. Duplantier, Brownian Motion, "Diverse and Undulating", arXiv:0705.1951, expanded version of article in Einstein, 19052005, Poincaré Seminar 2005, edited by T. Damour, O. Darrigol, B. Duplantier, and V. Rivasseau, p. 201 (Birkhäuser, Basel, 2006) (extended historical review, also discussing mathematical aspects)
 D. Chowdhury, Resource Letter: Biomolecular Nanomachines: where Physics, Chemistry, Biology and Technology meet, arXiv:0807.2731 (extensive review)
 D. V. Shirkov, 60 years of Broken Symmetries in Quantum Physics (From the Bogoliubov Theory of Superfluidity to the Standard Model), arXiv:0903.3194
 D. Sherrington, Physics and Complexity, arXiv:0903.3572, Phil. Mag. A (macroscopic complexity arising from simple microscopic properties)
 S. Fortunato, Community detection in graphs, arXiv:0906.0612
 H. J. Haubold, A. M. Mathai, and R. K. Saxena, MittagLeffler Functions and Their Applications, arXiv:0909.0230
 G. E. Volovik, The Superfluid Universe, arXiv:1004.0597 (the quantum vacuum, cosmology, and liquid Helium3, based on considerations of thermodynamics, topology and symmetry) P
 F. Wilczek, BCS as Foundation and Inspiration: The Transmutation of Symmetry, arXiv:1008.1741 (developments in general physics inspired by BCS theory)
 N. Goldenfeld and C. Woese, Life is physics: evolution as a collective phenomenon far from equilibrium, arXiv:1011.4125
 D. Schumayer and D. A. W. Hutchinson, Colloquium: Physics of the Riemann hypothesis, Rev. Mod. Phys. 83, 307 (2011) (review on the Riemann zeta function from the perspective of physics)
 N. Auerbach and V. Zelevinsky, SuperRadiant Dynamics, Doorways, and Resonances in Nuclei and Other Open Mesoscopic Systems, arXiv:1104.5462
 D. Blume, Fewbody physics with ultracold atomic and molecular systems in traps, arXiv:1111.0941
 R. Chiao, Superluminal phase and group velocities: A tutorial on Sommerfeld's phase, group, and front velocities for wave motion in a medium, with applications to the "instantaneous superluminality" of electrons, arXiv:1111.2402
 D. J. Rowe, M. J. Carvalho, and J. Repka, Dual pairing of symmetry and dynamical groups in physics, Rev. Mod. Phys. 84, 711 (2012) (as applied to quantum manybody theory)
 Physics in one dimension (special section), J. Phys.: Condens. Matter 25, 010301 (2013)
 R. E. Allen, The LondonAndersonEnglertBroutHiggsGuralnikHagenKibbleWeinberg mechanism and Higgs boson reveal the unity and future excitement of physics, arXiv:1306.4061 (history of the the named mechanism and implications for future research)
 M. Cariglia, Hidden symmetries of dynamics in classical and quantum physics, Rev. Mod. Phys. 86, 1283 (2014) (rather mathematical presentation with many examples, including tops and the RungeLenz vector)
 S. R. Elliott and M. Franz, Colloquium: Majorana fermions in nuclear, particle, and solidstate physics, Rev. Mod. Phys. 87, 137 (2015) (theoretical and experimental overview)
Mathematics
 S. Torquato and F. H. Stillinger, Jammed HardParticle Packings: From Kepler to Bernal and Beyond, arXiv:1008.2982, Rev. Mod. Phys. (2010)
History of physics and of science in general
 J. Schmalian, Failed theories of superconductivity, arXiv:1008.0447
Research Papers
Methods
Manybody theory
 W. Kohn and J. M. Luttinger, Quantum Theory of Electrical Transport Phenomena, Phys. Rev. 108, 590 (1957) (Boltzmann equation with collision integral derived from master equation)
 B. Velický, S. Kirkpatrick, and H. Ehrenreich, SingleSite Approximations in the Electronic Theory of Simple Binary Alloys, Phys. Rev. 175, 747 (1968) (detailed, partly pedagogical discussion of the CPA)
 A. H. MacDonald, S. M. Girvin, and D. Yoshioka, t/U expansion for the Hubbard model, Phys. Rev. B 37, 9753 (1988) (unitary transformation that removes terms that change the number of doubly occupied sites to any order) P; A. M. Oles, Comment, Phys. Rev. B 41, 2562 (1990); A. H. MacDonald, S. M. Girvin, and D. Yoshioka, Reply, Phys. Rev. B 41, 2565 (1990)
 D. N. Aristov, Indirect RKKY interaction in any dimensionality, Phys. Rev. B 55, 8064 (1997)
 D. Belitz and T. R. Kirkpatrick, Theory of manyfermion systems, Phys. Rev. B 56, 6513 (1997) (continuum manyfermion theory including potential disorder and interactions, uses bosonization, the replica trick, and saddlepoint expansion, long paper)
 Y. B. Ivanov, J. Knoll, and D. N. Voskresensky, SelfConsistent Approximations to NonEquilibrium ManyBody Theory, condmat/9807351 (generalization of KadanoffBaym approach with nonequilibrium Green functions)
 E. Lange, Renormalized vs. unrenormalized perturbationtheoretical approaches to the Mott transition, condmat/9810208, Mod. Phys. Lett. B 12, 915 (1998) (why unrenormalized perturbation theory often works better)
 A. Hübsch, M. Vojta, and K. W. Becker, Construction of sizeconsistent effective Hamiltonians for systems with arbitrary Hilbert space, J. Phys.: Condens. Matter 11, 8523 (1999), condmat/9909317
 D. Foerster, A planar diagram approach to the correlation problem, condmat/9912350 (largeN functional integral method for the Hubbard model based on an idea from QCD, nicely written, relation to FLEX)
 R. Renan, M. H. Pacheco, and C. A. S. Almeida, Treating some solid state problems with the Dirac equation, J. Phys. A: Math. Gen. 33, L509 (2000) (effective mass treatment of semiconductor heterostructures, how to use Dirac equation to derive it correctly)
 C. D. Batista and G. Ortiz, Generalized JordanWigner Transformations, Phys. Rev. Lett. 86, 1082 (2001)
 R. Frésard and T. Kopp, Slave Bosons in Radial Gauge: the Correct Functional Integral Representation and Inclusion of NonLocal Interactions, Nucl. Phys. B 594, 769 (2001), condmat/0011296 (how to gauge away all phase fluctuations of slave bosons by making the Lagrangemultiplier fields dynamic); R. Frésard, H. Ouerdane, and T. Kopp, Slave bosons in radial gauge: A bridge between path integral and Hamiltonian language, Nucl. Phys. B 785, 286 (2007) (also illustrating this pathintegral/Hamiltonian correspondence for simple model systems); Barnes slaveboson approach to the twosite singleimpurity Anderson model with nonlocal interaction, EPL 82, 31001 (2008)
 N. Dupuis, A new approach to strongly correlated fermion systems: the spinparticlehole coherentstate path integral, condmat/0105062
 Y. Kakehashi, Manybody coherent potential approximation, dynamical coherent potential approximation, and dynamical meanfield theory, Phys. Rev. B 66, 104428 (2002) (shows that manybody CPA, dynamical CPA, and DMFT are equivalent, gives results for disordered Hubbard model)
 V. Gurarie and J. T. Chalker, Some Generic Aspects of Bosonic Excitations in Disordered Systems, Phys. Rev. Lett. 89, 136801 (2002)
 S. Sharma and C. AmbroschDraxl, Linear and Secondorder Optical Response from First Principles, condmat/0305016 (in the independent particle approximation)
 M. Potthoff, Selfenergyfunctional approach: Analytical results and the MottHubbard transition, condmat/0306278
 E. Langmann, Exactly solvable models for 2D interacting fermions, J. Phys. A: Math. Gen. 37, 407 (2004) condmat/0206045
 M. Potthoff, Nonperturbative construction of the LuttingerWard functional, condmat/0406671
 M. S. Laad and L. Craco, Cluster coherent potential approximation for the electronic structure of disordered alloys, J. Phys.: Condens. Matter 17, 4765 (2005) (generalization of CPA to include nonlocal correlations)
 F. Verstraete and J. I. Cirac, Mapping local Hamiltonians of fermions to local Hamiltonians of spins, condmat/0508353
 A. Rüegg, M. Indergand, S. Pilgram, and M. Sigrist, Slaveboson theory of the Mott transition in the twoband Hubbard model, condmat/0508691
 K. R. Patton and M. R. Geller, Infrared catastrophe and tunneling into strongly correlated electron systems: Beyond the xray edge limit, condmat/0509617
 V. Cvetkovic and J. Zaanen, Vortex duality: watching the dual side with order propagators, condmat/0511586
 U. Birkenheuer, P. Fulde, and H. Stoll, A simplified method for the computation of correlation effects on the band structure of semiconductors, condmat/0511626
 G. Vidal, Entanglement renormalization, condmat/0512165 (improved realspace RG procedure that includes an additional transformation reducing the entanglement between blocks)
 M. Berciu, Green's function of a dressed particle, condmat/0602195 (obtains an approximate full Green function by summing over all diagrams but averaging over the momenta of internal propagators, i.e., neglecting momentum conservation; shown to give good results for the Holstein model); G. L. Goodvin, M. Berciu, and G. A. Sawatzky, The Green's Function of the Holstein Polaron, condmat/0609597
 A. Toschi, A. A. Katanin, and K. Held, Dynamical vertex approximation  a step beyond dynamical mean field theory, condmat/0603100
 D. A. Rowlands, Investigation of the nonlocal coherentpotential approximation, condmat/0603370, J. Phys.: Condens. Matter 18, 3179 (2006)
 P. Gosselin, A. Bérard, and H. Mohrbach, Semiclassical Diagonalization of Quantum Hamiltonian and Equations of Motion with Berry Phase Corrections, hepth/0603192
 P. Werner and A. J. Millis, Strong Coupling Continuous Time Impurity Solver: General Formulation and Application to Kondo Lattice and TwoOrbital Models, condmat/0607136
 E. Langmann and M. Wallin, Mean Field Magnetic Phase Diagrams for the Two Dimensional tt'U Hubbard Model, J. Stat. Phys. 127, 825 (2007) (also of methodological interest: meanfield approximation at fixed chemical potential, i.e., minimizing the grandcanonical potential, forbidden ranges of particle number indicate mixed phases [the study of which requires additional treatment of boundaries]; application is in agreement with more advanced methods; finds incompressible antiferromagnetic state [particle number constant as function of chemical potential] only at zero doping)
 S. Ostlund, The strong coupling Kondo lattice model as a Fermi gas, condmat/0703768 (exact mapping)
 M. Greiter and D. Schuricht, Manyspinon states and the secret significance of Young tableaux, arXiv:0705.1467
 M. B. Hastings, Quantum Belief Propagation, arXiv:0706.4094
 F. Mancini, A class of solvable models in Condensed Matter Physics, arXiv:0707.3839, Condens. Matter Phys. 9, 393 (2006) (model with general multiparticle density interactions, but without kinetic energy)
 B. Sutherland, The Structure of Integrable OneDimensional Systems, arXiv:0708.0334 (relation of classical notion of integrable systems to the Bethe ansatz for the corresponding quantum system)
 M. Balzer, W. Hanke, and M. Potthoff, Mott transition in one dimension: Benchmarking dynamical cluster approaches, arXiv:0709.4620 (comparison with various other methods)
 V. A. Apinyan and T. K. Kopec, Effective pairing interaction in the twodimensional Hubbard model within a spin rotationally invariant approach, Phys. Rev. B 78, 184511 (2008)
 J. Zaanen, F. Krüger, J.H. She, D. Sadri, and S. I. Mukhin, Pacifying the Fermiliquid: battling the devious fermion signs, arXiv:0802.2455 (fermionic path integral, includes review)
 J. Brinckmann and P. Wölfle, Diagrammatic approximations for the 2d quantum antiferromagnet: exact projection of auxiliary fermions, arXiv:0803.3312 (projection to implement local constraint on auxiliaryfermion number, exact projection compared to projection of average)
 J. P. Coe, K. Capelle, and I. D'Amico, Reverse engineering in manybody quantum physics: What manybody system corresponds to an effective singleparticle equation?, arXiv:0809.0586
 A. Hackl and S. Kehrein, Unitary perturbation theory approach to realtime evolution problems, arXiv:0809.3524
 H. Mukaida and Y. Sakamoto, Exactness of the replica method in perturbation, arXiv:0809.4071
 A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein, and A. Georges, Dual fermion approach to the twodimensional Hubbard model: Antiferromagnetic fluctuations and Fermi arcs, arXiv:0810.3819
 D. Belitz and T. R. Kirkpatrick, Electronic Transport at Low Temperatures: Diagrammatic Approach, arXiv:0812.0024 (conserving ladder approximation for the Kubo formula is consistent with result from Boltzmann equation)
 Z. Nussinov and G. Ortiz, Bond Algebras and Exact Solvability of Hamiltonians: Spin S=1/2 Multilayer Systems and Other Curiosities, arXiv:0812.4309 (how to construct models with exactly known spectra)
 S. N. Datta and A. Panda, Alltemperature magnon theory of ferromagnetism, J. Phys.: Condens. Matter 21, 336003 (2009)
 Z.C. Gu and X.G. Wen, Tensorentanglementfiltering renormalization approach and symmetryprotected topological order, Phys. Rev. B 80, 155131 (2009); see also Viewpoint: S. Sachdev, Tensor networks  a new tool for old problems, Physics 2, 90 (2009)
 S. G. Jakobs, M. Pletyukhov, and H. Schoeller, Properties of multiparticle Green and vertex functions within Keldysh formalism, arXiv:0902.2350
 A. Benlagra, K.S. Kim, and C. Péepin, LuttingerWard functional approach in the Eliashberg framework: A systematic derivation of scaling for thermodynamics near a quantum critical point, arXiv:0902.3630
 M. Dunn, W. Blake Laing, D. Toth, and D. K. Watson, A Test of a New Interacting NBody Wave Function, arXiv:0903.0875
 A. Croy and U. Saalmann, A partial fraction decomposition of the Fermi function, arXiv:0903.4824 (which converges much more rapidly than the Matsubara sum)
 K. B. Efetov, C. Pepin, and H. Meier, Exact bosonization for an interacting Fermi gas in arbitrary dimensions, arXiv:0907.3243 (said to avoid the sign problem)
 M. Berciu and A. M. Cook, Efficient computation of lattice Green's functions for models with nearestneighbour hopping, EPL 92 40003 (2010) (algebraic, starting from equation of motion for Green function in real space [on lattice])
 P. Werner and A. J. Millis, Dynamical Screening in Correlated Electron Materials, arXiv:1001.1377 (screening of the HubbardU interaction)
 J. Eckel, F. HeidrichMeisner, S. G. Jakobs, M. Thorwart, M. Pletyukhov, and R. Egger, Comparative study of theoretical methods for nonequilibrium quantum transport, arXiv:1001.3773 (compare FRG, timedependent DMRG, and iterative summation of realtime path integrals)
 J. Bünemann, A slaveboson meanfield theory for general multiband Hubbard models, arXiv:1002.3228
 F. Fröwis, V. Nebendahl, and W. Dür, Tensor operators  constructions and applications for longrange interaction systems, arXiv:1003.1047
 P. Kopietz, L. Bartosch, L. Costa, A. Isidori, and A. Ferraz, Ward identities for the Anderson impurity model: derivation via functional methods and the exact renormalization group, arXiv:1003.1867
 J. E. Moussa, Approximate diagonalization method for manyfermion Hamiltonians, arXiv:1003.2596
 V. Galitski, Fermionization Transform for Certain HigherDimensional Quantum Spin Models, arXiv:1003.3874
 Y.F. Yang, N. J. Curro, Z. Fisk, D. Pines, and J. D. Thompson, A predictive standard model for heavy electron systems, arXiv:1005.5184
 J. Jedrak, J. Kaczmarczyk, and J. Spalek, Statisticallyconsistent Gutzwiller approach and its equivalence with the meanfield slaveboson method for correlated systems, arXiv:1008.0021
 C. Jung, A. Lieder, S. Brener, H. Hafermann, B. Baxevanis, A. Chudnovskiy, A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, DualFermion approach to Nonequilibrium strongly correlated problems, arXiv:1011.3264 (dual perturbation theory on the Keldysh time contour)
 T. Tay and O. I. Motrunich, Failure of Gutzwillertype wave function to capture gauge fluctuations: Case study in the Exciton Bose Liquid context, arXiv:1012.3783 (solution using a Gutzwillerprojected wave function is compared to a full slaveparticle approach)
 K. Edwards and A. C. Hewson, A new renormalization group approach for systems with strong electron correlation, J. Phys.: Condens. Matter 23, 045601 (2011) (RG as function of magnetic field, starting at high field, which suppresses spin fluctuations, and reducing the field to zero)
 J. H. Wilson and V. Galitski, Breakdown of the Coherent State Path Integral: Two Simple Examples, Phys. Rev. Lett. 106, 110401 (2011)
 S. M. Giampaolo, G. Gualdi, A. Monras, and F. Illuminati, Characterizing and Quantifying Frustration in Quantum ManyBody Systems, Phys. Rev. Lett. 107, 260602 (2011)
 M. Balzer and M. Potthoff, Nonequilibrium clusterperturbation theory, arXiv:1102.3344 (on Keldysh contour)
 R. van Leeuwen and G. Stefanucci, Wick Theorem for General Initial States, arXiv:1102.4814
 P. Anders, E. Gull, L. Pollet, M. Troyer, and P. Werner, Dynamical meanfield theory for bosons, arXiv:1103.0017
 A. Toschi, G. Rohringer, A. A. Katanin, and K. Held, Ab initio calculations with the dynamical vertex approximation, arXiv:1104.2188
 H. Kleinert, HubbardStratonovich Transformation: Successes, Failure, and Cure, arXiv:1104.5161 (how to avoid the problem of the HS transformation that one has to select one specific decoupling channel)
 M. Weinstein, A. Auerbach, and V. R. Chandra, Reducing Memory Cost of Exact Diagonalization using Singular Value Decomposition, arXiv:1105.0007
 R. Hübener and T. Barthel, Approaching condensed matter ground states from below, arXiv:1106.4966 (method giving rigorous lower bound for groundstate energy)
 E. von Oelsen, G. Seibold, and J. Bünemann, TimeDependent Gutzwiller Theory for Multiband Hubbard Models, arXiv:1107.1354; The timedependent Gutzwiller theory for multiband Hubbard models, arXiv:1107.1631
 V. Alba, M. Haque, and A. M. Laeuchli, Boundarylocality and perturbative structure of entanglement spectra in gapped systems, arXiv:1107.1726
 V. V. Cheianov, I. L. Aleiner, and V. I. Fal'ko, Tunable Strongly Correlated Band Insulator, arXiv:1107.4750 (... a new concept)
 S. Chandrasekharan and U.J. Wiese, Partition Functions of Strongly Correlated Electron Systems as "Fermionants", arXiv:1108.2461 (a new approach to the partition function of interacting systems)
 J. Zaanen and A. J. Beekman, The emergence of gauge invariance: the stayathome gauge versus localglobal duality, arXiv:1108.2791 (starts with a review of relevant concepts)
 B. Swingle and T. Senthil, A geometric proof of the equality between entanglement and edge spectra, arXiv:1109.1283
 A. Ferraz and E. A. Kochetov, Effective action for strongly correlated electron systems, arXiv:1109.5103 (path integral)
 Z. Nussinov, G. Ortiz, and E. Cobanera, Effective and exact holographies from symmetries and dualities, arXiv:1110.2179 (very long paper)
 A. Dutta, C. Trefzger, and K. Sengupta, A projection operator approach to the BoseHubbard model, arXiv:1111.5085 (for equilibrium and nonequilibrium cases)
 M. Berciu, Fewparticle Green's functions for strongly correlated systems on infinite lattices, arXiv:1112.1928
 J. RodriguezLaguna, P. Migdal, M. Ibánez Berganza, M. Lewenstein, and G. Sierra, Qubism: selfsimilar visualization of manybody wavefunctions, arXiv:1112.3560 !
 C. Honerkamp, Effective interactions in multiband systems from constrained summations, arXiv:1112.5143 (constrained RPA and beyond)
 D. Belitz and T. R. Kirkpatrick, Effective SoftMode Theory for Clean Fermions, arXiv:1112.5916
 M. Balzer, N. Gdaniec, and M. Potthoff, Krylovspace approach to the equilibrium and nonequilibrium singleparticle Green's function, J. Phys.: Condens. Matter 24, 035603 (2012)
 T. R. Kirkpatrick and D. Belitz, Theory of a FermiLiquid to NonFermiLiquid Quantum Phase Transition in Dimensions d>1, Phys. Rev. Lett. 108, 086404 (2012) (transition toward a Luttingerliquidlike phase in higher dimensions; density of states at the Fermi energy is considered as order parameter)
 K. Byczuk, J. Kunes, W. Hofstetter, and D. Vollhardt, Quantification of Correlations in Quantum ManyParticle Systems, Phys. Rev. Lett. 108, 087004 (2012) (measure of correlations based on density operator)
 A. Akbari, M. J. Hashemi, R. M. Nieminen, R. van Leeuwen, and A. Rubio, Challenges in Truncating the Hierarchy of TimeDependent Reduced Density Matrices Equations: Open Problems, arXiv:1204.4395 (comprehensive paper on BornBogoliubovGreenKirkwoodYvon hierarchy of one, two, three, etc. body reduced density matrices, in particular discuss truncated at third order)
 G. Knizia and G. K.L. Chan, Density matrix embedding: A simple alternative to dynamical meanfield theory, arXiv:1204.5783
 S. N. Dinh, D. A. Bagrets, and A. D. Mirlin, Nonequilibrium functional bosonization of quantum wire networks, arXiv:1205.3464
 P. Jacquod, R. S. Whitney, J. Meair, and M. Büttiker, Onsager Relations in Coupled Electric, Thermoelectric and Spin Transport: The TenFold Way, arXiv:1207.1629 (Onsager relations between uniform linearresponse coefficients, for all 10 classes; also contains a nice discussion of physical examples for all AltlandZirnbauer "tenfold way" classes)
 S. A. Maier and C. Honerkamp, Renormalization group flow for fermions into antiferromagnetically ordered phases: Method and meanfield models, arXiv:1207.2314
 J. S. M. Anderson, M. Nakata, R. Igarashi, K. Fujisawa, and M. Yamashita, The secondorder reduced density matrix method and the twodimensional Hubbard model, arXiv:1207.4847
 M. L. Leek, Mathematical Details in the application of Nonequilibrium Green's Functions (NEGF) and Quantum Kinetic Equations (QKE) to Thermal Transport, arXiv:1207.6204 (very long thesis, including disussion of how Landauer theory, kinetic theory, and Kubo linearresponse theory are derived in the general NEGF formalism)
 B. Sriram Shastry, Extremely Correlated Fermi Liquids: The Formalism, arXiv:1207.6826
 P. Wang, The excitation operator approach to nonMarkovian dynamics of quantum impurity models in the Kondo regime, arXiv:1209.3881 (dynamics of Kondo spin coupled to a single nonMarkovian reservoir)
 C. Aron, C. Weber, and G. Kotliar, Impurity model for nonequilibrium steady states, arXiv:1210.4926 (nonequilibrium DMFT for Hubbard model with lateral electric field)
 E. M. Stoudenmire and S. R. White, RealSpace Parallel Density Matrix Renormalization Group, arXiv:1301.3494
 J. Büunemann, M. Capone, J. Lorenzana, and G. Seibold, LinearResponse Dynamics from the TimeDependent Gutzwiller Approximation, arXiv:1303.1665
 B. Verstichel, W. Poelmans, S. De Baerdmacker, S. Wouters, and D. Van Neck, v2DM study of the 2D Hubbard model: Benchmark results with threeindex conditions and extended cluster constraints, arXiv:1307.1002
 M. Kinza and C. Honerkamp, Twoparticlecorrelations in DMFT(fRG), arXiv:1307.1298
 S. A. Maier, C. Honerkamp, and Q.H. Wang, Interplay between PointGroup Symmetries and the Choice of the Bloch Basis in Multiband Models, arXiv:1310.0278 (how to best construct Bloch states and transformation matrices for orbitally nontrivial models, also address the nontrivial transformations of interaction terms)
 G. Evenbly and G. Vidal, RealSpace Decoupling Transformation for Quantum ManyBody Systems, Phys. Rev. Lett. 112, 220502 (2014) (RG)
 A. J. Ferris, Fourier Transform for Fermionic Systems and the Spectral Tensor Network, Phys. Rev. Lett. 113, 010401 (2014)
 A. P. Itin and M. I. Katsnelson, Effective Hamiltonians for Rapidly Driven ManyBody Lattice Systems: Induced Exchange Interactions and DensityDependent Hoppings, Phys. Rev. Lett. 115, 075301 (2015) (effective timeindependent Hamiltonians obtained by canonical transformations; applied to 1D fermionic and bosonic Hubbard models)
 M. Bukov, M. Kolodrubetz, and A. Polkovnikov, SchriefferWolff Transformation for Periodically Driven Systems: Strongly Correlated Systems with Artificial Gauge Fields, Phys. Rev. Lett. 116, 125301 (2016) (use Floquet theory)
 C. Krumnow, L. Veis, Ö. Legeza, and J. Eisert, Fermionic Orbital Optimization in Tensor Network States, Phys. Rev. Lett. 117, 210402 (2016)
 M. Ochi, R. Arita, and S. Tsuneyuki, Correlated Band Structure of a Transition Metal Oxide ZnO Obtained from a ManyBody Wave Function Theory, Phys. Rev. Lett. 118, 026402 (2017) (application of novel biorthogonal transcorrelated method)

N. Lanatà, Y. Yao, X. Deng, V. Dobrosavljević, and G. Kotliar, Slave Boson Theory of Orbital Differentiation with Crystal Field Effects: Application to UO_{2}, Phys. Rev. Lett. 118, 126401 (2017)

O. Gunnarsson, G. Rohringer, T. Schäfer, G. Sangiovanni, and A. Toschi, Breakdown of Traditional ManyBody Theories for Correlated Electrons, Phys. Rev. Lett. 119, 056402 (2017) (progress in understanding how and why they break down for strong interactions)

Z. Bi and T. Senthil, Adventure in Topological Phase Transitions in 3+1D: NonAbelian Deconfined Quantum Criticalities and a Possible Duality, Phys. Rev. X 9, 021034 (2019) ("unnecessary quantum critical points")

Y.H. Wu, L. Wang, and H.H. Tu, Tensor Network Representations of Parton Wave Functions, Phys. Rev. Lett. 124, 246401 (2020)

J. Fei, C.N. Yeh, and E. Gull, Nevanlinna Analytical Continuation, Phys. Rev. Lett. 126, 056402 (2021) (strongly improved analytic continuation in frequency)

A. J. Kim, N. V. Prokof'ev, B. V. Svistunov, and E. Kozik, Homotopic Action: A Pathway to Convergent Diagrammatic Theories, Phys. Rev. Lett. 126, 257001 (2021)
See also: Statistical physics
Semiclassical theory and hydrodynamics
 M.C. Chang and Q. Niu, Berry curvature, orbital moment, and effective quantum theory of electrons in electromagnetic fields, J. Phys.: Condens. Matter 20, 193202 (2008) (how to construct semiclassical theories for transport of electrons in crystals)
 A. Polkovnikov, Representation of quantum dynamics of interacting systems through classical trajectories, arXiv:0905.3384 (long paper, related to WignerWeyl formulation of quantum mechanics)
 R. L. Frank, M. Lewin, E. H. Lieb, and R. Seiringer, Energy Cost to Make a Hole in the Fermi Sea, Phys. Rev. Lett. 106, 150402 (2011) (noninteracting Fermi gas, give a rigorous lower bound of energy cost based on semiclassical theory)
 P. A. Andreev, Quantum kinetics derivation as generalization of the quantum hydrodynamics method, arXiv:1212.0099
 O. A. CastroAlvaredo, B. Doyon, and T. Yoshimura, Emergent Hydrodynamics in Integrable Quantum Systems Out of Equilibrium, Phys. Rev. X 6, 041065 (2016); B. Bertini, M. Collura, J. De Nardis, and M. Fagotti, Transport in OutofEquilibrium XXZ Chains: Exact Profiles of Charges and Currents, Phys. Rev. Lett. 117, 207201 (2016) (hydrodynamical description of onedimensional integrable systems)

T. Stedman and L. M. Woods, Transport theory within a generalized Boltzmann equation for multiband wave packets, Phys. Rev. Research 2, 033086 (2020) (novel semiclassical theory with explicit wave packets)
Field theory
 M. Bachmann, H. Kleinert, and A. Pelster, Recursive graphical construction of Feynman diagrams in quantum electrodynamics, Phys. Rev. D 61, 085017 (2000); H. Kleinert, A. Pelster, B. Kastening, and M. Bachmann, Recursive graphical construction of Feynman diagrams and their multiplicities in phi^{4} and phi^{2}A theory, Phys. Rev. E 62, 1537 (2000)
 A. Pelster, H. Kleinert, and M. Bachmann, Functional Closure of SchwingerDyson Equations in Quantum Electrodynamics, Part 1: Generation of Connected and OneParticle Irreducible Feynman Diagrams, hepth/0109014
 D. A. Ivanov and M. A. Skvortsov, DysonMaleev representation of nonlinear sigmamodels, arXiv:0801.2180
 V. Cvetkovic, Z. Nussinov, and J. Zaanen, Ballistic properties of crystalline defects, arXiv:0905.2996
 H. D. Zeh, Quantum discreteness is an illusion, arXiv:0809.2904 (quantum mechanics derived from QFT and what we learn and unlearn from it)
 A. Karch and S. L. Sondhi, Nonlinear, Finite Frequency Quantum Critical Transport from AdS/CFT, arXiv:1008.4134
 C. P. Hofmann, A. Raya, and S. S. Madrigal, Confinement in MaxwellChernSimons Planar Quantum Electrodynamics and the 1/N approximation, arXiv:1010.3466
 R. Cheng and Q. Niu, Equivalence of O(3) nonlinear sigma model and the CP1 model: A path integral approach, arXiv:1010.4590 (proof of the equivalence stated in the title)
 G. Chen, A. Essin, and M. Hermele, Majorana spin liquids and projective realization of SU(2) spin symmetry, arXiv:1112.0586
Random matrix theory
 P. J. Forrester and E. M. Rains, Interrelationships between orthogonal, unitary and symplectic matrix ensembles, arXiv:solvint/9907008 (containing a review on random matrix ensembles, including nonstandard ones)
 I. E. Smolyarenko and B. D. Simons, Parametric statistics of individual energy levels in random Hamiltonians, Phys. Rev. E 67, 025202(R) (2003)
 A. T. Görlich and A. Jarosz, Addition of Free Unitary Random Matrices, mathph/0408019
 M. M. Duras, Simulations of fluctuations of quantum statistical systems of electrons, condmat/0506062 (definition and basic properties of randommatrix ensembles); Quantum fluctuations of systems of interacting electrons in two spatial dimensions, condmat/0510409
 G. M. Cicuta and H. Orland, Real symmetric random matrices and replicas, condmat/0607517 (contains a detailed introduction/review on random matrices and the replica formalism)
 E. GudowskaNowak, R. J. Janik, J. Jurkiewicz, M. A. Nowak, and W. Wieczorek, Random walkers versus random crowds: diffusion of large matrices, condmat/0612438 (study dynamics of independent random walk of all matrix components)
 U. Magnea, Random matrices beyond the Cartan classification, arXiv:0707.0418 (focusing on nonhermitian matrices)
 T. Rogers and I. P. Castillo, Cavity approach to the spectral density of nonHermitian sparse matrices, arXiv:0810.0991
 K. E. Bassler, P. J. Forrester, and N. E. Frankel, Eigenvalue Separation in Some Random Matrix Models, arXiv:0810.1554 (mainly for shifted Gaussian distribution of components)
 X. BarillierPertuisel, O. Bohigas, and H. A. Weidenmüller, RandomMatrix Approach to RPA equations. I, arXiv:0807.3155 (concerning nonhermitian random matrices appearing in the context of the RPA)
 B. Vanderheyden and A. D. Jackson, Random matrix model for antiferromagnetism and superconductivity on a twodimensional lattice, arXiv:0811.3571
 F. Franchini and V. E. Kravtsov, Horizon in Random Matrix Theory, Hawking Radiation and Flow of Cold Atoms, arXiv:0905.3533 (nontrivial equivalence of lowenergy behavior of a certain RM ensemble and a field theory in curved spacetime)
 E. Kanzieper, Replica Approach in Random Matrix Theory, arXiv:0909.3198, Oxford Handbook of Random Matrix Theory
 Z. Burda, R. A. Janik, and B. Waclaw, Spectrum of the Product of Independent Random Gaussian Matrices, arXiv:0912.3422
 A. Amir, Y. Oreg, and Y. Imry, Localization, anomalous diffusion and slow relaxations: a random distance matrix approach, arXiv:1002.2123 (matrix elements depend exponentially on the separations between randomly distributed points in real space)
 N. Saito, Y. Iba, and K. Hukushima, Multicanonical sampling of rare events in random matrices, arXiv:1002.4499
 E. Kanzieper and N. Singh, NonHermitean Wishart random matrices (I), arXiv:1006.3096
 T. Aspelmeier and A. Zippelius, The integrated density of states of the random graph Laplacian, arXiv:1008.1087
 B. A. Khoruzhenko, H.J. Sommers, and K. Zyczkowski, Truncations of Random Orthogonal Matrices, arXiv:1008.2075
 T. S. Grigera, V. MartinMayor, G. Parisi, P. Urbani, and P. Verrocchio, On the highdensity expansion for Euclidean Random Matrices, arXiv:1011.2798
 Y. N. Joglekar and W. A. Karr, Eigenvalue and levelspacing statistics of random, selfadjoint, nonHermitian matrices, arXiv:1012.1202
 C. Nadal and S. N. Majumdar, A simple derivation of the TracyWidom distribution of the maximal eigenvalue of a Gaussian unitary random matrix, arXiv:1102.0738
 A. Goetschy and S. E. Skipetrov, NonHermitian Euclidean random matrix theory, arXiv:1102.1850 (on matrices of the form HTH^{+}, H random, T given)
 G. Livan and P. Vivo, Moments of WishartLaguerre and Jacobi ensembles of random matrices: application to the quantum transport problem in chaotic cavities, arXiv:1103.2638
 Z. Burda, A. Jarosz, G. Livan, M. A. Nowak, and A. Swiech, Eigenvalues and Singular Values of Products of Rectangular Gaussian Random Matrices, arXiv:1103.3964 (long paper)
 G. Akemann and P. Vivo, Compact smallest eigenvalue expressions in WishartLaguerre ensembles with or without fixedtrace, arXiv:1103.5617
 F. Mezzadri and N. J. Simm, Moments of the transmission eigenvalues, proper delay times and random matrix theory I, arXiv:1103.6203 (for several ensembles, also nonGaussian ones)
 G. Akemann, NonHermitian extensions of Wishart random matrix ensembles, arXiv:1104.5203
 M. Masuku and J. P. Rodrigues, How universal is the Wigner distribution?, arXiv:1107.3681
 G. Shchedrin and V. Zelevinsky, Resonance width distribution for open quantum systems, arXiv:1112.4919 (nonhermitian Hamiltonian)
 I. Neri and F. L. Metz, Spectra of Sparse NonHermitian Random Matrices: An Analytical Solution, Phys. Rev. Lett. 109, 030602 (2012)
 S. Kumar, Random matrix ensembles: WangLandau algorithm for spectral densities, arXiv:1301.5179
 A. Lakshminarayan, On the number of real eigenvalues of products of random matrices and an application to quantum entanglement, arXiv:1301.7601 (products of matrices from GinOE)
 D. A. Ivanov and A. G. Abanov, FisherHartwig expansion for Toeplitz determinants and the spectrum of a singleparticle reduced density matrix for onedimensional free fermions, arXiv:1306.5017
 U. Mordovina and C. Emary, Full counting statistics of random transitionrate matrices, arXiv:1310.4070
 F. D. Cunden and P. Vivo, Universal Covariance Formula for Linear Statistics on Random Matrices, Phys. Rev. Lett. 113, 070202 (2014)

P. Kos, M. Ljubotina, and T. Prosen, ManyBody Quantum Chaos: Analytic Connection to Random Matrix Theory, Phys. Rev. X 8, 021062 (2018)

W. Buijsman, V. Cheianov, and V. Gritsev, Random Matrix Ensemble for the Level Statistics of ManyBody Localization, Phys. Rev. Lett. 122, 180601 (2019) (continuous exponent β, extending the WignerDyson ensembles)

A.G. Penner, F. von Oppen, G. Zaránd, and M. R. Zirnbauer, Hilbert Space Geometry of Random Matrix Eigenstates, Phys. Rev. Lett. 126, 200604 (2021) (properties of quantum geometric tensor, describing the metric of the dependence of eigenstates on multiple parameters; GUE)

J. Li, T. Prosen, and A. Chan, Spectral Statistics of NonHermitian Matrices and Dissipative Quantum Chaos, Phys. Rev. Lett. 127, 170602 (2021) (discussion of spectral statistics and introduction of a new measure to characterize it for complex spectra, not discussion of models for open systems, the nonHermitian matrices are most easily interpreted as effective Hamiltonians, though) P
Density functional theory and its descendents
 N. A. Lima, M. F. Silva, L. N. Oliveira, and K. Capelle, DensityFunctionals Not Based on the Electron Gas: LocalDensity Approximation for a Luttinger Liquid, Phys. Rev. Lett. 90, 146402 (2003)
 J. Schirmer and A. Dreuw, Critique of the foundations of timedependent densityfunctional theory, Phys. Rev. A 75, 022513 (2007) (claims that the RungeGross TDDFT is invalid); N. T. Maitra, K. Burke, and R. van Leeuwen, Comment on "Critique of the foundations of timedependent density functional theory", arXiv:0710.0018
 C. A. Ullrich and I. V. Tokatly, Nonadiabatic electron dynamics in timedependent densityfunctional theory, condmat/0602324 (comparison of two different approximations employed in TDDFT)
 C. A. Ullrich, Timedependent densityfunctional theory beyond the adiabatic approximation: insights from a twoelectron model system, condmat/0610341
 M. Di Ventra and R. D'Agosta, Stochastic TimeDependent CurrentDensityFunctional Theory, Phys. Rev. Lett. 98, 226403 (2007)
 F. C. Alcaraz and K. Capelle, Densityfunctional formulations for quantum chains, condmat/0702080 (applied to quantum spin chains)
 Q.M. Hu, K. Reuter, and M. Scheffler, Towards an exact treatment of exchange and correlation in materials: Application to the "CO adsorption puzzle" and other systems, condmat/0703354 (correction of exchangecorrelation potential using quantum chemistry for clusters)
 K. M. Ho, J. Schmalian, and C. Z. Wang, Gutzwiller density functional theory for correlated electron systems, arXiv:0707.3459 (DFT for highly correlated systems)
 D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, Turbo charging timedependent densityfunctional theory with Lanczos chains, arXiv:0801.1393 (superoperator formulation of TDDFT, claims to obtain the entire spectrum with numerical effort comparable to finding the ground state in static DFT)
 S. Sharma, J. K. Dewhurst, N. N. Lathiotakis, and E. K. U. Gross, Reduced Density Matrix Functional for ManyElectron Systems, arXiv:0801.3787
 S. Schenk, M. Dzierzawa, P. Schwab, and U. Eckern, Successes and failures of Bethe Ansatz Density Functional Theory, arXiv:0802.2490 (compares DFT/LDA with exact Bethe ansatz for onedimensional systems)
 G. Vignale, On the "Causality Paradox" of TimeDependent Density Functional Theory, arXiv:0803.2727 (resolves the paradox)
 R. D'Agosta and M. Di Ventra, Stochastic timedependent currentdensity functional theory: a functional theory of open quantum systems, arXiv:0805.3734
 D. Vieira and K. Capelle, Comparison of three different selfinteraction corrections for an exactly solvable model system, arXiv:0807.2816 (overall, prefering PerdewZunger SIC)
 P. MoriSanchez, A. J. Cohen, and W. Yang, The discontinuous nature of the exchangecorrelation functional  critical for strongly correlated systems, arXiv:0809.5108
 I. Dabo, M. Cococcioni, and N. Marzari, NonKoopmans Corrections in Densityfunctional Theory: Selfinteraction Revisited, arXiv:0901.2637
 Z. Liu and K. Burke, Adiabatic Connection for StrictlyCorrelated Electrons, arXiv:0907.2736 (DFT using a strongly correlated but immobile instead of a noninteracting electron gas as the reference; see also the following entry)
 P. GoriGiorgi, M. Seidl, and G. Vignale, Density functional theory for strongly interacting electrons, arXiv:0908.0669, Phys. Rev. Lett. (similar motivation to previous entry)
 Y.K. Yu, Derivation of the Density Functional via Effective Action, arXiv:0910.0670 (long paper)
 D. R. Bowler and T. Miyazaki, Calculations on millions of atoms with DFT: Linear scaling shows its potential, arXiv:0911.3584
 H. Eschrig, T>0 ensemblestate density functional theory via Legendre transform, Phys. Rev. B 82, 205120 (2010), see also Viewpoint: E. Prodan, Raising the temperature on densityfunctional theory, Physics 3, 99 (2010)
 X. Gao, J. Tao, G. Vignale, and I. V. Tokatly, Continuum Mechanics for Quantum ManyBody Systems: The Linear Response Regime, arXiv:1001.0616 (a closed equation for the current density, relies on the assumption of linear response)
 E. Luppi, H. Hübener, and V. Véniard, SecondOrder Nonlinear Optics from First Principles, arXiv:1001.2472 (using TDDFT)
 V. U. Nazarov, G. Vignale, and Y.C. Chang, On the relation between the scalar and tensor exchangecorrelation kernels of the timedependent densityfunctional theory, arXiv:1001.2795 (important for the connection between TDDFT and TDCDFT)
 A. Cangi, D. Lee, P. Elliott, and K. Burke, Leading Corrections to the Local Density Approximation, arXiv:1002.1351 (based on semiclassical approach, lead to substantial improvements over the LDA)
 H. Eschrig, T>0 ensemble state density functional theory revisited, arXiv:1002.4267
 K. Karlsson, F. Aryasetiawan, and O. Jepsen, Method for calculating the electronic structure of correlated materials from a truly firstprinciples LDA+U scheme, arXiv:1004.1321 (idea is to calculate U selfconsistently)
 D. Karlsson, A. Privitera, and C. Verdozzi, Time Dependent Density Functional Theory meets Dynamical Mean Field Theory: RealTime Dynamics for the 3D Hubbard Model, arXiv:1004.2264
 J. Schirmer, Modifying the variational principle in the action integral functional derivation of timedependent density functional theory, arXiv:1010.4223
 I. V. Tokatly, Timedependent current density functional theory on a lattice, arXiv:1011.2715
 M. Ruggenthaler, F. Mackenroth, and D. Bauer, Timedependent KohnSham approach to quantum electrodynamics, arXiv:1011.4162
 M. Gatti, Design of effective kernels for spectroscopy and molecular transport: timedependent currentdensityfunctional theory, arXiv:1012.4502
 S. Pittalis, C. R. Proetto, A. Floris, A. Sanna, C. Bersier, K. Burke, and E. K. U. Gross, Exact Conditions in FiniteTemperature DensityFunctional Theory, Phys. Rev. Lett. 107, 163001 (2011)
 E. M. Stoudenmire, L. O. Wagner, S. R. White, and K. Burke, Exact density functional theory with the density matrix renormalization group, arXiv:1107.2394
 P. E. Bloechl, C. F. J. Walther, and T. Pruschke, Is reduceddensitymatrix functional theory a suitable vehicle to import explicit correlations into densityfunctional calculations?, arXiv:1107.4780
 J. D. Ramsden and R. W. Godby, Exact DensityFunctional Potentials for TimeDependent Quasiparticles, Phys. Rev. Lett. 109, 036402 (2012)
 F. Malet and P. GoriGiorgi, Strong Correlation in KohnSham Density Functional Theory, Phys. Rev. Lett. 109, 246402 (2012) (based on the strongcoupling limit of the exchangecorrelation functional)
 J. Schirmer, RungeGross actionintegral functional reexamined, arXiv:1203.5052 (states that TDDFT cannot be based on an action principle and presents a straightforward argument for this)
 I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, Consistent LDA'+DMFT  an unambiguous way to avoid double counting problem: NiO test, arXiv:1204.2361
 G. Buttazzo, L. De Pascale, and P. GoriGiorgi, Optimaltransport formulation of electronic densityfunctional theory, arXiv:1205.4514 (link between DFT in the stronginteraction limit and the optimaltransport problem established in math and economics)
 P. Schmitteckert, M. Dzierzawa, and P. Schwab, Exact timedependent density functional theory for impurity models, arXiv:1205.4854 (based on DMRG, nonequilibrium situation of impurity coupled to onedimensional leads under a bias voltage, longrange exchangecorrelation functional is switched on instantaneously with the voltage, leading to difficulties in pratical application of TDDFT)
 F. Malet and P. GoriGiorgi, Strong correlation in KohnSham density functional theory, arXiv:1207.2775
 R. D'Agosta and M. Di Ventra, Some remarks on the foundations of stochastic timedependent currentdensity functional theory for open quantum systems, arXiv:1209.5529
 E. I. Tellgren, S. Kvaal, E. Sagvolden, U. Ekström, A. M. Teale, and T. Helgaker, The choice of basic variables in currentdensity functional theory, arXiv:1210.2291
 V. U. Nazarov, G. Vignale, and Y.C. Chang, Nonadiabatic timedependent density functional theory of the impurity resistivity of metals, arXiv:1302.1660 (resistivity of metals with impurities from viscosity of electron liquid)
 P. Schmitteckert, The dark side of DFT based transport calculations, arXiv:1302.3170 (for a sixsite ring: standard DFG approach gives zero conductance even using the exact exchangecorrelation functional)
 A. Cangi, E. K. U. Gross, and K. Burke, Potential functionals versus density functionals, arXiv:1307.4235
 I. Leonov, V. I. Anisimov, and D. Vollhardt, FirstPrinciples Calculation of Atomic Forces and Structural Distortions in Strongly Correlated Materials, Phys. Rev. Lett. 112, 146401 (2014) (DFT+DMFT, linear response)
 F. G. Eich, M. Di Ventra, and G. Vignale, Density Functional Theory of Thermoelectric Phenomena, Phys. Rev. Lett. 112, 196401 (2014) (employing a local temperature density coupled to the energydensity operator) P
 M. Mendoza, S. Succi, and H. J. Herrmann, Kinetic Formulation of the KohnSham Equations for ab initio Electronic Structure Calculations, Phys. Rev. Lett. 113, 096402 (2014) (Boltzmanntype reformulation of KohnSham equations)
 C. Pellegrini, J. Flick, I. V. Tokatly, H. Appel, and A. Rubio, Optimized Effective Potential for Quantum Electrodynamical TimeDependent Density Functional Theory, Phys. Rev. Lett. 115, 093001 (2015)
 C. Verdi and F. Giustino, Fröhlich ElectronPhonon Vertex from First Principles, Phys. Rev. Lett. 115, 176401 (2015)
 J. Erhard, P. Bleiziffer, and A. Görling, Power Series Approximation for the Correlation Kernel Leading to KohnSham Methods Combining Accuracy, Computational Efficiency, and General Applicability, Phys. Rev. Lett. 117, 143002 (2016) (see viewpoint)

W. H. Sio, C. Verdi, S. Poncé, and F. Giustino, Ab initio theory of polarons: Formalism and applications, Phys. Rev. B 99, 235139 (2019); Polarons from First Principles, without Supercells, Phys. Rev. Lett. 122, 246403 (2019) (hybrid DFT + model approach, see viewpoint)

V. U. Nazarov, ManyBody Quantum Dynamics by the Reduced Density Matrix Based on TimeDependent DensityFunctional Theory, Phys. Rev. Lett. 123, 095302 (2019)

A. Sanna, C. Pellegrini, and E. K. U. Gross, Combining Eliashberg Theory with Density Functional Theory for the Accurate Prediction of Superconducting Transition Temperatures and Gap Functions, Phys. Rev. Lett. 125, 057001 (2020)

D. Jacob, G. Stefanucci, and S. Kurth, Mott MetalInsulator Transition from SteadyState Density Functional Theory, Phys. Rev. Lett. 125, 216401 (2020) (spectral function operationally defined through an STM setup, MottHubbard transition captured by method)

T. Müller, S. Sharma, E. K. U. Gross, and J. K. Dewhurst, Extending SolidState Calculations to UltraLongRange Length Scales, Phys. Rev. Lett. 125, 256402 (2020)

J. Sun, C.W. Lee, A. Kononov, A. Schleife, and C. A. Ullrich, RealTime Exciton Dynamics with TimeDependent DensityFunctional Theory, Phys. Rev. Lett. 127, 077401 (2021)
Methods for quantum mechanics and atomic and molecular physics
 R. Schnalle and J. Schnack, Calculating the energy spectra of magnetic molecules: application of real and spinspace symmetries, arXiv:1003.1909 (the progress is in making use of both realspace and spinspace symmetries); J. Schnack and J. Ummethum, Advanced quantum methods for the largest magnetic molecules, arXiv:1212.0414
 V. Galitski, QuantumtoClassical Correspondence and HubbardStratonovich Dynamical Systems, a LieAlgebraic Approach, arXiv:1012.2873
 W. A. Harrison, Matching Conditions in EffectiveMass Theory, arXiv:1108.1224 (how not to match wavefunctions between regions with different effective mass)
 S. Ganeshan, E. Barnes, and S. Das Sarma, Exact Classification of LandauMajoranaStückelbergZener Resonances by Floquet Determinants, Phys. Rev. Lett. 111, 130405 (2013) (periodically driven twolevel system)
Monte Carlo simulations
 R. H. Swendsen and J.S. Wang, Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett. 58, 86 (1987) (introducing cluster updates for the Potts model)
 A. M. Ferrenberg and R. H. Swendsen, New Monte Carlo technique for studying phase transitions, Phys. Rev. Lett. 61, 2635 (1988) (how to obtain information on the entire scaling regime close to a second order phase transition from a single simulation, for classical models)
 U. Wolff, Collective Monte Carlo Updating for Spin Systems, Phys. Rev. Lett. 62, 361 (1989) (including XY and Heisenberg models); Collective Monte Carlo updating in a high precision study of the xy model, Nucl. Phys. B 322, 759 (1989)
 B. A. Berg and T. Neuhaus, Multicanonical ensemble: A new approach to simulate firstorder phase transitions , Phys. Rev. Lett. 68, 9 (1992) (the seminal paper on multicanonical simulations, has a few typos)
 J. F. Corney and P. D. Drummond, Gaussian Quantum Monte Carlo Methods for Fermions and Bosons, Phys. Rev. Lett. 93, 260401 (2004), quantph/0404052; P. D. Drummond and J. F. Corney, Quantum phasespace simulations of fermions and bosons, Computer Phys. Commun. 169, 412 (2005), condmat/0506040 (QMC for fermions apparently avoiding the sign problem)
 M. Troyer and U.J. Wiese, Computational Complexity and Fundamental Limitations to Fermionic Quantum Monte Carlo Simulations, Phys. Rev. Lett. 94, 170201 (2005) (shows that the sign problem is NP hard)
 A. W. Sandvik, Ground state projection of quantum spin systems in the valence bond basis, condmat/0509558 (QMC in a basis of valence bonds)
 B. Kyung, G. Kotliar, and A.M. S. Tremblay, Quantum Monte Carlo Study of Strongly Correlated Electrons: Cellular Dynamical MeanField Theory, condmat/0601271 (a dynamical cluster/Monte Carlo hybrid method)
 W. Nadler and U. H. E. Hansmann, On Dynamics and Optimal Number of Replicas in Parallel Tempering Simulations, arXiv:0709.3289
 Y. Meurice, How to control nonlinear effects in Binder cumulants, arXiv:0712.1190
 E. Bittner, A. Nussbaumer, and W. Janke, Make life simple: unleash the full power of the parallel tempering algorithm, arXiv:0809.0571
 U. Wolff, Simulating the AllOrder Strong Coupling Expansion I: Ising Model Demo, arXiv:0808.3934
 E. Farhi, J. Goldstone, D. Gosset, and H. B. Meyer, A Quantum Monte Carlo Method at Fixed Energy, arXiv:0912.4271
 M. Weigel and W. Janke, Error estimation and reduction with cross correlations, arXiv:1002.4517
 E. Gull, D. R. Reichman, and A. J. Millis, Bold Line Diagrammatic Monte Carlo Method: General formulation and application to expansion around the NonCrossing Approximation, arXiv:1004.0724
 B. M. Rubenstein, J. E. Gubernatis, and J. D. Doll, Comparative Monte Carlo Efficiency by Monte Carlo Analysis, arXiv:1004.0931 (for finding the first subdominant eigenvalue of a [e.g., transitionrate] matrix)
 J. Machta, Population Annealing: An Effective Monte Carlo Method for Rough Free Energy Landscapes, arXiv:1006.0252
 J. P. Nilmeier, G. E. Crooks, D. D. L. Minh, and J. D. Chodera, Nonequilibrium candidate Monte Carlo: A new tool for efficient equilibrium simulation, arXiv:1105.2278
 H. Shinaoka, Extended loop algorithm for pyrochlore Heisenberg spin models with spinice type degeneracy: application to spinglass transition in antiferromagnets coupled to local lattice distortions, arXiv:1107.5103
 E. Bittner and W. Janke, Paralleltempering cluster algorithm for computer simulations of critical phenomena, arXiv:1107.5640; W. Janke and E. Bittner, ReplicaExchange Cluster Algorithm, arXiv:1108.0354
 N. Parragh, A. Toschi, K. Held, and G. Sangiovanni, Conserved quantities of SU(2)invariant interactions for correlated fermions and the advantages for quantum Monte Carlo simulations, arXiv:1209.0915
 D. Frenkel, Simulations: the dark side, arXiv:1211.4440, International School of Physics "Enrico Fermi" Course CLXXXIV (possible pitfalls in Monte Carlo and molecular dynamics simulations)
 I. Mandre and J. Kalda, Efficient method of finding scaling exponents from finitesize MonteCarlo simulations, arXiv:1303.0294
 N. S. Blunt, T. W. Rogers, J. S. Spencer, and W. M. C. Foulkes, Density matrix quantum Monte Carlo, arXiv:1303.5007
 W. WitczakKrempa, E. S. Sørensen, and S. Sachdev, The dynamics of quantum criticality revealed by quantum Monte Carlo and holography, Nature Phys. doi:10.1038/nphys2913 (2014) (focus on dynamics and continuation of imaginarytime results to real time, using new ideas from gauge/gravity duality)
 L. Wang, Y.H. Liu, M. Iazzi, M. Troyer, and G. Harcos, Split Orthogonal Group: A Guiding Principle for SignProblemFree Fermionic Simulations, Phys. Rev. Lett. 115, 250601 (2015)
 G. Cohen, E. Gull, D. R. Reichman, and A. J. Millis, Taming the Dynamical Sign Problem in RealTime Evolution of Quantum ManyBody Problems, Phys. Rev. Lett. 115, 266802 (2015) (by reusing previously obtained information)
 Z. C. Wei, C. Wu, Y. Li, S. Zhang, and T. Xiang, Majorana Positivity and the Fermion Sign Problem of Quantum Monte Carlo Simulations, Phys. Rev. Lett. 116, 250601 (2016) (unified understanding of all latticefermion models free of the sign problem)
 F. Alet, K. Damle, and S. Pujari, SignProblemFree Monte Carlo Simulation of Certain Frustrated Quantum Magnets, Phys. Rev. Lett. 117, 197203 (2016) (employing cluster eigenstates)
 Z.X. Li, Y.F. Jiang, and H. Yao, MajoranaTimeReversal Symmetries: A Fundamental Principle for SignProblemFree Quantum Monte Carlo Simulations, Phys. Rev. Lett. 117, 267002 (2016) (could be applied to interacting topological superconductors)

D. Lentrodt and J. Evers, Ab Initio FewMode Theory for Quantum Potential Scattering Problems, Phys. Rev. X 10, 011008 (2020) (includes decomposition of space into a system with few effective modes and a bath with the help of projection operators; bosonic/photonic model)
Other analytical methods
 P. B. Allen, T. Berlijn, D. A. Casavant, and J. M. Soler, Recovering hidden Bloch character: Unfolding Electrons, Phonons, and Slabs, arXiv:1212.5702 (unfolding)

R. Rossi, T. Ohgoe, K. Van Houcke, and F. Werner, Resummation of Diagrammatic Series with Zero Convergence Radius for Strongly Correlated Fermions, Phys. Rev. Lett. 121, 130405 (2018) (Borel summation)
Other numerical methods
 M. Capone, L. dé Medici, and A. Georges, Solving Dynamical MeanField Theory at very low temperature using Lanczos Exact Diagonalization, condmat/0512484
 J. Lou and A. W. Sandvik, Variational ground states of 2D antiferromagnets in the valence bond basis, condmat/0605034
 A. I. Toth, C. P. Moca, O. Legeza, and G. Zarand, Density matrix numerical renormalization group for nonAbelian symmetries, arXiv:0802.4332
 T. Barthel, U. Schollwöck, and S. R. White, Spectral functions in onedimensional quantum systems at T>0, arXiv:0901.2342 (employing timedependent DMRG and timeseries prediction)
 S. Cauley, M. Luisier, V. Balakrishnan, G. Klimeck, and C.K. Koh, Distributed NEGF Algorithms for the Simulation of Nanoelectronic Devices with Scattering, arXiv:1103.5782 (mainly interesting in efficient implementation)
 R. Ng, P. Deuar, and E. Sorensen, Simulation of the Dynamics of ManyBody Quantum Spin Systems Using PhaseSpace Techniques, arXiv:1307.3786
 Z. Landau, U. Vazirani, and T. Vidick, A polynomial time algorithm for the ground state of onedimensional gapped local Hamiltonians, Nature Phys. 11, 566 (2015) (show that the algorithm always finds the true ground state)

I. Glasser, N. Pancotti, M. August, I. D. Rodriguez, and J. I. Cirac, NeuralNetwork Quantum States, StringBond States, and Chiral Topological States, Phys. Rev. X 8, 011006 (2018) (bridging tensorproduct states and neural networks)

E. Chertkov and B. K. Clark, Computational Inverse Method for Constructing Spaces of Quantum Models from Wave Functions, Phys. Rev. X 8, 031029 (2018) (inverse method for constructing Hamiltonians with given eigenstates and, in particular, ground states; only allow Hamiltonians from a target space, not all possible ones, so that the method may fail; contains several examples and makes contact to important known models)

S. Rychkov, Conformal bootstrap and the λpoint specific heat experimental anomaly, DOI: 10.36471/JCCM_January_2020_02 (journal club article, contains short intro to bookstrap method applied to calculating critical exponents)

M. P. Zaletel and F. Pollmann, Isometric Tensor Network States in Two Dimensions, Phys. Rev. Lett. 124, 037201 (2020) (idea to improve efficiency of tensor network calculations, demonstrated for 2D transversefield Ising model)
Quantum phase transitions
 F. Fazileh, R. J. Gooding, W. A. Atkinson, and D. C. Johnston, The role of strong electronic correlations in the metaltoinsulator transition in disordered LiAl_{y}Ti_{2y}O_{4}, Phys. Rev. Lett. 96, 046410 (2006)
 K.S. Kim, Role of disorder in the MottHubbard transition, condmat/0601326
 S. Sachdev and X. Yin, Deconfined criticality and supersymmetry, arXiv:0808.0191 (exhibit parallels between deconfined criticality in antiferromagnets and supersymmetric gauge theories)
 T. Vojta, C. Kotabage, and J. A. Hoyos, Infiniterandomness quantum critical points induced by dissipation, Phys. Rev. B 79, 024401 (2009) (quantum phase transition in a spin chain with disorder and dissipation, find universality in the sense that details of the disorder do not matter for the lowenergy effective theory); see also: G. Rafael, The universal behavior of a disordered system, Physics 2, 1 (2009) (Viewpoint)
 S. Kirchner, Spin Path Integrals, Berry phase, and the Quantum Phase Transition in the subOhmic Spinboson Model, arXiv:1007.4558 (contains an extended pedagogical introduction)
 J.H. She, J. Zaanen, A. R. Bishop, and A. V. Balatsky, Stability of Quantum Critical Points in the Presence of Competing Orders, arXiv:1009.1888 (long paper, for example discussion how competing orders drive a transition to first order)
 P. Wölfle and E. Abrahams, Quasiparticles beyond the Fermi liquid and heavy fermion criticality, arXiv:1102.3391
 S. Rachel, N. Laflorencie, H. F. Song, and K. Le Hur, Detecting Quantum Critical Points using Bipartite Fluctuations, arXiv:1110.0743
 S. V. Syzranov and J. Schmalian, Conductivity close to antiferromagnetic criticality, arXiv:1207.3444 (temperature and frequency dependence of conductivity in the vicinity of an antiferromagnetic quantum critical point, diagrammatic method, might be applicable to the pnictides)
 C. Karrasch and D. Schuricht, Dynamical phase transitions after quenches in nonintegrable models, arXiv:1302.3893
 H. Pfau, S. Hartmann, U. Stockert, P. Sun, S. Lausberg, M. Brando, S. Friedemann, C. Krellner, C. Geibel, S. Wirth, S. Kirchner, E. Abrahams, Q. Si, and F. Steglich, Thermal and Electrical Transport across a Magnetic Quantum Critical Point, arXiv:1307.1066
 R. Vosk and E. Altman, Dynamical quantum phase transitions in random spin chains, arXiv:1307.3256
 Y. Huh, P. Strack, and S. Sachdev, Vector boson excitations near deconfined quantum critical points, arXiv:1307.6860
 T. Furukawa, K. Miyagawa, H. Taniguchi, R. Kato, and K. Kanoda, Quantum criticality of Mott transition in organic materials, Nature Phys. (2015), doi:10.1038/nphys3235 (experiment, universal scaling in three different organic crystals)
Highly correlated systems
 P. B. Wiegmann, Exact solution of the sd exchange model (Kondo problem), J. Phys. C 14, 1463 (1981) (a relatively detailed paper using the Bethe ansatz)
 W. Metzner, Linkedcluster expansion around the atomic limit of the Hubbard model, Phys. Rev. B 43, 8549 (1990)
 M. Freedman, C. Nayak, K. Shtengel, K. Walker, and Z. Wang, A class of P,Tinvariant topological phases of interacting electrons, Annals of Physics 310, 428 (2004) (contains review on relation between quantum field theory and topology)
 M. Garst, P. Wölfle, L. Borda, J. von Delft, and L. I. Glazman, Energyresolved inelastic electron scattering off a magnetic impurity, Phys. Rev. B 72, 205125 (2005)
 A. H. Castro Neto, P. Pujol, and E. Fradkin, Ice: a strongly correlated proton system, condmat/0511092
 S. Furukawa, G. Misguich, and M. Oshikawa, Systematic Derivation of Order Parameters through Reduced Density Matrices, Phys. Rev. Lett. 96, 047211 (2006)
 T. D. Stanescu, P. W. Phillips, and T.P. Choy, Much Ado about Zeros: The Luttinger Surface and Mottness, condmat/0602280 (provide a straightforward proof that the singleparticle Green function at the Fermi energy has a surface of zeroes at the noninteraction Fermi surface for a Mott insulator and draw interesting conclusions)
 D. Roosen, M. R. Wegewijs, and W. Hofstetter, Nonequilibrium dynamics of anisotropic large spins in the Kondo regime: Timedependent numerical renormalization group analysis, arXiv:0705.3654 (one reservoir, not transport, timedependent NRG)
 S. Glocke, A. Klümper, and J. Sirker, The HalfFilled OneDimensional Extended Hubbard Model: Phase diagram and Thermodynamics, arXiv:0707.1015 (DMRG)
 G. Bergmann and L. Zhang, A Compact Approximate Solution to the Kondo Problem, arXiv:0707.1363
 K. A. Matveev, A. Furusaki, and L. I. Glazman, Bosonization of strongly interacting electrons, arXiv:0708.0212 (in one dimension)
 T. Barthel and U. Schollwöck, Dephasing and the steady state in quantum manyparticle systems, arXiv:0711.4896
 T.P. Choy, R. G. Leigh, P. Phillips, and P. D. Powell, Exact Integration of the High Energy Scale in Doped Mott Insulators, Phys. Rev. B 77, 014512 (2008)
 P. Strack, R. Gersch, and W. Metzner, Renormalization group flow for fermionic superfluids at zero temperature, arXiv:0804.3994
 F. Mancini and F. P. Mancini, Onedimensional extended Hubbard model in the atomic limit, arXiv:0804.4419 ("extended" here means with nonlocal interactions; extensive work containing many exact results obtained in the Hubbardoperator approach, also contains review of previous work and other approaches)
 D. Baeriswyl, D. Eichenberger, and M. Menteshashvili, Variational ground states of the twodimensional Hubbard model, arXiv:0907.1593 (also compared to results from other approaches)
 G. S. Uhrig, Interaction Quenches of Fermi Gases, arXiv:0909.1553 (the jump in the momentum distribution vanishes smoothly and stays at the same place after interactions are switched on)
 F. G. Eich, S. Kurth, C. R. Proetto, S. Sharma, and E. K. U. Gross, Noncollinear spinspiral phase for the uniform electron gas within ReducedDensityMatrixFunctional Theory, arXiv:0910.0534 (going beyond Overhauser's seminal work, which was at the HartreeFock level)
 J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, Singleatomresolved fluorescence imaging of an atomic Mott insulator, Nature 467, 68 (2010)
 J. Figgins and D. K. Morr, Differential Conductance and Quantum Interference in Kondo Systems, arXiv:1001.4530
 R. Wortis and W. A. Atkinson, Origin of the Zero Bias Anomaly in the AndersonHubbard Model, arXiv:1004.3309 (namely the hybridization between the lower Hubbard orbital at one site and the upper Hubbard orbital at a neighboring site)
 D. F. Mross and T. Senthil, Charge Friedel oscillations in a Mott insulator, arXiv:1007.2413 (due to a ghost Fermi surface of emergent neutral fermions)
 A. Taraphder, S. Koley, N. S. Vidhyadhiraja, and M. S. Laad, Does Charge Density Wave Order Arise From A Preformed Excitonic Liquid in 2HTaSe_{2}, arXiv:1008.0942 (claim: yes) P
 H. Yao and S. A. Kivelson, Weak Mott Insulators, arXiv:1008.1065 (a new class of interactioninduced insulators)
 S. Okamoto, D. Sénéchal, M. Civelli, and A.M. S. Tremblay, Dynamical Nematicity from Mott physics, arXiv:1008.5118 (why very little structural anisotropy can lead to large transport anisotropy)
 M. Berciu and H. Fehske, Momentum average approximation for models with bosonmodulated hopping: Role of closed loops in the dynamical generation of a finite quasiparticle mass, arXiv:1010.4250
 A. Robertson, V. M. Galitski, and G. Refael, Dynamic Stimulation of Quantum Coherence in Lattice Bosons, arXiv:1011.2208 (periodic driving, or more generally a nonequilibrium situation, at finite temperature can lead to a phase diagram like found at zero temperature)
 A. V. Andreev, S. A. Kivelson, and B. Spivak, Hydrodynamic description of transport in strongly correlated electron systems, arXiv:1011.3068
 L. de' Medici, Hund's coupling and its key role in tuning multiorbital correlations, Phys. Rev. B 83, 205112 (2011) (Hund coupling can reduce the effect of strong electronic correlations and can also partially decouple the bands, paving the way for orbitalselective Mott transitions)
 P. W. Anderson, The ground state of the BoseHubbard model is a supersolid, arXiv:1102.4797 (... but cannot be a perfect Mott insulator)
 S. M. Giampaolo, G. Gualdi, A. Monras, F. Illuminati, Theory of classical and quantum frustration in quantum manybody systems, arXiv:1103.0022 (introduce a general measure of frustration in quantum systems; their definition of frustration in quantum spin systems is nonstandard, though) P
 G. Rohringer, A. Toschi, A. A. Katanin, and K. Held, Phase diagram and criticality of the three dimensional Hubbard model, arXiv:1104.1919 (dynamical vertex approximation)
 C. Aron, G. Kotliar, and C. Weber, Dimensional Crossover Driven by Electric Field, arXiv:1105.5387 (at strong field, the nonequilibrium Hubbard model behaves like a lowerdimensional Hubbard model in equilibrium)
 L. de' Medici, J. Mravlje, and A. Georges, Janusfaced influence of the Hund's rule coupling in strongly correlated materials, arXiv:1106.0815 (Hund's rule coupling in multiband systems)
 A. Amaricci, C. Weber, M. Capone, and G. Kotliar, Nonequilibrium dynamics of the driven Hubbard model, arXiv:1106.3483 (approach to stationary state in a constant and uniform electric field)
 M. Eckstein and P. Werner, Damping of Bloch oscillations in the Hubbard model, arXiv:1107.3830 (Hubbard model in uniform electric field, nonequilibrium DMFT for not too large interaction)
 E. Assmann, S. Chiesa, G. G. Batrouni, H. G. Evertz, and R. T. Scalettar, Superconductivity and charge order of confined Fermi systems, arXiv:1108.6303 (2D attractive Hubbard model, interplay of superconductivity and CDW; QMC)
 U. Schneider, L. Hackermüller, J. P. Ronzheimer, S. Will, S. Braun, T. Best, I. Bloch, E. Demler, S. Mandt, D. Rasch, and A. Rosch, Fermionic transport and outofequilibrium dynamics in a homogeneous Hubbard model with ultracold atoms, Nature Physics (2012), doi:10.1038/nphys2205
 S. Kettemann, E. R. Mucciolo, I. Varga, and K. Slevin, KondoAnderson transitions, Phys. Rev. B 85, 115112 (2012) (diluted impurities in a disordered Fermi liquid close to the metalinsulator transition)
 J. Schlappa, K. Wohlfeld, K. J. Zhou, M. Mourigal, M. W. Haverkort, V. N. Strocov, L. Hozoi, C. Monney, S. Nishimoto, S. Singh, A. Revcolevschi, J.S. Caux, L. Patthey, H. M. Rønnow, J. van den Brink, and T. Schmitt, Spinorbital separation in the quasionedimensional Mott insulator Sr_{2}CuO_{3}, Nature doi:10.1038/nature10974 (2012) (RIXS experiment and theory), see also News and Views
 R. Comin, G. Levy, B. Ludbrook, Z.H. Zhu, C. N. Veenstra, J. A. Rosen, Y. Singh, P. Gegenwart, D. Stricker, J. N. Hancock, D. van der Marel, I. S. Elfimov, and A. Damascelli, Na2IrO3 as a Novel Relativistic Mott Insulator with a 340meV Gap, Phys. Rev. Lett. 109, 266406 (2012) (an iridate)
 V. Zlatic and J. K. Freericks, Strongly Enhanced Thermal Transport in a Lightly Doped Mott Insulator at Low Temperature, Phys. Rev. Lett. 109, 266601 (2012)
 E. Abrahams and P. Wölfle, Critical quasiparticle theory: Scaling, thermodynamic and transport properties, arXiv:1201.0573
 M. Hohenadler, S. Wessel, M. Daghofer, and F. F. Assaad, Interactionrange effects for fermions in one dimension, arXiv:1201.3626
 N. Karchev, Quantum critical behavior in threedimensional oneband Hubbard model at half filling, arXiv:1202.4627 (bosonization/fermionization)
 C. Aron, Dielectric Breakdown of a Mott Insulator, arXiv:1203.3540 (Mott insulator driven out of equilibrium by an electric field)
 W. WitczakKrempa, P. Ghaemi, T. Senthil, and Y. B. Kim, Universal transport near a quantum critical Mott transition in two dimensions, arXiv:1206.3309
 L. Merker, A. Weichselbaum, and T. A. Costi, Full density matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model, arXiv:1207.2631
 K. B. Dave, P. W. Phillips, and C. L. Kane, Absence of Luttinger's Theorem, arXiv:1207.4201 (... in strongly correlated electron systems)
 A. V. Chubukov and D. L. Maslov, FirstMatsubarafrequency rule in a Fermi liquid. Part I: Fermionic selfenergy, arXiv:1208.3483; D. L. Maslov and A. V. Chubukov, FirstMatsubarafrequency rule in a Fermi liquid. Part II: Optical conductivity and comparison to experiment, arXiv:1208.3485
 K.U. Giering and M. Salmhofer, Selfenergy flows in the twodimensional repulsive Hubbard model, arXiv:1208.6131 (fRG)
 J.M. Carter and H.Y. Kee, Microscopic theory of magnetism in Sr3Ir2O7, arXiv:1211.7067
 P. Chandra, P. Coleman, and R. Flint, Hastatic order in the heavyfermion compound URu_{2}Si_{2}, Nature 493, 621 (2013) (propose that symmetry under the square of time reversal is spontaneously broken in this compound)
 M. Höppner, S. Seiro, A. Chikina, A. Fedorov, M. Güttler, S. Danzenbächer, A. Generalov, K. Kummer, S. Patil, S. L. Molodtsov, Y. Kucherenko, C. Geibel, V. N. Strocov, M. Shi, M. Radovic, T. Schmitt, C. Laubschat, and D. V. Vyalikh, Interplay of Dirac fermions and heavy quasiparticles in solids, Nature Commun. 4, 1646 (2013) (EuRh2Si2)
 P. W. Phillips, B. W. Langley, and J. A. Hutasoit, UnFermi Liquids: Unparticles in Strongly Correlated Electron Matter, arXiv:1305.0006 (exploring the unparticle concept introduced by Georgi; an unparticle field is a scaleinvariant matter field, use QFTAdS mapping, application to cuprates)
 S. Bulut, W. A. Atkinson, and A. P. Kampf, Spatially Modulated Electronic Nematicity in the ThreeBand Model of Cuprate Superconductors, arXiv:1305.3301
 B. Bauer and C. Nayak, Area laws in a manybody localized state and its implications for topological order, arXiv:1306.5753 (Anderson localization in interacting systems); B. Swingle, A simple model of manybody localization, arXiv:1307.0507
 F. Hofmann, M. Eckstein, and M. Potthoff, Nonequilibrium selfenergyfunctional theory, arXiv:1306.6340
 S. P. Chockalingam, C. J. Arguello, E. P. Rosenthal, L. Zhao, C. Gutiérrez, J. H. Kang, W. C. Chung, R. M. Fernandes, S. Jia, A. J. Millis, R. J. Cava, and A. N. Pasupathy, Visualizing the Charge Density Wave Transition in 2HNbSe2 in Real Space, arXiv:1307.2282 (STM and theory; modulation first seen in vicinity of surface defects at high temperatures, in fact look similar to Friedel oscillations)
 H. Watanabe and A. Vishwanath, Criterion for stability of Goldstone Modes and Fermi Liquid behavior in a metal with broken symmetry, arXiv:1404.3728 (criterion for when Goldstone modes have a contact interaction with electronic quasiparticles as opposed to a gradient interaction, i.e., for when Adler's theorem fails; contact interaction leads to nonFermiliquid behavior), also comment in Journal Club: J. Schmalian, On NonFermi liquid phases due to Goldstone boson exchange, JCCM_SEP_2014_03
 H. C. Xu, Y. Zhang, M. Xu, R. Peng, X. P. Shen, V. N. Strocov, M. Shi, M. Kobayashi, T. Schmitt, B. P. Xie, and D. L. Feng, Direct Observation of the Bandwidth Control Mott Transition in the NiS2xSex Multiband System, Phys. Rev. Lett. 112, 087603 (2014) (Xray ARPES, evolution of quasiparticle weight and incoherent spectrum with Se concentration)
 K. Limtragool and P. W. Phillips, Divergent Thermopower without a Quantum Phase Transition, Phys. Rev. Lett. 113, 086405 (2014)
 J. A. Kjäll, J. H. Bardarson, and F. Pollmann, ManyBody Localization in a Disordered Quantum Ising Chain, Phys. Rev. Lett. 113, 107204 (2014)
 M. Serbyn, M. Knap, S. Gopalakrishnan, Z. Papic, N. Y. Yao, C. R. Laumann, D. A. Abanin, M. D. Lukin, and E. A. Demler, Interferometric Probes of ManyBody Localization, Phys. Rev. Lett. 113, 147204 (2014) (theoretical proposal for disordered spin systems using ESR)
 V. Bisogni, K. Wohlfeld, S. Nishimoto, C. Monney, J. Trinckauf, K. Zhou, R. Kraus, K. Koepernik, C. Sekar, V. Strocov, B. Büchner, T. Schmitt, J. van den Brink, and J. Geck, Orbital Control of Effective Dimensionality: From SpinOrbital Fractionalization to Confinement in the Anisotropic Ladder System CaCu2O3, Phys. Rev. Lett. 114, 096402 (2015)
 E. Kozik, M. Ferrero, and A. Georges, Nonexistence of the LuttingerWard Functional and Misleading Convergence of Skeleton Diagrammatic Series for HubbardLike Models, Phys. Rev. Lett. 114, 156402 (2015)
 M. Friesdorf, A. H. Werner, W. Brown, V. B. Scholz, and J. Eisert, ManyBody Localization Implies that Eigenvectors are MatrixProduct States, Phys. Rev. Lett. 114, 170505 (2015) (link dynamical and entanglement properties; clear discussion)
 Y. You, X.X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, and T. F. Heinz, Observation of biexcitons in monolayer WSe_{2}, Nature Phys. 11, 477 (2015) (twoelectrontwohole "molecular" state)
 S. Bera, H. Schomerus, F. HeidrichMeisner, and J. H. Bardarson, ManyBody Localization Characterized from a OneParticle Perspective, Phys. Rev. Lett. 115, 046603 (2015)
 S. R. White, D. J. Scalapino, and S. A. Kivelson, One Hole in the TwoLeg tJ Ladder and Adiabatic Continuity to the Noninteracting Limit, Phys. Rev. Lett. 115, 056401 (2015) (DMRG; results can be understood based on quasiparticle picture)
 M. Naka, H. Seo, and Y. Motome, Theory of Valence Transition in BiNiO3, Phys. Rev. Lett. 116, 056402 (2016) (theoretical work explaining huge negative thermal expansion coefficient in terms of charge transfer between Bi and Ni)
 H. Yamase, A. Eberlein, and W. Metzner, Coexistence of Incommensurate Magnetism and Superconductivity in the TwoDimensional Hubbard Model, Phys. Rev. Lett. 116, 096402 (2016)
 M. Zhu, J. Peng, T. Zou, K. Prokes, S. D. Mahanti, T. Hong, Z. Q. Mao, G. Q. Liu, and X. Ke, Colossal Magnetoresistance in a Mott Insulator via Magnetic FieldDriven InsulatorMetal Transition , Phys. Rev. Lett. 116, 216401 (2016) (Tidoped Ca3Ru2O7, transition is coupled to lattice change)
 Y. Ding et al., PressureInduced Confined Metal from the Mott Insulator Sr3Ir2O7, Phys. Rev. Lett. 116, 216402 (2016) (becomes a 2D metal at high pressure)
 N. Y. Yao, C. R. Laumann, J. I. Cirac, M. D. Lukin, and J. E. Moore, QuasiManyBody Localization in TranslationInvariant Systems, Phys. Rev. Lett. 117, 240601 (2016)

A. Altland and T. Micklitz, Field Theory Approach to ManyBody Localization, Phys. Rev. Lett. 118, 127202 (2017)
 S. Gazit, M. Randeria, and A. Vishwanath, Emergent Dirac fermions and broken symmetries in confined and deconfined phases of Z_{2} gauge theories, Nature Phys. 13, 484 (2017)

A. Smith, J. Knolle, D. L. Kovrizhin, and R. Moessner, DisorderFree Localization, Phys. Rev. Lett. 118, 266601 (2017) (simple but slightly unusual spinfermion chain; extensive number of conserved quantities; simple and not disordered initial states are superpositions of many sectors with these quantities being disordered)

N. D. Patel, A. Mukherjee, N. Kaushal, A. Moreo, and E. Dagotto, NonFermi Liquid Behavior and Continuously Tunable Resistivity Exponents in the AndersonHubbard Model at Finite Temperature, Phys. Rev. Lett. 119, 086601 (2017) (meanfield Monte Carlo method, developed by this group, applied to model with strong and varying local interaction and disorder)

R. M. Nandkishore and S. L. Sondhi, ManyBody Localization with LongRange Interactions, Phys. Rev. X 7, 041021 (2017)

A. Auerbach, Hall Number of Strongly Correlated Metals, Phys. Rev. Lett. 121, 066601 (2018) (exact series formula)

Y. Hu, J. W. F. Venderbos, and C. L. Kane, Fractional Excitonic Insulator, Phys. Rev. Lett. 121, 126601 (2018) (in the absence of magnetic field; for 1/3 state propose (p_{x}+ip_{y})^{3} excitonic pairing); also Journal Club: A. Vishwanath, Fractional Quantum Hall from Overlap of ElectronHole Bands, JCCM_February_2019_02
 R. Verresen, R. Moessner, and F. Pollmann, Avoided quasiparticle decay from strong quantum interactions, Nature Physics 15, 750 (2019) (illustrated by an exactly solvable model and, using numerics, by the antiferromagnetic Heisenberg model on the triangular lattice)

F. B. Kugler, M. Zingl, H. U. R. Strand, S.S. B. Lee, J. von Delft, and A. Georges, Strongly Correlated Materials from a Numerical Renormalization Group Perspective: How the FermiLiquid State of Sr_{2}RuO_{4} Emerges, Phys. Rev. Lett. 124, 016401 (2020)

A. J. Kim, F. Simkovic, IV, and E. Kozik, Spin and Charge Correlations across the MetaltoInsulator Crossover in the HalfFilled 2D Hubbard Model, Phys. Rev. Lett. 124, 117602 (2020)

C. Murthy and C. Nayak, Almost Perfect Metals in One Dimension, Phys. Rev. Lett. 124, 136801 (2020) (RG)

Y. Michishita and R. Peters, Equivalence of Effective NonHermitian Hamiltonians in the Context of Open Quantum Systems and Strongly Correlated Electron Systems, Phys. Rev. Lett. 124, 196401 (2020) (emergence of effective nonhermitian Hamiltonians from strong correlations in closed systems, compared to the same Hamiltonians emerging for open systems)

M. Qin, C.M. Chung, H. Shi, E. Vitali, C. Hubig, U. Schollwöck, S. R. White, and S. Zhang, Absence of Superconductivity in the Pure TwoDimensional Hubbard Model, Phys. Rev. X 10, 031016 (2020) (DMRG and advanced QMC; the ground state of the doped Hubbard model is not superconducting for intermediate to strong repulsive interaction, parameters expected to be reasonable for cuprates); see also A. V. Chubukov, Superconductivity in the 2D Hubbard model: yes, no, or maybe?, Journal Club for Condensed Matter Physics 10.36471/JCCM_February_2021_01

Z. Han, S. A. Kivelson, and H. Yao, Strong Coupling Limit of the HolsteinHubbard Model, Phys. Rev. Lett. 125, 167001 (2020) (generic for arbitrary dimensionality, illustrated for 2D models; LangFirsovtype transformation and strongcoupling perturbation theory)

T. Shi, E. Demler, and J. I. Cirac, Variational Approach for ManyBody Systems at Finite Temperature, Phys. Rev. Lett. 125, 180602 (2020) (densitymatrix approach, application to 2D Holstein model, predict phase separation)

D. V. Else, R. Thorngren, and T. Senthil, NonFermi Liquids as Ersatz Fermi Liquids: General Constraints on Compressible Metals, Phys. Rev. X 11, 021005 (2021) (very general results for correlated systems with translation symmetry and tunable fractitional filling, generalization of Luttinger's theorem) P

I. V. Protopopov, R. Samanta, A. D. Mirlin, and D. B. Gutman, Anomalous Hydrodynamics in a OneDimensional Electronic Fluid, Phys. Rev. Lett. 126, 256801 (2021)
Exact results on manyparticle systems
 J. de Woul and E. Langmann, Fermions in two dimensions, bosonization, and exactly solvable models, arXiv:1207.6783
 T. S. Cubitt, D. PerezGarcia, and M. M. Wolf, Undecidability of the spectral gap, Nature 528, 207 (2015) (2D Hamiltonians with constructed shortrange interactions, mapping to halting problem for Turing machines); see also longer version arXiv:1502.04573
Magnetism
Diluted magnetic semiconductors  experiments on the (Ga,In,Mn)As system
 E. J. Singley, R. Kawakami, D. D. Awschalom, and D. N. Basov, Infrared Probe of Itinerant Ferromagnetism in Ga_{1x}Mn_{x}As, Phys. Rev. B 89, 097203 (2002)
 E. J. Singley, K. S. Burch, R. Kawakami, J. Stephens, D. D. Awschalom, and D. N. Basov, Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga_{1x}Mn_{x}As, Phys. Rev. B 68, 165204 (2003) P
 K. S. Burch, J. Stephens, R. K. Kawakami, D. D. Awschalom, and D. N. Basov, Ellipsometric study of the electronic structure of Ga_{1x}Mn_{x}As and lowtemperature GaAs, Phys. Rev. B 70, 205208 (2004) (E_{1} critical point blueshifts with Mn concentration, fundamental gap not resolved)
 K. Hamaya, T. Koike, T. Taniyama, T. Fujii, Y. Kitamoto, and Y. Yamazaki, Dynamic relaxation of magnetic clusters in a ferromagnetic (Ga,Mn)As epilayer, condmat/0511392 (the Curie temperature may actually be a blocking temperature of clusters with high hole concentration)
 X. Liu and J. K. Furdyna, Ferromagnetic resonance in Ga_{1x}Mn_{x}As dilute magnetic semiconductors, J. Phys.: Condens. Matter 18, R245 (2006)
 B. J. Kirby, J. A. Borchers, J. J. Rhyne, K. V. O'Donovan, S. G. E. te Velthuis, S. Roy, C. SanchezHanke, T. Wojtowicz, X. Liu, W. L. Lim, M. Dobrowolska, and J. K. Furdyna, Magnetic and chemical nonuniformity in Ga_{1x}Mn_{x}As as probed by neutron and xray reflectometry, Phys. Rev. B 74, 245304 (2006)
 D. Chiba, M. Yamanouchi, F. Matsukura, T. Dietl, and H. Ohno, Domainwall resistance in ferromagnetic (Ga,Mn)As, condmat/0601464
 M. Yamanouchi, D. Chiba, F. Matsukura, T. Dietl, and H. Ohno, Velocity of domainwall motion induced by electrical current in a ferromagnetic semiconductor (Ga,Mn)As, condmat/0601515
 K. Hamaya, T. Watanabe, T. Taniyama, A. Oiwa, Y. Kitamoto, and Y. Yamazaki, Magnetic anisotropy switching caused by highly holeconcentrated phase in (Ga,Mn)As, condmat/0601603
 C. Gould, K. Pappert, C. Rüster, R. Giraud, T. Borzenko, G. M. Schott, K. Brunner, G. Schmidt, and L. W. Molenkamp, Current Assisted Magnetization Switching in (Ga,Mn)As Nanodevices, condmat/0602135
 H. K. Choi et al., Evidence of metallic clustering in annealed Ga_{1x}Mn_{x}As from atypical scaling behavior of the anomalous Hall coefficient, condmat/0603468 (support for metallic inclusions for material annealed at too high temperatures)
 S. H. Chun, Y. S. Kim, H. K. Choi, I. T. Jeong, W. O. Lee, K. S. Suh, Y. S. Oh, K. H. Kim, Z. G. Khim, J. C. Woo, and Y. D. Park, Interplay between carrier and impurity concentrations in annealed Ga_{1x}Mn_{x}As intrinsic anomalous Hall Effect, condmat/0603808 (crossover between intrinsic and extrensic AHE)
 K. S. Burch, D. B. Shrekenhamer, E. J. Singley, J. Stephens, B. L. Sheu, R. K. Kawakami, P. Schiffer, N. Samarth, D. D. Awschalom, and D. N. Basov, Impurity Band Conduction in a High Temperature Ferromagnetic Semiconductor, condmat/0603851 (optical conductivity, analysis of shift of peak maximum with impurity concentration and of weight of the Drude peak) P
 N. P. Stern, R.C. Myers, M. Poggio, A. C. Gossard, and D. D. Awschalom, Confinement engineering of sd exchange interactions in GaMnAs quantum wells, condmat/0604576
 S. Russo, T. M. Klapwijk, W. Schoch, and W. Limmer, Correlation effects in the density of states of annealed GaMnAs, condmat/0605753 (tunneling in NbTiN/GaMnAs [Mn concentration 4.4%] structure, exhibits a correlation gap of initially 278 meV, which shrinks to 50 meV with annealing) P
 R. C. Myers, B. L. Sheu, A. W. Jackson, A. C. Gossard, P. Schiffer, N. Samarth, and D. D. Awschalom, Antisite effect on ferromagnetism in (Ga,Mn)As, condmat/0606488
 G. Xiang, M. Zhu, B. L. Sheu, P. Schiffer, and N. Samarth, Noncollinear Spin Valve Effect in Ferromagnetic Semiconductor Trilayers, condmat/0607580
 D. Kitchen, A. Richardella, J.M. Tang, M. E. Flatté, and A. Yazdani, AtombyAtom Substitution of Mn in GaAs and Visualization of their HoleMediated Interactions, condmat/0607765 (experiment and theory)
 S. Lee, A. Trionfi, T. Schallenberg, H. Munekata, and D. Natelson, Quantum coherence in ferromagnetic semiconductors: timedependent universal conductance fluctuations and magnetofingerprint, condmat/0608036 P
 K. Pappert, M. J. Schmidt, S. Hümpfner, C. Rüster, G. M. Schott, K. Brunner, C. Gould, G. Schmidt, and L. W. Molenkamp, MagnetizationSwitched MetalInsulator Transition in a (Ga,Mn)As Tunnel Device, condmat/0608683
 V. Holy, Z. Matej, O. Pacherova, V. Novak, M. Cukr, K. Olejnik, and T. Jungwirth, Mn incorporation in asgrown and annealed (Ga,Mn)As layers studied by xray diffraction and standingwave fluorescence, condmat/0609163 (substitutional Mn is rather immobile)
 T. Figielski, T. Wosinski, A. Morawski, A. Makosa, J. Wrobel, and J. Sadowski, Magnetoresistive memory in ferromagnetic (Ga,Mn)As nanostructures, condmat/0610535
 A. W. Rushforth, A. D. Giddings, K. W. Edmonds, R. P. Campion, C. T. Foxon and B. L. Gallagher, AMR and magnetometry studies of ultra thin GaMnAs films, condmat/0610692, physica status solidi (c)
 K. Pappert, S. Hümpfner, J. Wenisch, K. Brunner, C. Gould, G. Schmidt, and L. W. Molenkamp, Transport Characterization of the Magnetic Anisotropy of (Ga,Mn)As, condmat/0611156
 J.M. Kivioja, M. Prunnila, S. Novikov, P. Kuivalainen, and J. Ahopelto, Energy Transport between Hole Gas and Crystal Lattice in Diluted Magnetic Semiconductor, condmat/0611704
 S. Ohya, K. Ohno, and M. Tanaka, Magnetooptical and magnetotransport properties of heavily Mndoped GaMnAs, condmat/0612055 (10 nm thin films with up to 21.3% Mn, claimed to be homogeneous)
 S. Hümpfner, M. Sawicki, K. Pappert, J. Wenisch, K. Brunner, C. Gould, G. Schmidt, T. Dietl, and L. W. Molenkamp, Lithographic engineering of anisotropies in (Ga,Mn)As, condmat/0612439
 V. V. Rylkov, A. S. Lagutin, B. A. Aronzon, V. V. Podolskii, V. P. Lesnikov, M. Goiran, J. Galibert, B. Raquet, and J. Leotin, Peculiarities of the transport properties of InMnAs layers, produced by the laser deposition, in strong magnetic fields, condmat/0612641
 G. S. Chang, E. Z. Kurmaev, L. D. Finkelstein, H. K. Choi, W. O. Lee, Y. D. Park, T. M. Pedersen, and A. Moewes, Postannealing effect on the electronic structure of Mn atoms in Ga_{1x}Mn_{x}As probed by resonant inelastic xray scattering, J. Phys.: Condens. Matter 19, 076215 (2007) (interstitial Mn diffuses to surface and is passivated by oxydation)
 L. P. Rokhinson, Y. LyandaGeller, Z. Ge, S. Shen, X. Liu, M. Dobrowolska, and J. K. Furdyna, Weak localization in Ga_{1x}Mn_{x}As: evidence of impurity band transport, Phys. Rev. B 76, 161201(R) (2007) (5% and 6.5% Mn); N. V. Agrinskaya and V. I. Kozub, Comment, arXiv:0912.0642 (suggest that lowtemperature features are due to a superconducting transition in the indium leads)
 K. Pappert, S. Hümpfner, C. Gould, J. Wenisch, K. Brunner, G. Schmidt, and L. W. Molenkamp, Exploiting Locally Imposed Anisotropies in (Ga,Mn)As: a Nonvolatile Memory Device, condmat/0701478; J. Wenisch, C. Gould, L. Ebel, J. Storz, K. Pappert, M. J. Schmidt, C. Kumpf, G. Schmidt, K. Brunner, and L. W. Molenkamp, Control of magnetic anisotropy in (Ga,Mn)As by lithographyinduced strain relaxation, condmat/0701479
 A. W. Rushforth, K. Vyborny, C. S. King, K. W. Edmonds, R. P. Campion, C. T. Foxon, J. Wunderlich, A. C. Irvine, P. Vasek, V. Novák, K. Olejník, T. Jungwirth, and B. L. Gallagher, The Origin and Control of the Sources of Anisotropic Magnetoresistance in (Ga,Mn)As Devices, condmat/0702357
 J. Wang, I. Cotoros, K. M. Dani, D. S. Chemla, X. Liu, and J. K. Furdyna, Ultrafast Enhancement of Ferromagnetism via Photoexcited Holes in GaMnAs, condmat/0702439
 L. Thevenard, L. Largeau, O. Mauguin, A. Lemaitre, K. Khazen, and J. von Bardeleben, Evolution of the magnetic anisotropy with carrier density in hydrogenated (Ga,Mn)As, condmat/0702548
 D. Neumaier, K. Wagner, S. Geissler, U. Wurstbauer, J. Sadowski, W. Wegscheider, and D. Weiss, Weak localization in ferromagnetic (Ga,Mn)As nanostructures, condmat/0703053
 V. Novak, K. Olejnik, M. Cukr, L. Smrcka, Z. Remes, and J. Oswald, Substrate temperature changes during MBE growth of GaMnAs, arXiv:0704.2485
 J. Honolka, S. Masmanidis, H. X. Tang, D. D. Awschalom, and M. L. Roukes, Magnetotransport properties of strained (Ga0.95, Mn0.05)As epilayers close to the metalinsulator transition: Description using AronovAltshuler threedimensional scaling theory, arXiv:0705.0121 (experiment and theory, finding good agreement)
 J. Qi, Y. Xu, N. Tolk, X. Liu, J. K. Furdyna, and I. E. Perakis, Coherent Magnetization Precession in GaMnAs induced by Ultrafast Optical Excitation, arXiv:0706.4270 (local heating by laser pulse leads to reorientation of easy axis)
 T. Slupinski, J. Caban, and K. Moskalik, Hole Transport in Impurity Band and Valence Bands Studied in Moderately Doped GaAs:Mn Single Crystals, arXiv:0707.0968 (up to 0.3% Mn)
 J. Wunderlich, A. C. Irvine, J. Zemen, V. Holy, A. W. Rushforth, E. De Ranieri, U. Rana, K. Vyborny, J. Sinova, C. T. Foxon, R. P. Campion, D. A. Williams, B. L. Gallagher, and T. Jungwirth, Magnetocrystalline anisotropy controlled local magnetic configurations in (Ga,Mn)As spintransfertorque microdevices, arXiv:0707.3329 (includes theory)
 R. Farshchi, P. D. Ashby, D. J. Hwang, C. P. Grigoropoulos, R.V. Chopdekar, Y. Suzuki, and O. D. Dubon, Hydrogen patterning of Ga_{1x}Mn_{x}As for planar spintronics, arXiv:0708.0389
 M. Zhu, X. Li, G. Xiang, and N. Samarth, Random telegraph noise from magnetic nanoclusters in the ferromagnetic semiconductor (Ga,Mn)As, arXiv:0708.1895
 B. J. Kirby, J. A. Borchers, X. Liu, Y. J. Cho, M. Dobrowolska, and J. K. Furdyna, Definitive Evidence of Interlayer Coupling Between (Ga,Mn)As, arXiv:0708.2289 (show that magnetic coupling in (Al,Be,Ga)As/(Ga,Mn)As/GaAs/(Ga,Mn)As depends on spacer thickness)
 G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, Suppression of electron spin relaxation in Mndoped GaAs, arXiv:0710.0246
 A. Kudelski, A. Lemaitre, A. Miard, P. Voisin, T. C. M. Graham, R. J. Warburton, and O. Krebs, Optically probing the fine structure of a single Mn atom in an InAs quantum dot, arXiv:0710.5389
 D. Neumaier, M. Schlapps, U. Wurstbauer, J. Sadowski, M. Reinwald, W. Wegscheider, and D. Weiss, Electronelectron interaction in 2D and 1D ferromagnetic (Ga,Mn)As, arXiv:0711.3278 (also with theoretical interpretation)
 Y. Pu, D. Chiba, F. Matsukura, H. Ohno, and J. Shi, Mott Relation for Anomalous Hall and Nernst Effects in Ga1xMnxAs Ferromagnetic Semiconductors, Phys. Rev. Lett. 101, 117208 (2008) (measure large Seebeck coefficient among other quantities) P
 A. A. Freeman, K. W. Edmonds, G. van der Laan, R. P. Campion, N. R. S. Farley, A. W. Rushforth, T. K. Johal, C. T. Foxon, B. L. Gallagher, A. Rogalev, and F. Wilhelm, Valence band orbital polarization in IIIV ferromagnetic semiconductors, arXiv:0801.0673
 Y. Takeda, M. Kobayashi, T. Okane, T. Ohkochi, J. Okamoto, Y. Saitoh, K. Kobayashi, H. Yamagami, A. Fujimori, A. Tanaka, J. Okabayashi, M. Oshima, S. Ohya, P. N. Hai, and M. Tanaka, Nature of magnetic coupling between Mn ions in asgrown Ga_{1x}Mn_{x}As studied by xray magnetic circular dichroism, arXiv:0801.1155 (ferromagnetic correlations seen above T_{C}, role of interstitials)
 M. Overby, A. Chernyshov, L. P. Rokhinson, X. Liu, and J. K. Furdyna, GaMnAsbased hybrid multiferroic memory device, arXiv:0801.4191
 A. Sugawara, H. Kasai, A. Tonomura, P. D. Brown, R. P. Campion, K.W. Edmonds, B. L. Gallagher, J. Zemen, and T. Jungwirth, Domain walls in (Ga,Mn)As diluted magnetic semiconductor, arXiv:0802.1574 (experiment and theory)
 E. Rozkotova, P. Nemec, P. Horodyska, D. Sprinzl, F. Trojanek, P. Maly, V. Novak, K. Olejnik, M. Cukr, and T. Jungwirth, Lightinduced magnetization precession in GaMnAs, arXiv:0802.2043 (experiment and theory)
 K. W. Edmonds, G. van der Laan, N. R. S. Farley, E. Arenholz, R. P. Campion, C. T. Foxon, and B. L. Gallagher, Strain dependence of the Mn anisotropy in ferromagnetic semiconductors observed by xray magnetic circular dichroism, arXiv:0802.2061
 I. Stolichnov, S. W. E. Riester, H. J. Trodahl, N. Setter, A. W. Rushforth, K. W. Edmonds, R. P. Campion, C. T. Foxon, B. L. Gallagher, and T. Jungwirth, Nonvolatile ferroelectric control of ferromagnetism in (Ga,Mn)As, arXiv:0802.2074 (ferromagnetic/ferroelectric bilayer)
 K. Olejnik, M. H. S. Owen, V. Novak, J. Masek, A. C. Irvine, J. Wunderlich, and T. Jungwirth, Enhanced annealing, high Curie temperature and lowvoltage gating in (Ga,Mn)As: A surface oxide control study, arXiv:0802.2080
 W. Limmer, J. Daeubler, L. Dreher, M. Glunk, W. Schoch, S. Schwaiger, and R. Sauer, Advanced resistivity model for arbitrary magnetization orientation applied to a series of compressive to tensilestrained (Ga,Mn)As layers, arXiv:0802.2635 (experiment and model)
 E. De Ranieri, A. W. Rushforth, K. Vyborny, U. Rana, E. Ahmed, R. P. Campion, C. T. Foxon, B. L. Gallagher, A. C. Irvine, J. Wunderlich, and T. Jungwirth, Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As, arXiv:0802.3344
 C. Gould, S. Mark, K. Pappert, G. Dengel, J. Wenisch, R. P. Campion, A. W. Rushforth, D. Chiba, Z. Li, X. Liu, W. Van Roy, H. Ohno, J. K. Furdyna, B. Gallagher, K. Brunner, G. Schmidt, and L. W. Molenkamp, An extensive comparison of anisotropies in MBE grown (Ga,Mn)As material, arXiv:0802.4206 (comparison of samples grown by the leading groups)
 E. Rozkotova, P. Nemec, D. Sprinzl, P. Horodyska, F. Trojanek, P. Maly, V. Novak, K. Olejnik, M. Cukr, and T. Jungwirth, Laserinduced Precession of Magnetization in GaMnAs, arXiv:0803.0320
 A. D. Giddings, O. N. Makarovsky, M. N. Khalid, S. Yasin, K. W. Edmonds, R. P. Campion, J. Wunderlich, T. Jungwirth, D. A. Williams, B. L. Gallagher, and C. T. Foxon, Huge tunnelling anisotropic magnetoresistance in (Ga,Mn)As nanoconstrictions, arXiv:0803.3416
 J.M. Jancu, J.Ch. Girard, M. Nestoklon, A. Lemaitre, F. Glas, and Z. Z. Wang, STM images of subsurface Mn atoms in GaAs: evidence of hybridization of surface and impurity states, arXiv:0803.3975 (emphasizing that surface states are crucial for the understanding of STM images of subsurface dopants)
 V. Novák, K. Olejník, J. Wunderlich, M. Cukr, K. Vyborny, A. W. Rushforth, R. P. Campion, B. L. Gallagher, Jairo Sinova, and T. Jungwirth, Singularity in temperature derivative of resistivity in (Ga,Mn)As at the Curie point, arXiv:0804.1578 (experiment and theory, case of high T_{c}, i.e., resistivity likely not dominated by disorder) P
 M. A. Scarpulla, R. Farshchi, P. R. Stone, R. V. Chopdekar, K. M. Yu, Y. Suzuki, and O. D. Dubon, Electrical transport and ferromagnetism in Ga_{1x}Mn_{x}As synthesized by ion implantation and pulsedlaser melting, arXiv:0804.1612
 N. A. Goncharuk, J. Kucera, K. Olejnik, V. Novak, L. Smrcka, Z. Matej, L. Nichtova, and V. Holy, Study of Mn Kedge XANES in (Ga,Mn)As diluted magnetic semiconductors, arXiv:0805.0957 (experiment and abinitio theory: signatures of substitutional and intersitial Mn are distinct, concentration of Mn institials is found to decrease but not vanish upon annealing)
 A. Wirthmann, X. Hui, N. Mecking, Y. S. Gui, T. Chakraborty, M. Reinwald, C. Schüller, W. Wegscheider, and C.M. Hu, Broadband electrical detection of spin excitations in (Ga,Mn)As using a photovoltage technique, arXiv:0806.0785
 P. R. Stone, K. Alberi, S. K. Z. Tardif, J. W. Beeman, K. M. Yu, W. Walukiewicz, and O. D. Dubon, Metalinsulator transition by isovalent anion substitution in Ga_{1x}Mn_{x}As: Implications to ferromagnetism, arXiv:0807.3722 (substitution of P and N for As in the percent range drives the system insulating and reduces the Curie temperature by about 50%)
 M. Wang, R. P. Campion, A. W. Rushforth, K. W. Edmonds, C. T. Foxon, and B. L. Gallagher, Achieving High Curie Temperature in (Ga,Mn)As, arXiv:0808.1464, Appl. Phys. Lett. 93, 132103 (2008)
 D. Neumaier, M. Turek, U. Wurstbauer, A. Vogl, M. Utz, W. Wegscheider, and D. Weiss, All electrical measurement of the density of states in (Ga,Mn)As, arXiv:0902.2675 (measured density of states is in agreement with models having no disorder [for 3D case] or merged impurity and valence bands [for 1D and 2D])
 M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, Magnetic anisotropy in (Ga,Mn)As: Influence of epitaxial strain and hole concentration, arXiv:0904.1565
 R. GonzalezArrabal, Y. Gonzalez, L. Gonzalez, M. GarciaHernandez, F. Munnik, and M. S. MartinGonzalez, Room temperature ferromagneticlike behavior in Mnimplanted and postannealed InAs layers deposited by Molecular Beam Epitaxy, arXiv:0904.2132 (attributed to oxygendeficient MnO_{2} (!) segregation)
 M. Schlapps, T. Lermer, S. Geissler, D. Neumaier, J. Sadowski, D. Schuh, W. Wegscheider, and D. Weiss, Transport through (Ga,Mn)As nanoislands: Coulombblockade and temperature dependence of the conductance, arXiv:0904.3225
 C. Sun, J. Kono, Y. Cho, A. K. Wojcik, A. Belyanin, and H. Munekata, Magnetooptical Kerr Spectroscopy of GaMnAs: Interband or Impurity Transitions?, arXiv:0907.1546 (results can be explained within the kineticexchange picture using a LuttingerKohn Hamiltonian)
 G. Acbas, M.H. Kim, M. Cukr, V. Novak, M. A. Scarpulla, O. D. Dubon, T. Jungwirth, J. Sinova, and J. Cerne, Electronic structure of ferromagnetic semiconductor Ga1xMnxAs probed by subgap magnetooptical spectroscopy, arXiv:0907.0207 (supports the valenceband picture)
 M. Cubukcu, H. J. von Bardeleben, Kh. Khazen, J. L. Cantin, O. Mauguin, L. Largeau, and A. Lemaitre, Phosphorous alloying: controlling the magnetic anisotropy in ferromagnetic (Ga,Mn)(As,P) Layers, arXiv:0908.0063
 M. Glunk, J. Daeubler, W. Schoch, R. Sauer, and W. Limmer, Scaling relation of the anomalous Hall effect in (Ga,Mn)As, arXiv:0908.2935
 O. Krebs, E. Benjamin, and A. Lemaître, Magnetic anisotropy of singly Mndoped InAs/GaAs quantum dots, arXiv:0909.0877 (surprising splitting, but well explained by theoretical model)
 M. Sawicki, D. Chiba, A. Korbecka, Y. Nishitani, J. A. Majewski, F. Matsukura, T. Dietl, and H. Ohno, Experimental probing of the interplay between ferromagnetism and localization in (Ga,Mn)As, arXiv:0909.3694, Nature Physics (published online 2009, doi:10.1038/nphys1455) (T_{c} decreases monotonically when the hole concentration is reduced by a gate voltage for a Mn concentration of about 7%, no sign of an impurity band) P
 A. Richardella, P. Roushan, S. Mack, B. Zhou, D. A. Huse, D. D. Awschalom, and A. Yazdani, Visualizing Critical Correlations near the MetalInsulator Transition in Ga_{1x}Mn_{x}As, Science 327, 665 (2010) (STM; importantly, see interactioninduced [AltshulerAronov] suppression of LDOS at the Fermi energy but no dip in the LDOS due to a merged impurity band, not even at 1.5% Mn; on the other hand, the LDOS looks fractal, very impuritybandlike at the Fermi energy); see also Perspective: G. A. Fiete and A. de Lozanne, Seeing Quantum Fractals, Science 327, 652 (2010), and Dietl and Sztenkiel, cited below
 C. Celebi, J. K. Garleff, A. Yu. Silov, A. M. Yakunin, P. M. Koenraad, W. Van Roy, J.M. Tang, and M. E. Flatté, Surface Induced Asymmetry of Acceptor Wave Functions, Phys. Rev. Lett. 104, 086404 (2010) (STM experiments, also compared to tightbinding calculations)
 S. R. Dunsiger, J. P. Carlo, T. Goko, G. Nieuwenhuys, T. Prokscha, A. Suter, E. Morenzoni, D. Chiba, Y. Nishitani, T. Tanikawa, F. Matsukura, H. Ohno, J. Ohe, S. Maekawa, and Y. J. Uemura, Spatially homogeneous ferromagnetism of (Ga, Mn)As, Nature Mat. 9, 299 (2010)
 E. H. C. P. Sinnecker, G. M. Penello, T. G. Rappoport, M. M. Sant'Anna, D. E. R. Souza, M. P. Pires, J. K. Furdyna, and X. Liu , Ionbeam modification of the magnetic properties of Ga_{1x}Mn_{x}As epilayers, Phys. Rev. B 81, 245203 (2010) (layers of 200 nm thickness with nominally 5% Mn doping, ion irradiation to introduce defects, magnetism are found to be rather robust under irradiation, authors conclude that holes reside in an impurity band; note changes of title and author list compared to first preprint version, arXiv:0811.3158) P
 L. Horak, Z. Soban, and V. Holy, Study of Mn interstitials in (Ga,Mn)As using highresolution xray diffraction, J. Phys.: Condens. Matter 22, 296009 (2010)
 D. Chiba, A. Werpachowska, M. Endo, Y. Nishitani, F. Matsukura, T. Dietl, and H. Ohno, Anomalous Hall Effect in FieldEffect Structures of (Ga,Mn)As, Phys. Rev. Lett. 104, 106601 (2010)
 T. Jungwirth, P. Horodyska, N. Tesarova, P. Nemec, J. Subrt, P. Maly, P. Kuzel, C. Kadlec, J. Masek, I. Nemec, V. Novak, K. Olejnik, Z. Soban, P. Vasek, P. Svoboda, and J. Sinova, Systematic Study of MnDoping Trends in Optical Properties of (Ga,Mn)As, Phys. Rev. Lett. 105, 227201 (2010) (midinfrared peak found to blueshift with increasing Mn concentration for weakly compensated samples, supporting a valenceband picture)
 K. Olejnik, P. Wadley, J. A Haigh, K. W. Edmonds, R. P. Campion, A. W. Rushforth, B. L. Gallagher, C. T. Foxon, T. Jungwirth, J. Wunderlich, S. S. Dhesi, S. Cavill, G. van der Laan, and E. Arenholz, Exchange bias of a ferromagnetic semiconductor by a ferromagnetic metal, arXiv:1001.2449
 K. Y. Wang, K. W. Edmonds, A. C. Irvine, J. Wunderlich, A. W. Rushforth, R. P. Campion, D. A. Williams, C. T. Foxon, and B. L. Gallagher, Small Domain Wall Resistance in Perpendicular (Ga,Mn)As, arXiv:1001.2631
 Y. Nishitani, D. Chiba, M. Endo, M. Sawicki, F. Matsukura, T. Dietl, and H. Ohno, Curie temperature versus hole concentration in fieldeffect structures of Ga1xMnxAs, arXiv:1001.3909 (support for Zener model with nonuniform carrier concentration)
 L. Dreher, D. Donhauser, J. Daeubler, M. Glunk, C. Rapp, W. Schoch, R. Sauer, and W. Limmer, Strain, magnetic anisotropy, and anisotropic magnetoresistance in (Ga,Mn)As on highindex substrates: application to (113)Aoriented layers, arXiv:1002.2179
 J. BakMisiuk, K. LawniczakJablonska, E. Dynowska, P. Romanowski, J. Z. Domagala, J. Libera, A. Wolska, M. T. Klepka, P. Dluzewski, J. Sadowski, A. Barcz, D. Wasik, A. Twardowski, and W. Caliebe, New evidence for structural and magnetic properties of GaAs:(Mn,Ga)As granular layers, arXiv:1004.3942
 P. Wadley, A. A. Freeman, K. W. Edmonds, G. van der Laan, J. S. Chauhan, R. P. Campion, A. W. Rushforth, B. L. Gallagher, C. T. Foxon, F. Wilhelm, A. G. Smekhova, and A. Rogalev, Elementresolved orbital polarization in (III,Mn)As ferromagnetic semiconductors from K edge xray magnetic circular dichroism, arXiv:1005.4577 (strongly supports a transfer of the dominant hole magnetic moments from Mn to As with increasing Mn doping)
 Sh. U. Yuldashev, Kh. T. Igamberdiev, S. Lee, Y. H. Kwon, T. W. Kang, Y. Kim, H. Im, and A. G. Shashkov, Specific heat study of Ga1xMnxAs, arXiv:1006.1023 (consistent with secondorder phase transition, Mn concentration 2.6% and lower)
 L. Herrera Diez, M. Konuma, E. Placidi, F. Arciprete, A. W. Rushforth, R. P. Campion, B. L. Gallagher, J. Honolka, and K. Kern, Manipulation of electrical and ferromagnetic properties of photosensitized (Ga,Mn)As, arXiv:1006.3174 (fluorescein adsorbed on (Ga,Mn)As found to permit control of Curie temperature and coercive field with visible light)
 C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, J. P. Heremans, and R. C. Myers, Observation of the SpinSeebeck Effect in a Ferromagnetic Semiconductor, arXiv:1007.1364
 S. Piano, R. Grein, C. J. Mellor, R. Campion, K. Vyborny, M. Eschrig, and B. L. Gallagher, Spin polarization of (Ga,Mn)As measured by Andreev Spectroscopy: The role of spinactive scattering, arXiv:1008.1788 (experiment and theoretical interpretation, finding 56% spin polarization of tunneling carriers at the Fermi energy)
 I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, V. F. Sapega, D. R. Yakovlev, and M. Bayer, Optical orientation of Mn^{2+}ions in GaAs, arXiv:1010.1463 (due to conductionband electrons)
 M. Kopecky, J. Kub, F. Maca, J. Masek, O. Pacherova, B. L. Gallagher, R. P. Campion, V. Novak, and T. Jungwirth, Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P), arXiv:1012.4690 (stacking faults observed in the (111) and (111) planes of the (001) film, this breaks the fourfold inplane symmetry)
 O. Yastrubchak, J. Zuk, H. Krzyzanowska, J. Z. Domagala, T. Andrearczyk, J. Sadowski, and T. Wosinski, Photoreflectance Study of the Fundamental Optical Properties of (Ga,Mn)As Epitaxial Films, arXiv:1012.4760 (the impurity and valence bands have merged for 6% Mn)
 S. Mark, P. Dürrenfeld, K. Pappert, L. Ebel, K. Brunner, C. Gould, and L. W. Molenkamp, Fully Electrical ReadWrite Device Out of a Ferromagnetic Semiconductor, Phys. Rev. Lett. 106, 057204 (2011)
 S. Ohya, K. Takata, and M. Tanaka, Nearly nonmagnetic valence band of the ferromagnetic semiconductor GaMnAs, Nature Physics (advance online publication 2011) (resonant tunneling spectroscopy, claim a nearly pristine valence band and a separate impurity band for up to 15% Mn); see Dietl and Sztenkiel, cited below
 J. Adell, I. Ulfat, L. Ilver, J. Sadowski, K. Karlsson, and J. Kanski, Thermal diffusion of Mn through GaAs overlayers on (Ga, Mn)As, J. Phys.: Condens. Matter 23, 085003 (2011) (8 ML of GaAs prevent outdiffusion of Mn)
 I. Stolichnov, S. W. E. Riester, E. Mikheev, N. Setter, A. W. Rushforth, K. W. Edmonds, R. P. Campion, C. T. Foxon, B. L. Gallagher, T. Jungwirth, and H. J. Trodahl, Enhanced Curie temperature and nonvolatile switching of ferromagnetism in ultrathin (Ga,Mn)As channels, Phys. Rev. B 83, 115203 (2011)
 B. C. Chapler, R. C. Myers, S. Mack, A. Frenzel, B. C. Pursley, K. S. Burch, E. J. Singley, A. M. Dattelbaum, N. Samarth, D. D. Awschalom, and D. N. Basov, An infrared probe of the insulatortometal transition in GaMnAs and GaBeAs, Phys. Rev. B 84, 081203(R) (2011) (in GaMnAs with up to 16% Mn, features attributed to impurities persist in the metallic state whereas in GaBeAs they do not, suggest impurityband conduction in GaMnAs)
 J. Fujii, M. Sperl, S. Ueda, K. Kobayashi, Y. Yamashita, M. Kobata, P. Torelli, F. Borgatti, M. Utz, C. S. Fadley, A. X. Gray, G. Monaco, C. H. Back, G. van der Laan, and G. Panaccione, Identification of Different Electron Screening Behavior Between the Bulk and Surface of (Ga,Mn)As, Phys. Rev. Lett. 107, 187203 (2011) (photoemission with hard xrays; 1% and 13% Mn; reported "localized" 3d^{5}+h character at Fermi energy of 13% sample does not mean the same as in the context of the MIT since highly doped material is metallic); M. Moreno and K. H. Ploog, Comment, arXiv:1204.2987
 P. Nemec, E. Rozkotova, N. Tesarova, F. Trojanek, K. Olejnik, J. Zemen, V. Novak, M. Cukr, P. Maly, and T. Jungwirth, Nonthermal laser induced precession of magnetization in ferromagnetic semiconductor (Ga,Mn)As, arXiv:1101.1049 (pumpprobe experiments and theory)
 Y. Hashimoto, H. Amano, Y. Iye, and S. Katsumoto, Magnetization dependent current rectification in (Ga,Mn)As magnetic tunnel junctions, arXiv:1104.3619
 L. Horak, J. Matejova, X. Marti, V. Holy, V. Novak, Z. Soban, S. Mangold, and F. JimenezVillacorta, Diffusion of Mn interstitials in (Ga,Mn)As epitaxial layers, arXiv:1105.0849 (xray spectroscopy and simulation of diffusion; electric field of charged defects is important)
 Sh. U. Yuldashev, Kh. T. Igamberdiev, Y. H. Kwon, Sanghoon Lee, X. Liu, J. K. Furdyna, A. G. Shashkov, and T. W. Kang, Crossover critical behavior of Ga1xMnxAs, arXiv:1108.1028 (suggest that the typical range of the effective MnMn exchange interaction is large compared to 5 Å)
 M. GryglasBorysiewicz, A. Kwiatkowski, M. Baj, D. Wasik, J. Przybytek, and J. Sadowski, Hydrostatic pressure study of paramagneticferromagnetic phase transition in (Ga,Mn)As, arXiv:1108.3960
 S. Piano, A. W. Rushforth, K. W. Edmonds, R. P. Campion, G. Adesso, and B. L. Gallagher, Analysing surface structures on (Ga,Mn)As by Atomic Force Microscopy, arXiv:1111.3685 (ripples along [1,1,0] direction)
 M. Bombeck, A. S. Salasyuk, B. A. Glavin, A. V. Scherbakov, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, Selective spin wave excitation in ferromagnetic (Ga,Mn)As layers by picosecond strain pulses, arXiv:1112.3394
 M. Dobrowolska, K. Tivakornsasithorn. X. Liu, J. K. Furdyna, M. Berciu, K. M. Yu, and W. Walukiewicz, Controlling the Curie temperature in (Ga,Mn)As through location of the Fermi level within the impurity band, Nature Materials doi:10.1038/nmat3250 (2012) (doping up to about 5%, channeling, T_{c}, transport, and MCD, favor an impurityband model, do not address its width); K. W. Edmonds, B. L. Gallagher, M. Wang, A. W. Rushforth, O. Makarovsky, A. Patane, R. P. Campion, C. T. Foxon, V. Novak, and T. Jungwirth, Correspondence on Dobrowolska et al., arXiv:1211.3860 (T_{c} is maximized at low compensation, inconsistent with an impurityband picture); M. Dobrowolska, X. Liu, J. K. Furdyna, M. Berciu, K. M. Yu, and W. Walukiewicz, Response, 1211.4051 (thin films are indeed distinct from bulk DMS)
 N. Tesarova, P. Nemec, E. Rozkotova, J. Subrt, H. Reichlova, D. Butkovicova, F. Trojanek, P. Maly, V. Novak, and T. Jungwirth, Direct measurement of the three dimensional magnetization vector trajectory in GaMnAs by a magnetooptical pumpandprobe method, arXiv:1201.1213
 M. W. Gutowski, W. Stefanowicz, O. Proselkov, J. Sadowski, M. Sawicki, and R. Zuberek, Interval identification of FMR parameters for spin reorientation transition in (Ga,Mn)As, arXiv:1201.2836 (experiments analyzed with the help of a novel prescription, which does not become fully clear)
 O. Proselkov, D. Sztenkiel, W. Stefanowicz, M. Aleszkiewicz, J. Sadowski, T. Dietl, and M. Sawicki, Thickness dependence of magnetic properties of (Ga,Mn)As, arXiv:1205.4824 (discussed in terms of depthdependent defect and carrier concentrations)
 P. Nemec, V. Novak, N. Tesarova, E. Rozkotova, H. Reichlova, D. Butkovicova, F. Trojanek, K. Olejnik, P. Maly, R. P. Campion, B. L. Gallagher, J. Sinova, and T. Jungwirth, Establishing micromagnetic parameters of ferromagnetic semiconductor (Ga,Mn)As, arXiv:1207.0310, with changes published as The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As, Nature Commun. 4, 1422 (2013) (systematic study for Mn doping up to 13%, highquality samples)
 B. C. Chapler, S. Mack, L. Ju, T. W. Elson, B. W. Boudouris, E. Namdas, J. D. Yuen, A. J. Heeger, N. Samarth, M. Di Ventra, R. A. Segalman, D. D. Awschalom, F. Wang, and D. N. Basov, Infrared conductivity of hole accumulation and depletion layers in (Ga,Mn)As and (Ga,Be)Asbased electric fieldeffect devices, arXiv:1207.0895 (for Mn doping of only 1.5% support an important role of a Mninduced impurity band, whereas for even lower Be doping find metallic conduction in the valence band)
 J. Kanski, I. Ulfat, L. Ilver, M. Leandersson, J. Sadowski, K. Karlsson, and P. Pal, Mn induced modifications of Ga 3d photoemission from (Ga,Mn)As: evidence for long range effects, arXiv:1207.1570 (substitutional Mn affects core levels of Ga in the vicinity)
 I. Muneta, H. Terada, S. Ohya, and M. Tanaka, Anomalous Fermi level behavior in GaMnAs at the onset of ferromagnetism, arXiv:1208.0575 (resonant tunneling spectroscopy for vertical stacks with GaMnAs double wells; one quantum well of various doping up to 3.2% and various thickness up to 16 nm, one fixed at 6% and 20 nm; suggest Fermi energy in impurity band, argument seems to be based on position of VBderived QW states in thin well relative to Fermi energy in thick well)
 S. Ohya, I. Muneta, Y. Xin, K. Takata, and M. Tanaka, Valenceband structure of ferromagnetic semiconductor (InGaMn)As, arXiv:1208.2928 (find that valence band changes weakly with Mn doping and that the Fermi energy is in the [clean] gap, even for sample without Ga, supporting a view of physics dominated by an impurity band)
 S. Zhou, Y. Wang, Z. Jiang, E. Weschke, and M. Helm, Ferromagnetic InMnAs on InAs Prepared by Ion Implantation and Pulsed Laser Annealing, arXiv:1209.5865, Appl. Phys. Expr. 5, 093007 (2012)
 M. Wang, K. W. Edmonds, B. L. Gallagher, A. W. Rushforth, O. Makarovsky, A. Patanè, R. P. Campion, C. T. Foxon, V. Novak, and T. Jungwirth, High Curie temperatures at low compensation in the ferromagnetic semiconductor (Ga,Mn)As, Phys. Rev. B 87, 121301(R) (2013) (highest Curie temperature for smallest compensation, contradicting picture of an isolated impurity band)
 J. Sadowski, J. Z. Domagala, R. Mathieu, A. Kovacs, and P. Dluzewski, Formation of twodimensionally confined superparamagnetic (Mn,Ga)As nanocrystals in hightemperature annealed (Ga,Mn)As/GaAs superlattices, J. Phys.: Condens. Matter 25, 196005 (2013)
 J. Fujii et al., Identifying the Electronic Character and Role of the Mn States in the Valence Band of (Ga,Mn)As, Phys. Rev. Lett. 111, 097201 (2013) (hard xray spectroscopy for 1% to 13% Mn concentration; find merged valence and impurity bands for heavy doping but states of dominant Mnd character at the Fermi energy and Fermi energy about 50 meV above the mobility edge, see Fig. 4, suggesting insulating samples [sample quality?]; additional Mnderived states are at about 5 eV below the Fermi energy)
 I. Di Marco, P. Thunström, M. I. Katsnelson, J. Sadowski, K. Karlsson, S. Lebègue, J. Kanski, and O. Eriksson, Electron correlations in Mn_{x}Ga_{1x}As as seen by resonant electron spectroscopy and dynamical mean field theory, Nature Commun. 4, 2645 (2013) (photoemission experiments and LDA+DMFT calculations, showing strong correlations, no splittoff impurity band, but doped holes predominantly located in the vicinity of Mn ions)
 M. Kobayashi, I. Muneta, Y. Takeda, Y. Harada, A. Fujimori, J. Krempasky, T. Schmitt, S. Ohya, M. Tanaka, M. Oshima, and V. N. Strocov, Unveiling the impurity band inducing ferromagnetism in magnetic semiconductor (Ga,Mn)As, arXiv:1302.0063 (2.5% Mn doping; resonant soft xray ARPES; Fermi energy is in gap, for judiciously chosen photon energy stated to be sensitive to intrinsic Mn observe a flat band below the Fermi energy, interpreted as an impurity band, support boundmagneticpolaron picture of Kaminski and Das Sarma)
 O. Yastrubchak, J. Sadowski, H. Krzyzanowska, L. Gluba, J. Zuk, J. Z. Domagala, T. Andrearczyk, and T. Wosinski, Electronic and bandstructure evolution in lowdoped (Ga,Mn)As, arXiv:1305.4056 (various spectroscopic methods and SQUID magnetometry; Mn doping up to 1.2%; for very weakly doped, ntype material find evidence for merging of Mn impurity band with valence band, for more strongly doped, ptype material support Fermi energy in valencetype band); O. Yastrubchak, T. Andrearczyk, J. Z. Domagala, J. Sadowski, L. Gluba, J. Zuk, and T Wosinski, Effect of lowtemperature annealing on the electronic and bandstructure of (Ga,Mn)As epitaxial layers, arXiv:1305.4175
 M. Kobayashi, H. Niwa, Y. Takeda, A. Fujimori, Y. Senba, H. Ohashi, A. Tanaka, S. Ohya, P. N. Hai, M. Tanaka, Y. Harada, and M. Oshima, Electronic excitations of magnetic impurity state in diluted magnetic semiconductor (Ga,Mn)As, arXiv:1306.1474
 M. Kobayashi, H. Niwa, Y. Takeda, A. Fujimori, Y. Senba, H. Ohashi, A. Tanaka, S. Ohya, P. N. Hai, M. Tanaka, Y. Harada, and M. Oshima, Electronic Excitations of a Magnetic Impurity State in the Diluted Magnetic Semiconductor (Ga,Mn)As, Phys. Rev. Lett. 112, 107203 (2014) (RIXS)
 L. Chen, F. Matsukura, and H. Ohno, ElectricField Modulation of Damping Constant in a Ferromagnetic Semiconductor (Ga,Mn)As, Phys. Rev. Lett. 115, 057204 (2015)
For transport through magnetic systems see also Mesoscopic and nanoscopic transport
Diluted magnetic semiconductors  experiments on oxides, including d^{0} systems
 P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson, and G. A. Gehring, Ferromagnetism above room temperature in bulk and transparent thin films of Mndoped ZnO, Nature Materials 2, 673 (2003) (grown by laser ablation, also contains abinitio calculations)
 M. S. R. Rao, S. Dhar, S. J. Welz, S. B. Ogale, D. C. Kundaliya, S. R. Shinde, S. E. Lofland, C. J. Metting, R. Erni, N. D. Browning, and T. Venkatesan, A New Ferromagnetic Insulator with Giant Magnetic Moment  Co:HfO_{2}, condmat/0405378 (a vacancydriven mechanism for magnetic ordering is suggested)
 T. C. Kaspar, S. M. Heald, C. M.Wang, J. D. Bryan, T. Droubay, V. Shutthanandan, S. Thevuthasan, D. E. McCready, A. J. Kellock, D. R. Gamelin, and S. A. Chambers, Negligible magnetism in excellent structural quality Cr_{x}Ti_{1x}O_{2} anatase: Contrast with highT_{C} ferromagnetism in structurally defective Cr_{x}Ti_{1x}O_{2},, Phys. Rev. Lett. 95, 217203 (2005) (defects are important for ferromagnetism)
 S. R. Shinde, S. B. Ogale, A. S. Ogale, S. J. Welz, A. Lussier, Darshan C. Kundaliya, H. Zheng, S. Dhar, M. S. R. Rao, R. Ramesh, Y. U. Idzerda, N. D. Browning, and T. Venkatesan, Percolative Ferromagnetism in Anatase Co:TiO_{2}, condmat/0505265
 S. Duhalde, M. F. Vignolo, C. Chiliotte, C. E. Rodríguez Torres, L. A. Errico, A. F. Cabrera, M. Rentería, F.H. Sánchez, and M. Weissmann, Appearance of room temperature ferromagnetism in Cudoped TiO_{2delta} films, condmat/0505602
 K. R. Kittilstved, W. K. Liu, and D. R. Gamelin, Charge Transfer Excited State Contributions to Polarity Dependent Ferromagnetism in ZnO Diluted Magnetic Semiconductors, condmat/0510644 (analysis of impurity levels in ZnO:Mn and ZnO:Co, roughly agrees with Dietl for Co, but not for Mn, analysis confusing but probably correct, conclusions for ferromagnetism open for discussion)
 G. Herranz, M. Basletic, M. Bibes, R. Ranchal, A. Hamzic, E. Tafra, K. Bouzehouane, E. Jacquet, J.P. Contour, A. Barthelemy, and A. Fert, Full oxide heterostructure combining a highT_{c} diluted ferromagnet with a highmobility conductor, condmat/0512533, Phys. Rev. B
 M. Naeem, S. K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby, and S. Ismat Shah, Effect of Reducing Atmosphere on the Magnetism of Zn_{1x}Co_{x}O Nanoparticles, condmat/0512597, Nanotechnology 17, 2675 (2006) (oxygen vacancies necessary for roomtemperature ferromagnetism)
 S. Thota, T. Dutta, and J. Kumar, On the solgel synthesis and thermal, structural, and magnetic studies of transition metal (Ni, Co, Mn) containing ZnO powders, J. Phys.: Condens. Matter 18, 2473 (2006) (find ferromagnetism only in Nidoped ZnO, not in Co or Mndoped)
 S. D. Yoon, Y. Chen, A. Yang, T. L. Goodrich, X. Zuo, D. A. Arena, K. Ziemer, C. Vittoria, and V. G. Harris, Oxygendefectinduced magnetism to 880 K in semiconducting anatase TiO_{2δ} films, J. Phys.: Condens. Matter 18, L355 (2006) (ferromagnetism in absence of magnetic ions) P
 L. Sangaletti, M. C. Mozzati, P. Galinetto, C. B. Azzoni, A. Speghini, M. Bettinelli, and G. Calestani, Ferromagnetism on a paramagnetic host background: the case of rutile TM:TiO_{2} single crystals (TM = Cr, Mn, Fe, Co, Ni, Cu), J. Phys.: Condens. Matter 18, 7643 (2006)
 S. X. Zhang, S. B. Ogale, L. F. Fu, S. Dhar, D. C. Kundaliya, W. Ramadan, N. D. Browning, and T. Venkatesan, Consequences of niobium doping for the ferromagnetism and microstructure of anatase Co:TiO_{2} films, Appl. Phys. Lett. 88, 012513 (2006), condmat/0601528
 S.S. Yan, J. P. Liu, L. M. Mei, Y. F. Tian, H. Q. Song, Y. X. Chen, and G. L. Liu, Spindependent variable range hopping and magnetoresistance in Ti_{1x}Co_{x}O_{2} and Zn_{1x}Co_{x}O magnetic semiconductor films, J. Phys.: Condens. Matter 18, 10469 (2006) (nanocrystaline and amorphous material prepared by sputtering, also contains model theory)
 G. S. Chang, E. Z. Kurmaev, D. W. Boukhvalov, L. D. Finkelstein, D. H. Kim, T.W. Noh, A. Moewes, and T. A. Callcott, Clustering of impurity atoms in Codoped anatase TiO_{2} thin films probed with soft xray fluorescence, J. Phys.: Condens. Matter 18, 4243 (2006)
 A. Fouchet, W. Prellier, and B. Mercey, Influence of the microstructure on the magnetism of Codoped ZnO thin films, condmat/0604468, J. Appl. Phys. (2006) (pulsed laser deposition, resistivity and magnetization measurements)
 D. Rubi, A. Calleja, J. Arbiol, X. G. Capdevila, M. Segarra, L. Aragones, and J. Fontcuberta, Structural and magnetic properties of ZnO:TM (TM: Co,Mn) nanopowders, condmat/0608014 (stress importance of defects)
 O. D. Jayakumar, I. K. Gopalakrishnan, K. Shasikala, and S. K. Kulshreshtha, Magnetic properties of Hydrogenated Li and Co doped ZnO nanoparticles, condmat/0610145
 O. D. Jayakumar, I. K. Gopalakrishnan, C. Sudakar, R. M. Kadam, and S. K. Kulshreshtha, Significant enhancement of room temperature ferromagnetism in surfactant coated polycrystalline Mn doped ZnO particles, condmat/0610170
 H. Pan, J. B. Yi, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Carbondoped ZnO: A New Class of Room Temperature Dilute Magnetic Semiconductor, condmat/0610870 (ntype and intrinsic; shows anomalous Hall effect)
 S. Zhou, K. Potzger, G. Zhang, F. Eichhorn, W. Skorupa, M. Helm, and J. Fassbender, Crystalline Ni nanoparticles as the origin of ferromagnetism in Ni implanted ZnO crystals, condmat/0611770
 A. Barla, G. Schmerber, E. Beaurepaire, A. Dinia, H. Bieber, S. Colis, F. Scheurer, J.P. Kappler, P. Imperia, F. Nolting, F. Wilhelm, A. Rogalev, D. Muller, and J. J. Grob, Paramagnetism of the Co sublattice in ferromagnetic Zn_{1x}Co_{x}O films, condmat/0612181
 S. Zhou, K. Potzger, H. Reuther, K. Kuepper, W. Skorupa, M. Helm, and J. Fassbender, Absence of ferromagnetism in Vimplanted ZnO single crystals, condmat/0612356, J. Appl. Phys.
 S. Zhou, K. Potzger, H. Reuther, G. Talut, F. Eichhorn, J. von Borany, W. Skorupa, M. Helm, and J. Fassbender, Crystallographically oriented magnetic ZnFe_{2}O_{4} nanoparticles synthesized by Fe implantation into ZnO, condmat/0612444, J. Phys. D: Appl. Phys.
 C. Sudakar, P. Kharel, G. Lawes, R. Suryanarayanan, R. Naik, and V. M. Naik, Raman spectroscopic studies of oxygen defects in Codoped ZnO films exhibiting roomtemperature ferromagnetism, J. Phys.: Condens. Matter 19, 026212 (2007)
 J. Zhang, X. Z. Li, J. Shi, Y. F. Lu, and D. J. Sellmyer, Structure and magnetic properties of Mndoped ZnO thin films, J. Phys.: Condens. Matter 19, 036210 (2007) (grown by PLD, characterized by xray diffraction etc., conclude that ferromagnetism is intrinsic)
 R. P. Borges, R. C. da Silva, S. Magalhaes, M. M. Cruz, and M. Godinho, Magnetism in Arimplanted ZnO, J. Phys.: Condens. Matter 19, 476207 (2007), see also minor erratum
 S. Riyadi, Muafif, A. A. Nugroho, A. Rusydi, and M. O. Tjia, Mndopantinduced effects in Zn_{1x}Mn_{x}O compounds, J. Phys.: Condens. Matter 19, 476214 (2007)
 K. Potzger, S. Zhou, H. Reuther, K. Kuepper, G. Talut, M. Helm, and J. Fassbender, J. D. Denlinger, Suppression of secondary phase formation in Fe implanted ZnO single crystals, Appl. Phys. Lett. 91, 062107 (2007)
 V. Sridharan, S. Banerjee, M. Sardar, S. Dhara, N. Gayathri, and V. S. Sastry, Bulk ferromagnetism and large changes in photoluminescence intensity by magnetic field in betaGa_{2}O_{3}, condmat/0701232 (ferromagnetism is attributed to dilute oxygen vacancies)
 K. Ueno, T. Fukumura, H. Toyosaki, M. Nakano, and M. Kawasaki, Anomalous Hall effect in anatase Ti_{1x}Co_{x}O_{2} at low temperature regime, condmat/0701395
 D. Rubi, J. Fontcuberta, A. Calleja, Ll. Aragones, X.G. Capdevila, and M. Segarra, Reversible Ferromagnetic Switching in ZnO:(Co,Mn) Powders, condmat/0701473 (clearly showing the importance of defects for ferromagnetism)
 P. Sati, C. Deparis, C. Morhain, S. Schafer, and A. Stepanov, Antiferromagnetic interactions in single crystalline Zn1xCoxO thin films, condmat/0702402; P. Sati, R. Hayn, R. Kuzian, S. Regnier, S. Schafer, A. Stepanov, C. Morhain, C. Deparis, M. Laugt, M. Goiran, and Z. Golacki, Magnetic Anisotropy of Co^{2+} as Signature of Intrinsic Ferromagnetism in ZnO:Co, condmat/0702410
 S. Banerjee, M. Mandal, N. Gayathri, and M. Sardar, Ferromagnetic Curie point above room temperature in bulk ZnO, condmat/0702486 (another example of "d^{0}" ferromagnetism) P
 C. E. Rodríguez Torres, F. Golmar, A. F. Cabrera, L. A. Errico, A. M. Mudarra Navarro, M. Rentería, F. H. Sánchez, and S. Duhalde, Magnetic and structural study of Cudoped TiO_{2} thin films, condmat/0702515 (...is ferromagnetic)
 D. Karmakar, S. K. Mandal, R. M. Kadam, P. L. Paulose, A. K. Rajarajan, T. K. Nath, A. K. Das, I. Dasgupta, and G. P. Das, Ferromagnetism in Fedoped ZnO Nanocrystals: Experimental and Theoretical investigations, condmat/0702525 (experiment and LSDA calculations, suggesting importance of vacancies)
 S. D. Yoon, V. G. Harris, C. Vittoria, and A. Widom, Electronic Transport in the Oxygen Deficient Ferromagnetic Semiconducting TiO_{2delta}, arXiv:0704.2211 (magnetically active Ti^{2+} and Ti^{3+} ions also play a role in transport, carrier density explained by exchangesplit valence band and thermal activation)
 A. K Rumaiz, B. Ali, A. Ceylan, M. Boggs, T. Beebe, and S. Ismat Shah, Experimental studies on vacancy induced ferromagnetism in undoped TiO_{2}, arXiv:0704.2621 (suggest Stoner splitting of Ti dband, which resides close to Fermi energy due to presence of oxygen vacancies)
 S. Banerjee, K. Rajendran, N. Gayathri, M. Sardar, S. Senthilkumar, and V. Sengodan, Quenching of ferromagnetism in bulk ZnO upon Mn doping, arXiv:0704.3541
 D.Y. Cho, J.M. Lee, S.J. Oh, H. Jang, J.Y. Kim, J.H. Park, and A. Tanaka, Influence of oxygen vacancy on the electronic structure of HfO_{2} film, arXiv:0707.2127 (vacancies induce partial occupation of Hf dshell, but no longrange order)
 T. Dietl, T. Andrearczyk, A. Lipinska, M. Kiecana, M. Tay, and Y. Wu, Origin of ferromagnetism in (Zn,Co)O from magnetization and spindependent magnetoresistance, arXiv:0708.2476 (experiment and theory, importance of uncompensated spins at surfaces of clusters)
 T. Matsumura, D. Okuyama, S. Niioka, H. Ishida, T. Satoh, Y. Murakami, H. Toyosaki, Y. Yamada, T. Fukumura, and M. Kawasaki, Xray Anomalous Scattering of Diluted Magnetic Oxide Semiconductors: Possible Evidence of Lattice Deformation for High Temperature Ferromagnetism, arXiv:0708.3876
 C.F. Yu, T.J. Lin, S.J. Sun, and H. Chou, Origin of Ferromagnetism in nitrogen embedded ZnO:N thin films, arXiv:0708.4053 (discussion in terms of BMP model)
 S. Ghoshal and P. S. Anil Kumar, Suppression of the magnetic moment upon Co doping in ZnO thin film with an intrinsic magnetic moment, J. Phys.: Condens. Matter 20, 192201 (2008)
 Y.Q. Song, H.W. Zhang, Q.Y. Wen, L. Peng, and J. Q. Xiao, Direct evidence of oxygen vacancy mediated ferromagnetism of Co doped CeO_{2} thin films on Al_{2}O_{3}(0001) substrates, J. Phys.: Condens. Matter 20, 255210 (2008)
 M. Naeem, S. K. Hasanain, S. S. Afgan, and A. Rumaiz, Competing effects of Cu ionic charge and oxygen vacancies on the ferromagnetism of (Zn,Co)O nanoparticles, J. Phys.: Condens. Matter 20, 255223 (2008)
 G.H. Ji, Z.B. Gu, M.H. Lu, D. Wu, S.T. Zhang, Y.Y. Zhu, S.N. Zhu, and Y.F. Chen, Ferromagnetism in Mn and Sb codoped ZnO films, J. Phys.: Condens. Matter 20, 425207 (2008)
 F. Zhao, H. M. Qiu, L. Q. Pan, H. Zhu, Y. P. Zhang, Z. G. Guo, J. H. Yin, X. D. Zhao, and J. Q. Xiao, Ferromagnetism analysis of Mndoped CuO thin films, J. Phys.: Condens. Matter 20, 425208 (2008)
 N. Akdogan, A. Nefedov, K. Westerholt, H. Zabel, H. W. Becker, C. Somsen, R. Khaibullin, and L. Tagirov, Intrinsic room temperature ferromagnetism in Coimplanted ZnO, arXiv:0805.0361
 N. Akdogan, A. Nefedov, H. Zabel, K. Westerholt, H.W. Becker, C. Somsen, S. Goek, A. Bashir, R. Khaibullin, and L. Tagirov, High temperature ferromagnetism in Coimplanted TiO_{2} rutile, arXiv:0807.1555 (observe two phases, one ferro and one superparamagnetic [from clusters])
 N. Akdogan, H. Zabel, A. Nefedov, K. Westerholt, H.W. Becker, S. Goek, R. Khaibullin, and L. Tagirov, Dose dependence of ferromagnetism in Coimplanted ZnO, arXiv:0807.4711
 S. Zhou, Q. Xu, K. Potzger, G. Talut, R. Grötzschel, J. Fassbender, M. Vinnichenko, J. Grenzer, M. Helm, H. Hochmuth, M. Lorenz, M. Grundmann, and H. Schmidt, Room temperature ferromagnetism in carbonimplanted ZnO, arXiv:0811.3487
 G. S. Chang, E. Z. Kurmaev, D. W. Boukhvalov, L. D. Finkelstein, A. Moewes, H. Bieber, S. Colis, and A. Dinia, Co and Al codoping for ferromagnetism in ZnO:Co diluted magnetic semiconductors, J. Phys.: Condens. Matter 21 056002 (2009) (experiment and abinitio calculations)
 M. M. Cruz, R. C. da Silva, N. Franco, and M. Godinho, Ferromagnetism induced in rutile single crystals by argon and nitrogen implantation, J. Phys.: Condens. Matter 21, 206002 (2009) (implanted TiO2)
 Z. H. Zhang, X. Wang, J. B. Xu, S. Muller, C. Ronning, and Q. Li, Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures, Nature Nanotechnology (2009)
 S. Zhou, E. Cizmar, K. Potzger, M. Krause, G. Talut, M. Helm, J. Fassbender, S. A. Zvyagin, J. Wosnitza, and H. Schmidt, Origin of magnetic moments in defective TiO_{2} single crystals, Phys. Rev. B 79, 113201 (2009) (oxygenion irradiation leads to formation of defects providing spins that can order ferromagnetically)
 T. Kataoka, M. Kobayashi, Y. Sakamoto, G. S. Song, A. Fujimori, F.H. Chang, H.J. Lin, D. J. Huang, C. T. Chen, T. Ohkochi, Y. Takeda, T. Okane, Y. Saitoh, H. Yamagami, A. Tanaka, S. K. Mandal, T. K. Nath, D. Karmakar, and I. Dasgupta, Electronic structure and magnetism of the diluted magnetic semiconductor Fedoped ZnO nanoparticles, arXiv:0904.1838 (10% Fe, various xray techniques, interpretation of ferromagnetic signal in terms of ferrimagnetism: unequal numbers of Fe^{3+} ions in different lattice positions with antiferromagnetic coupling)
 S. Zhou, K. Potzger, Q. Xu, G. Talut, M. Lorenz, W. Skorupa, M. Helm, J. Fassbender, M. Grundmann, and H. Schmidt, Ferromagnetic transition metal implanted ZnO: a diluted magnetic semiconductor?, arXiv:0907.3536
 V. Fernandes, P. Schio, A. J. A. de Oliveira, W. A. Ortiz, P. Fichtner, L. Amaral, I. L. Graff, J. Varalda, N. Mattoso, W. H. Schreiner, and D. H. Mosca, Ferromagnetism induced by oxygen and cerium vacancies above the percolation limit in CeO_{2}, J. Phys.: Condens. Matter 22, 216004 (2010)
 M. Kobayashi, Y. Ishida, J. I. Hwang, Y. Osafune, A. Fujimori, Y. Takeda, T. Okane, Y. Saitoh, K. Kobayashi, H. Saeki, T. Kawai, and H. Tabata, Indication of antiferromagnetic interaction between paramagnetic Co ions in the diluted magnetic semiconductor Zn_{1x}Co_{x}O, arXiv:1001.0712
 X. G. Xu, H. L. Yang, Y. Wu, D. L. Zhang, S. Z. Wu, J. Miao, and Y. Jiang, Intrinsic Room Temperature Ferromagnetism in Borondoped ZnO, arXiv:1003.4423 (experiments and DFT calculations, magnetic moments are attributed to oxygen ions neighboring BV_{Zn} pairs)
 J. M. D. Coey, P. Stamenov, R. D. Gunning, M. Venkatesan, and K. Paul, Ferromagnetism in defectridden oxides and related materials, arXiv:1003.5558 (experiment and theory, spinsplit defect band)
 N. Akdogan, B. Rameev, S. Guler, O. Ozturk, B. Aktas, H. Zabel, R. Khaibullin, and L. Tagirov, Sixfold inplane magnetic anisotropy in Coimplanted ZnO (0001), arXiv:1004.4291 (conclude that Co is substituted for Zn and shows longrange order)
 S. K. Srivastava, P. Lejay, B. Barbara, S. Pailhes, and G. Bouzerar, Magnetism without magnetic impurities in SnO2, arXiv:1004.5001
 M. H. N. Assadi, Y. B. Zhang, M. Ionescu, P. Photongkam, and S. Li, Intrinsic Ferromagnetism in Eu doped ZnO, arXiv:1006.3856 (experiments compared to DFT calculations, Euionimplanted ZnO, support defectbased ferromagnetism)
 M. Kapilashrami, J. Xu, K. V. Rao, L. Belova, E. Carlegrim, and M. Fahlman, Experimental evidence for ferromagnetism at room temperature in MgO thin films, J. Phys.: Condens. Matter 22, 345004 (2010) (attributed to defects, effect strongly depends on growth conditions)
 R. Escudero and R. Escamilla, Ferromagnetic Behavior of High Purity ZnO nanoparticles, arXiv:1009.5641 (attributed to oxygen vacancies)
 S. Chattopadhyay, S. K. Neogi, A. Sarkar, M. D. Mukadam, S. M. Yusuf, A. Banerjee, and S. Bandyopadhyay, Defects induced ferromagnetism in Mn doped ZnO, arXiv:1010.0547 (roomtemperature ferromagnetism; as a function of milling time, i.e., of disorder, both the resistivity and the saturation magnetization increase)
 M. Khalid, P. Esquinazi, D. Spemann, W. Anwand, and G. Brauer, Hydrogen mediated ferromagnetism in ZnO single crystals, arXiv:1104.1899 (the hydrogen leads to ferromagnetism at room temperature)
 C. E. Rodríguez Torres, F. Golmar, M. Ziese, P. Esquinazi, and S. P. Heluani, Evidence of defectinduced ferromagnetism in ZnFe_{2}O_{4} thin films, arXiv:1106.3128
 M. Godlewski, E. Guziewicz, M. I. Lukasiewicz, I. A. Kowalik, M. Sawicki, B. S. Witkowski, R. Jakiela, W. Lisowski, J. W. Sobczak, and M. Krawczyk, Role of interface in ferromagnetism of (Zn,Co)O films, arXiv:1107.5188; phys. stat. solidi (b) 248, 1596 (2011) (claim that ferromagnetic response at room temperature is due to cobalt accumulated at the ZnO/substrate interface)
 T. Kataoka, Y. Yamazaki, V. R. Singh, Y. Sakamoto, A. Fujimori, Y. Takeda, T. Ohkochi, S.I. Fujimori, T. Okane, Y. Saitoh, H. Yamagami, A. Tanaka, M. Kapilashrami, L. Belova, and K. V. Rao, Ferromagnetism in ZnO codoped with Mn and N studied by soft xray magnetic circular dichroism, arXiv:1201.0006, Appl. Phys. Lett. 99, 132508 (2011)
 P. Srivastava, S. Ghosh, B. Joshi, P. Satyarthi, P. Kumar, D. Kanjilal, D. Bürger, S. Zhou, H. Schmidt, A. Rogalev, and F. Wilhelm, Probing origin of room temperature ferromagnetism in Ni ion implanted ZnO films with xray absorption spectroscopy, J. Appl. Phys. 111, 013715 (2012)
 M. Naeem and S. K. Hasanain, Role of donor defects in stabilizing room temperature ferromagnetism in (Mn, Co) codoped ZnO nanoparticles, J. Phys.: Condens. Matter 24, 245305 (2012)
 M. Sawicki, E. Guziewicz, M. I. Lukasiewicz, O. Proselkov, I. A. Kowalik, W. Lisowski, P. Dluzewski, A. Wittlin, M. Jaworski, A. Wolska, W. Paszkowicz, R. Jakiela, B. S. Witkowski, L. Wachnicki, M. T. Klepka, F. J. Luque, D. Arvanitis, J. W. Sobczak, M. Krawczyk, A. Jablonski, W. Stefanowicz, D. Sztenkiel, M. Godlewski, and T. Dietl, Homogenous and heterogeneous magnetism in (Zn,Co)O, arXiv:1201.5268 (quasihomogeneous and modulated samples, spinglass behavior, ferromagnetic response is attributed to Co precipitates at the filmsubstrate interface)
 R. Oja, M. Tyunina, L. Yao, T. Pinomaa, T. Kocourek, A. Dejneka, O. Stupakov, A. Jelinek, V. Trepakov, S. van Dijken, and R. M. Nieminen, d0 Ferromagnetic Interface Between Nonmagnetic Perovskites, arXiv:1206.0140 (experiment compared to GGA and GGA+U calculations)
 A. Rusydi, S. Dhar, A. Roy Barman, Ariando, D.C. Qi, M. Motapothula, J. B. Yi, I. Santoso, Y. P. Feng, K. Yang, Y. Dai, N. L. Yakovlev, J. Ding, A. T. S. Wee, G. Neuber, M. B. H. Breese, M. Rübhausen, H. Hilgenkamp, and T. Venkatesan, Cationic vacancy induced roomtemperature ferromagnetism in transparent conducting anatase Ti_{1x}Ta_{x}O_{2} (x~0.05) thin films, arXiv:1207.3156 (ferromagnetism attributed to Tivacancy moments interacting through mobile carriers, based on xray absorption spectroscopy)
 R. Karmakar, S. K. Neogi, A. Banerjee, and S. Bandyopadhyay, Structural, Morphological, Optical and Magnetic Property of Mn doped Ferromagnetic ZnO thin film, arXiv:1210.4698
 S. Zhou, K. Potzger, G. Talut, J. von Borany, W. Skorupa, M. Helm, and J. Fassbender, Using xray diffraction to identify precipitates in transition metal doped semiconductors, arXiv:1301.0100 (why some nanocrystals might be invisible for xray diffraction)
 T. Tietze et al., Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study, Sci. Rep. 5, 8871 (2015) (magnetic volume fraction is strongly correlated with the fraction affected by grain boundaries; DFT: grain boundaries show ferromagnetic coupling)
 R. J. Green, T. Z. Regier, B. Leedahl, J. A. McLeod, X. H. Xu, G. S. Chang, E. Z. Kurmaev, and A. Moewes, Adjacent FeVacancy Interactions as the Origin of Room Temperature Ferromagnetism in (In1xFex)2O3, Phys. Rev. Lett. 115, 167401 (2015) (RIXS)
Diluted magnetic semiconductors  experiments on other compounds, including d^{0} systems
 N. Theodoropoulou, A. F. Hebard, S. N. G. Chu, M. E. Overberg, C. R. Abernathy, S. J. Pearton, R. G. Wilson, and J. M. Zavada, Magnetic Properties of Fe and MnImplanted SiC, Electrochem. SolidState Lett. 4 G119 (2001)
 M. Bolduc, C. AwoAffouda, A. Stollenwerk, M. B. Huang, F. G. Ramos, G. Agnello, and V. P. LaBella, Above room temperature ferromagnetism in Mnion implanted Si, Phys. Rev. B 71, 033302 (2005)
 S. Dhar, L. Pérez, O. Brandt, A. Trampert, K. H. Ploog, J. Keller, and B. Beschoten, Gddoped GaN: A very dilute ferromagnetic semiconductor with a Curie temperature above 300 K, Phys. Rev. B 72, 245203 (2005) P
 M. A. Scarpulla, B. L. Cardozo, W. M. Hlaing Oo, M. D. McCluskey, and O. D. Dubon, Ferromagnetism in Ga_{1x}Mn_{x}P: evidence for interMn exchange mediated by localized holes within a detached impurity band, condmat/0501275
 Y. Shuto, M. Tanaka, and S. Sugahara, Magnetooptical properties of a new groupIV ferromagnetic semiconductor Ge_{1x}Fe_{x} grown by lowtemperature molecular beam epitaxy, condmat/0511328 (having maximum T_{c} of 170K at the maximum Fe concentration of 10%)
 S. Sugahara, K. L. Lee, S. Yada, and M. Tanaka, Precipitation of amorphous ferromagnetic semiconductor phase in epitaxially grown Mndoped Ge thin films, condmat/0511361 (attribute DMS behavior to amorphous (Ge,Mn) clusters in pure Ge matrix)
 S. Sonoda, I. Tanaka, H. Ikeno, T. Yamamoto, F. Oba, T. Araki, Y. Yamamoto, K. Suga, Y. Nanishi, Y. Akasaka, K. Kindo, and H. Hori, Coexistence of Mn^{2+} and Mn^{3+} in ferromagnetic GaMnN, J. Phys.: Condens. Matter 18, 4615 (2006), modified version of condmat/0511435 under new title (evidence for roomtemperature ferromagnetism in (Ga,Mn)N mediated by carriers in a deep Mnd impurity band)
 S. Y. Han, J. Hite, G. T. Thaler, R. M. Frazier, C. R. Abernathy, S. J. Pearton, H. K. Choi, W. O. Lee, Y. D. Park, J. M. Zavada, and R. Gwilliam, Effect of Gd implantation on the structural and magnetic properties of GaN and AlN, Appl. Phys. Lett. 88, 042102 (2006) P
 S. Dhara, B. Sundaravel, K. G. M. Nair, R. Kesavamoorthy, M. C. Valsakumar, T. V. Chandrasekhar Rao, L. C. Chen, and K. H. Chen, Ferromagnetism in cobalt doped nGaN, Appl. Phys. Lett. 88, 173110 (2006)
 T. Dubroca, J. Hack, R. E. Hummel, and A. Angerhofer, Quasiferromagnetism in semiconductors, Appl. Phys. Lett. 88, 182504 (2006) P
 P. R. Bandaru, J. Park, J. S. Lee, Y. J. Tang, L.H. Chen, S. Jin, S. A. Song, and J. R. O'Brien, Enhanced room temperature ferromagnetism in Co and Mnionimplanted silicon, Appl. Phys. Lett. 89, 112502 (2006) P
 R. G. Wilks, E. Z. Kurmaev, L. M. Sandratskii, A. V. Postnikov, L. D. Finkelstein, T. P. Surkova, S. A. LopezRivera, and A. Moewes, An xray emission and density functional theory study of the electronic structure of Zn_{1x}Mn_{x}S, J. Phys.: Condens. Matter 18, 10405 (2006) (no ferromagnetism, but giant Zeeman effect, no information on growth, also contains DFT calculations using the supercell approach)
 P. R. Stone, M. A. Scarpulla, R. Farshchi, I. D. Sharp, E. E. Haller, O. D. Dubon, K. M. Yu, J. W. Beeman, E. Arenholz, J. D. Denlinger, and H. Ohldag, Mn L_{3,2} Xray absorption and magnetic circular dichroism in ferromagnetic Ga_{1x}Mn_{x}P, condmat/0604003 (grown by ion implantation and pulsedlaser melting, shows similar properties as Mndoped GaAs)
 S. Marcet et al., Magnetooptical spectroscopy of (Ga,Mn)N epilayers, condmat/0604025
 C. Jaeger, C. Bihler, T. Vallaitis, S. T. B. Goennenwein, M. Opel, R. Gross, and M. S. Brandt, Spin glasslike behavior of Ge:Mn, condmat/0604041
 S. Yoshii, S. Sonoda, T. Yamamoto, T. Kashiwagi, M. Hagiwara, Y. Yamamoto, Y. Akasaka, K. Kindo, and H. Hori, Evidence for CarrierInduced HighT_{c} Ferromagnetism in Mndoped GaN film, condmat/0604674 (Mn concentration 8.2%, roomtemperature ferromagnetism, electronic localization and suppression of ferromagnetic order below 10 K); H. Hori, Y. Yamamoto, and S. Sonoda, A possible model to high T_{C} ferromagnetism in Gallium Manganese Nitrides based on resonation properties of impurities in semiconductors, condmat/0607708 (with some theoretical discussion based on doubleexchange model)
 P. R. Stone, M. A. Scarpulla, R. Farshchi, I. D. Sharp, J. W. Beeman, K. M. Yu, E. Arenholz, J. D. Denlinger, E. E. Haller, and O. D. Dubon, Mn L_{3,2} Xray Absorption Spectroscopy And Magnetic Circular Dichroism In Ferromagnetic (Ga,Mn)P, condmat/0607393, Proceedings of ICPS28
 R. Farshchi, M. A. Scarpulla, P. R. Stone, K. M. Yu, I. D. Sharp, J. W. Beeman, H. H. Silvestri, L. A. Reichertz, E. E. Haller, and O. D. Dubon, Compositional tuning of ferromagnetism in Ga_{1x}Mn_{x}P, condmat/0608133 (material is produced by ion implantation followed by laser melting and is always found to be insulating; the acceptor gap is found to shrink with increasing x)
 S. Sonoda, I. Tanaka, F. Oba, H. Ikeno, H. Hayashi, T. Yamamoto, Y. Yuba, K. Yoshida, M. Aoki, M. Asari, Y. Akasaka, K. Kindo, and H. Hori, Awaking of ferromagnetism in GaMnN through control of Mn valence, condmat/0608653 (conclude that Mn^{2+/3+} mixed valence is crucial for ferromagnetism in (Ga,Mn)N)
 S. Ahlers, D. Bougeard, N. Sircar, G. Abstreiter, A. Trampert, M. Opel, and R. Gross, Magnetic and structural properties of GeMn films: precipitation of intermetallic nanomagnets, condmat/0611241, Phys. Rev. B 74 (2006) (5% Mn, find precipitates of ferromagnetic Mn_{5}Ge_{3}, superparamagnetism, study blocking temperature); D. Bougeard, S. Ahlers, A. Trampert, N. Sircar, and G. Abstreiter, Clustering in a precipitate free GeMn magnetic semiconductor, condmat/0611245, Phys. Rev. Lett. (2006) (5% Mn, no precipitates, but clusters with higher substitutional Mn concentration, no ferromagnetic longrange order, but superparamagnetism)
 A. Bonanni, M. Kiecana, C. Simbrunner, Tian Li, M. Sawicki, M. Wegscheider. M. Quast, H. Przybylinska, A. NavarroQuezada, A. Wolos, W. Jantsch, and T. Dietl, Paramagnetic GaN:Fe and ferromagnetic (Ga,Fe)N  relation between structural, electronic, and magnetic properties, condmat/0612200, Phys. Rev. B
 S. Zhou, K. Potzger, G. Zhang, A. Muecklich, F. Eichhorn, N. Schell, R. Groetzschel, B. Schmidt, W. Skorupa, M. Helm, J. Fassbender, and D. Geiger, Structural and magnetic properties of Mnimplanted Si, condmat/0612612, Phys. Rev. B (Mn is incorporated as MnSi_{1.7} clusters, not substitutionally)
 S. H. Song, M. H. Jung, and S. H. Lim, Spin glass behaviour of amorphous GeMn alloy thin films, J. Phys.: Condens.Matter 19, 036211 (2007)
 J. M. Zavada, N. Nepal, C. Ugolini, J. Y. Lin, H. X. Jiang, R. Davies, J. Hite, C. R. Abernathy, S. J. Pearton, E. E. Brown, and U. Hömmerich , Optical and magnetic behavior of erbiumdoped GaN epilayers grown by metalorganic chemical vapor deposition, Appl. Phys. Lett. 91, 054106 (2007) (very small magnetic moment per Er dopant)
 M. A. Khaderbad, S. Dhar, L. Pérez, K. H. Ploog, A. Melnikov, and A. D. Wieck, Effect of annealing on the magnetic properties of Gd focused ion beam implanted GaN, Appl. Phys. Lett. 91, 072514 (2007)
 W. Pacuski, D. Ferrand, J. Cibert, J. A. Gaj, A. Golnik, P. Kossacki, S. Marcet, E. Sarigiannidou, and H. Mariette, Excitonic giant Zeeman effect in GaN:Mn^{3+}, condmat/0703041 (find ferromagnetic holelocal moment exchange interaction)
 J. I. Hwang, Y. Osafune, M. Kobayashi, K. Ebata, Y. Ooki, Y. Ishida, A. Fujimori, Y. Takeda, T. Okane, Y. Saitoh, K. Kobayashi, and A. Tanaka, Depth profile highenergy spectroscopic study of Mndoped GaN prepared by thermal diffusion, condmat/0703429 (found to be similar to MBEgrown samples; weak ferromagnetism for ptype GaN substrate)
 C. Bihler, M. Kraus, M. S. Brandt, S.T.B. Goennenwein, M. Opel, M. A. Scarpulla, R. Farshchi, and O. D. Dubon, Suppression of holemediated ferromagnetism in GaMnP by hydrogen, arXiv:0707.2777
 P. R. Stone, J. W. Beeman, K. M. Yu, and O. D. Dubon, Tuning of ferromagnetism through anion substitution in GaMnpnictide ferromagnetic semiconductors, arXiv:0707.4490 (anion substitution is found to decrease T_{c})
 W. Pacuski, P. Kossacki, D. Ferrand, A. Golnik, J. Cibert, M. Wegscheider, A. NavarroQuezada, A. Bonanni, M. Kiecana, M. Sawicki, and T. Dietl, Observation of strongcoupling effects in a diluted magnetic semiconductor (Ga,Fe)N, arXiv:0708.3296
 G. Mihaly, M. Csontos, S. Bordacs and I. Kezsmarki, T. Wojtowicz, X. Liu, B. Janko, and J. K. Furdyna, Anomalous Hall effect in (In,Mn)Sb dilute magnetic semiconductor, arXiv:0709.0059
 M. S. Seehra, P. Dutta, S. Neeleshwar, Y.Y. Chen, C. L. Chen, S. W. Chou, C. C. Chen, C.L. Dong, and C.L. Chang, SizeControlled Exnihilo Ferromagnetism in Capped CdSe Quantum Dots, Adv. Mat. 20, 1656 (2008) (roomtemperature ferromagnetism without magnetic dopants, attributed to effect of capping)
 A. Ney, R. Rajaram, T. Kammermeier, V. Ney, S. Dhar, K. H. Ploog, and S. S. P. Parkin, Metastable magnetism and memory effects in dilute magnetic semiconductors, J. Phys.: Condens. Matter 20, 285222 (2008) (ferromagnetic response is partially metastable and shows memory effects; for MBEgrown Cr:InN and Gd:GaN) P
 A. Geresdi, A. Halbritter, M. Csontos, Sz. Csonka, G. Mihaly, T. Wojtowicz, X. Liu, B. Janko, and J. K. Furdyna, Nanoscale spinpolarization in dilute magnetic semiconductor (In,Mn)Sb, arXiv:0801.1464
 M. Vladimirova, S. Cronenberger, P. Barate, D. Scalbert, F. J. Teran, and A. P. Dmitriev, Two kinds of spin precession modes in diluted magnetic semiconductors, arXiv:0801.4756 (Kerr measurements on IIVI DMS (Cd,Mn)Te showing that some Mn spins decouple from the electron system while others do not)
 S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, and T. Dietl, Origin and control of hightemperature ferromagnetism in semiconductors, arXiv:0804.0322 (ferromagnetism in (Zn,Cr)Te is attributed to Crrich inclusions)
 S. D. Ganichev, S. A. Tarasenko, V. V. Bel'kov, P. Olbrich, W. Eder, D. R. Yakovlev, V. Kolkovsky, W. Zaleszczyk, G. Karczewski, T. Wojtowicz, and D. Weiss, Spin currents in diluted magnetic semiconductors, arXiv:0811.4327 (Mndoped IIVI heterostructures)
 O. SanchoJuan, A. Cantarero, N. Garro, A. Cros, G. MartinezCriado, M. Salome, J. Susini, D. Olguin, and S. Dhar, Xray absorption nearedge structure of GaN with high Mn concentration grown on SiC, J. Phys.: Condens. Matter 21, 295801 (2009)
 M. Rovezzi, F. D'Acapito, A. NavarroQuezada, B. Faina, T. Li, A. Bonanni, F. Filippone, A. A. Bonapasta, and T. Dietl, Local structure of (Ga,Fe)N and (Ga,Fe)N:Si investigated by xray absorption fine structure spectroscopy, arXiv:0902.4614 (experiments and DFT)
 A. Lipinska, C. Simserides, K. N. Trohidou, M. Goryca, P. Kossacki, A. Majhofer, and T. Dietl, Ferromagnetic properties of p(Cd,Mn)Te quantum wells: Interpretation of magnetooptical measurements by Monte Carlo simulations, arXiv:0903.0406 (experiment and theory)
 W. Münzer, A. Neubauer, S. Mühlbauer, C. Franz, T. Adams, F. Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch, and C. Pfleiderer, Skyrmion Lattice in a Doped Semiconductor, arXiv:0903.2587 (smallangle neutron scattering on (Fe,Co)Si, note relationship to MnSi)
 O. Riss, A. Gerber, I. Ya. Korenblit, A. Suslov, M. Passacantando, and L. Ottaviano, Magnetization driven metal  insulator transition in strongly disordered Ge:Mn magnetic semiconductors, arXiv:0903.5423
 D. Wang, X. Y. Zhang, J. Wang, S. Q. Wei, W. S. Yan, and D. W. Boukhvalov, Mn clusterisation in Ga1xMnxN, arXiv:0905.4158 (xray absorption spectroscopy, nanocluster formation, also DFT calculations)
 E. CuervoReyes, E. D. Stalder, C. Mensing, S. Budnyk, and R. Nesper, Unexpected Ferromagnetism in AlkalineEarth Silicides, arXiv:0909.0434
 V. N. Krivoruchko, V. Yu. Tarenkov, D. V. Varyukhin, A. I. D'yachenko, O. N. Pashkova, and V. A. Ivanov, Unconventional ferromagnetism and transport properties of (In,Mn)Sb dilute magnetic semiconductor, arXiv:0909.2407 (polycrystalline samples, observe hysteresis at room temperature)
 S. Zhou, D. Buerger, M. Helm, and H. Schmidt, Anomalous Hall resistance in Ge:Mn systems with low Mn concentrations, arXiv:0910.1981
 S. Guo, D. P. Young, R. T. Macaluso, D. A. Browne, N. L. Henderson, J. Y. Chan, L. L. Henry, and J. F. DiTusa, Magnetic and thermodynamic properties of cobalt doped iron pyrite: Griffiths Phase in a magnetic semiconductor, arXiv:0912.2960; Kondo effect and absence of quantum interference effects in the charge transport of cobalt doped iron pyrite, arXiv:0912.2980
 Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S.Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Development of ferromagnetism in the doped topological insulator Bi_{2x}Mn_{x}Te_{3}, Phys. Rev. B 81, 195203 (2010), see also synopsis (making a topological insulator into a diluted magnetic semiconductor by manganese doping)
 W. Stefanowicz, D. Sztenkiel, B. Faina, A. Grois, M. Rovezzi, T. Devillers, A. NavarroQuezada, T. Li, R. Jakiela, M. Sawicki, T. Dietl, and A. Bonanni, Structural and paramagnetic properties of dilute Ga_{1x}Mn_{x}N, Phys. Rev. B 81, 235210 (2010) (high quality films with up to 1% Mn grown by MOVD, paramagnetic; title changed compared to preprint)
 S. Zhou, D. Bürger, W. Skorupa, P. Oesterlin, M. Helm, and H. Schmidt, The importance of hole concentration in establishing carriermediated ferromagnetism in Mn doped Ge, Appl. Phys. Lett. 96, 202105 (2010)
 R. P. Davies, B. P. Gila, C. R. Abernathy, S. J. Pearton, and C. J. Stanton, Defectenhanced ferromagnetism in Gd and Sicoimplanted GaN, Appl. Phys. Lett. 96, 212502 (2010)
 A. NavarroQuezada, W. Stefanowicz, Tian Li, B. Faina, M. Rovezzi, R. T. Lechner, T. Devillers, F. d'Acapito, G. Bauer, M. Sawicki, T. Dietl, and A. Bonanni, Embedded magnetic phases in (Ga,Fe)N: the key role of growth temperature, arXiv:1001.5418
 C. King, J. Zemen, K. Olejník, L. Horák, J. Haigh, V. Novák, J. Kucera, V. Holy, R. P. Campion, B. L. Gallagher, and T. Jungwirth, Strain control of magnetic anisotropy in (Ga,Mn)As microbars, arXiv:1007.2766 (experiment and theory/simulation, suggesting that the anisotropy is magnetocrystaline in origin)
 Y. H. Zhang, Z. Y. Lin, F. F. Zhang, X. L. Yang, D. Li, Z. T. Chen, G. J. Lian, Y. Z. Qian, X. Z. Jiang, T. Dai, Z. C. Wen, B. S. Han, C. D. Wang, and G. Y. Zhang, Confirmation of roomtemperature long range magnetic order in GaN:Mn, arXiv:1011.3937
 B. A. Aronzon, V. V. Rylkov, S. N. Nikolaev, V. V. Tugushev, S. Caprara, V. V. Podolskii, V. P. Lesnikov, A. Lashkul, R. Laiho, R. R. Gareev, N. S. Perov, and A. S. Semisalova, Room temperature ferromagnetism and anomalous Hall effect in Si_{1x}Mn_{x} (x approx 0.35) alloys, arXiv:1012.1172
 T. Jungwirth, V. Novak, X. Marti, M. Cukr, F. Maca, A. B. Shick, J. Masek, P. Horodyska, P. Nemec, V. Holy, J. Zemek, P. Kuzel, I. Nemec, B. L. Gallagher, R. P. Campion, C. T. Foxon, and J. Wunderlich, Demonstration of molecular beam epitaxy and a semiconducting band structure for IMnV compounds, Phys. Rev. B 83, 035321 (2011), significantly changed compared to preprint arXiv:1007.0177 (experiment and theory for a new class of antiferromagnetic IMnV compounds, for example LiMnAs; isostructural to LiFeAs); see also Viewpoint: R. J. Cava, Physics 4, 7 (2011)
 L. Li, S. Prucnal, S. D. Yao, K. Potzger, W. Anwand, A. Wagner, and S. Zhou, Rise and fall of defect induced ferromagnetism in SiC single crystals, Appl. Phys. Lett. 98, 222508 (2011), also arXiv:1106.0966 (Ne^{+} irradiation, magnetic moments attributed to divacancies, note that magnetic moment per divacancy is about 18 Bohr magnetons)
 M. Roever, J. Malindretos, A. BedoyaPinto, A. Rizzi, C. Rauch, and F. Tuomisto, Tracking defectinduced ferromagnetism in GaN:Gd, arXiv:1103.4256 (oxygen codoping helps ferromagnetism)
 P. N. Hai, L. D. Anh, and M. Tanaka, Ironbased ntype electroninduced ferromagnetic semiconductor, arXiv:1106.0561 (InAs doped with Fe to provide magnetic moments and codoped with Be at low growth temperature, acting as donors and leading to an ntype DMS)
 M. Sawicki, T. Devillers, S. Ga{\l}\c{e}ski, C. Simserides, S. Dobkowska, B. Faina, A. Grois, A. NavarroQuezada, K. N. Trohidou, J. A. Majewski, T. Dietl, and A. Bonanni, Origin of lowtemperature magnetic ordering in Ga_{1x}Mn_{x}N, arXiv:1202.6233 (low Curie temperatures; also theory assuming Mn^{3+} charge state and isotropic effective exchange interaction, derive the isotropic exchange coupling from tightbinding model)
 K. Zhao et al., New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the '122' ironbased superconductors, Nature Commun. 4, 1442 (2013) (Ba_{1x}K_{x}(Zn_{1y}Mn_{y})_{2} As_{2})
 S. Stefanowicz, G. Kunert, C. Simserides, J. A. Majewski, W. Stefanowicz, C. Kruse, S. Figge, Tian Li, R. Jakiela, K. N. Trohidou, A. Bonanni, D. Hommel, M. Sawicki, and T. Dietl, Phase diagram and critical behavior of the random ferromagnet Ga_{1x}Mn_{x}N, arXiv:1306.5141
 D. L. Binh, B. J. Ruck, F. Natali, H. Warring, H. J. Trodahl, E.M. Anton, C. Meyer, L. Ranno, F. Wilhelm, and A. Rogalev, Europium nitride: A novel diluted magnetic semiconductor, arXiv:1306.5477 (substoichiometric with some Eu in magnetic 2+ state, hence diluted)
 L. Duc Anh, P. Nam Hai, and M. Tanaka, Control of ferromagnetism by manipulating the carrier wavefunction in ferromagnetic semiconductor (In,Fe)As quantum wells, arXiv:1309.5283 (ndoped material, surprisingly large exchange coupling)
Nondiluted magnetic semiconductors  experiments
 N. Naresh and R. N. Bhowmik, Synthesis and study of alphaFe1.4Ga0.6O3: An advanced Ferromagnetic Semiconductor, arXiv:1104.1982 (ferromagnetic at room temperature, directgap semiconductor, gap above 2eV[?])
 S. Ouardi, G. H. Fecher, C. Felser, and J. Kübler, Realization of Spin Gapless Semiconductors: The Heusler Compound Mn_{2}CoAl, Phys. Rev. Lett. 110, 100401 (2013) (gap exists for one spin direction, metallic for the other, ferromagnetic with Curie temperature 720 K)
Diluted magnetic semiconductors  modelbased theory
 T. Mizokawa and A. Fujimori, pd exchange interaction for 3d transitionmetal impurities in IIVI semiconductors, Phys. Rev. B 56, 6669 (1997) (calculate exchange interaction of various 3d impurities in ZnS and ZnSe within configurationinteraction scheme)
 T. Jungwirth, W. A. Atkinson, B. H. Lee, and A. H. MacDonald, Interlayer coupling in ferromagnetic semiconductor superlattices, Phys. Rev. B 59, 9818 (1999) (the first paper on DMS from this group)
 M. P. Kennett, M. Berciu, and R. N. Bhatt, Monte Carlo simulations of an impurityband model for IIIV diluted magnetic semiconductors, Phys. Rev. B 66, 045207 (2002)
 J. Fabian, I. Zutic, and S. Das Sarma, Theory of spinpolarized bipolar transport in magnetic pn junctions, Phys. Rev. B 66, 165301 (2002)
 D. Bodea, M. Crisan, I. Grosu, and I. Tifrea, NonFermi liquid behavior of the electrical resistivity at the ferromagnetic quantum critical point, condmat/0207712
 S.R. E. Yang, J. Sinova, T. Jungwirth, Y. P. Shim, and A. H. MacDonald, NonDrude optical conductivity of (III,Mn)V ferromagnetic semiconductors, Phys. Rev. B 67, 045205 (2003) (supercell calculation employing sixband KohnLuttinger Hamiltonian, Coulomb potential of Mn acceptors [with centralcell correction] and antisites, exchange with frozen, aligned Mn spins, Hartree potential, resulting in suppression of Drude peak relative to intervalenceband peak)
 P. M. Krstajic, F. M. Peeters, V. A. Ivanov, V. Fleurov, and K. Kikoin, Doubleexchange mechanisms for Mndoped IIIV ferromagnetic semiconductors, Phys. Rev. B 70, 195215 (2004) (this work really favors Zener kinetic exchange)
 E. H. Hwang and S. Das Sarma, Transport properties of diluted magnetic semiconductors: Dynamical meanfield theory and Boltzmann theory, Phys. Rev. B 72, 035210 (2005)
 G. Bouzerar, T. Ziman, and Josef Kudrnovský, Compensation, interstitial defects, and ferromagnetism in diluted ferromagnetic semiconductors, Phys. Rev. B 72, 125207 (2005) (abinitio calculations are used to reduce the system in the presence of Mn interstitials or As antisites to an effective Heisenberg model, which is then solved by a new RPAbased approximation)
 S.S. Feng and Mogus Mochena, Groundstate properties and molecular theory of Curie temperature in the coherent potential approximation of diluted magnetic semiconductors, condmat/0509589; Ferromagnetism of Ga_{1x}Mn_{x}As and Weiss theory of Curie temperature in the coherent potential approximation, condmat/0511320 Q
 R. Bouzerar, G. Bouzerar, and T. Ziman, Why RKKY exchange integrals are inappropriate to describe ferromagnetism in diluted magnetic semiconductors, condmat/0512540, Phys. Rev. B P
 D. J. Priour, Jr. and S. Das Sarma, Phase Diagram of the Disordered RKKY Model in Dilute Magnetic Semiconductors, Phys. Rev. Lett. 97, 127201 (2006) (for the freeelectron RKKY expression, in fact of more general interest than the title suggests) P; R. Bouzerar, G. Bouzerar, and T. Ziman, Comment, condmat/0609631
 A. K. Nguyen, R. V. Shchelushkin, and A. Brataas, Intrinsic Domain Wall Resistance in Ferromagnetic Semiconductors, condmat/0601436
 F. Popescu, Y. Yildirim, G. Alvarez, A. Moreo, E. Dagotto, Critical Temperatures of a TwoBand Model for Diluted Magnetic Semiconductors, condmat/0601593, Phys. Rev. B (the two bands represent the light and heavy holes, the approach is DMFT, Coulomb attraction by acceptors is not included, thereby neglecting the dominant energy of impurity states)
 E. Z. Meilikhov and R. M. Farzetdinova, QuasiTwo Dimensional Diluted Magnetic Semiconductors with Arbitrary Carrier Degeneracy, condmat/0602416 (RKKY interaction, close to Dietl's MF/VCA approach)
 G. Bouzerar and T. Ziman, Model for vacancyinduced d^{0} ferromagnetism in oxide compounds, condmat/0603022, Phys. Rev. Lett. (vacancies can induce magnetic moments at neighboring oxygen ions)
 H. Raebiger, M. Ganchenkova, and J. von Boehm, Diffusion and clustering of substitutional Mn in (Ga,Mn)As, see next section
 M. J. Calderón and S. Das Sarma, On the physical origin of ferromagnetism in dilute magnetic oxides, condmat/0603182 (discussing RKKY interaction and magnetic polaron percolation) P
 V. A. Stephanovich, Theory of domain structure in ferromagnetic phase of diluted magnetic semiconductors near the phase transition temperature, condmat/0603676
 R. G. Melko, R. S. Fishman, and F. A. Reboredo, A single layer of Mn in a GaAs quantum well: a ferromagnet with quantum fluctuations, condmat/0604288
 R. Oszwaldowski, J. A. Majewski, and T. Dietl, Influence of band structure effects on domainwall resistance in diluted ferromagnetic semiconductors, condmat/0605230
 K. Kikoin and V. Fleurov, Superexchange in Dilute Magnetic Dielectrics: Application to (Ti,Co)O_{2}, condmat/0605242
 J.M. Tang, J. Levy, and M. E. Flatté, Allelectrical control of single ion spins in a semiconductor, quantph/0605203 (exploiting the coupling between local spins and electronic spin and orbital angular momenta in the ground state, some similarity to ideas for allelectric control of molecular spins)
 A. K. Nguyen, H. J. Skadsem, and A. Brataas, Giant currentdriven domain wall mobility in (Ga,Mn)As, condmat/0606498 (strong spinorbit coupling enhances the domainwall mobility by four orders of magnitude)
 G. Bouzerar, R. Bouzerar, J. Kudrnovský, and T. Ziman, Comparison between abinitio and phenomenological modeling of the exchange couplings in diluted magnetic semiconductors: the case of Zn_{1x}Cr_{x}Te, condmat/0606523, phys. stat. sol. (LDA is used to map system onto effective Heisenberg model, then the authors' RPAbased theory is applied to study the stability of ferromagnetism)
 F. V. Kyrychenko and C. A. Ullrich, Enhanced carrier scattering rates in dilute magnetic semiconductors with correlated impurities, condmat/0607177
 S.J. Sun and H.H. Lin, Softening of SpinWave Stiffness near the Ferromagnetic Phase Transition in Diluted Magnetic Semiconductors, condmat/0607201, Euro. Phys. J. B 49, 403 (2006)
 P. Sankowski, P. Kacman, J. A. Majewski, and T. Dietl, Spindependent tunneling in modulated structures of (Ga,Mn)As, condmat/0607206 (heterostructures, tightbinding and Landauer theory)
 A. Singh, S. K. Das, A. Sharma, and W. Nolting, Spin dynamics in the diluted ferromagnetic Kondo lattice model, condmat/0607633 (Zener model, RPA for interaction of local spins, very strong compensation, acceptors are electrically inert or repel holes, thus of limited relevance for DMS) P
 R. Bouzerar, G. Bouzerar, and T. Ziman, Nonperturbative J_{pd} model and ferromagnetism in dilute magnets, condmat/0607640 (Zener model plus local Coulomb potential of acceptors, RPAlike treatment)
 W. Zhang, T. Dong, and A. O. Govorov, Electronic states in a magnetic quantumdot molecule: phase transitions and spontaneous symmetry breaking, condmat/0608284 (double quantum dot made of DMS, change in symmetry of ground state)
 G. Tang and W. Nolting, Effects of dilution and disorder on magnetism in diluted spin systems, condmat/0608418, physica status solidi (b) (Heisenberg model, supercell, Tyablikov decoupling)
 C. Sliwa and T. Dietl, Magnitude and crystalline anisotropy of hole magnetization in (Ga,Mn)As, condmat/0609128
 G. Bouzerar, Magnetic spin excitations in diluted ferromagnetic systems: the case of Ga_{1x}Mn_{x}As, condmat/0610465
 A. D. Giddings, T. Jungwirth, and B. L. Gallagher, Interlayer exchange coupling in (Ga,Mn)As based multilayers, condmat/0610696, physica status solidi (c) (meanfield theory, addressing the question whether the interlayer coupling can be antiferromagnetic)
 M. J. Calderon and S. Das Sarma, Reentrant ferromagnetism in a generic class of diluted magnetic semiconductors, condmat/0611384 (based on the interplay between RKKY in valence band and impurity band, but results are given for x above 10%)
 N. Bulut, K. Tanikawa, S. Takahashi, and S. Maekawa, Longrange ferromagnetic correlations between Anderson impurities in a semiconductor host, condmat/0611641 (QMC simulations for two impurities, simple band structure)
 H. G. Roberts, S. Crampin, and S. J. Bending, Anisotropic magnetoresistance contribution to measured domain wall resistances of inplane magnetised (Ga,Mn)As, condmat/0611780
 G. Tang and W. Nolting, Carrier induced ferromagnetism in diluted localmoment systems, condmat/0612611
 Y. Yildirim, G. Alvarez, A. Moreo, and E. Dagotto, LargeScale Monte Carlo Study of a Realistic Lattice Model for Ga_{1x}Mn_{x}As, Phys. Rev. Lett. 99, 057207 (2007) (supercomputerbased simulations, tightbinding model reducing to a 6band KL Hamiltonian at small wave vectors, purely local holeMn exchange, disordered Mn positions, but no Coulomb disorder); G. Bouzerar and R. Bouzerar, Comment, arXiv:0712.3368 (claiming that the original paper used an unrealistically small value for the pdexchange interaction and misrepresented experimental results); S. Barthel, G. Czycholl, and G. Bouzerar, Origins of shortcomings in recent realistic multiband MonteCarlo studies for GaMnAs, arXiv:1107.4694 (further critique of the Moreo/Dagotto MC results)
 A. G. Petukhov, I. Zutic, and S. C. Erwin, Thermodynamics of CarrierMediated Magnetism in Semiconductors, Phys. Rev. Lett. 99, 257202 (2007) (assuming bound donor states with vanishing overlap, no acceptors, and neutral magnetic impurities; temperaturedriven change in freecarrier concentration leads to nonmonotonic and reentrant magnetization, suggested to apply to EuO:Gd)
 M. J. Schmidt, K. Pappert, C. Gould, G. Schmidt, R. Oppermann, and L. W. Molenkamp, Boundhole states in a ferromagnetic (Ga,Mn)As environment, Phys. Rev. B 76, 035204 (2007) (note: the arXiv entry has an incorrect reference to the published paper)
 F. Popescu, C. Sen, E. Dagotto, and A. Moreo, Crossover from impurity to valence band in diluted magnetic semiconductors: Role of Coulomb attraction by acceptors, Phys. Rev. B 76, 085206 (2007) (simple band, local Coulomb potential of magnetic acceptors [Eq. (5) is the phenomenological doping dependence], which surprisingly is found to be repulsive for some parameters, no other impurities, GaMnAs at normal dopings found to be clearly in the mergedband regime, unlike GaMnN; mostly uses DMFT, but also MC for classical impurity spins on a 4^{3} supercell)
 T. Jungwirth, J. Sinova, A. H. MacDonald, B. L. Gallagher, V. Novák, K. W. Edmonds, A. W. Rushforth, R. P. Campion, C. T. Foxon, L. Eaves, E. Olejník, J. Mašek, S.R. Eric Yang, J. Wunderlich, C. Gould, L. W. Molenkamp, T. Dietl, and H. Ohno, Character of states near the Fermi level in (Ga,Mn)As: Impurity to valence band crossover, Phys. Rev. B 76, 125206 (2007) (discuss the evidence for the valenceband picture for Mn doping above 2%)
 R. Oszwaldowski, J. A. Majewski, and T. Dietl, Theory of Spin Transport Across DomainWalls in (Ga,Mn)As, condmat/0701398
 E. Dias Cabral, M. A. Boselli, A. T. da Cunha Lima, A. Ghazali (posthumous), and I. C. da Cunha Lima, On the nature of the spinpolarized hole states in a quasitwodimensional GaMnAs ferromagnetic layer, condmat/0702053
 J. FernandezRossier and R. Aguado, Mndoped IIVI quantum dots: artificial molecular magnets, condmat/0702139, physica status solidi (c) 3, 3734 (2006)
 B. Lee, X. Cartoixa, N. Trivedi, and R. M. Martin, Disorder Enhanced Spin Polarization in Diluted Magnetic Semiconductors, condmat/0702567 (merged, but distinct impurity band, metallic with large effective mass) P
 T. Dietl, Hole states in wide bandgap diluted magnetic semiconductors and oxides, condmat/0703278
 R. S. Fishman, F. A. Reboredo, A. Brandt, and J. Moreno, Nature of the PerpendiculartoParallel Spin Reorientation in a Mndoped GaAs Quantum Well: Canting or Phase Separation?, condmat/0703436
 F. V. Kyrychenko and C. A. Ullrich, Memory function formalism approach to electrical conductivity and optical response of dilute magnetic semiconductors, arXiv:0704.2061
 J. Kudrnovsky, V. Drchal, G. Bouzerar, and R. Bouzerar, Ordering effects in diluted magnetic semiconductors, arXiv:0707.3079 (mapping of abinitio results to effective models for dopant positions and magnetism; predict clustering in (Ga,Mn)As, emphasize importance of spatial disorder)
 B. L. Sheu, R. C. Myers, J.M. Tang, N. Samarth, D. D. Awschalom, P. Schiffer, and M. E. Flatté, Onset of ferromagnetism in lowdoped GaMnAs, arXiv:0708.1063
 A. Moreo, Y. Yildirim, and G. Alvarez, MultiOrbital Lattice Model for (Ga,Mn)As and Other Lightly Magnetically Doped ZincBlendeType Semiconductors, arXiv:0710.0577
 T. Dietl, Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors, arXiv:0712.1293, J. Phys. Soc. Jpn. (review and discussion of observed localization behaviour in IIVI and IIIV DMS)
 C. Sliwa and T. Dietl, Electronhole contribution to the apparent sd exchange interaction in IIIV diluted magnetic semiconductors, Phys. Rev. B 78, 165205 (2008) (highly dilute ntype and ptype DMS)
 L.F. Arsenault, B. Movaghar, P. Desjardins, and A. Yelon, Transport in the metallic regime of Mn doped IIIV Semiconductors, arXiv:0801.1840 (CPA); Transport in the insulating regime of Mn doped IIIV Semiconductors, arXiv:0802.1344 (valenceband picture, say that extended states at the mobility edge dominate over variablerange hopping)
 J. Chovan and I. E. Perakis, Femtosecond Control of the Magnetization in Ferromagnetic Semiconductors, arXiv:0801.4641 (Lindblad formalism)
 C.X. Liu, X.L. Qi, X. Dai, Z. Fang, and S.C. Zhang, Quantum Anomalous Hall Effect in Hg_{1y}Mn_{y}Te Quantum Wells, arXiv:0802.2711
 B. Gu, N. Bulut, and S. Maekawa, Effects of the crystal structure on the ferromagnetic correlations in ZnO with magnetic impurities, arXiv:0804.3436
 M. D. Kapetanakis and I. E. Perakis, Spin dynamics in (III,Mn)V ferromagnetic semiconductors: the role of correlations, arXiv:0805.1320
 M. Turek, J. Siewert, and J. Fabian, Electronic and optical properties of ferromagnetic GaMnAs in a multiband tightbinding approach, arXiv:0805.4350
 J.M. Tang and M. E. Flatté, Magnetic circular dichroism from the impurity band in IIIV diluted magnetic semiconductors, arXiv:0806.1753 (based on tightbinding theory developed by the authors, conceptually based on weakdoping/impurityband limit, calculations are done at about 2% Mn concentration)
 J. Hellsvik, B. Skubic, L. Nordström, B. Sanyal, O. Eriksson, P. Nordblad, and P. Svedlindh, Dynamics of diluted magnetic semiconductors from atomistic spin dynamics simulations: Mn doped GaAs as a case study, arXiv:0809.5187 (effective isotropic Heisenberg Hamiltonian on large supercells with exchange interaction extracted from DFT calculations by J. Kudrnovsky, LandauLifshitzGilbert equation plus noise to include temperature)
 B. Gu, N. Bulut, T. Ziman, and S. Maekawa, Possible d^{0} ferromagnetism in MgO doped with nitrogen, arXiv:0812.1836
 C. P. Moca, B. L. Sheu, N. Samarth, P. Schiffer, B. Janko, and G. Zarand, Scaling Analysis of Magnetoresistance and Carrier Localization in Ga_{1x}Mn_{x}As, Phys. Rev. Lett. 102, 137203 (2009), arXiv:0705.2016 (use scaling theory of localization, concentrate on the average resistivity of cells of the size of the phase correlation length, unlike Timm, Raikh, and von Oppen, who consider the fluctuations) P
 F. V. Kyrychenko and C. A. Ullrich, Transport and optical conductivity in dilute magnetic semiconductors, J. Phys.: Condens. Matter 21, 084202 (2009) (manyparticle theory treating disorder and electronelectron interaction on equal footing); Temperaturedependent resistivity of ferromagnetic GaMnAs: Interplay between impurity scattering and manybody effects, arXiv:0906.3526 (memoryfunction formalism and TDDFT: scattering of carriers off magnetic fluctuations is important for DC transport)
 I. Garate, J. Sinova, T. Jungwirth, and A. H. MacDonald, Theory of weak localization in ferromagnetic (Ga,Mn)As, Phys. Rev. B 79, 155207 (2009) P
 M. Turek, J. Siewert, and J. Fabian, Magnetic circular dichroism in Ga_{x}Mn_{1x}As: Theoretical evidence for and against an impurity band, Phys. Rev. B 80, 161201(R) (2009) (tightbinding models, conclude that both in the presence and absence of an impurity band the magnetic circular dichroism is positive so that it does not represent a conclusive test)
 L.F. Zhu and B.G. Liu, Curie temperatures of cubic (Ga, Mn)N diluted magnetic semiconductors from the RKKY spin model, J. Phys.: Condens. Matter 21, 446005 (2009) (RKKY interaction for parabolic band, do not reference work by Prior and Das Sarma)
 J. H. Jiang, Y. Zhou, T. Korn, C. Schüller, and M. W. Wu, Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells, arXiv:0901.0061 (study of many possible spin relaxation mechanisms)
 C.H. Chang and T. M. Hong, Spinglasslike behavior caused by Mnrich Mn(Ga)As nanoclusters in GaAs, arXiv:0901.0967 (carriermediated magnetic interaction, taking higher carrier concentration within clusters into account)
 G. A. Gehring, M. R. Ahmed, and A. J. Crombie, Theory of magnetism with temporal disorder applied to magnetically doped ZnO, arXiv:0901.4947
 R. Bouzerar and G. Bouzerar, On the reliability of recent Monte Carlo studies of dilute systems of localized spins interacting with itinerant carriers, arXiv:0902.4722 (clarify why MC simulations for full electronic models and for effective spinonly models often do not agree, discuss shortcomings of recent MC simulations)
 E. Z. Meilikhov and R. M. Farzetdinova, Amplification of the induced ferromagnetism in diluted magnetic semiconductor, arXiv:0903.1726 (for Fe/(Ga,Mn)As bilayers)
 E. Z. Meilikhov and R. M. Farzetdinova, Magnetic properties of nanosized diluted magnetic semiconductors with band splitting, arXiv:0903.1728 (continuum model)
 J. Zemen, J. Kucera, K. Olejnik, and T. Jungwirth, Magneto crystalline anisotropies in (Ga,Mn)As: A systematic theoretical study and comparison with experiment, arXiv:0904.0993
 V. I. Litvinov and V. K. Dugaev, Roomtemperature ferromagnetism in dielectric GaN(Gd), arXiv:0905.0500 (magnetic interaction mediated by virtual transitions between Gd d band in gap and valence band; consider rather large Gd doping, T_{c} smoothly goes to zero for small doping; find giant effective moments apparently due to polarization of t_{2} dstates of Gd in the gap, unclear where the required large number of unpaired electrons is coming from)
 C. P. Moca, G. Zarand, and M. Berciu, Theory of optical conductivity for dilute GaMnAs, arXiv:0906.0770 P
 K. Vyborny, J. Kucera, J. Sinova, A. W. Rushforth, B. L. Gallagher, and T. Jungwirth, Microscopic mechanism of the noncrystalline anisotropic magnetoresistance in (Ga,Mn)As, arXiv:0906.3151
 S. Mishra and S. Satpathy, Photoinduced magnetism in the ferromagnetic semiconductors, arXiv:0906.5514 (applied to EuS, not diluted)
 E. Nielsen and R. N. Bhatt, Search for Ferromagnetism in doped semiconductors in the absence of transition metal ions, arXiv:0907.3671 (long paper: Hubbardtype model for the impurity band, magnetic order is studied using meanfield theory and exact diagonalization for small systems) P
 M. D. Kapetanakis, I. E. Perakis, K. J. Wickey, C. Piermarocchi, and J. Wang, Femtosecond Coherent Control of Spin with Light in (Ga,Mn)As ferromagnets, arXiv:0908.0707
 A. Werpachowska and T. Dietl, Effect of inversion asymmetry on the intrinsic anomalous Hall effect in ferromagnetic (Ga,Mn)As, arXiv:0910.1907
 H. Bednarski and J. Spalek, Physical origin of ferromagnetic interaction between impurity electrons in diluted magnetic semiconductors: Boundmagneticpolaron molecule, arXiv:0912.0662 (pair of BMPs)
 A. Werpachowska and T. Dietl, Theory of spin waves in ferromagnetic (Ga,Mn)As, Phys. Rev. B 82, 085204 (2010); A. Werpachowska, Loewdin calculus for multiband Hamiltonians, arXiv:1101.5775 (using Loewdin calculus; the second reference contains details)
 J. Masek, F. Maca, J. Kudrnovsky, O. Makarovsky, L. Eaves, R. P. Campion, K. W. Edmonds, A. W. Rushforth, C. T. Foxon, B. L. Gallagher, V. Novak, Jairo Sinova, and T. Jungwirth, Microscopic Analysis of the Valence Band and Impurity Band Theories of (Ga,Mn)As, Phys. Rev. Lett. 105, 227202 (2010) (find that the impurity band does not persist for reasonable Mn doping, for any impurityband model; no longrange Coulomb potential of Mn acceptors, is mimicked by adjustment of pd hybridization or Mndorbital shift; no disorder [CPA], no compensation) P
 R. Bouzerar and G. Bouzerar, Unified picture for diluted magnetic semiconductors, EPL 92, 47006 (2010) (single band, random magnetic acceptors with onsite Coulomb potential and pd exchange interaction, no electronelectron interaction in impurity states; interestingly, Mn in GaAs is predicted to give the highest T_{x})
 U. Yu, A.M. Nili, K. Mikelsons, B. Moritz, J. Moreno, and M. Jarrell, Nonlocal effects on magnetism in the diluted magnetic semiconductor Ga_{1x}Mn_{x}As, arXiv:1001.1716
 T. O. Strandberg, C. M. Canali, and A. H. MacDonald, Magnetic interactions of substitutional Mn pairs in GaAs, arXiv:1001.2894
 G. Bouzerar and R. Bouzerar, Optical conductivity of Mn doped GaAs, arXiv:1004.4446 (application of the theory introduced in EPL 92, 47006 (2010), cited above) P
 A.M. Nili, M. A. Majidi, P. Reis, J. Moreno, and M. Jarrell, The effect of spinorbit interaction and attractive Coulomb potential on the magnetic properties of Ga_{1x}Mn_{x}As, arXiv:1006.0998 (DMFT, the Coulomb interaction enhances the exchange)
 A.M. Nili, U. Yu, J. Moreno, D. Browne, and M. Jarrell, A dynamical meanfield approximation study of a tightbinding model for Ga_{1x}Mn_{x}As, arXiv:1007.4609 (discuss the optical conductivity) P
 N. A. Yazdani and M. P. Kennett, Enhanced ferromagnetism from electronelectron interactions in double exchange type models, arXiv:1007.4843 (for a Zener model, not specifically double exchange, mit additional Hubbard interaction in the band, this is treated in HartreeFock approximation, the resulting model by MC simulations)
 A. Chakraborty, R. Bouzerar, and G. Bouzerar, Magnetic spin excitations in Mn doped GaAs: A model study, arXiv:1010.5763, Eur. Phys. J. B 81, 405 (2011)
 E. J. R. de Oliveira, E. Dias Cabral, M. A. Boselli, and I. C. da Cunha Lima, A semiquantitative approach to the impuritybandrelated transport properties of GaMnAs nanolayers, arXiv:1011.1006 (metallic vs. hopping conduction in an impurity band)
 R. da Silva Neves, A. Ferreira da Silva, and R. Kishore, Ferromagnetism in Dilute Magnetic Semiconductors, arXiv:1011.3658 (based on Berciu and Bhatt (2001), assumes low carrier concentration)
 T. O. Strandberg, C. M. Canali, and A. H. MacDonald, Chern Number Spins of Mn Acceptor Magnets in GaAs, Phys. Rev. Lett. 106, 017202 (2011)
 M. Stier, S. Henning, and W. Nolting, The ground state phase diagram of the diluted ferromagnetic Kondolattice model, J. Phys.: Condens. Matter 23, 276006 (2011)
 C. Sliwa and T. Dietl, Thermodynamic and thermoelectric properties of (Ga,Mn)As and related compounds, Phys. Rev. B 83, 245210 (2011) (analysis of experiments, supports the valenceband picture)
 C. Ertler and W. Pötz, Electrical control of ferromagnetism in Mndoped semiconductor heterostructures, arXiv:1102.2507
 T. Dietl and D. Sztenkiel, Reconciling results of tunnelling experiments on (Ga,Mn)As, arXiv:1102.3267 (argue that recent tunneling experiments do not support an impurity band); see also comment arXiv:1102.4459
 M. Stier and W. Nolting, Curie temperatures of the concentrated and diluted Kondolattice model as a possible candidate to describe magnetic semiconductors and metals, arXiv:1104.4222, Phys. Stat. Solidi b
 K. M. D. Hals and A. Brataas, Magnetization Dissipation in the Ferromagnetic Semiconductor (Ga,Mn)As, arXiv:1105.4148
 C. Ertler and W. Pötz, Biasinduced destruction of ferromagnetism and disorder effects in GaMnAs heterostructures, arXiv:1108.2108 (GaMnAs quantum well)
 K. Shen and M. W. Wu, Hole spin relaxation and coefficients in LandauLifshitzGilbert equation in ferromagnetic GaMnAs, arXiv:1109.4964
 A. Werpachowska and Z. Wilamowski, The RKKY coupling in diluted magnetic semiconductors, arXiv:1111.1030 (simple bands, but with finite Zeeman splitting as a parameter, no reference to RKKY theory for realistic DMS band structures)
 A. Chakraborty, R. Bouzerar, S. Kettemann, and G. Bouzerar, Nanoscale inhomogeneities: A new path toward high Curie temperature ferromagnetism in diluted materials, arXiv:1111.4355 (show within realspace RPA [selfconsistent local RPA] that clustering of magnetic defects can dramatically enhance T_{c}) P; A. Chakraborty, P. Wenk, S. Kettemann, R. Bouzerar, and G. Bouzerar, Spinwave excitations in presence of nanoclusters of magnetic impurities, arXiv:1301.4111 (extended numerical study, impurityspin interaction is modeled by simple exponential)
 M. Birowska, C. Sliwa, J. A. Majewski, and T. Dietl, Origin of Bulk Uniaxial Anisotropy in ZincBlende Dilute Magnetic Semiconductors, Phys. Rev. Lett. 108, 237203 (2012) (inplane anisotropy is attributed to Mn dimers)
 A. Chakraborty, P. Wenk, R. Bouzerar, and G. Bouzerar, Spontaneous magnetization in presence of nanoscale inhomogeneities in diluted magnetic systems, arXiv:1209.2927 (diluted Heisenberg model with exponential separation dependence of the effective exchange interaction, selfconsistent local RPA)
 S. Barthel, G. Czycholl, and G. Bouzerar, Effective Heisenberg exchange integrals of diluted magnetic semiconductors determined within realistic multiband tightbinding models, arXiv:1211.6874 (assume local pd exchange, Coulomb scattering term found to be crucial, treat other Mn dopands explicitly)
Diluted magnetic semiconductors  abinitio theory
 B. K. Rao and P. Jena, Giant Magnetic Moments of Nitrogen Stabilized Mn Clusters and Their Relevance to Ferromagnetism in Mn Doped GaN, Phys. Rev. Lett. 89, 185504 (2002)
 P. Mahadevan and A. Zunger, Firstprinciples investigation of the assumptions underlying ModelHamiltonian approaches to ferromagnetism of 3d impurities in IIIV semiconductors, condmat/0309509
 H. Weng, X. Yang, J. Dong, H. Mizuseki, M. Kawasaki, and Y. Kawazoe, Electronic structure and optical properties of the Codoped anatase TiO_{>2} studied from first principles, Phys. Rev. B 69, 125219 (2004) (minimal supercell with one substitutional Co and zero or one oxygen vacancy, stress importance of oxygen vacancies)
 S. C. Erwin and I. Zutic, Tailoring ferromagnetic chalcopyrites, condmat/0401157, Nature Materials 3, 410 (2004)
 P. Mahadevan and A. Zunger, Trends in ferromagnetism, hole localization, and acceptor level depth for Mn substitution in GaN, GaP, GaAs and GaSb, condmat/0409296, Appl. Phys. Lett.
 T. Maitra and R. Valentí, Ferromagnetism in Fesubstituted spinel semiconductor ZnGa_{2}O_{4}, condmat/0412530, J. Phys.: Condens. Matter 17, 7417 (2005) (starting from bandstructure calculations, no disorder)
 Y.J. Zhao, P. Mahadevan, and A. Zunger, Practical rules for orbitalcontrolled ferromagnetism of 3d impurities in semiconductors, J. Appl. Phys. 98, 113901 (2005)
 G. M. Dalpian and S.H. Wei, Electroninduced stabilization of ferromagnetism in Ga_{1x}Gd_{x}N, Phys. Rev. B 72, 115201 (2005) P
 V.I. Anisimov, M.A. Korotin, I.A. Nekrasov, A.S. Mylnikova, A.V. Lukoyanov, J.L. Wang, and Z. Zeng, The role of transition metal impurities and oxygen vacancies in the formation of ferromagnetism in Codoped TiO_{2}, J. Phys.: Condens. Matter 18, 1695 (2006), condmat/0503625
 P. Mahadevan, J. M. OsorioGuillen, and A. Zunger, Origin of transition metal clustering tendencies in GaAs based dilute magnetic semiconductors, condmat/0504505, Appl. Phys. Lett.
 T. Hynninen, H. Raebiger, A. Ayuela, and J. von Boehm, High Curie temperatures in (Ga,Mn)N from Mn clustering, condmat/0508522
 T. Chanier, M. Sargolzaei, I. Opahle, R. Hayn, and K. Koepernik, Nearest neighbor exchange in Co and Mndoped ZnO, condmat/0511050 (abinitio study showing that correlations must be included beyond the LSDA to get any agreement with experiment)
 C. H. Patterson, Magnetic defects promote ferromagnetism in Zn_{1x}Co_{x}O, condmat/0512101
 Z. Xie, W.D. Cheng, D.S. Wu, Y.Z. Lan, S.P. Huang, J.M. Hu, and J. Shen, Ab initio study of ferromagnetic semiconductor Ge_{1x}Mn_{x}Te, J. Phys.: Condens. Matter 18, 7171 (2006)
 S. Y. Sarkisov and S. Picozzi, Transitionmetal doping of semiconducting chalcopyrites: halfmetallicity and magnetism, J. Phys.: Condens. Matter 19, 016210 (2006)
 H. Raebiger, M. Ganchenkova, and J. von Boehm, Diffusion and clustering of substitutional Mn in (Ga,Mn)As, condmat/0603135 (energy barriers from abinitio calculations, Monte Carlo simulation of annealing) P
 A. Svane, N. E. Christensen, L. Petit, Z. Szotek, and W. M. Temmerman, Electronic structure of rareearth impurities in GaAs and GaN, condmat/0603288 (find weak exchange interaction between rare earth spins and both CB electrons and VB holes) P
 P. Gopal and N. A. Spaldin, Magnetic interactions in transition metal doped ZnO: An abinitio study, condmat/0605543
 N. Tandon, G. P. Das, and A. Kshirsagar, Electronic structure of Diluted Magnetic Semiconductors Ga_{1x}Mn_{x}N and Ga_{1x}Cr_{x}N, condmat/0606061 (32atom supercell)
 L. Petit, T. C. Schulthess, A. Svane, W. M. Temmerman, Z. Szotek, and A. Janotti, Valency Configuration of Transition Metal Impurities in ZnO, condmat/0606417, J. Electronic Materials 35, 556 (2006) (SICLSDA)
 J. Masek, J. Kudrnovsky, F. Maca, J. Sinova, A. H. MacDonald, R. P. Campion, B. L. Gallagher, and T. Jungwirth, Mndoped Ga(As,P) and (Al,Ga)As ferromagnetic semiconductors, condmat/0609158 (investigation of ternary compounds based on both TB and abinitio calculations)
 J. Masek, J.Kudrnovsky, F. Maca, B. L. Gallagher, R. P. Campion, D. H. Gregory, and T. Jungwirth, Dilute moment ntype ferromagnetic semiconductor Li(Zn,Mn)As, condmat/0609184 (proposal based partly on abinitio calculations)
 X. Du, Q. Li, H. Su, and J. Yang, Electronic and magnetic properties of Vdoped anatase TiO_{2} from first principles, condmat/0612206
 J. L. Xu and M. van Schilfgaarde, Optimally Designed DigitallyDoped Mn:GaAs, condmat/0612411 (predicting T_{c} above room temperature for special superlattice k vectors of deltadoped layers)
 Q. Y. Wu, Z. G. Huang, R. Wu, and L. J. Chen, Cudoped AlN: a dilute magnetic semiconductor free of magnetic cations from firstprinciples study, J. Phys.: Condens. Matter 19, 056209 (2007)
 B. Belhadji, L. Bergqvist, R. Zeller, P. H. Dederichs, K. Sato, and H. KatayamaYoshida, Trends of exchange interactions in dilute magnetic semiconductors, J. Phys.: Condens. Matter 19, 436227 (2007) (detailed discussion of various exchange mechanisms based on CPA and abinitio calculations)
 M. Weissmann and L. A. Errico, The role of vacancies, impurities and crystal structure in the magnetic properties of TiO_{2}, condmat/0702530
 J. Kudrnovsky, G. Bouzerar, and I. Turek, Relation of Curie temperature and conductivity: (Ga,Mn)As alloy as a case study, arXiv:0708.3921
 L. Liu, P. Y. Yu, Z. Ma, and S. S. Mao, Ferromagnetism in GaN:Gd: A Density Functional Theory Study, Phys. Rev. Lett. 100, 127203 (2008) (pd coupling much stronger than sd coupling, coupling to f orbitals always weak)
 C. D. Pemmaraju, R. Hanafin, T. Archer, H. B. Braun, and S. Sanvito, ImpurityIon pair induced hightemperature ferromagnetism in Codoped ZnO, arXiv:0801.4945 (approximate SIC scheme)
 N. Sanchez, S. Gallego, and M. C. Munoz, Magnetic states at the Oxygen surfaces of ZnO and Codoped ZnO, arXiv:0804.3937
 A. Droghetti, C. D. Pemmaraju, and S. Sanvito, Predicting d^{0} magnetism, arXiv:0807.4184
 K.W. Lee, V. Pardo, and W. E. Pickett, Anion Vacancy Driven Magnetism in Superconducting alphaFeSe_{1x}, arXiv:0808.1733 (note relation to both DMS and Febased superconductors)
 L.J. Shi, L.F. Zhu, Y.H. Zhao, and B.G. Liu, Nitrogen defects and ferromagnetism of Crdoped AlN diluted magnetic semiconductor from first principles, arXiv:0810.5048 (FLAPW study of 72ion supercells containing at most two defects, nitrogen vacancies found to carry magnetic moments and suggested to be important for hightemperature ferromagnetims)
 J. Ohe, Y. Tomoda, N. Bulut, R. Arita, K. Nakamura, and S. Maekawa, Combined approach of density functional theory and quantum Monte Carlo method to electron correlation in dilute magnetic semiconductors, arXiv:0812.0430
 H. Ebert and S. Mankovsky, A new scheme to calculate the exchange tensor and its application to diluted magnetic semiconductors, arXiv:0812.1145 (exchange interaction between two local moments)
 Y. Q. Song, H. W. Zhang, Q. H. Yang, Y. L. Liu, Y. X. Li, L. R. Shah, H. Zhu, and J. Q. Xiao, Electronic structure and magnetic properties of Codoped CeO2: based on first principle calculation, J. Phys.: Condens. Matter 21, 125504 (2009) (oxygen vacancies are important)
 D. Kim, J. Hong, Y. R. Park, and K. J. Kim, The origin of oxygen vacancy induced ferromagnetism in undoped TiO2, J. Phys.: Condens. Matter 21, 195405 (2009)
 A. Stroppa and G. Kresse, Unraveling the JahnTeller effect in Mn doped GaN using the HeydScuseriaErnzerhof hybrid functional, arXiv:0904.2140, Phys. Rev. B (also comment on difference to Mn in GaAs)
 A. L. Schoenhalz, J. T. Arantes, A. Fazzio, and G. M. Dalpian, Surface magnetization in nondoped ZnO nanostructures, arXiv:0904.4147 (magnetism is attributed to extended defects such as surfaces and grain boundaries)
 B. J. Nagare, S. Chacko, and D. G. Kanhere, Ferromagnetism in Carbon doped Zinc Oxide Systems, arXiv:0905.0366 (clusters and solid)
 R. Cherian, P. Mahadevan, and C. Persson, Trends in Ferromagnetism in Mn doped dilute IIIV alloys from a density functional perspective, arXiv:0905.1762
 X. Jia, M. Qin, and W. Yang, Magnetism in Crdoped ZnS: Densityfunctional theory studies, arXiv:0910.2346
 V. Ferrari, A. M. Llois, and V. Vildosola, Codoped Ceria: Tendency towards ferromagnetism driven by oxygen vacancies, arXiv:0911.1959 (vacancies are found to be required for cobaltspin polarization)
 C. EcheverríaArrondo, J. PérezConde, and A. Ayuela, Antiferromagnetic order in (Ga,Mn)N nanocrystals, arXiv:1003.0599
 N. Gonzalez Szwacki, J. A. Majewski, and T. Dietl, Aggregation and magnetism of Cr, Mn, and Fe cations in GaN, arXiv:1011.5968
 K. W. Lee and C. E. Lee, Intrinsic ImpurityBand Stoner Ferromagnetism in C_{60}H_{n}, Phys. Rev. Lett. 106, 166402 (2011) (LDA)
 R. GrauCrespo and U. Schwingenschlogl, The interplay between dopants and oxygen vacancies in the magnetism of Vdoped TiO2, J. Phys.: Condens. Matter 23, 334216 (2011)
 F. V. Kyrychenko and C. A. Ullrich, Response properties of IIIV dilute magnetic semiconductors: interplay of disorder, dynamical electronelectron interactions and bandstructure effects, arXiv:1101.5418 (k.p theory with implicit charge and spin disorder, use TDDFT to describe electronelectron interactions, Fermi energy in the valence band, calculate IR conductivity for (Ga,Mn)As, agreement with experiments)
 O. Volnianska and P. Boguslawski, High spin states of cation vacancies in GaP, GaN, AlN, BN, ZnO and BeO: A first principles study, arXiv:1104.4420 (GGA [Quantum Espresso code], cation vacancies in IIIV are found to be triple acceptors, in IIVI double acceptors; discussion of possible charge states)
 S. K. Pandey and R. J. Choudhary, Effect of nonmagnetic impurities on the magnetic states of anatase TiO_{2}, arXiv:1106.0794
 M. Moreno and K. H. Ploog, Phaseseparated hightemperatureannealed (Ga,Mn)As: A negative chargetransferenergy material, arXiv:1108.1166
 M. Fhokrul Islam and C. M. Canali, Magnetic properties of Mn impurities on GaAs (110) surfaces, arXiv:1108.3440
 S. Mankovsky, S. Polesya, S. Bornemann, J. Minár, F. Hoffmann, C. H. Back, and H. Ebert, Spinorbit coupling effect in (Ga,Mn)As films: anisotropic exchange interactions and magnetocrystalline anisotropy, arXiv:1108.5870
 A. N. Andriotis and M. Menon, The synergistic character of the defectinduced magnetism in diluted magnetic semiconductors and related magnetic materials, J. Phys.: Condens. Matter 24, 455801 (2012) (essentially picture of bound magnetic polarons, but based on abinitio calculations)
 V. Fleurov, K. Kikoin, and A. Zunger, The Nature of the magnetismpromoting hole state in the prototype magnetic semiconductor GaAs: Mn, arXiv:1208.2811 (support an impurityband mechanism, where the impurity band has merged with the valence band but the states retain strong impurityband character; motivated by experiments of the Furdyna group)
 A. Janotti, C. Franchini, J. B. Varley, G. Kresse, and C. G. Van de Walle, Dual behavior of excess electrons in rutile TiO2, arXiv:1212.5949 (free electrons coexist in the conduction band with localized small polarons, reconciling transport experiments on the one hand and optical and spinresonance experiments on the other; polarons are bound to shallow donors)
 K. Z. Milowska and M. Wierzbowska, Hole sp3character and delocalization in (Ga,Mn)As, arXiv:1302.5282 (DFT with SIC, up to 3% Mn substitution, supercell [for 3% with a single Mn ion!]; support valenceband picture)
 R. Nelson, T. Berlijn, J. Moreno, M. Jarrell, and W. Ku, What is the Valence of Mn in Ga1xMnxN?, Phys. Rev. Lett. 115, 197203 (2015) (LDA + U, singleMn supercell; find valence 2+, i.e., d^{5}, but the Mn spin is reduced from 5 to 4 Bohr magnetons; also discuss an effective d^{4} picture useful for the description of local properties)
Nondiluted magnetic semiconductors  theory
 F. Natali, B. Ruck, J. Trodahl, D. L. Binh, S. Vezian, B. Damilano, Y. Cordier, F. Semond, and C. Meyer, The role of magnetic polarons in ferromagnetic GdN, arXiv:1210.3441
Effects of spinorbit coupling
 J. E. Hirsch, Overlooked contribution to the Hall effect in ferromagnetic metals, Phys. Rev. B 60, 14787 (1999); E. M. Chudnovsky, Theory of spin Hall effect, arXiv:0709.0725; J. E. Hirsch, Comment on Theory of spin Hall effect, arXiv:0709.1280 (Drudetype theory, two independent but essentially equivalent approaches)
 L. W. Molenkamp, G. Schmidt, and G. E. W. Bauer, Rashba Hamiltonian and electron transport, Phys. Rev. B 64, 121202(R) (2001) (pedagogical discussion of velocity operator/current for Rashba spinorbit coupling, application to tunneling in Rashba/FM structure) P
 S. D. Ganichev, E. L. Ivchenko, V. V. Bel'kov, S. A. Tarasenko, M. Sollinger, D. Weiss, W. Wegscheider, and W. Prettl, Spingalvanic effect, Nature 417, 153 (2002)
 C. Wu and S.C. Zhang, Dynamic Generation of SpinOrbit Coupling, Phys. Rev. Lett. 93, 036403 (2004)
 C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens, and D. D. Awschalom, Observation of spin Coulomb drag in a twodimensional electron gas, Nature 437, 1330 (2005)
 D. Xiao, J. Shi, and Q. Niu, Berry Phase Correction to Electron Density of States in Solids, Phys. Rev. Lett. 95, 137204 (2005) (show that Liouville's theorem is violated in a solid in the presence of Berry curvature, if one defines the phasespace volume in the "naive" way) P; C. Duval, Z. Horváth, P. A. Horváthy, L. Martina, and P. C. Stichel, Comment, Phys. Rev. Lett. 96, 099701 (2006); D. Xiao, J. Shi, and Q. Niu, Reply, Phys. Rev. Lett. 96, 099702 (2006)
 C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005)
 N. A. Sinitsyn, Q. Niu, J. Sinova, and K. Nomura, Disorder effects in the AHE induced by Berry curvature, condmat/0502426
 J. D. Walls, J. Huang, R. M. Westervelt, and E. J. Heller, Multiple Scattering Theory for Twodimensional Electron Gases in the Presence of SpinOrbit Coupling, condmat/0507528
 A. V. Shytov, E. G. Mishchenko, and B. I. Halperin, Smallangle impurity scattering and the spin Hall conductivity in 2D systems, condmat/0509702 (semiclassical Boltzmann approach, detailed technical discussion)
 P. L. Krotkov and S. Das Sarma, The Intrinsic Spin Hall Conductivity in a Generalized Rashba Model, condmat/0510114 (shows that the spin Hall effect does not vanish in the presence of disorder for nonparabolic band structures)
 P. Wölfle and K. A. Muttalib, Anomalous Hall effect in ferromagnetic disordered metals, condmat/0510481
 S. Adam, M. Kindermann, S. Rahav, and P. W. Brouwer, Mesoscopic anisotropic magnetoconductance fluctuations in ferromagnets, condmat/0512287
 J. Cumings, L. S. Moore, H. T. Chou, K. C. Ku, S. A. Crooker, N. Samarth, and D. GoldhaberGordon, A Tunable Anomalous Hall Effect in a NonFerromagnetic System, condmat/0512730 (experiments showing a surprisingly large AHE in paramagnetic 2DEG, probably due to skew scattering)
 A. L. Efros and E. I. Rashba, Theory of electric dipole spin resonance in a parabolic quantum well, Phys. Rev. B 73, 165325 (2006) (one can manipulate the electron spin by an AC electric field)
 A. Punnoose, Magnetoconductivity in the presence of BychkovRashba spinorbit interaction, App. Phys. Lett. 88, 252113 (2006)
 J. Shi and Q. Niu, Attractive electronelectron interaction induced by geometric phase in a Bloch band, condmat/0601531 (very interesting idea: electrons can attract in the pwave channel due to a nontrival geometric phase in kspace)
 V. M. Galitski, A. A. Burkov, and S. Das Sarma, Boundary conditions for spin diffusion, condmat/0601677
 R. Shindou and L. Balents, Artificial electric field in Fermi Liquids, condmat/0603089 (generalize the Sundaram/Niu idea of quasimagnetic fields in kspace due to Berry curvature to include a quasielectric field, which stems from the frequency dependence of eigenvectors, i.e., from the interaction)
 E. M. Hankiewicz, G. Vignale, and M. Flatté, Side jump as an intrinsic spin Hall effect, condmat/0603144
 H.A. Engel, E. I. Rashba, and B. I. Halperin, Theory of Spin Hall Effects, condmat/0603306, in Handbook of Magnetism and Advanced Magnetic Materials, Vol. 5 (Wiley)
 H.T. Yang and C. Liu, The description of spin transport and precession in spinorbit coupling systems and a general equation of continuity, condmat/0604320
 P. Kleinert and V. V. Bryksin, Theory of spinHall transport of heavy holes in semiconductor quantum wells, condmat/0604539 (steadystate spin Hall current is found to vanish in both pure and disordered infinite systems, ac spin Hall current is possible)
 J. Schliemann, Theoretical study of interacting hole gas in pdoped bulk IIIV semiconductors, condmat/0604585, Phys. Rev. B (spherical approximation for the valence band, HartreeFock theory)
 D. Culcer and Q. Niu, Geometrical phase effects on the Wigner distribution of Bloch electrons, condmat/0605528 (generalization of previous work on Berryphase effects in kspace to general mixed states, using a densitymatrix approach)
 S. Onoda, N. Sugimoto, and N. Nagaosa, Intrinsic vs. extrinsic anomalous Hall effect in ferromagnets, condmat/0605580 (unified theory encompassing both)
 A. Rebei and O. Heinonen, Spin currents in the Rashba model in the presence of nonuniform fields, condmat/0605582 (using a SU(2) gauge theory)
 V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, Generating Spin Currents in Semiconductors with the Spin Hall Effect, condmat/0605672 (experimental paper, GaAs structures, Kerr microscopy)
 P. Mitra, A. F. Hebard, K. A. Muttalib, and P. Wölfle, Weak localization correction to the anomalous Hall effect in polycrystalline Fe films, condmat/0606215 (experiment and theoretical interpretation)
 P. A. Horvarthy, Anomalous Hall Effect in noncommutative mechanics, condmat/0606472 (short and clear set of notes on semiclassical dynamics in the presence of a Berry curvature)
 E. Ya. Sherman, A. Najmaie, H. M. van Driel, A. L. Smirl, and J. E. Sipe, Ultrafast extrinsic spinHall currents, condmat/0606725, Solid State Commun. 139, 439 (2006) (Theory related to Hui Zhao's observation of optically generated spin Hall and inverse spin Hall effects)
 S. Murakami, Quantum Spin Hall Effect and Diamagnetism in Bismuth, condmat/0607001 (theoretical prediction)
 N. A. Sinitsyn, A. H. MacDonald, T. Jungwirth, V. K. Dugaev, and J. Sinova, Anomalous Hall effect in 2D Dirac band: link between KuboStreda formula and semiclassical Boltzmann equation approach, condmat/0608682 (shows equivalence of a suitable semiclassical description and microscopic perturbation theory in a more general model, not limited to relativistic electrons) P
 R. Winkler, U. Zülicke, and J. Bolte, Oscillatory multiband dynamics of free particles: Ubiquity of Zitterbewegung effects, condmat/0609005
 H.A. Engel, E. I. Rashba, and B. I. Halperin, Outofplane spin polarization from inplane electric and magnetic fields, condmat/0609078
 S. Y. Liu, N. J. M. Horing, and X. L. Lei, Anomalous Hall effect in Rashba twodimensional electron systems based on narrowband semiconductors: sidejump and skew scattering mechanisms, condmat/0609412
 P. A. Horvathy, Noncommutative mechanics, in mathematical & in condensed matter physics, condmat/0609571 (applied to the spin Hall and related effects, contains a brief history) P
 B. Liu, J. Shi, W. Wang, H. Zhao, D. Li, S. Zhang, Q. Xue, and D. Chen, Experimental Observation of the Inverse Spin Hall Effect at Room Temperature, condmat/0610150
 J. Bruening, V. Geyler, and K. Pankrashkin, On the number of bound states for weak perturbations of spinorbit Hamiltonians, mathph/0611080 (...which is infinite for certain local weak perturbations)
 U. Zülicke and A. I. Signal, Rashba interferometers: Spindependent single and twoelectron interference, mathph/0701065
 M. Hatami, G. E. W. Bauer, Q. Zhang, and P. J. Kelly, Thermal SpinTransfer Torque, condmat/0701163
 N. Hatano, R. Shirasaki, and H. Nakamura, NonAbelian gauge field theory of the spinorbit interaction and a perfect spin filter, quantph/0701076
 W. Yao, A. H. MacDonald, and Q. Niu, Optical Control of Topological Quantum Transport in Semiconductors, quantph/0702346
 M. Pletyukhov and S. Konschuh, Charge and spin density response functions of the clean twodimensional electron gas with Rashba spinorbit coupling at finite momenta and frequencies, arXiv:0705.2419 (coupled spin and charge response etc.)
 V. A. Zyuzin, P. G. Silvestrov, and E. G. Mishchenko, SpinHall edge spin polarization in a ballistic 2D electron system, arXiv:0705.2424
 N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, Drift and Diffusion of Spins Generated by the Spin Hall Effect, arXiv:0706.4273 (Kerr microscopy)
 E. M. Hankiewicz and G. Vignale, "Phase Diagram" of the Spin Hall Effect, arXiv:0707.2251
 J. Wang, B.F. Zhu, and R.B. Liu, Theory of optical effects of pure spin currents in semiconductors, arXiv:0708.0881
 D. Culcer and R. Winkler, Generation of spin currents and spin densities in systems with reduced symmetry, arXiv:0708.4009 (low symmetry makes the spincurrent response more complex)
 D. Culcer and R. Winkler, On the nature of steady states of spin distributions in the presence of spinorbit interactions, arXiv:0710.5260
 K. A. Muttalib and P. Wölfle, Disorder and temperature dependence of the Anomalous Hall Effect in thin ferromagnetic films: Microscopic model, arXiv:0710.5416
 T. S. Nunner, G. Zarand, and F. von Oppen, Anomalous Hall effect in a two dimensional electron gas with magnetic impurities, arXiv:0711.3415
 A. A. Kovalev, K. Vyborny, and J. Sinova, Hybrid skew scattering regime of the anomalous Hall effect in Rashba systems: unifying Keldysh, Boltzmann, and Kubo formalisms, arXiv:0803.1226
 D. Venkateshvaran, W. Kaiser, A. Boger, M. Althammer, M. S. Ramachandra Rao, S. T. B. Goennenwein, M. Opel, and R. Gross, Anomalous Hall Effect in Magnetite: Universal Scaling Relation Between Hall and Longitudinal Conductivity in LowConductivity Ferromagnets, arXiv:0805.1120
 N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, Timeresolved Dynamics of the Spin Hall Effect, arXiv:0806.0019
 P. S. Eldridge, W. J. H. Leyland, J. D. Mar, P. G. Lagoudakis, R. Winkler, O. Z. Karimov, M. Henini, D. Taylor, R. T. Phillips, and R. T. Harley, Absence of the Rashba effect in undoped asymmetric quantum wells, arXiv:0807.4845 (somewhat confusing argument)
 Yu. V. Pershin and M. Di Ventra, Frequency doubling and memory effects in the Spin Hall Effect, arXiv:0812.4325
 D. M. Edwards and O. Wessely, The quantummechanical basis of an extended LandauLifshitzGilbert equation for a currentcarrying ferromagnetic wire, J. Phys.: Condens. Matter 21, 146002 (2009)
 D. Culcer, Semiclassical spin transport in spinorbitcoupled systems, arXiv:0904.1999 (contains review)
 M. Trushin, K. Vyborny, P. Moraczewski, J. Schliemann, and T. Jungwirth, Anisotropic magnetoresistance of spinorbit coupled carriers scattered from polarized magnetic impurities, arXiv:0904.3785
 M. S. Garelli and J. Schliemann, LandauerBüttiker Study of the Anomalous Hall Effect, arXiv:0907.0110
 D. Culcer, E. M. Hankiewicz, G. Vignale, and R. Winkler, Sidejumps in the spinHall effect: construction of the Boltzmann collision integral, arXiv:0910.1596
 Y. Shiomi, Y. Onose, and Y. Tokura, Effect of scattering on intrinsic anomalous Hall effect investigated by Lorenz ratio, Phys. Rev. B 81, 054414 (2010) (in transition metals)
 A. A. Kovalev, J. Sinova, and Y. Tserkovnyak, Anomalous Hall Effect in Disordered Multiband Metals, Phys. Rev. Lett. 105, 036601 (2010)
 E. S. Garlid, Q. O. Hu, M. K. Chan, C. J. Palmstrøm, and P. A. Crowell, Electrical Measurement of the Direct Spin Hall Effect in Fe/In_{x}Ga_{1x}As Heterostructures, Phys. Rev. Lett. 105, 156602 (2010); see also J. Sinova, Viewpoint: Spin Hall effect goes electrical, Physics 3, 82 (2010)
 C. Gorini, P. Schwab, R. Raimondi, and A. L. Shelankov, NonAbelian gauge fields in the gradient expansion: generalized Boltzmann and Eilenberger equations, arXiv:1003.5763 (gaugetheoretical, semiclassical description of the spin Hall effect)
 P. Schwab, R. Raimondi, and C. Gorini, Inverse Spin Hall Effect and Anomalous Hall Effect in a TwoDimensional Electron Gas, arXiv:1003.6018 (2DEG in GaAs, Rashba and Dresselhaus terms, show that the two effects in the title and the spin Hall effect are not trivially related)
 S. Chesi and D. Loss, RKKY interaction in a disordered twodimensional electron gas with Rashba and Dresselhaus spinorbit couplings, arXiv:1007.3506
 B. Gu, J.Y. Gan, N. Bulut, T. Ziman, G.Y. Guo, N. Nagaosa, and S. Maekawa, Quantum Renormalization of the Spin Hall Effect, arXiv:1007.3821 (spinorbit interaction is strongly renormalized by correlation effects for Fe impurities in Au)
 J. Wunderlich, B. G. Park, A. C. Irvine, L. P. Zarbo, E. Rozkotova, P. Nemec, V. Novak, J. Sinova, and T. Jungwirth, Spin Hall effect transistor, arXiv:1008.2844 (propose, demonstrate, and model such a device)
 L. K. Werake, B. A. Ruzicka, and H. Zhao, Observation of Intrinsic Inverse Spin Hall Effect, Phys. Rev. Lett. 106, 107205 (2011) (time resolved measurement, the inverse spin Hall response sets in on a time scale much shorter than the scattering time)
 C. W. Sandweg, Y. Kajiwara, A. V. Chumak, A. A. Serga, V. I. Vasyuchka, M. B. Jungfleisch, E. Saitoh, and B. Hillebrands, Spin Pumping by Parametrically Excited Exchange Magnons, Phys. Rev. Lett. 106, 216601 (2011)
 T. Liu and G. Vignale, Electric Control of Spin Currents and SpinWave Logic, Phys. Rev. Lett. 106, 247203 (2011)
 X. Liu, X.J. Liu, and J. Sinova, Spin dynamics in the strong spinorbit coupling regime, Phys. Rev. B 84, 035318 (2011)
 J. Weischenberg, F. Freimuth, J. Sinova, S. Blügel, and Y. Mokrousov, Ab Initio Theory of the ScatteringIndependent Anomalous Hall Effect, Phys. Rev. Lett. 107, 106601 (2011)
 M. Ge, T. F. Qi, O. B. Korneta, D. E. De Long, P. Schlottmann, W. P. Crummett, and G. Cao, LatticeDriven Magnetoresistivity and MetalInsulator Transition in SingleLayered Iridates, arXiv:1106.2381
 H. Johannesson, D. F. Mross, and E. Eriksson, TwoImpurity Kondo Model: SpinOrbit Interactions and Entanglement, arXiv:1108.1817 (RKKY in presence of Rashba and Dresselhaus spinorbit coupling)
 A. Shitade and N. Nagaosa, A unified theory of anomalous Hall effect in ferromagnetic metals, arXiv:1109.5463
 R. Raimondi, P. Schwab, C. Gorini, and G. Vignale, Spinorbit interaction in a twodimensional electron gas: a SU(2) formulation, arXiv:1110.5279 (spin Hall effect)
 L. Isaev, D. F. Agterberg, and I. Vekhter, Kondo effect in the presence of spinorbit coupling, arXiv:1112.5875
 B. Gu, T. Ziman, and S. Maekawa, Theory of the spin Hall effect, and its inverse, in a ferromagnetic metal near the Curie temperature, Phys. Rev. B 86, 241303(R) (2012)
 K. Olejnik, J. Wunderlich, A. C. Irvine, R. P. Campion, V. P. Amin, J. Sinova, and T. Jungwirth, Spin Hall transistor with electrical spin injection, arXiv:1202.0881 (experiment and modeling)
 T. Kernreiter, M. Governale, and U. Zülicke, Carrierdensitycontrolled anisotropic spin susceptibility of twodimensional hole systems, arXiv:1207.4548 (susceptibility of strongly holedoped semiconductor quantum well)
 E. I. Rashba, Quantum nanostructures in strongly spinorbit coupled twodimensional systems, arXiv:1209.0828
 O. P. Sushkov, A. I. Milstein, M. Mori, and S. Maekawa, Does the side jump effect exist?, arXiv:1211.2372 (claim that it is much smaller than previously thought)
 X. Bi, P. He, E. M. Hankiewicz, R. Winkler, G. Vignale, and D. Culcer, Anomalous spin precession and spin Hall effect in semiconductor quantum wells, arXiv:1212.6262
 H. Kurebayashi, Jairo Sinova, D. Fang, A. C. Irvine, J. Wunderlich, V. Novak, R. P. Campion, B. L. Gallagher, E. K. Vehstedt, L. P. Zarbo, K. Vyborny, A. J. Ferguson, and T. Jungwirth, Observation of a Berry phase antidamping spinorbit torque, arXiv:1306.1893
 M. Weiler, et al., Experimental test of the spin mixing interface conductivity concept, arXiv:1306.5012 (with useful introduction)
 H. Chen, Q. Niu, and A. H. MacDonald, Anomalous Hall effect arising from noncollinear antiferromagnetism, arXiv:1309.4041 (proposed to be large in Mn_{3}Ir)
 B. M. Norman, C. J. Trowbridge, D. D. Awschalom, and V. Sih, CurrentInduced Spin Polarization in Anisotropic SpinOrbit Fields, Phys. Rev. Lett. 112, 056601 (2014) (experiments on (Ga,In)As, largest effect not for current in directions with largest spinorbit coupling)
 X. Zhang, Q. Liu, J.W. Luo, A. J. Freeman, and A. Zunger, Hidden spin polarization in inversionsymmetric bulk crystals, Nature Physics 10, 387 (2014) (clarify that the presence of spinorbit effects relies on a noncentrosymmetric point group for the atomic sites, not on a noncentrosymmetric space group so that also groupIV semiconductors show such effects), see also News and Views article B. Partoens, Spinorbit interactions: Hide and seek, Nature Physics 10, 333 (2014)
 J. Zelezny, H. Gao, K. Vyborny, J. Zemen, J. Masek, A. Manchon, J. Wunderlich, J. Sinova, and T. Jungwirth, Relativistic NéelOrder Fields Induced by Electrical Current in Antiferromagnets, Phys. Rev. Lett. 113, 157201 (2014) (specifically, inplane currents; proposal)
 Z. G. Yu, Spin Hall Effect in Disordered Organic Solids, Phys. Rev. Lett. 115, 026601 (2015) (due to interference between paths involving canted orbitals, distortions are not considered)
 A. MatosAbiague and J. Fabian, Tunneling Anomalous and Spin Hall Effects, Phys. Rev. Lett. 115, 056602 (2015) (continuum model)
 W. Chen, M. Sigrist, J. Sinova, and D. Manske, Minimal Model of SpinTransfer Torque and Spin Pumping Caused by the Spin Hall Effect, Phys. Rev. Lett. 115, 217203 (2015) (envelopefunction/LandauLifshitz approach)
 O. Gomonay, T. Jungwirth, and J. Sinova, High Antiferromagnetic Domain Wall Velocity Induced by Néel SpinOrbit Torques, Phys. Rev. Lett. 117, 017202 (2016)

L. Šmejkal, J. Železný, J. Sinova, and T. Jungwirth, Electric Control of Dirac Quasiparticles by SpinOrbit Torque in an Antiferromagnet, Phys. Rev. Lett. 118, 106402 (2017)

C. Stamm, C. Murer, M. Berritta, J. Feng, M. Gabureac, P. M. Oppeneer, and P. Gambardella, MagnetoOptical Detection of the Spin Hall Effect in Pt and W Thin Films, Phys. Rev. Lett. 119, 087203 (2017)

H. Liu, E. Marcellina, A. R. Hamilton, and D. Culcer, Strong SpinOrbit Contribution to the Hall Coefficient of TwoDimensional Hole Systems, Phys. Rev. Lett. 121, 087701 (2018) (how quantumspin dynamics affect classical charge transport; spinBoltzmanntype equation, firstorder Born approximation)
Other materials for spintronics, spintronics devices
 J. Maassen, W. Ji, and H. Guo, Graphene spintronics: the role of ferromagnetic electrodes, arXiv:1009.5254 (abinitio calculation, spininjection efficiency from Co and Ni into graphene)
 N. J. Harmon and M. E. Flatté, Distinguishing Spin Relaxation Mechanisms in Organic Semiconductors, Phys. Rev. Lett. 110, 176602 (2013)
 M. Warner, S. Din, I. S. Tupitsyn, et al., Potential for spinbased information processing in a thinfilm molecular semiconductor, Nature (2013), doi:10.1038/nature12597 (slow spin relaxation in thin films of H_{2}Pc with up to 10% CuPc)

L.D. Yuan, Z. Wang, J.W. Luo, E. I. Rashba, and A. Zunger, Giant momentumdependent spin splitting in centrosymmetric lowZ antiferromagnets, Phys. Rev. B 102, 014422 (2020) (spin splitting of bands induced by antiferromagnetic order, symmetry analysis in terms of magnetic space groups)
Magnetic and general properties of cuprates and other Mott antiferromagnets  experiment
 C. V. Parker, P. Aynajian, E. H. da Silva Neto, A. Pushp, S. Ono, J. Wen, Z. Xu, G. Gu, and A. Yazdani, Appearance of fluctuating stripes at the onset of the pseudogap in the highT_{c} Superconductor Bi_{2}Sr_{2}CaCu_{2}O_{8+x}, Nature 468, 677 (2010)
 M. Guarise, B. Dalla Piazza, M. Moretti Sala, G. Ghiringhelli, L. Braicovich, H. Berger, J. N. Hancock, D. van der Marel, T. Schmitt, V. N. Strocov, L. J. P. Ament, J. van den Brink, P.H. Lin, P. Xu, H.M. Rønnow, and M. Grioni, Highenergy magnon dispersion demonstrate extended interactions in undoped cuprates, arXiv:1004.2441 (RIXS, experiment and theory)
 I. Raicevic, D. Popovic, C. Panagopoulos, L. Benfatto, M. B. Silva Neto, E. S. Choi, and T. Sasagawa, Evidence for Quantum Skyrmions in a Doped Antiferromagnet, arXiv:1006.1891 (Lidoped La_{2}CuO_{4})
 H.B. Yang, J. D. Ramaeu, Z.H. Pan, G. D. Gu, P. D. Johnson, R. H. Claus, D. G. Hinks, and T. E. Kidd, On the Reconstructed Fermi Surface in the Underdoped Cuprates, arXiv:1008.3121 (ARPES: complete hole pockets, but with vanishing weight at the AFM zone boundary)
 A. T. Boothroyd, P. Babkevich, D. Prabhakaran, and P. G. Freeman, An hourglass magnetic spectrum in an insulating, holedoped antiferromagnet, Nature 471, 341 (2011) (La_{2x}Sr_{x}CoO_{4}, note News and Views)
 M. Le Tacon et al., Intense paramagnon excitations in a large family of hightemperature superconductors, Nature Physics 7, 725 (2011) (RIXS, high precision, surprisingly universal)
 M. K. Chan, M. J. Veit, C. J. Dorow, Y. Ge, Y. Li, W. Tabis, Y. Tang, X. Zhao, N. Barisic, and M. Greven, InPlane Magnetoresistance Obeys Kohler's Rule in the Pseudogap Phase of Cuprate Superconductors, Phys. Rev. Lett. 113, 177005 (2014) (Kohler's rule, δρ/ρ_{0} = F(H/ρ_{0}) independent of temperature, is satisfied, this implies that a Fermiliquid plus Boltzmann description with essentially constant scattering rate is applicable, contains brief discussion of Kohler's rule)

T. L. Miller, W. Zhang, H. Eisaki, and A. Lanzara, ParticleHole Asymmetry in the Cuprate Pseudogap Measured with TimeResolved Spectroscopy, Phys. Rev. Lett. 118, 097001 (2017) (pumpprobe ARPES)

L. ManginThro, Y. Li, Y. Sidis, and P. Bourges, ab Anisotropy of the IntraUnitCell Magnetic Order in YBa_{2}Cu_{3}O_{6.6}, Phys. Rev. Lett. 118, 097003 (2017) (neutron scattering)
Magnetic and general properties of cuprates and other Mott antiferromagnets  theory
 Y. H. Szczech, M. A. Tusch, and D. E. Logan, Collective excitation spectrum of a disordered Hubbard model, J. Phys.: Condens. Matter 9, 9621 (1997) (3D Hubbard model at half filling) P
 F. Carvalho Dias and I. R. Pimentel, Spin correlations and magnetic susceptibilities of lightly doped antiferromagnets, Phys. Rev. B 71, 224412 (2005) (slavefermion/Schwingerboson method applied to tJ model)
 S. I. Vedeneev and D. K. Maude, Vortexlike excitations in a nonsuperconducting singlelayer compound Bi_{2+x}Sr_{2x}CuO_{6+delta} single crystal in high magnetic fields, Phys. Rev. B 72, 214514 (2005)
 T. Morinari, Halfskyrmion picture of single hole doped highT_{c} cuprate, condmat/0502437; T. Morinari, Halfskyrmion picture of single hole doped CuO_{2} plane, condmat/0507666; Mechanism of d_{x2y2}wave superconductivity based on doped hole induced spin texture in high T_{c} cuprates, condmat/0509632
 C. Bruegger, F. Kaempfer, M. Pepe, and U.J. Wiese, Magnonmediated Binding between Holes in an Antiferromagnet, condmat/0511367
 G. Sangiovanni, A. Toschi, E. Koch, K. Held, M. Capone, C. Castellani, O. Gunnarsson, S.K. Mo, J. W. Allen, H.D. Kim, A. Sekiyama, A. Yamasaki, S. Suga, and P. Metcalf, Static vs. dynamical mean field theory of Mott antiferromagnets, condmat/0511442 (theory and experiment)
 A. Luscher, A. Läuchli, W. Zheng, and O. P. Sushkov, Singlehole properties of the tJ model on the honeycomb lattice, condmat/0512074
 W.F. Tsai and S. A. Kivelson, Inhomogeneous Hubbard Models: from Weak to Strong Coupling, condmat/0601113
 L. Balents and S. Sachdev, Dual vortex theory of doped Mott insulators, condmat/0612220
 M. Greiter and R. Thomale, No evidence for spontaneous orbital currents in finite size studies of threeband models for CuO planes, condmat/0701245 (criticize Varma's picture)
 T.P. Choy, R. G. Leigh, and P. Phillips, Hidden Charge 2e Boson: Experimental Consequences for Doped Mott Insulators, arXiv:0712.2841 (discuss how many peculiar features of the normal state of cuprates result naturally from a lowenergy charge2e bosonic field); R. G. Leigh and P. Phillips, Origin of the Mott Gap, arXiv:0812.0593
 D. Poilblanc, Properties of Holons in the Quantum Dimer Model, Phys. Rev. Lett. 100, 157206 (2008) (amoung other results, finds tendency of holons to bind magnetic vortices, whereby they are transmuted to bosons)
 C.W. Liu, S. Liu, Y.J. Kao, A. L. Chernyshev, and A. W. Sandvik, Impurityinduced frustration in correlated oxides, arXiv:0812.1023
 K. Bouadim, G. G. Batrouni, and R. T. Scalettar, Determinant Quantum Monte Carlo Study of the Orbitally Selective Mott Transition, arXiv:0903.3390
 T. Morinari, HalfSkyrmion theory for hightemperature superconductivity, arXiv:0908.3385
 S. Chakraborty, S. Hong, and P. Phillips, Nonconservation of Fermionic Degrees of Freedom at Lowenergy in Doped Mott Insulators, arXiv:0909.3096
 S. K. Sarker and T. Lovorn, A Consistent Theory of Underdoped Cuprates: Evolution of the RVB State From Half Filling, arXiv:0910.2204
 M. Khodas and A. M. Tsvelik, Influence of Thermal Fluctuations of Spin Density Wave Order Parameter on the Quasiparticle Spectral Function, arXiv:1001.0590 (a spinfermion model of electrons coupled to SDW order, motivated by underdoped cuprates, but also potentially relevant for pnictides)
 F. Hassler, A. Rüegg, M. Sigrist, and G. Blatter, Dynamical Unbinding Transition in a Periodically Driven Mott Insulator, arXiv:1002.3085 (Hubbard model in nonequilibrium)
 T. Das, R. S. Markiewicz, and A. Bansil, Optical modelsolution to the competition between a pseudogap phase and a Mottgap phase in hightemperature cuprate superconductors, arXiv:1002.4188
 H. T. Dang, E. Gull, and A. J. Millis, Response of a correlated material to a local electric field: how much does a muon perturb a correlated electron material?, arXiv:1004.5369
 P. Phillips, Mottness Collapse and Tlinear Resistivity in Cuprate Superconductors, arXiv:1006.2396
 D. J. Singh and I. I. Mazin, Experimental evidence for nematic order of cuprates in relation to lattice structure, arXiv:1007.0255 (discussion of evidence for nematic order, contains a helpful illustration of what nematic order signifies)
 P. Ye, C.S. Tian, X.L. Qi, and Z.Y. Weng, Unconventional order parameters in doped Mott insulators, arXiv:1007.2507 (predict a novel "Bose insulating phase")
 B. K. Clark, D. A. Abanin, and S. L. Sondhi, Nature of the spin liquid state of the Hubbard model on honeycomb lattice, arXiv:1010.3011 (effective J_{1}J_{2} lowenergy model, variational calculation) P
 J. Lin and A. J. Millis, Optical and Hall conductivities of a thermally disordered twodimensional spindensity wave: twoparticle response in the pseudogap regime of electrondoped highT_{c} superconductors, arXiv:1011.3265
 G. Sordi, K. Haule, and A.M. S. Tremblay, Mott physics and firstorder transition between two metals in the normal state phase diagram of the twodimensional Hubbard model, arXiv:1102.0463 (cellular DMFT with QMC; phase diagram of doped 2D Hubbard model in U, temperature, and chemical potential, find a novel firstorder transition between metallic states which ends at a critical line at finite temperature)
 Li Liu, H. Yao, E. Berg, and S. A. Kivelson, Phases of the infinite U Hubbard model, arXiv:1103.3315 (DMRG for ladders)
 S. A. Hartnoll, D. M. Hofman, M. A. Metlitski, and S. Sachdev, Quantum critical response at the onset of spin density wave order in twodimensional metals, arXiv:1106.0001 (very long paper motivated by the cuprates)
 T. M. Rice, K.Y. Yang, and F. C. Zhang, A Phenomenological Theory of the Anomalous Pseudogap Phase in Underdoped Cuprates, arXiv:1109.0632, Rep. Prog. Phys. (long paper on the authors' approach, partially of review character)
 S. Hong and P. Phillips, Towards the Standard Model of Fermi Arcs from a Wilsonian Reduction of the Hubbard Model, arXiv:1110.0440
 G. Sordi, P. Sémon, K. Haule, and A.M. S. Tremblay, Pseudogap temperature along the Widom line of a firstorder transition in doped Mott insulators, arXiv:1110.1392 (a Widom firstorder phase transition as the main player in the physics of cuprates in the normal state)
 I. Bakken Sperstad, E. B. Stiansen, and A. Sudbø, Quantum criticality in a dissipative (2+1)dimensional XY model of circulating currents in highTc cuprates, arXiv:1111.0629 (Monte Carlo)
 N. D. Vlasii, C. P. Hofmann, F.J. Jiang, and U.J. Wiese, Symmetry Analysis of Holes Localized on a Skyrmion in a Doped Antiferromagnet, arXiv:1205.3677 (long paper, holes coupled to Skyrmions, preformed pairs in cuprates)
 T. Morinari, Topological Spin Texture Created by ZhangRice Singlets in Cuprate Superconductors, arXiv:1207.2245, J. Phys. Soc. Jpn. 81, 074716 (2012) (single hole relative to half filling generates ZhangRice singlet, proposes that the ZhangRice singlet dresses with a skyrmion in the antiferromagnetic order)
 W. Rowe, J. Knolle, I. Eremin, and P. J. Hirschfeld, Spin excitations in layered antiferromagnetic metals and superconductors, arXiv:1207.3834 (motivated by cuprates but has some implications for pnictides as well, also coexistence of SDW and superconducting order)
 H. Ebrahimnejad, G. A. Sawatzky, and M. Berciu, The dynamics of a doped hole in a cuprate is not controlled by spin fluctuations, Nature Phys. 10, 951 (2014) (threeband [and fiveband] tJtype model; variational approach; very interesting paper suggesting that the ZhangRicesinglet picture misses essential physics)
 Z. Wang, W.J. Hu, and A. H. Nevidomskyy, Spin Ferroquadrupolar Order in the Nematic Phase of FeSe, Phys. Rev. Lett. 116, 247203 (2016) (spinonly model, variational meanfield approximation)

V. Borisov, R. M. Fernandes, and R. Valentí, Evolution from B_{2g} Nematics to B_{1g} Nematics in Heavily HoleDoped IronBased Superconductors, Phys. Rev. Lett. 123, 146402 (2019) (rotated nematic order)

X. Y. Xu and T. Grover, Competing Nodal dWave Superconductivity and Antiferromagnetism, Phys. Rev. Lett. 126, 217002 (2021) (signproblemfree QMC for toy model of correct symmetry)
 X. Liu, Y. X. Chong, R. Sharma, and C. S. Davis, Discovery of a Cooperpair density wave state in a transitionmetal dichalcogenide, Science 372, 1447 (2021) (registered with preexisting CDW)

S. Gong, W. Zhu, and D. N. Sheng, Robust dWave Superconductivity in the SquareLattice t−J Model, Phys. Rev. Lett. 127, 097003 (2021) (DMRG)
For the theory of superconductivity see Microscopic theory of bulk superconductors
Disordered ferromagnets (not specifically DMS)
 A. Singh and E. Fradkin, Localization and correlation effects in itinerant ferromagnets, Phys. Rev. B 35, 6894 (1987) (employing 1/N expansion)
 A. V. Andreev and A. Kamenev, Itinerant Ferromagnetism in Disordered Metals: A MeanField Theory, Phys. Rev. Lett. 81, 3199 (1998) (enhancement of ferromagnetism by potential disorder in two dimensions or less, no fluctuations)
 P. Jacquod and A. D. Stone, GroundState Magnetization in Disordered Systems: Exchange vs. OffDiagonal Interaction Fluctuations, condmat/0003352, phys. stat. sol. (2000)
 P. Jacquod and A. D. Stone, Groundstate magnetization for interacting fermions in a disordered potential: Kinetic energy, exchange interaction, and offdiagonal fluctuations, Phys. Rev. B 64, 214416 (2001) (contains brief review of Stoner theory in disordered metals)
 Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, CurrentInduced Magnetization Dynamics in Disordered Itinerant Ferromagnets, condmat/0512715 (extended localdensity approximation)
 S. G. Magalhaes, F. M. Zimmer, P. R. Krebs, and B. Coqblin, Spin Glass and ferromagnetism in disordered Cerium compounds, condmat/0606551 (competition between spin glass, ferromagnetism, and Kondo physics for Kondo lattice model with random interactions, functional integral approach)
 J. A. Sobota, D. Tanaskovic, and V. Dobrosavljevic, RKKY interactions in the regime of strong localization, condmat/0609425 (more general idea exhibited for 1D system; no diffusion)
 J. A. Hoyos and T. Vojta, Local defect in a magnet with longrange interactions, condmat/0611001 (Ising magnet in paramagnetic phase close to classical or quantum critical point, with longrange stiffnesstype [not densitydensity] interaction and a spherical defect region favoring magnetic order) P
 L. De Sanctis and F. Guerra, Mean field dilute ferromagnet I. High temperature and zero temperature behavior, arXiv:0801.4940 (Ising model on random network, same coupling on all bonds)
 A. Chakraborty and G. Bouzerar, Dynamical properties of a threedimensional diluted Heisenberg model, Phys. Rev. B 81, 172406 (2010) (sitediluted nearestneighbor Heisenberg model, selfconsistent local RPA for large supercells) P
 R. Misra, A. F. Hebard, K. A. Muttalib, and P. Wölfle, Asymmetric MetalInsulator Transition in Disordered Ferromagnetic Films, Phys. Rev. Lett. 107, 037201 (2011) (Gd films; experiment and theory)
 L. Demko, S. Bordacs, T. Vojta, D. Nozadze, F. Hrahsheh, C. Svoboda, B. Dora, H. Yamada, M. Kawasaki, Y. Tokura, and I. Kezsmarki, Disorder promotes ferromagnetism: Rounding of the quantum phase transition in Sr_{1x}Ca_{x}RuO_{3}, arXiv:1202.3810 (experiments and theory, FMPM quantum phase transition is destroyed by the compositional disorder, ferromagnetism is extended by the disorder, correlated disorder is more beneficial for ferromagnetism than random disorder)
 Y. Sang, D. Belitz, and T. R. Kirkpatrick, Disorder Dependence of the Ferromagnetic Quantum Phase Transition, Phys. Rev. Lett. 113, 207201 (2014) (explain how disorder suppresses the firstorder ferromagnetic transition in ferromagnets with reduced Curie temperature and turns it into a second order transition, ending in a QCP; contains nice summary of the clean case)
Magnetic and general properties of pnictides, chalcogenides, and related systems  experiment
(including chargedensitywave systems)
 Y. Qiu, W. Bao, Q. Huang, J. W. Lynn, T. Yildirim, J. Simmons, Y. C. Gasparovic, J. Li, M. Green, T. Wu, G. Wu, and X. H. Chen, The absence of the spindensitywave order in the NdFeAs(O,F) high T_{c} superconductor system, arXiv:0806.2195 (this compound shows a structural transition at about 150K, but no SDW order except at very small temperatures, unlike other compounds of this class  by now superceded, it does show SDW order)
 M. A. McGuire, A. D. Christianson, A. S. Sefat, B. C. Sales, M. D. Lumsden, R. Jin, E. A. Payzant, D. Mandrus, Y. Luan, V. Keppens, V. Varadarajan, J. W. Brill, R. P. Hermann, M. T. Sougrati, F. Grandjean, and G. J. Long, Phase transitions in LaFeAsO: structural, magnetic, elastic, and transport properties, heat capacity and Mössbauer spectra, arXiv:0806.3878 P
 D. Hsieh, Y. Xia, L. Wray, D. Qian, K. Gomes, A. Yazdani, G. F. Chen, J. L. Luo, N.L. Wang, and M. Z. Hasan, Experimental determination of the microscopic origin of magnetism in parent iron pnictides, arXiv:0812.2289 (ARPES and STM, favoring a SDW state) P
 Y. Xia, D. Qian, L. Wray, D. Hsieh, G. F. Chen, J. L. Luo, N. L. Wang, and M. Z. Hasan, Fermi Surface Topology and LowLying Quasiparticle Dynamics of Parent Fe_{1+x}Te/Se Superconductor, Phys. Rev. Lett. 103, 037002 (2009); see also Viewpoint: A. V. Balatsky and D. Parker, Not all iron superconductors are the same, Physics 2, 59 (2009)
 M. Matusiak, T. Plackowski, Z. Bukowski, N. D. Zhigadlo, and J. Karpinski, The thermoelectric power as an evidence of Spin Density Wave order in the SmFeAsO and NdFeAsO, arXiv:0901.2472 P
 N. J. Curro, A. P. Dioguardi, N. RobertsWarren, A. C. Shockley, and P. Klavin, Low energy spin dynamics in the antiferromagnetic phase of CaFe_{2}As_{2}, arXiv:0902.4492 (NMR, consistent with metallic ordered state)
 S. E. Hahn, Y. Lee, N. Ni, A. Alatas, B. M. Leu, D. Y. Chung, I. S. Todorov, E. E. Alp, M. G. Kanatzidis, P.C. Canfield, A. I. Goldman, R. J. McQueeney, and B. N. Harmon, Influence of Magnetism on Phonons in CaFe_{2}As_{2}, arXiv:0903.0017 (strong effect of magnetic correlations on phonons even in the disordered phase)
 G. Liu, H. Liu, L. Zhao, W. Zhang, X. Jia, J. Meng, X. Dong, G. F. Chen, G. Wang, Y. Zhou, Y. Zhu, X. Wang, Z. Xu, C. Chen, and X. J. Zhou, Electronic Evidence of Unusual Magnetic Ordering in a Parent Compound of FeAsBased Superconductors, arXiv:0904.0677
 Y. Luo, Y. Li, S. Jiang, J. Dai, G. Cao, and Z. Xu, Phase diagram of CeFeAs_{1x}P_{x}O: Two magnetic quantum critical points driven by chemical doping, arXiv:0907.2961
 D. S. Inosov, J. T. Park, P. Bourges, D. L. Sun, Y. Sidis, A. Schneidewind, K. Hradil, D. Haug, C. T. Lin, B. Keimer, and V. Hinkov, NormalState Spin Dynamics and TemperatureDependent Spin Resonance Energy in an Optimally Doped Iron Arsenide Superconductor, arXiv:0907.3632 (inelastic neutron scattering, exhibiting a nearly antiferromagnetic metal without pseudogap)
 J. J. Ying, T. Wu, Q. J. Zheng, Y. He, G. Wu, Q. J. Li, Y. J. Yan, Y. L. Xie, R. H. Liu, X. F. Wang, and X. H. Chen, Study of Electron Spin Resonance on single crystals EuFe_{2x}Co_{x}As_{2}, arXiv:0908.0037
 R. Khasanov, M. Bendele, A. Amato, K. Conder, M. Elender, H. Keller, H.H. Klauss, H. Luetkens, E. Pomjakushina, and A. Raselli, Pressure Induced Static Magnetic Order in Superconducting FeSe_{1x}, arXiv:0908.2734 (under pressure, antiferromagnetic longrange order appears above the superconducting transition and might coexist at low temperatures)
 H. Li, W. Tian, J. L. Zarestky, A. Kreyssig, N. Ni, S. L. Bud'ko, P. C. Canfield, A. I. Goldman, R. J. McQueeney, and D. Vaknin, Magnetic and lattice coupling in singlecrystal SrFe_{2}As_{2}: A neutron scattering study, arXiv:0908.4253 (coinciding structural and magnetic firstorder transitions)
 D. Reznik, K. Lokshin, D. C. Mitchell, D. Parshall, W. Dmowski, D. Lamago, R. Heid, K.P. Bohnen, A.S. Sefat, M. A. McGuire, B. C. Sales, D. G. Mandrus, A. Asubedi, D. J. Singh, A. Alatas, M. H. Upton, A. H. Said, A. Cunsolo, Yu. Shvydko, and T. Egami, Phonons as a probe of the magnetic state in doped and undoped BaFe_{2}As_{2}, arXiv:0908.4359 (inelastic xray scattering compared to DFT, suggesting strong coupling between phonons and highfrequency magnetic fluctuations)
 T. Egami, B. V. Fine, D. J. Singh, D. Parshall, C. de la Cruz, and P. Dai, SpinPhonon Coupling in Iron Pnictide Superconductors, arXiv:0908.4361 (short paper, Landau theory for the magnetic order controlled by AsFe separation)
 M. M. Qazilbash, J. J. Hamlin, R. E. Baumbach, L. Zhang, D. J. Singh, M. B. Maple, and D. N. Basov, Electronic correlations in the iron pnictides, arXiv:0909.0312 (infrared and optical spectroscopy)
 M. Yi, D. H. Lu, J. G. Analytis, J.H. Chu, S.K. Mo, R.H. He, M. Hashimoto, R. G. Moore, I. I. Mazin, D. J. Singh, Z. Hussain, I. R. Fisher, and Z.X. Shen, Unconventional electronic reconstruction in undoped (Ba,Sr)Fe2As2 across the spin density wave transition, arXiv:0909.0831 (ARPES, compared to DFT)
 A. Jesche, C. Krellner, M. de Souza, M. Lang, and C. Geibel, Rare earth magnetism in CeFeAsO: A single crystal study, arXiv:0909.0903 (single crystals, Ce moments do not feel SDW ordering?)
 E. Dengler, J. Deisenhofer, H.A. Krug von Nidda, S. Khim, J. S. Kim, K. H. Kim, F. Casper, C. Felser, and A. Loidl, Coupling of localized moments and itinerant electrons in EuFe2As2 single crystals studied by Electron Spin Resonance, arXiv:0909.2054
 S. J. Moon, J. H. Shin, D. Parker, W. S. Choi, I. I. Mazin, Y. S. Lee, J. Y. Kim, N. H. Sung, B. K. Cho, S. H. Khim, J. S. Kim, K. H. Kim, and T. W. Noh, Dual Character of Magnetism in Ferropnictides: Insights from Optical Measurements, arXiv:0909.3352 (optical spectroscopy accompanied by DFT: intermediate, not fully local or itinerant antiferromagnetism)
 H. Sugawara, K. Ishida, Y. Nakai, H. Yanagi, T. Kamiya, Y. Kamihara, M. Hirano, and H. Hosono, TwoDimensional Spin Dynamics in the Itinerant Ferromagnet LaCoPO Revealed by Magnetization and ^{31}PNMR Measurements, arXiv:0909.5641 (isostructural with 1111 pnictides showing SDW order and superconductivity; LaCoPO is a weak ferromagnetic metal with small ordered moments but large paramagnetic moments above T_{C})
 R. Mittal, R. Heid, A. Bosak, T. R. Forrest, S. L. Chaplot, D. Lamago, D. Reznik, K. P. Bohnen, Y. Su, N. Kumar, S. K. Dhar, A. Thamizhavel, Ch. Rüegg, M. Krisch, D. F. McMorrow, Th. Brueckel, and L. Pintschovius, Pressure dependence of phonon modes across the tetragonal to collapsed tetragonal phase transition in CaFe2As2, arXiv:0911.1665
 Y. Luo, Q. Tao, Y. Li, X. Lin, L. Li, G. Cao, Z. Xu, H. Kaneko, A. V. Savinkov, Y. Xue, H. Suzuki, C. Fang, and J. Hu, Evidence of Magnetically Driven Structural Phase Transition in Parent Compounds RFeAsO (R = La, Sm, Gd, Tb): study of lowtemperature Xray diffraction, arXiv:0911.2779 (in 1111compounds the structural and Neel transition temperatures as well as their difference decrease with decreasing caxis lattice constant with rareearth substitution) P
 R. M. Fernandes, L. H. VanBebber, S. Bhattacharya, P. Chandra, V. Keppens, D. Mandrus, M. A. McGuire, B. C. Sales, A. S. Sefat, and J. Schmalian, Effects of nematic fluctuations on the elastic properties of iron arsenide superconductors, arXiv:0911.3084; Phys. Rev. Lett. (ultrasound spectroscopy, supports the notion that the structural transition is strongly coupled to magnetic fluctuations; note changed title in new version, original title "Fluctuationsinduced softening of the elastic properties of FeAs based pnictide superconductors")
 K. Matan, S. Ibuka, R. Morinaga, S. Chi, J. W. Lynn, A. D. Christianson, M. D. Lumsden, and T. J. Sato, Doping Dependence of Spin Dynamics in ElectronDoped Ba(Fe1xCox)2As2, arXiv:0912.4945 (inelastic neutron scattering, also propose a change in the Fermisurface topology)
 Q. Si, Iron pnictide superconductors: Electrons on the verge, arXiv:0912.4989 (optical spectroscopy suggesting rather strong electronic correlations)
 G. Lang, H.J. Grafe, D. Paar, F. Hammerath, K. Manthey, G. Behr, J. Werner, and B. Büchner, Nanoscale electronic order in iron pnictides, arXiv:0912.5495 (... in underdoped 1111 samples but not in undoped or optimally doped samples)
 V. P. S. Awana, I. Nowik, A. Pal, K. Yamaura, E. TakayamaMuromachi, and I. Felner, Magnetic phase transitions in SmCoAsO, Phys. Rev. B 81, 212501 (2010) (upon lowering the temperature, the material becomes a ferromagnetic metal, then a SDW metal, and at a low temperature, the Sm moments also order antiferromagnetically); A. Pal, H. Kishan, and V. P. S. Awana, Possible kinetic arrest of the ferromagnetic to antiferromagnetic transition in SmCoAsO: The interplay of Sm4f and Co3d spins, arXiv:1008.2593
 P. Richard, K. Nakayama, T. Sato, M. Neupane, Y.M. Xu, J. H. Bowen, G. F. Chen, J. L. Luo, N. L. Wang, H. Ding, and T. Takahashi, Observation of Dirac Cone Electronic Dispersion in BaFe_{2}As_{2}, Phys. Rev. Lett. 104, 137001 (2010) (ARPES, Dirac cone due to spindensitywave formation); see also Viewpoint: M. Z. Hasan and B. A. Bernevig, Dirac cone in ironbased superconductors, Physics 3, 27 (2010)
 J. G. Storey, J. W. Loram, J. R. Cooper, Z. Bukowski, and J. Karpinski, The electronic specific heat of Ba1xKxFe2As2 from 2K to 380K, arXiv:1001.0474
 A. Jesche, C. Krellner, M. de Souza, M. Lang, and C. Geibel, Structural and magnetic transition in CeFeAsO: separated or connected?, arXiv:1001.4349 (difference between strutural and magnetic transition temperatures decreases with increasing sample quality, is concluded to be extrinsic)
 B. Zhou, Y. Zhang, L.X. Yang, M. Xu, C. He, F. Chen, J.F. Zhao, H.W. Ou, J. Wei, B.P. Xie, T. Wu, G. Wu, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, X. H. Chen, and D. L. Feng, Electronic structure of EuFe2As2, arXiv:1001.4537 (ARPES)
 Q. Tao, Z. Zhu, X. Lin, G. Cao, Z. Xu, G. Chen, J. Luo, and N. Wang, Comparative study on the thermoelectric effect of parent oxypnictides LaTAsO (T = Fe, Ni), arXiv:1002.0417
 T. Dong, Z. G. Chen, R. H. Yuan, B. F. Hu, B. Cheng, and N. L. Wang, Formation of partial energy gap below the structural phase transition and strong electronphonon coupling effect in ReFeAsO (Re=La, Nd, and Sm), arXiv:1005.0780
 L. X. Yang, B. P. Xie, Y. Zhang, C. He, Q. Q. Ge, X. F. Wang, X. H. Chen, M. Arita, J. Jiang, K. Shimada, M. Taniguchi, I. Vobornik, G. Rossi, J. P. Hu, D. H. Lu, Z. X. Shen, Z. Y. Lu, and D. L. Feng, Surface and bulk electronic structures of LaOFeAs studied by angle resolved photoemission spectroscopy, arXiv:1006.1107 (suggest significant reconstruction of the bands at the SDW transition and that the structural transition is due to shortrange magnetic order)
 W. Tian, W. Ratcliff II., M. G. Kim, J.Q. Yan, P. A. Kienzle, Q. Huang, B. Jensen, K. W. Dennis, R. W. McCallum, T. A. Lograsso, R. J. McQueeney, A. I. Goldman, J. W. Lynn, and A. Kreyssig, Interplay between Fe and Nd magnetism in NdFeAsO single crystals, arXiv:1006.1135 (neutron and xray defraction etc., find an additional fourth transition where the interplanar order of Fe moments changes, above the Ndordering transition)
 E. Arushanov, C. Hess, G. Behr, S. Levcenko, A. Kondrat, J. Werner, G. Fuchs, S.L. Drechsler, and B. Büchner, Scaling of normalstate transport properties of 1111 ironpnictide superconductors, arXiv:1006.2350
 M. Zbiri, R. Mittal, S. Rols, Y. Su, Y. Xiao, H. Schober, S. L. Chaplot, M. R. Johnson, T. Chatterji, Y. Inoue, S. Matsuishi, H. Hosono, and T. Brueckel, Magnetic Lattice Dynamics of the OxygenFree FeAs Pnictides: How Sensitive are Phonons to Magnetic Ordering?, arXiv:1007.1711
 T. Yoshida, I. Nishi, A. Fujimori, M. Yi, R. G. Moore, D.H. Lu, Z.X. Shen, K. Kihou, P. M. Shirage, H. Kito, C. H. Lee, A. Iyo, H. Eisaki, and H. Harima, Fermi surfaces and quasiparticle band dispersions of the iron pnictides superconductor KFe2As2 observed by angleresolved photoemission spectroscopy, arXiv:1007.2698
 T. Terashima, N. Kurita, A. Kikkawa, H. S. Suzuki, T. Matsumoto, K. Murata, and S. Uji, Magnetotransport studies of EuFe_{2}As_{2}: the influence of the Eu^{2+} magnetic moments, arXiv:1008.2029 (scattering off Eu moments found to have little effect on transport)
 L. Ma, J. Zhang, G. F. Chen, and W. Yu, NMR evidence of strongcorrelated superconductivity in LiFeAs: tuning toward an SDW ordering, arXiv:1008.5199
 M. Yi, D. H. Lu, J.H. Chu, J. G. Analytis, A. P. Sorini, A. F. Kemper, S.K. Mo, R. G. Moore, M. Hashimoto, W. S. Lee, Z. Hussain, T. P. Devereaux, I. R. Fisher, and Z.X. Shen, Symmetry breaking orbital anisotropy on detwinned Ba(Fe1xCox)2As2 above the spin density wave transition, arXiv:1011.0050 (related to nematicity)
 L. Harnagea, S. Singh, G. Friemel, N. Leps, D. Bombor, M. AbdelHafiez, A. U. B Wolter, C. Hess, R. Klingeler, G. Behr, S. Wurmehl, and B. Büchner, Phase diagram of ironarsenide superconductors Ca(Fe_{1x}Co_{x})_{2}As_{2} (0 ≤ x ≤ 0.2), arXiv:1011.2085 (antiferromagnetic and superconducting phases)
 M. G. Kim, A. Kreyssig, A. Thaler, D. K. Pratt, W. Tian, J. L. Zarestky, M. A. Green, S. L. Bud'ko, P. C. Canfield, R. J. McQueeney, and A. I. Goldman, Antiferromagnetic ordering in the absence of a structural distortion in Ba(Fe_{1x}Mn_{x})_{2}As_{2}, arXiv:1011.2816 (do not observe a structural distortion in this material although there is stripelike antiferromagnetic order)
 L. W. Harriger, H. Luo, M. Liu, T. G. Perring, C. Frost, J. Hu, M. R. Norman, and P. Dai, Nematic spin fluid in the tetragonal phase of BaFe_{2}As_{2}, arXiv:1011.3771 (observe a strong anisotropy of the [damped] spinwave dispersion around the ordering vectors even above the Neél and structural transition temperature, but not relative to the Gamma point, attribute the results to nematicity)
 R. A. Ewings, T. G. Perring, J. Gillett, S. D. Das, S. E. Sebastian, A. E. Taylor, T. Guidi, and A. T. Boothroyd, Itinerant Spin Excitations in SrFe_{2}As_{2} Measured by Inelastic Neutron Scattering, arXiv:1011.3831 (also comparison to theory: an itinerant multiband model [Knolle et al.] works better than a localmoment model)
 J. J. Ying, X. F. Wang, T. Wu, Z. J. Xiang, R. H. Liu, Y. J. Yan, A. F. Wang, M. Zhang, G. J. Ye, P. Cheng, J. P. Hu and X. H. Chen, Distinct electronic nematicities between electron and hole underdoped iron pnictides, arXiv:1012.2731 (inplan anisotropy of resistivity is very different)
 I. Nowik, I. Felner, Z. Ren, G. H. Cao, and Z. A. Xu, Coexistence of ferromagnetism and superconductivity: magnetization and Mossbauer studies of EuFe_{2}(As_{1x}P_{x})_{2}, J. Phys.: Condens. Matter 23, 065701 (2011) (isovalent substitution of As by P leads to ferromagnetism coexisting with superconductivity)
 M. G. Kim, R. M. Fernandes, A. Kreyssig, J. W. Kim, A. Thaler, S. L. Bud'ko, P. C. Canfield, R. J. McQueeney, J. Schmalian, and A. I. Goldman, Character of the structural and magnetic phase transitions in the parent and electrondoped BaFe_{2}As_{2} compounds, Phys. Rev. B 83, 134522 (2011) (structural and antiferromagnetic transitions are found to happen at slightly different temperatures, experiments and theoretical analysis based on GinzburgLandau meanfield approach) P
 B. J. Arnold, S. Kasahara, A. I. Coldea, T. Terashima, Y. Matsuda, T. Shibauchi, and A. Carrington, Nesting of electron and hole Fermi surfaces in nonsuperconducting BaFe_{2}P_{2}, Phys. Rev. B 83, 220504(R) (2011) (de Haasvan Alphen)
 M. Matusiak, Z. Bukowski, and J. Karpinski, Doping dependence of the Nernst effect in Eu(Fe1xCox)2As2  departure from Dirac fermions physics, arXiv:1102.3198 (the parent compound behaves as expected, though)
 T. Terashima, N. Kurita, M. Tomita, K. Kihou, C.H. Lee, Y. Tomioka, T. Ito, A. Iyo, H. Eisaki, T. Liang, M. Nakajima, S. Ishida, S. Uchida, H. Harima, and S. Uji, Complete Fermi surface in BaFe_{2}As_{2} observed via quantum oscillation measurements on detwinned single crystals, arXiv:1103.3329 (find highly threedimensional Fermi pockets)
 S. Arsenijeviíc, R. Gaál, A. S. Sefat, M. A. McGuire, B. C. Sales, D. Mandrus, and L. Forró, Pressure effects on the transport coefficients of Ba(Fe1xCox)2As2, arXiv:1103.4501
 D. K. Pratt, M. G. Kim, A. Kreyssig, Y. B. Lee, G. S. Tucker, A. Thaler, W. Tian, J. L. Zarestky, S. L. Bud'ko, P. C. Canfield, B. N. Harmon, A. I. Goldman, and R. J. McQueeney, Incommensurate spindensity wave order in electrondoped BaFe2As2 superconductors, arXiv:1104.0717 (supports the scenario of a nestinginduced SDW)
 M. Wang, X. C. Wang, D. L. Abernathy, L. W. Harriger, H. Q. Luo, Y. Zhao, J. W. Lynn, Q. Q. Liu, C. Q. Jin, C. Fang, J. Hu, and P. Dai, Antiferromagnetic spin excitations in single crystals of nonsuperconducting Li1xFeAs, arXiv:1104.3653 (neutron scattering: magnetic excitations are predominantly antiferromagnetic and the maximum moves in kspace as a function of energy)
 V. P. S. Awana, A. Pal, B. Gahtori, and H. Kishan, Interplay of Sm4f and Co3d spins in SmCoAsO, arXiv:1105.3546
 V. Grinenko, K. Kikoin, S.L. Drechsler, G. Fuchs, K. Nenkov, S. Wurmehl, F. Hammerath, G. Lang, H.J. Grafe, B. Holzapfel, J. van den Brink, B. Büchner, and L. Schultz, Asvacancies, local moments, and Pauli limiting in LaO_0.9F_0.1FeAs_(1delta) superconductors, arXiv:1105.3602
 N. L. Wang, W. Z. Hu, Z. G. Chen, R. H. Yuan, G. Li, G. F. Chen, and T. Xiang, High energy pseudogap and its evolution with doping in Febased superconductors as revealed by optical spectroscopy, arXiv:1105.3939
 V. Brouet, M. Fuglsang Jensen, A. Nicolaou, A. TalebIbrahimi, P. Le Fevre, F. Bertran, A. Forget, and D. Colson, Orbitally resolved lifetimes in Ba(Fe0.92Co0.08)2As2 measured by ARPES, arXiv:1105.5604; M. Fuglsang Jensen, V. Brouet, E. Papalazarou, A. Nicolaou, A. TalebIbrahimi, P. Le Fevre, F. Bertran, A. Forget, and D. Colson, Angleresolved photoemission study of the role of nesting and orbital orderings in the antiferromagnetic phase of BaFe2As2, arXiv:1105.5605
 I. R. Fisher, L. Degiorgi, and Z. X. Shen, Inplane electronic anisotropy of underdoped "122" Fearsenide superconductors revealed by measurements of detwinned single crystals, arXiv:1106.1675
 M. Nakajima, T. Liang, S. Ishida, Y. Tomioka, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Kakeshita, T. Ito, and S. Uchida, Unprecedented anisotropic metallic state in BaFe2As2 revealed by optical spectroscopy, arXiv:1106.4967
 S. Nandi, Y. Su, Y. Xiao, S. Price, X. F. Wang, X. H. Chen, J. HerreroMartín, C. Mazzoli, H. C. Walker, L. Paolasini, S. Francoual, D. K. Shukla, J. Strempfer, T. Chatterji, C. M. N. Kumar, R. Mittal, H. M. Rønnow, C. Rüegg, D. F. McMorrow, and Th. Brückel, Strong coupling of Sm and Fe magnetism in SmFeAsO as revealed by magnetic xray scattering, arXiv:1107.1778
 H. Gretarsson, A. Lupascu, Jungho Kim, D. Casa, T. Gog, W. Wu, S. R. Julian, Z. J. Xu, J. S. Wen, G. D. Gu, R. H. Yuan, Z. G. Chen, N.L. Wang, S. Khim, K. H. Kim, M. Ishikado, I. Jarrige, S. Shamoto, J.H. Chu, I. R. Fisher, and Y.J. Kim, Revealing the dual nature of magnetism in iron pnictides and iron chalcogenides using xray emission spectroscopy, arXiv:1107.2211 (find local iron moments on the order of 1 Bohr magneton in various pnictides but larger moments in chalcogenides)
 S.H. Baek, H.J. Grafe, F. Hammerath, M. Fuchs, C. Rudisch, L. Harnagea, S. Aswartham, S. Wurmehl, J. van den Brink, and B. Büchner, 75As NMRNQR study in superconducting LiFeAs, arXiv:1108.2592 ("the" pwave paper)
 I. A. Zaliznyak, Z. J. Xu, J. S. Wen, J. M. Tranquada, G. D. Gu, V. Solovyov, V. N. Glazkov, A. I. Zheludev, V. O. Garlea, and M. B. Stone, Continuous magnetic and structural phase transitions in Fe1+yTe, arXiv:1108.5968 (neutron scattering, magnetic susceptibility, and specific heat; three transitions upon lowering the temperature: structural distortion, incommensurate AFM, lockin of incommensurate AFM ordering vector)
 A. Pandey, R. S. Dhaka, J. Lamsal, Y. Lee, V. K. Anand, A. Kreyssig, T. W. Heitmann, R. J. McQueeney, A. I. Goldman, B. N. Harmon, A. Kaminski, and D. C. Johnston, Ba{1x}KxMn2As2: An Antiferromagnetic LocalMoment Metal, arXiv:1110.5546 (said to be intermediate between iron pnictides and cuprates)
 E. C. Blomberg, A. Kreyssig, M. A. Tanatar, R. Fernandes, M. G. Kim, A. Thaler, J. Schmalian, S. L. Bud'ko, P. C. Canfield, A. I. Goldman, and R. Prozorov, Effect of tensile stress on the inplane resistivity anisotropy in BaFe2As2, arXiv:1111.0997 (experiments, also Landau theory)
 C. Dhital, Z. Yamani, Wei Tian, J. Zeretsky, A. S. Sefat, Z. Wang, R. J. Birgeneau, and S. D. Wilson, Effect of Uniaxial Strain on the Structural and Magnetic Phase Transitions in BaFe2As2, Phys. Rev. Lett. 108, 087001 (2012) (neutron scattering; uniaxial pressure leads to detwinning and strong upward shift of structural and magnetic transition temperatures)
 S. Hellmann, T. Rohwer, M. Kalläne, K. Hanff, C. Sohrt, A. Stange, A. Carr, M. M. Murnane, H. C. Kapteyn, L. Kipp, M. Bauer, and K. Rossnagel, Timedomain classification of chargedensitywave insulators, Nature Commun. 3, 1069 (2012) (time and angleresolved photemission can elucidate the interaction responsible for insulating behavior)
 H. Z. Arham, C. R. Hunt, W. K. Park, J. Gillett, S. D. Das, S. E. Sebastian, Z. J. Xu, J. S. Wen, Z. W. Lin, Q. Li, G. Gu, A. Thaler, S. Ran, S. L. Bud'ko, P. C. Canfield, D. Y. Chung, M. G. Kanatzidis, and L. H. Greene, Detection of Orbital Fluctuations Above the Structural Transition Temperature in the IronPnictides and Chalcogenides, arXiv:1201.2479 (point contacts and also junctions with insulating barriers, interpretation in terms of orbital fluctuations relies on theoretical work arXiv:1110.5917)
 J. J. Ying, J. C. Liang, X. G. Luo, X. F. Wang, Y. J. Yan, M. Zhang, A. F. Wang, Z. J. Xiang, G. J. Ye, P. Cheng, and X. H. Chen, Transport and magnetic properties of Ladoped CaFe_{2}As_{2}, arXiv:1202.3589
 P. Vilmercati, A. Fedorov, F. Bondino, F. Offi, G. Panaccione, P. Lacovig, L. Simonelli, M. A. McGuire, A. S. M. Sefat, D. Mandrus, B. C. Sales, T. Egami, W. Ku, and N. Mannella, Itinerant electrons, local moments, and magnetic correlations in pnictides high temperature, arXiv:1203.1950 (Fe 3s corelevel photoemission: relatively large, slowly fluctuating local moments, decreasing with doping)
 A. Martinelli, A. Palenzona, M. Putti, and C. Ferdeghini, Microstructural evolution throughout the structural transition in 1111 oxypnictides, arXiv:1204.1167
 S. C. Speller, T. B. Britton, G. M. Hughes, A. KrztonMaziopa, E. Pomjakushina, K. Conder, A. T. Boothroyd, and C. R. M. Grovenor, Microstructural analysis of phase separation in iron chalcogenide superconductors, arXiv:1204.5472
 V. Brouet, M. Fuglsang Jensen, P.H. Lin, A. TalebIbrahimi, P. Le Fèvre, F. Bertran, C.H. Lin, W. Ku, D. Colson, and A. Forget, Impact of the 2 Fe unit cell on the electronic structure measured by ARPES in iron pnictides, arXiv:1205.4513
 S. E. Hahn, G. S. Tucker, J.Q. Yan, A. H. Said, B. M. Leu, R. W. McCallum, E. E. Alp, T. A. Lograsso, R. J. McQueeney, and B. N. Harmon, Magnetism dependent phonon anomaly in LaFeAsO observed via inelastic xray scattering, arXiv:1206.1096
 F. RullierAlbenque, D. Colson, A. Forget, and H. Alloul, Multiorbital effects on the transport and the superconducting fluctuations in LiFeAs, arXiv:1206.2278 (longitudinal and Hall resistivity, magnetoresistance, Fermiliquid behavior, extract contribution of superconducting fluctuations)
 A. Jesche, T. Förster, J. Spehling, M. Nicklas, M. de Souza, R. Gumeniuk, H. Luetkens, T. Goltz, C. Krellner, M. Lang, J. Sichelschmidt, H.H. Klauss, and C. Geibel, Ferromagnetism and superconductivity in Pdoped CeFeAsO, arXiv:1206.7088 (superconductivity setting in at same temperature as Ce ferromagnetism, within Feantiferromagnetic phase)
 K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, Ultrafast transient generation of spindensitywave order in the normal state of BaFe2As2 driven by coherent lattice vibrations, arXiv:1207.3987, Nature Mat. 11, 497 (2012)
 S. Kumar, L. Harnagea, S. Wurmehl, B. Büchner, and A. K. Sood, Gapdependent quasiparticle dynamics and coherent acoustic phonons in parent iron pnictide CaFe2As2 across the spin density wave phase transition, arXiv:1208.3742
 M. Fu, D. A. Torchetti, T. Imai, F. L. Ning, J.Q. Yan, and A. S. Sefat, NMR Search for the Spin Nematic State in LaFeAsO Single Crystal, arXiv:1208.5652
 V. Grinenko, S.L. Drechsler, M. AbdelHafiez, S. Aswartham, A. U. B. Wolter, S. Wurmehl, C. Hess, K. Nenkov, G. Fuchs, D. Efremov, B. Holzapfel, J. van den Brink, and B. Büchner, Disordered magnetism in superconducting KFe2As2 single crystals, arXiv:1210.4590 (magnetization and specificheat, also theory; cluster spin glass and Griffiths phases, above superconducting T_{c})
 Y. K. Kim et al., Existence of Orbital Order and its Fluctuation in Superconducting Ba(Fe1xCox)2As2 Single Crystals Revealed by Xray Absorption Spectroscopy, Phys. Rev. Lett. 111, 217001 (2013) (different occupation of d_{yz} and d_{zx} orbitals, signal is larger than expected from an in some sense purely structural anisotropy)
 P.H. Lin, Y. Texier, A. TalebIbrahimi, P. Le Fèvre, F. Bertran, E. Giannini, M. Grioni, and V. Brouet, Nature of the Bad Metallic Behavior of Fe1.06Te Inferred from Its Evolution in the Magnetic State, Phys. Rev. Lett. 111, 217002 (2013) (ARPES, also DFT calculations, paramagnet is bad metal with large pseudgap due to spin fluctuations, antiferromagnet is good metal with spins frozen, nesting plays no role)
 J. H. Soh, G. S. Tucker, D. K. Pratt, D. L. Abernathy, M. B. Stone, S. Ran, S. L. Bud'ko, P. C. Canfield, A. Kreyssig, R. J. McQueeney, and A. I. Goldman, Inelastic Neutron Scattering Study of a Nonmagnetic Collapsed Tetragonal Phase in Nonsuperconducting CaFe2As2: Evidence of the Impact of Spin Fluctuations on Superconductivity in the IronArsenide Compounds, Phys. Rev. Lett. 111, 227002 (2013) (there is no sign of spin fluctuations in this nonsuperconducting compound)
 F. RullierAlbenque, D. Colson, and A. Forget, Longitudinal magnetoresistance in Codoped BaFe2As2 and LiFeAs single crystals: Interplay between spin fluctuations and charge transport in ironpnictides, arXiv:1303.1677
 E. C. Blomberg, M. A. Tanatar, R. M. Fernandes, I. I. Mazin, B. Shen, H.H. Wen, M. D. Johannes, J. Schmalian, and R. Prozorov, Signreversal of the inplane resistivity anisotropy in iron pnictides, arXiv:1304.3490
 A. Srivastava, A. Pal, S. Singh, C. Shekhar, H. K. Singh, V. P. S. Awana, and O. N. Srivastava, Magnetotransport and thermal properties characterization of 55 K superconductor SmFeAsO0.85F0.15, arXiv:1307.1259
 J. Maletz, V. B. Zabolotnyy, D. V. Evtushinsky, S. Thirupathaiah, A. U. B. Wolter, L. Harnagea, A. N. Yaresko, A. N. Vasiliev, D. A. Chareev, E. D. L. Rienks, B. Büchner, and S. V. Borisenko, Unusual band renormalization in the simplest iron based superconductor, arXiv:1307.1280
 I. Pallecchi, F. Bernardini, F. Caglieris, A. Palenzona, S. Massidda, and M. Putti, Role of Dirac cones in magnetotransport properties of REFeAsO (RE=rare earth) oxypnictides, arXiv:1307.6352 (transport experiments and DFT calculations showing presence of Dirac cones in the SDW states but not in the nonmagnetic state, see p. 2)
 C. A. McElroy, J. J. Hamlin, B. D. White, M. A. McGuire, B. C. Sales, and M. B. Maple, MagnetoTransport Properties of Single Crystalline LaFeAsO, arXiv:1308.1885 (partially semiconductorlike, carriers are suggested to freeze out at low temperatures, explaining increase of resistivity and decrease of Hall coefficient)
 J. G. Analytis, H.H. Kuo, R. D. McDonald, M. Wartenbe, P. M. C. Rourke, N. E. Hussey, and I. R. Fisher, Transport near a quantum critical point in BaFe2(As1xPx)2, Nature Physics (2014), doi:10.1038/nphys2869 (superconductivity suppressed by magnetic field)
 E. P. Rosenthal, E. F. Andrade, C. J. Arguello, R. M. Fernandes, L. Y. Xing, X. C. Wang, C. Q. Jin, A. J. Millis, and A. N. Pasupathy, Visualization of electron nematicity and unidirectional antiferroic fluctuations at high temperatures in NaFeAs, Nature Phys. doi:10.1038/nphys2870 (2014) (STS for NaFeAs and also LiFeAs, where no sign of nematicity is seen)
 M. Hiraishi et al., Bipartite magnetic parent phases in the iron oxypnictide superconductor, Nature Phys. doi:10.1038/nphys2906 (2014) (LaFeAsO_{1x}H_{x}, detect another antiferromagnetic "parent" compount aroung x = 0.5, which could explain twodome superconducting phase diagram)
 K. Gofryk, B. Saparov, T. Durakiewicz, A. Chikina, S. Danzenbächer, D. V. Vyalikh, M. J. Graf, and A. S. Sefat, FermiSurface Reconstruction and Complex Phase Equilibria in CaFe2As2, Phys. Rev. Lett. 112, 186401 (2014) (transport measurements)
 C. Zhang, L. W. Harriger, Z. Yin, W. Lv, M. Wang, G. Tan, Y. Song, D. L. Abernathy, W. Tian, T. Egami, K. Haule, G. Kotliar, and P. Dai, Effect of Pnictogen Height on Spin Waves in Iron Pnictides, Phys. Rev. Lett. 112, 217202 (2014) (inelastic neutron scattering)
 H.H. Kuo and I. R. Fisher, Effect of Disorder on the Resistivity Anisotropy Near the Electronic Nematic Phase Transition in Pure and ElectronDoped BaFe2As2, Phys. Rev. Lett. 112, 227001 (2014) (resistive anisotropy found to be essentially independent of disorder, suggested to be due to anisotropy of the electronic structure)
 S. Avci et al., Magnetically driven suppression of nematic order in an ironbased superconductor, Nature Commun. 5, 3845/4845 (2014) (neutronscattering experiments and theory, Ba_{1x}Na_{x}Fe_{2}As_{2}, find fourfold symmetric magnetic phase, also in coexistence with superconductivity, close to destruction of magnetic order by doping; title changed compared to preprint)
 S.H. Baek, D. V. Efremov, J. M. Ok, J. S. Kim, J. van den Brink, and B. Büchner, Orbitaldriven nematicity in FeSe, Nature Mater. doi:10.1038/nmat4138 (2014) (NMR and theory, argue that their results show that nematic order in FeSe is driven by orbital degrees of freedom)
 K. Nakayama, Y. Miyata, G. N. Phan, T. Sato, Y. Tanabe, T. Urata, K. Tanigaki, and T. Takahashi, Reconstruction of Band Structure Induced by Electronic Nematicity in an FeSe Superconductor, Phys. Rev. Lett. 113, 237001 (2014) (ARPES)
 D. D. Khalyavin, S. W. Lovesey, P. Manuel, F. Krüger, S. Rosenkranz, J. M. Allred, O. Chmaissem, and R. Osborn, Symmetry of reentrant tetragonal phase in Ba1xNaxFe2As2: Magnetic versus orbital ordering mechanism, Phys. Rev. B 90, 174511 (2014) (neutron scattering and theory: detailed symmetry analysis and simulation of resonant xray scattering) P
 D. A. Moseley, K. A. Yates, N. Peng, D. Mandrus, A. S. Sefat, W. R. Branford, and L. F. Cohen, Magnetotransport of protonirradiated BaFe2As2 and BaFe1.985Co0.015As2 single crystals, Phys. Rev. B 91, 054512 (2015) (irradiation is shown to only increase the concentration of scatterers, find linear magnetoresistance but not in agreement with present theory, intriguing)
 J. Okamoto, C. J. Arguello, E. P. Rosenthal, A. N. Pasupathy, and A. J. Millis, Experimental Evidence for a Bragg Glass Density Wave Phase in a TransitionMetal Dichalcogenide, Phys. Rev. Lett. 114, 026802 (2015) (NbSe_{2}, strong pinning of CDW, nevertheless glassy behavior, includes theoretical discussion)
 A. E. Böhmer, T. Arai, F. Hardy, T. Hattori, T. Iye, T. Wolf, H. v. Löhneysen, K. Ishida, and C. Meingast, Origin of the TetragonaltoOrthorhombic Phase Transition in FeSe: A Combined Thermodynamic and NMR Study of Nematicity, Phys. Rev. Lett. 114, 027001 (2015) (no spin fluctuations seen above the structural transition, indicating that the origin of nematicity is not magnetic fluctuations)
 C. J. Arguello, E. P. Rosenthal, E. F. Andrade, W. Jin, P. C. Yeh, N. Zaki, S. Jia, R. J. Cava, R. M. Fernandes, A. J. Millis, T. Valla, R. M. Osgood, Jr., and A. N. Pasupathy, Quasiparticle Interference, Quasiparticle Interactions, and the Origin of the Charge Density Wave in 2HNbSe_{2}, Phys. Rev. Lett. 114, 037001 (2015) (experiment and theory)
 Y.T. Cui et al., Interface Ferroelectric Transition near the GapOpening Temperature in a SingleUnitCell FeSe Film Grown on NbDoped SrTiO_{3} Substrate, Phys. Rev. Lett. 114, 037002 (2015)
 M. P. Allan et al., Identifying the 'fingerprint' of antiferromagnetic spin fluctuations in iron pnictide superconductors, Nature Phys. 11, 177 (2015) (STS quasiparticle interference for LiFeAs with theoretical analysis to extract information on electronic selfenergy, supports antiferromagnetic spin fluctuations as the pairing glue)
 T. Ritschel, J. Trinckauf, K. Koepernik, B. Büchner, M. v. Zimmermann, H. Berger, Y. I. Joe, P. Abbamonte, and J. Geck, Orbital textures and charge density waves in transition metal dichalcogenides, Nature Phys. (2015), doi:10.1038/nphys3267 (1TTaS_{2})
 P. D. Johnson, H.B. Yang, J. D. Rameau, G. D. Gu, Z.H. Pan, T. Valla, M. Weinert, and A. V. Fedorov, SpinOrbit Interactions and the Nematicity Observed in the FeBased Superconductors, Phys. Rev. Lett. 114, 167001 (2015) (FeTe0.5Se0.5, ARPES)
 V. Balédent, F. RullierAlbenque, D. Colson, J. M. Ablett, and J.P. Rueff, Electronic Properties of BaFe2As2 upon Doping and Pressure: The Prominent Role of the As p Orbitals, Phys. Rev. Lett. 114, 177001 (2015) (xray absorption at As K edge; contribution of arsenic p orbitals to electronic structure is strongly affected by doping and pressure)
 Y. M. Dai, H. Miao, L. Y. Xing, X. C. Wang, P. S. Wang, H. Xiao, T. Qian, P. Richard, X. G. Qiu, W. Yu, C. Q. Jin, Z. Wang, P. D. Johnson, C. C. Homes, H. Ding, Fermi surface nesting driven Fermi liquid to nonFermi liquid crossover with suppressed superconductivity in LiFe1xCoxAs, arXiv:1505.00455
 B. P. P. Mallett, P. Marsik, M. YazdiRizi, T. Wolf, A. E. Böhmer, F. Hardy, C. Meingast, D. Munzar, and C. Bernhard, Infrared Study of the Spin Reorientation Transition and Its Reversal in the Superconducting State in Underdoped Ba1xKxFe2As2, Phys. Rev. Lett. 115, 027003 (2015)
 M. D. Watson, T. Yamashita, S. Kasahara, W. Knafo, M. Nardone, J. Béard, F. Hardy, A. McCollam, A. Narayanan, S. F. Blake, T. Wolf, A. A. Haghighirad, C. Meingast, A. J. Schofield, H. v. Löhneysen, Y. Matsuda, A. I. Coldea, and T. Shibauchi, Dichotomy between the Hole and Electron Behavior in Multiband Superconductor FeSe Probed by Ultrahigh Magnetic Fields, Phys. Rev. Lett. 115, 027006 (2015)
 X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forró, J. Shan, and K. F. Mak, Strongly enhanced chargedensitywave order in monolayer NbSe2, Nature Nano. (2015), doi:10.1038/nnano.2015.143
 T. Kobayashi, K. Tanaka, S. Miyasaka, and S. Tajima, Importance of Fermi Surface Topology for InPlane Resistivity Anisotropy in Hole and ElectronDoped Ba(Fe1xTMx)2As2 (TM=Cr, Mn and Co), arXiv:1507.04519, J. Phys. Soc. Jpn.
 C. Mirri, A. Dusza, S. Bastelberger, M. Chinotti, L. Degiorgi, J.H. Chu, H.H. Kuo, and I. R. Fisher, Origin of the Resistive Anisotropy in the Electronic Nematic Phase of BaFe2As2 Revealed by Optical Spectroscopy, Phys. Rev. Lett. 115, 107001 (2015)
 P. Wiecki, B. Roy, D. C. Johnston, S. L. Bud'ko, P. C. Canfield, and Y. Furukawa, Competing Magnetic Fluctuations in Iron Pnictide Superconductors: Role of Ferromagnetic Spin Correlations Revealed by NMR, Phys. Rev. Lett. 115, 137001 (2015)
 Y. Feng, J. van Wezel, J. Wang, F. Flicker, D. M. Silevitch, P. B. Littlewood, and T. F. Rosenbaum, Itinerant density wave instabilities at classical and quantum critical points, Nature Phys. 11, 865 (2015) (CDW in NbSe_{2} and SDW in elementary Cr; xray diffraction and modeling; show that the instabilities are primarily itinerantelectron effects)
 D. Mou, A. Sapkota, H.H. Kung, V. Krapivin, Y. Wu, A. Kreyssig, X. Zhou, A. I. Goldman, G. Blumberg, R. Flint, and A. Kaminski, Discovery of an Unconventional Charge Density Wave at the Surface of K0.9Mo6O17, Phys. Rev. Lett. 116, 196401 (2016) (CDW at the surface at much higher temperature than in the bulk; weak electronphonon coupling suggests purely electronic mechanism; correlations at surface enhanced by reduced dimensionality?)
 F. Kretzschmar, T. Böhm, U. Karahasanovic, B. Muschler, A. Baum, D. Jost, J. Schmalian, S. Caprara, M. Grilli, C. Di Castro, J. G. Analytis, J.H. Chu, I. R. Fisher, and R. Hackl, Critical spin fluctuations and the origin of nematic order in Ba(Fe1xCox)2As2, Nature Phys. 12, 560 (2016) (Raman scattering and theory)
 M. A. Tanatar, A. E. Böhmer, E. I. Timmons, M. Schütt, G. Drachuck, V. Taufour, K. Kothapalli, A. Kreyssig, S. L. Bud'ko, P. C. Canfield, R. M. Fernandes, and R. Prozorov Origin of the Resistivity Anisotropy in the Nematic Phase of FeSe, Phys. Rev. Lett. 117, 127001 (2016)
 E. Civardi, M. Moroni, M. Babij, Z. Bukowski, and P. Carretta, Superconductivity Emerging from an Electronic Phase Separation in the Charge Ordered Phase of RbFe2As2, Phys. Rev. Lett. 117, 217001 (2016) (NMR and NQR; charge order below 140 K, different environments probed below 20 K)
 P. S. Wang, S. S. Sun, Y. Cui, W. H. Song, T. R. Li, R. Yu, H. Lei, and W. Yu, Pressure Induced StripeOrder Antiferromagnetism and FirstOrder Phase Transition in FeSe, Phys. Rev. Lett. 117, 237001 (2016)
 A. Martinelli, P. Manfrinetti, A. Provino, A. Genovese, F. Caglieris, G. Lamura, C. Ritter, and M. Putti, Experimental Evidence for Static Charge Density Waves in Iron Oxypnictides, Phys. Rev. Lett. 118, 055701 (2017) (Mndoped LaFeAsO)

Z.G. Chen, L. Wang, Y. Song, X. Lu, H. Luo, C. Zhang, P. Dai, Z. Yin, K. Haule, and G. Kotliar, TwoDimensional Massless Dirac Fermions in Antiferromagnetic AFe_{2}As_{2} (A=Ba,Sr), Phys. Rev. Lett. 119, 096401 (2017) (infrared spectroscopy and DFT+DMFT calculations)

S. Choi et al., Switching Magnetism and Superconductivity with SpinPolarized Current in IronBased Superconductor, Phys. Rev. Lett. 119, 227001 (2017) (Sr_{2}VO_{3}FeAs; spinpolarized current can switch system from C_{2} to C_{4} magnetic state; coexistence with superconductivity); see also Physics viewpoint

R. P. Day et al., Influence of SpinOrbit Coupling in IronBased Superconductors, Phys. Rev. Lett. 121, 076401 (2018) (spin and angleresolved photoemission [ARPES] compared to tightbinding modeling, 111 and 11 compounds)

P. Massat et al., Collapse of Critical Nematic Fluctuations in FeSe under Pressure, Phys. Rev. Lett. 121, 077001 (2018) (Raman spectroscopy; nematic fluctuations are suppressed for increasing pressure much before the maximum T_{c} is reached, suggesting that they are marginal for superconducting pairing)

J. Li, B. Lei, D. Zhao, L. P. Nie, D. W. Song, L. X. Zheng, S. J. Li, B. L. Kang, X. G. Luo, T. Wu, and X. H. Chen, SpinOrbitalIntertwined Nematic State in FeSe, Phys. Rev. X 10, 011034 (2020) (NMR)

Cong Li et al., Spectroscopic Evidence for an Additional Symmetry Breaking in the Nematic State of FeSe Superconductor, Phys. Rev. X 10, 031033 (2020) (laser ARPES; either inversion or timereversal symmetry are also broken)
Magnetic and general properties of pnictides, chalcogenides, and related systems  theory
(including chargedensitywave systems)
 I. I. Mazin, M. D. Johannes, L. Boeri, K. Koepernik, and D. J. Singh, Challenge of unravelling magnetic properties of LaFeAsO, arXiv:0806.1869 (careful discussion of various abinitio calculations for this undoped system and of the character of its magnetic ordering) P
 J. Lorenzana, G. Seibold, C. Ortix, and M. Grilli, Competing orders in FeAs layers, arXiv:0807.2412
 R. Yu, K. T. Trinh, A. Moreo, M. Daghofer, J. A. Riera, S. Haas, and E. Dagotto, Magnetic and Metallic State at Intermediate Hubbard U Coupling in Multiorbital Models for Undoped Fe Pnictides, arXiv:0812.2894 (meanfield theory for metallic antiferromagnetic state using fourband and twoband models) P
 Y.Z. Zhang, H. C. Kandpal, I. Opahle, H. O. Jeschke, and R. Valentí, Pressureinduced structure phase transitions in ironpnictide AFe_{2}As_{2} superconductors using ab initio moleculardynamics calculations, arXiv:0812.2920 (also discuss magnetic instability, which is found to be different for different ions "A", to favor stripe ordering, and to vanish for tetragonal symmetry)
 V. Barzykin and L. P. Gor'kov, The role of striction at magnetic and structural transitions in ironpnictides, arXiv:0812.4277 (magnetoelastic effects)
 I. I. Mazin and M. D. Johannes, A key role for unusual spin dynamics in ferropnictides, Nature Physics 5, 141 (2009) (idea of fluctuating SDW domains, which makes experimental results dependent on the experimental time scale) P; see also W. E. Pickett, Ironbased superconductors: Timing is crucial in the same issue
 J. Dai, J.X. Zhu, and Q. Si, fspin physics of rareearth iron pnictides: Influence of delectron antiferromagnetic order on the heavyfermion phase diagram, Phys. Rev. B 80, 020505(R) (2009) (theory: Kondo screening of felectron spins is suppressed by magnetic ordering of Fe delectron spins)
 M. M. Korshunov, I. Eremin, D. V. Efremov, D. L. Maslov, and A. V. Chubukov, Nonanalytic spin susceptibility of a nested Fermi liquid: the case of Febased pnictides, arXiv:0901.0238
 E. Manousakis, J. Ren, S. Meng, and E. Kaxiras, Is the nature of magnetic order in copperoxides and in ironpnictides different?, arXiv:0902.3450 (qualitative discussion based on previously reported electronic structure, support a localmoment picture for the pnictides)
 M. S. Laad and L. Craco, Anomalous Magnetic Susceptibility in Iron Pnictides: Paramagnetic Phase, arXiv:0903.3732, Phys. Rev. B P
 K. Kubo and P. Thalmeier, Multiorbital effects on antiferromagnetism in Fe pnictides, arXiv:0903.4064 (twoorbital model, consider spin and orbital ordering)
 R. R. P. Singh, Exchange Constants and Neutron Spectra of Iron Pnictide Materials, arXiv:0903.4408 (on 122 compounds)
 C. Xu and J. Hu, Field theory for magnetic and lattice structure properties of Fe_{1+y}Te_{1x}Se_{x}, arXiv:0903.4477
 M. D. Johannes and I. Mazin, Microscopic origin of magnetism and magnetic interactions in ferropnictides, arXiv:0904.3857 (take a middle route between the strongly correlated and the itinerant picture)
 D. Parker and I. Mazin, Spin density wave coexistence and nodal lines in superconducting pnictides, arXiv:0904.3926
 W. Lv, J. Wu, and P. Phillips, JahnTeller Effect Induces Structural Phase Transition and the Resistivity Anomaly in Iron Pnictides, arXiv:0905.1704 P
 G.B. Liu and B.G. Liu, Temperaturedependent striped antiferromagnetism of LaFeAsO in a Green's function approach, arXiv:0905.2005
 P. Prelovsek, I. Sega, and T. Tohyama, Analysis of transport properties of iron pnictides: spinfluctuation scenario, arXiv:0905.4153
 M. J. Calderon, B. Valenzuela, and E. Bascones, Tight binding model for iron pnictides, arXiv:0907.1259
 E. Kaneshita, T. Morinari, and T. Tohyama, Modeling Antiferromagnetic Phase in Iron Pnictides: Weakly Ordered State, arXiv:0909.1081 (calculation of the optical conductivity)
 M. Daghofer, A. Nicholson, A. Moreo, and E. Dagotto, ThreeOrbital model for the Pnictides, arXiv:0910.1573
 R. Applegate, J. Oitmaa, and R. R. P. Singh, Spinwaves in the J_{1a}J_{1b}J_{2} orthorombic squarelattice Heisenberg models: Application to the iron pnictide materials, arXiv:0910.1793 (anisotropic Heisenberg model, see also the following reference)
 D.X. Yao and E. W. Carlson, Magnetic Excitations of Undoped Iron Oxypnictides, arXiv:0910.2528 (anisotropic Heisenberg model, see also the preceding reference)
 S. Zhou and Z. Wang, Electron correlation and spin density wave order in iron pnictides, arXiv:0910.2707
 N. Harrison and S. E. Sebastian, Dirac nodal pockets in the antiferromagnetic parent phase of FeAs superconductors, arXiv:0910.4199 (propose graphenelike Dirac cones in the quasiparticle dispersion in the SDW state of 122compounds)
 F. Cricchio, O. Granas, and L. Nordstrom, The low spin moment in LaOFeAs is due to a hidden multipole order caused by spin orbital ordering, arXiv:0911.1342
 I. Eremin and A. V. Chubukov, Magnetic degeneracy and hidden metallicity of the spin density wave state in ferropnictides, arXiv:0911.1754
 H. Ishida and A. Liebsch, Fermiliquid, nonFermiliquid, and Mott phases in iron pnictides and cuprates, arXiv:0911.1940 (strongcoupling picture, unified description of pnictides and cuprates)
 B. Schmidt, M. Siahatgar, and P. Thalmeier, Frustrated local moment models for Fepnictide magnetism, arXiv:0911.5664
 P. Prelovsek and I. Sega, Anomalous normalstate properties of iron pnictides: phenomenological theory, arXiv:0912.3122
 H. Lee, Y.Z. Zhang, H. O. Jeschke, and R. Valentí, Possible origin of the reduced magnetic moment in iron pnictides: Frustrated versus unfrustrated bands, arXiv:0912.4024 (DMFT)
 Z. P. Yin and W. E. Pickett, Crystal Symmetry and Magnetic Order in Iron Pnictides: a Tight Binding Wannier Function Analysis, Phys. Rev. B 81, 174534 (2010) (effect of antiferromagnetic order on orbital shape and occupation)
 M. Aichhorn, S. Biermann, T. Miyake, A. Georges, and M. Imada, Theoretical evidence for strong correlations and incoherent metallic state in FeSe, Phys. Rev. B 82, 064504 (2010) (abinitio study)
 Y.Z. Zhang, I. Opahle, H. O. Jeschke, and R. Valentí, Itinerant Nature of Magnetism in Iron Pnictides: A first principles study, arXiv:1001.0536
 L. de' Medici, S. R. Hassan, and M. Capone, Genesis of coexisting itinerant and localized electrons in Iron Pnictides, arXiv:1001.1098
 H. Eschrig, A. Lankau, and K. Koepernik, Calculated Cleavage Behavior and Surface States of LaOFeAs, arXiv:1001.1127 (DFT)
 A. M. Tsvelik, Striped pnictides as new strongly correlated systems, arXiv:1001.2528
 L. P. Gor'kov and G. B. Teitel'baum, On spatial nonhomogeneity in iron pnictides: formation of the soliton phase, arXiv:1001.4641
 J. Knolle, I. Eremin, A. V. Chubukov, and R. Moessner, Theory of itinerant magnetic excitations in the SDW phase of ironbased superconductors, arXiv:1002.1668 P
 E. Bascones, M. J. Calderon, and B. Valenzuela, Low magnetization and anisotropy in the antiferromagnetic state of undoped iron pnictides, arXiv:1002.2584 (model based on 2 iron ions per unit cell with 5 orbitals each)
 E. Kaneshita and T. Tohyama, Spin and Charge Dynamics Ruled by the Antiferromagnetic Order in Iron Pnictides, arXiv:1002.2701 (imaginary part of spin susceptibility, showing spinwave dispersion, using Kuroki model) P
 W. Lv, F. Krüger, and P. Phillips, Orbital Ordering and Unfrustrated (pi,0) Magnetism from Degenerate Double Exchange in the Pnictides, arXiv:1002.3165 (based on a spinfermion model)
 Y. Gao, T. Zhou, C. S. Ting, and W.P. Su, Spin dynamics in electrondoped pnictide superconductors, arXiv:1003.2609
 M. D. Johannes, I. I. Mazin, and D. S. Parker, Effect of doping and pressure on magnetism and lattice structure of Febased superconductors, arXiv:1004.2160 (DFT)
 L. Ke, M. van Schilfgaarde, J. J. Pulikkotil, T. Kotani, and V. P. Antropov, Coexistence of Spin Waves and Stoner Excitations in CaFe_{2}As_{2}, arXiv:1004.2934 (based on DFT, Stoner excitations are dominant at low energies and are sensitive to lattice deformations)
 A. Cano, M. Civelli, I. Eremin, and I. Paul, Interplay of magnetic and structural transitions in Febased pnictide superconductors, arXiv:1004.4145 (GinzburgLandau theory)
 M. Daghofer, Q. Luo, R. Yu, D. Yao, A. Moreo, and E. Dagotto, Orbital weight redistribution triggered by spin order in the pnictides, arXiv:1004.4803
 J. Knolle, I. Eremin, A. Akbari, and R. Moessner, Quasiparticle interference in the spindensity wave phase of ironbased superconductors, arXiv:1004.5460
 Y.Z. Zhang, H. Lee, I. Opahle, H. O. Jeschke, and R. Valentí, Importance of Fermi Surface Nesting and Quantum Fluctuations for the Magnetism in Iron Pnictides, arXiv:1005.1170 (DFT and DMFT, support dominantly nestingdriven magnetism); J. Ferber, Y.Z. Zhang, H. O. Jeschke, and R. Valentí, Analysis of spin density wave conductivity spectra of iron pnictides in the framework of density functional theory, arXiv:1005.1374 (DFT: GGA and GGA+U, optical conductivity, correlation effects are found not to be negligible)
 R. Yu and Q. Si, Mott Transition in MultiOrbital Models for Iron Pnictides, arXiv:1006.2337
 T. Misawa, K. Nakamura, and M. Imada, Magnetic Properties of Ab initio Model for IronBased Superconductors LaFeAsO, arXiv:1006.4812 (variational Monte Carlo simulations for a model with direct Coulomb and exchange interactions)
 N. Raghuvanshi and A. Singh, Spin waves in the (0,pi) and (0,pi,pi) ordered SDW states of the tt' Hubbard model: Application to doped iron pnictides, arXiv:1007.0812
 Q. Luo, G. Martins, D.X. Yao, M. Daghofer, R. Yu, A. Moreo, and E. Dagotto, Neutron and ARPES Constraints on the Couplings of the Multiorbital Hubbard Model for the Pnictides, arXiv:1007.1436 (theory, orbital models)
 M. A. Metlitski and S. Sachdev, Instabilities near the onset of spin density wave order in metals, arXiv:1007.1968
 Z. P. Yin, K. Haule, and G. Kotliar, Magnetism and Charge Dynamics in Iron Pnictides, arXiv:1007.2867 (LDA + DMFT for BaFe_{2}As_{2}, suggest that magnetic order is intermediate between metallic SDW and local moments)
 B. Valenzuela, E. Bascones, and M. J. Calderón, Conductivity anisotropy in the antiferromagnetic state of iron pnictides, arXiv:1007.3483 (fiveband model, assumption of strong orbital ordering leads to an effect opposite to what is observed)
 A. Akbari, J. Knolle, I. Eremin, and R. Moessner, Quasiparticle interference in ironbased superconductors, arXiv:1008.4930 (Tmatrix theory, with application to Fouriertransformed STM)
 F. Yndurain, Electronphonon interaction in Febased superconductors: Coupling of magnetic moments with phonons in LaFeAsO_{1x}F_{x}, arXiv:1009.4909 (abinitio calculations with supercell approach to doping [VCA is found to give very similar results, though], large electronA_{1g}phonon coupling in AFM phase since this phonon modulates the Fe magnetic moment, which affects all bands)
 M. S. Laad and L. Craco, Theory of Orbital Nematicity in Underdoped Iron Arsenides, arXiv:1010.2940
 K. Kubo and P. Thalmeier, Correlation Effects on Antiferromagnetism in Fe Pnictides, arXiv:1010.4626 (variational Monte Carlo)
 M. Holt, O. P. Sushkov, D. Stanek, and G. S. Uhrig, Iron pnictide parent compounds: Three dimensional generalization of the J_{1}J_{2} Heisenberg model on a square lattice and role of the interlayer coupling J_{c}, arXiv:1010.5551
 J. Kang and Z. Tesanovic, Theory of ValleyDensity Wave and Hidden Order in IronPnictides, arXiv:1011.2499 (nearly degenerate density waves, true equilibrium state claimed to prefers SDW coexisting with perpendicular "pocket density wave")
 O. K. Andersen and L. Boeri, On the multiorbital band structure and itinerant magnetism of ironbased superconductors, Ann. Physik (Berlin) 523, 8 (2011), arXiv:1011.1658 (DFT, mapped to tightbinding Hamiltonian, explain up/downfolding of 2D Brillouin zone)
 T. Schickling, F. Gebhard, and J. Bünemann, Antiferromagnetic Order in Multiband Hubbard Models for Iron Pnictides, Phys. Rev. Lett. 106, 146402 (2011) (variational Gutzwiller approach, find that HartreeFock approximation is not sufficient)
 I. Paul, Magnetolastic Quantum Fluctuations and Phase Transitions in the Iron Superconductors, Phys. Rev. Lett. 107, 047004 (2011) (simplest nonlocal symmetryallowed coupling between O(3) magnetization field and displacement field, use generic forms for propagators, lowestorder selfenergy corrections due to the coupling; addresses twostep transition and distinction between 1111 and 11 compounds) P
 N. Raghuvanshi and A. Singh, The role of Hund's coupling in the stabilization of the (0, π) ordered spin density wave state within the minimal twoband model for iron pnictides, J. Phys.: Condens. Matter 23, 312201 (2011)
 C.H. Lin, T. Berlijn, L. Wang, C.C. Lee, W.G. Yin, and W. Ku, OneFe versus TwoFe Brillouin Zone of FeBased Superconductors: Creation of the Electron Pockets by Translational Symmetry Breaking, Phys. Rev. Lett. 107, 257001 (2011) (DFT, study of unfolding)
 A. F. Kemper, M. M. Korshunov, T. P. Devereaux, J. N. Fry, H.P. Cheng, and P. J. Hirschfeld, Anisotropic quasiparticle lifetimes in Febased superconductors, Phys. Rev. B 83, 184516 (2011) (from RPA at zero temperature) P
 W.H. Ko and P. A. Lee, Magnetism and Mott Transition  A Slaverotor Study, arXiv:1101.5183 (for a orbitally symmetric twoorbital model)
 Y.Z. You, F. Yang, S.P. Kou, and Z.Y. Weng, Magnetic and superconducting instabilities in a hybrid model of itinerant/localized electrons for iron pnictides, arXiv:1102.3200 (spinfermion model)
 I. R. Shein and A. L. Ivanovskii, Elastic properties and interatomic bonding in new superconductor KFe2Se2 from first principles calculations, arXiv:1102.3248 (abinitio study of FeSebased 122 compounds); Structural, electronic properties and Fermi surface of ThCr2Si2type tetragonal KFe2S2, KFe2Se2, and KFe2Te2 phases as parent systems of new ternary ironchalcogenide superconductors, arXiv:1102.4173 (abinitio; find two large, quasitwodimensional electron pockets around the X point and a threedimensional electron pocket around the Z point at (0,0,π), no pocket at Γ)
 J. Knolle, I. Eremin, and R. Moessner, Multiorbital Spin Susceptibility in a Magnetically Ordered State  Orbital versus Excitonic Spin Density Wave Scenario, arXiv:1102.5532 P
 H. Kontani, T. Saito, and S. Onari, Origin of Orthorhombic Transition, Magnetic Transition, and Shear Modulus Softening in Iron Pnictide Superconductors: Analysis based on the Orbital Fluctuation Theory, arXiv:1103.3360 (orbital ordering and fluctuations are essential for SDW formation and s_{++}wave superconductivity, respectively; Hubbard and exchange interactions are included) P
 E. Krüger and H. P. Strunk, The structural distortion in antiferromagnetic LaFeAsO investigated by a grouptheoretical approach, arXiv:1104.0257
 A. H. Nevidomskyy, Interplay of orbital and spin ordering in the iron pnictides, arXiv:1104.1747 (abinitio calculations and Landau theory)
 S. Maiti, M. M. Korshunov, T. A. Maier, P. J. Hirschfeld, and A. V. Chubukov, Evolution of superconductivity in Febased systems with doping, arXiv:1104.1814
 D. Stanek, O. P. Sushkov, and G. S. Uhrig, Selfconsistent spinwave theory for a frustrated Heisenberg model with biquadratic exchange in the columnar phase and its application to iron pnictides, arXiv:1104.1954
 Z. P. Yin, K. Haule, and G. Kotliar, Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides, arXiv:1104.3454 (DFT+DMFT)
 D.Y. Liu, Y.M. Quan, D.M. Chen, L.J. Zou, and H.Q. Lin, Orbital density wave induced by electronlattice coupling in orthorhombic iron pnictides, arXiv:1104.4575
 R. M. Fernandes, E. Abrahams, and J. Schmalian, Anisotropic inplane resistivity in the nematic phase of the iron pnictides, arXiv:1105.3906 (related to theory of resistivity close to antiferromagnetic QCP)
 W. Lv and P. Phillips, Orbitally and Magnetically Induced Anisotropy in Ironbased Superconductors, arXiv:1105.4630 (fiveorbital model, meanfield theory allowing for orbital and magnetic order)
 T. Machida, K. Kogure, T. Kato, H. Takeya, T. Mochiku, S. Ooi, Y. Mizuguchi, Y. Takano, H. Sakata, and K. Hirata, Unidirectional Electronic Order in the Parent State of IronChalcogenide Superconductor Fe_{1+delta}Te, arXiv:1105.4754
 G.Q. Liu, Orbitalspin ordering in the striped antiferromagnetic state of ironbased superconductors, arXiv:1105.5412 (LSDA+U)
 N. Raghuvanshi, S. Ghosh, R. Ray, D. Kumar Singh, and A. Singh, Magnetic excitations in iron pnictides, arXiv:1106.4421 (singleband model with intra and intersite exchange couplings)
 J. Hu, B. Xu, W. Liu, N. Hao, and Y. Wang, An unified minimum effective model of magnetism in ironbased superconductors, arXiv:1106.5169 (isotropic spinonly model with biquadratic interaction)
 M. Tomic, R. Valentí, and H. O. Jeschke, Uniaxial versus hydrostatic pressureinduced phase transitions in CaFe2As2 and BaFe2As2, arXiv:1106.5623
 S. Pandey, H. Kontani, D. S. Hirashima, R. Arita, and H. Aoki, Spin Hall effect in ironbased superconducting materials: An effect of Dirac point, arXiv:1107.0122 (KFe_{2}As_{2} in particular has a slightly gapped Dirac cone near the point P = (π,0,π), this leads to a large spin Hall effect)
 C.H. Lin, T. Berlijn, L. Wang, C.C. Lee, W.G. Yin, and W. Ku, OneFe versus TwoFe Brillouin Zone of FeBased Superconductors: Creation of the Electron Pockets via Translational Symmetry Breaking, arXiv:1107.1485
 L. Hao, C.C. Lee, and T. K. Lee, Impairment of double exchange mechanism in electron transport of iron pnictides, arXiv:1107.1952
 M. J. Calderon, G. Leon, B. Valenzuela, and E. Bascones, Magnetic interactions in iron superconductors revisited, arXiv:1107.2279
 S. Konbu, K. Nakamura, H. Ikeda, and R. Arita, FermiSuface Evolution by Transitionmetal Substitution in the Ironbased Superconductor LaFeAsO, arXiv:1108.0585 (Co and Ni substitution, DFT supercell)
 L. Craco, M. S. Laad, and S. Leoni, Unconventional Mott Transition in KxFe2ySe2, arXiv:1109.0116
 T. Schickling, F. Gebhard, J. Bünemann, L. Boeri, O. K. Andersen, and W. Weber, Gutzwiller theory of band magnetism in LaOFeAs, arXiv:1109.0929 (Gutzwiller theory for eightband model based on DFT)
 Y. X. Yao, J. Schmalian, C. Z. Wang, K. M. Ho, and G. Kotliar, A comparative study of the electronic and magnetic properties of BaFe_2As_2 and BaMn_2As_2 using the Gutzwiller approximation, arXiv:1109.2679 (LDA + Gutzwiller projection)
 T. T. Ong and P. Coleman, Local Quantum Criticality of an IronPnictide Tetrahedron, arXiv:1109.4131
 A. Akbari, I. Eremin, and P. Thalmeier, RKKY interaction in SDW phase of ironbased superconductors, arXiv:1109.4643 (and also in the disordered phase)
 H. Huang, Y. Gao, D. Zhang, and C. S. Ting, Impurityinduced quasiparticle interference in the parent compounds of ironpnictide superconductors, arXiv:1109.5928
 C. Liu, D.X. Yao, and A. W. Sandvik, Twoorbital quantum spin model of magnetism in the iron pnictides, arXiv:1110.0761 (despite the title, a pure spin model; variational cluster meanfield approach)
 R. M. Fernandes, A. V. Chubukov, J. Knolle, I. Eremin, and J. Schmalian, Preemptive nematic order, pseudogap, and orbital order in the iron pnictides, arXiv:1110.1893 P
 Y. Inoue, Y. Yamakawa, and H. Kontani, ImpurityInduced Electronic Nematic State in IronPnictide Superconductors, arXiv:1110.2401
 W.C. Lee and P. W. Phillips, NonFermi Liquid due to Orbital Fluctuations in Iron Pnictide Superconductors, arXiv:1110.5917 (soft overdamped collective modes appear close to structural QCP and lead to nonFermiliquid behavior)
 J. Ferber, K. Foyevtsova, R. Valentí, and H. O. Jeschke, Effects of correlation in LiFeAs, arXiv:1111.1620 (DFT and DMFT)
 A. Ciechan, M. J. Winiarski, and M. SamselCzekala, The Pressure Effects on Electronic Structure of Iron Chalcogenide Superconductors FeSe_{1x}Te_{x}, arXiv:1111.3523
 S. Liang, G. Alvarez, C. Sen, A. Moreo, and E. Dagotto, Transport anisotropy of the pnictides studied via Monte Carlo simulations of the SpinFermion model, arXiv:1111.6994
 A. Toschi, R. Arita, P. Hansmann, G. Sangiovanni, and K. Held, Quantum dynamical screening of the local magnetic moment in Febased superconductors, arXiv:1112.3002 (LDA+DMFT)
 T. Berlijn, C.H. Lin, W. Garber, and W. Ku, Do Transition Metal Substitutions Dope Carriers in Iron Based Superconductors?, arXiv:1112.4858 (DFT with VCA, emphasize the importance of disorder)
 T. Schickling, F. Gebhard, J. Bünemann, L. Boeri, O. K. Andersen, and W. Weber, Gutzwiller Theory of Band Magnetism in LaOFeAs, Phys. Rev. Lett. 108, 036406 (2012) (8band tightbinding model from DFT, added Hubbard U and Hund J)
 T. Kaneko, K. Seki, and Y. Ohta, Excitonic insulator state in the twoorbital Hubbard model: Variational cluster approach, Phys. Rev. B 85, 165135 (2012) (phase diagram)
 J. Hu and N. Hao, S_{4} Symmetric Microscopic Model for IronBased Superconductors, Phys. Rev. X 2, 021009 (2012); see also Viewpoint: D. Podolsky, Untangling the Orbitals in IronBased Superconductors, Physics 5, 61 (2012)
 C. Monney, G. Monney, P. Aebi, and H. Beck, Electronhole instability in 1TTiSe_{2}, New J. Phys. 14, 075026 (2012) (also including phonon effects) P
 S. Ducatman, N. B. Perkins, and A. Chubukov, Magnetism in Parent Iron Chalcogenides: Quantum Fluctuations Select Plaquette Order, Phys. Rev. Lett. 109, 157206 (2012) (Fe_{1+y}Te, propose unusual magnetic state)
 J. M. Tomczak, M. van Schilfgaarde, and G. Kotliar, ManyBody Effects in Iron Pnictides and Chalcogenides: Nonlocal Versus Dynamic Origin of Effective Masses, Phys. Rev. Lett. 109, 237010 (2012) (DFT, GW approximation)
 M. Daghofer, A. Nicholson, and A. Moreo, Spectral density in a nematic state of models for iron pnictides, arXiv:1202.3656
 J.H. Chu, H.H. Kuo, J. G. Analytis, and I. R. Fisher, Divergent nematic susceptibility in an iron arsenide superconductor, arXiv:1203.3239 (how to detect a nematic phase)
 R. M. Fernandes and J. Schmalian, Manifestations of nematic degrees of freedom in the magnetic, elastic, and superconducting properties of the iron pnictides, arXiv:1204.3694
 M. Daghofer and A. Fischer, Breaking of fourfold lattice symmetry in a model for pnictide superconductors, arXiv:1205.5102
 J. Kang and Z. Tesanovic, Dimer Impurity Scattering, "Reconstructed" Nesting and DensityWave Diagnostics in Iron Pnictides, arXiv:1205.5280
 W.C. Lee, W. Lv, J. M. Tranquada, and P. W. Phillips, Impact of Dynamic Orbital Correlations on Magnetic Excitations in the Normal State of IronBased Superconductors, arXiv:1206.4095 (understanding neutronscattering experiments from an orbital model)
 K. W. Lo, W.C. Lee, and P. W. Phillips, NonFermi Liquid behavior at the Orbital Ordering Quantum Critical Point in the TwoOrbital Mode, arXiv:1207.4206 (two degenerate orbitals, relevant for the iron pnictides and other compounds)
 N. N. Hao, Y. Wang, and J. Hu, Oriented gap opening in the magnetically ordered state of Ironpnictides: an impact of intrinsic unit cell doubling on the Fe square lattice by As atoms, arXiv:1207.6798
 L. P. Gor'kov and G. B. Teitel'baum, On the dual role of the delectrons in ironpnictides, arXiv:1208.3740 (propose that the SDW is formed due to RKKY interaction between local iron d moments, not due to nesting)
 H. B. Rhee and W. E. Pickett, Contrast of LiFeAs with isostructural, isoelectronic, and nonsuperconducting MgFeGe, arXiv:1208.4180 (DFT beyond GGA; electron structure of the two materials is very similar, no full answer as to why superconducting properties are different, modified BeckeJohnson exchange potential overall not improving description of LiFeAs)
 J. M. Tomczak, M. van Schilfgaarde, and G. Kotliar, Manybody effects in iron pnictides and chalcogenides  nonlocal vs dynamic origin of effective masses, arXiv:1209.2213 (DFT with quasiparticle selfconsistent GW approximation)
 J. Lee, P. Strack, and S. Sachdev, Quantum criticality of reconstructing Fermi surfaces, arXiv:1209.4644 (due to SDW formation, fRG)
 R. Yu, Q. Si, P. Goswami, and E. Abrahams, Electron Correlation and Spin Dynamics in Iron Pnictides and Chalcogenides, arXiv:1210.5017 (from a strongcoupling viewpoint, also review of experiments)
 M. Tomic, R. Valenti, and H. O. Jeschke, Uniaxial strain effects on the structural and electronic properties of BaFe2As2 and CaFe2As2, arXiv:1210.5504 (DFT)
 K. Kikoin, S.L. Drechsler, J. Malek, and J. van den Brink, The dual nature of Asvacancies in LaFeAsOderived superconductors: magnetic moment formation while preserving superconductivity, arXiv:1210.6535
 N. Lanata, H. U. R. Strand, G. Giovannetti, B. Hellsing, L. de' Medici, and M. Capone, Orbital selectivity in Hund's metals: The iron chalcogenides, Phys. Rev. B 87, 045122 (2013) (interplay of U and Hund coupling J, explain badmetal behavior)
 S. Liang, A. Moreo, and E. Dagotto, Nematic State of Pnictides Stabilized by Interplay Between Spin, Orbital, and Lattice Degrees of Freedom, Phys. Rev. Lett. 111, 047004 (2013) (Monte Carlo)
 R. M. Fernandes, A. E. Böhmer, C. Meingast, and J. Schmalian, Scaling between Magnetic and Lattice Fluctuations in Iron Pnictide Superconductors, Phys. Rev. Lett. 111, 137001 (2013) (analyzing experimental data, support magnetic origin of structural transition)
 A. O. Sboychakov, A. V. Rozhkov, K. I. Kugel, A. L. Rakhmanov, and F. Nori, Electronic phase separation in iron pnictides, arXiv:1304.2175 (phase separation between commensurate and incommensurate SDW upon doping away from optimum)
 V. Cvetkovic and O. Vafek, Space group symmetry, spinorbit coupling and the low energy effective Hamiltonian for iron based superconductors, arXiv:1304.3723 (analysis of SDW order and also of superconducting order, singlettriplet mixing)
 K. W. Song, Y.C. Liang, H. Lim, and S. Haas, Possible Nematic Order Driven by Magnetic Fluctuations in Iron Pnictides, arXiv:1304.4617 (HubbardStratonovich decoupling of interactions, densitydensity interaction between X and Y electron pockets is important)
 S. Ghosh and A. Singh, Orbital order induced stabilization of the (pi,0) ordered magnetic state in a minimal twoband model for iron pnictides, arXiv:1306.6727
 A. E. Koshelev, Linear magnetoconductivity in multiband spindensitywave metals with nonideal nesting, arXiv:1307.7184 (regime of linear magnetoresistance due to strongly curved portions of reconstructed Fermi surfaces [ends of bananas])
 L. de' Medici, G. Giovannetti, and M. Capone, Selective Mott Physics as a Key to Iron Superconductors, Phys. Rev. Lett. 112, 177001 (2014) (collection of experimental data and theory, mainly DFT plus meanfield; supports orbitalselective Mottness in iron pnictides)
 S. Avci, O. Chmaissem, J. M. Allred, S. Rosenkranz, I. Eremin, A. V. Chubukov, D. E. Bugaris, D. Y. Chung, M. G. Kanatzidis, J.P Castellan, J. A. Schlueter, H. Claus, D. D. Khalyavin, P. Manuel, A. DaoudAladine, and R. Osborn, Magnetically driven suppression of nematic order in an ironbased superconductor, Nature Comm. 5, 3845 (2014) (neutron diffraction on doping series of Ba_{1x}Na_{x}Fe_{2}As_{2}, find a C_{4}symmetric antiferromagnetic phase, close to the vanishing of antiferromagnetic order with increasing doping, that partially coexists with superconductivity; also meanfield theory for the additional transition to the C_{4}symmetric state, based on simple band model)
 H. Kontani and Y. Yamakawa, Linear Response Theory for Shear Modulus C66 and Raman Quadrupole Susceptibility: Evidence for Nematic Orbital Fluctuations in Febased Superconductors, Phys. Rev. Lett. 113, 047001 (2014) (nematicity due to orbital physics)
 M. N. Gastiasoro and B. M. Andersen, Enhancement of Magnetic Stripe Order in IronPnictide Superconductors from the Interaction between Conduction Electrons and Magnetic Impurities, Phys. Rev. Lett. 113, 067002 (2014)
 T. Kaneko and Y. Ohta, Roles of the Hund's rule coupling in the excitonic densitywave states, arXiv:1407.4872 (Hund's rule not surprisingly stabilizes excitonic SDW over CDW, also in the variational cluster approximation, the competing SDW and CDW states are characterized)
 X. Wang, J. Kang, and R. M. Fernandes, Magnetic order without tetragonal symmetrybreaking in iron arsenides: microscopic mechanism and spinwave spectrum, arXiv:1410.6789 (doubleQ, orthomagnetic ordering, motivated by experiment)
 M. N. Gastiasoro, I. Paul, Y. Wang, P. J. Hirschfeld, and B. M. Andersen, Emergent Defect States as a Source of Resistivity Anisotropy in the Nematic Phase of Iron Pnictides, Phys. Rev. Lett. 113, 127001 (2014) (anisotropic scatterers in the nematic phase ["nematogens"] as the main origin of anisotropic transport)
 M. N. Gastiasoro and B. M. Andersen, Competing magnetic doubleQ phases and superconductivityinduced reentrance of C_{2} magnetic stripe order in iron pnictides, arXiv:1502.05859 (start from fiveorbital Ikeda model, meanfield theory, address tetragonal magnetic phase) P
 Q. Zhang, R. M. Fernandes, J. Lamsal, J. Yan, S. Chi, G. S. Tucker, D. K. Pratt, J. W. Lynn, R. W. McCallum, P. C. Canfield, T. A. Lograsso, A. I. Goldman, D. Vaknin, and R. J. McQueeney, NeutronScattering Measurements of Spin Excitations in LaFeAsO and Ba(Fe0.953Co0.047)2As2: Evidence for a Sharp Enhancement of Spin Fluctuations by Nematic Order, Phys. Rev. Lett. 114, 057001 (2015) (include theory; supports spinfluctuation origin of nematicity in these compounds)
 Y. Wang, M. N. Gastiasoro, B. M. Andersen, M. Tomic, H. O. Jeschke, R. Valentí, I. Paul, and P. J. Hirschfeld, Effects of Lifshitz Transition on Charge Transport in Magnetic Phases of FeBased Superconductors, Phys. Rev. Lett. 114, 097003 (2015) (explain drop of resistivity below Néeel temperature T_{N} in 122 parent compound in the framework of strong impurity scattering disregarding spin fluctuations; decrease in scattering has to dominate over decrease in carrier concentration below T_{N}, i.e., system is in dirty limit; hard to explain why resistivity in doped samples tends to increase around T_{N}; they also assume vanishing of all "banana" pockets, which is forbidden by topology) P
 H. Usui, K. Suzuki, and K. Kuroki, Origin of the nonmonotonic variance of T_{c} in the 1111 iron based superconductors with isovalent doping, Sci. Rep. 5, 11399 (2015) (study dependence of properties on ironpnictogeniron bond angle, use DFTGGA for band structure, then add standard interaction terms and use FLEX and linearized Eliashberg equation to describe leading superconducting instability)
 J. K. Glasbrenner, I. I. Mazin, H. O. Jeschke, P. J. Hirschfeld, R. M. Fernandes, and R. Valentí, Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides, Nature Phys. 11, 953 (2015) (spinonly Heisenberg model with biquadratic exchange treated at meanfield level; also DFT calculations, agreement with Heisenberg model is not very good, as expected for itinerant systems; DFT finds antiferromagnetic ground states of FeSe, in contradiction to experiment; also calculate the parameters of the Heisenberg model within DFT, find relatively large biquadratic and longerdistance exchange for FeSe, which is thus strongly frustrated, discuss FeSe, also under pressure, compared to FeTe) P
 I. Leonov, S. L. Skornyakov, V. I. Anisimov, and D. Vollhardt, CorrelationDriven Topological Fermi Surface Transition in FeSe, Phys. Rev. Lett. 115, 106402 (2015) (DFT+DMFT, find a Lifshitz transition) P
 F. Wang, S. A. Kivelson, and D.H. Lee, Nematicity and quantum paramagnetism in FeSe, Nature Phys. 11, 959 (2015) (explained in terms of the Berry phase of skyrmions) P
 R. Yu and Q. Si, Antiferroquadrupolar and IsingNematic Orders of a Frustrated BilinearBiquadratic Heisenberg Model and Implications for the Magnetism of FeSe, Phys. Rev. Lett. 115, 116401 (2015) (2D spinonly model; employ classical Monte Carlo simulations, zerotemperature meanfield approximation, and, for the quantum model, a semiclassical variational approach due to Läuchli et al.)
 Y.T. Tam, D.X. Yao, and W. Ku, ItinerancyEnhanced Quantum Fluctuation of Magnetic Moments in IronBased Superconductors, Phys. Rev. Lett. 115, 117001 (2015) P
 M. H. Christensen, J. Kang, B. M. Andersen, and R. M. Fernandes, SpinDriven Nematic Instability in Realistic Microscopic Models: Application to IronBased Superconductors, arXiv:1510.01389 (beyond RPA) P
 S. Onari, Y. Yamakawa, and H. Kontani, SignReversing Orbital Polarization in the Nematic Phase of FeSe due to the C_{2} Symmetry Breaking in the SelfEnergy, Phys. Rev. Lett. 116, 227001 (2016) (selfconsistent vertexcorrection theory)

D. D. Scherer and B. M. Andersen, SpinOrbit Coupling and Magnetic Anisotropy in IronBased Superconductors, Phys. Rev. Lett. 121, 037205 (2018)

M. H. Christensen, B. M. Andersen, and P. Kotetes, Unravelling Incommensurate Magnetism and Its Emergence in IronBased Superconductors, Phys. Rev. X 8, 041022 (2018) (Landau theory, rich phase diagram)
Spincrossover systems and related models
 D. Chernyshov, H.B. Bürgi, M. Hostettler, and K. W. Törnroos, Landau theory for spin transition and ordering phenomena in Fe(II) compounds, Phys. Rev. B 70, 094116 (2004)
 R. Raghunathan, J.P. Sutter, L. Ducasse, C. Desplanches, and S. Ramasesha, Microscopic Model for Highspin vs. Lowspin ground state in [Ni_{2}M(CN)_{8}] (M=Mo^{V}, W^{V}, Nb^{IV}) magnetic clusters, condmat/0511594
 T. Tsuchiya, R. M. Wentzcovitch, C. R. S. da Silva, and S. de Gironcoli, Spin Transition in Magnesiowüstite in Earth's Lower Mantle, Phys. Rev. Lett. 96, 198501 (2006) (LDA+U supercell with ordered Fe positions, HubbardU is computed) P
 L. Wang and A. W. Sandvik, LowEnergy Dynamics of the TwoDimensional S=1/2 Heisenberg Antiferromagnet on Percolating Clusters, Phys. Rev. Lett. 97, 117204 (2006)
 Y. Konishi, H. Tokoro, M. Nishino, and S. Miyashita, Magnetic Properties and Metastable States in SpinCrossover Transition of CoFe Prussian Blue Analogues, condmat/0610500 (meanfield theory and classical Monte Carlo simulations)
 M. Nishino, K. Boukheddaden, Y. Konishi, and S. Miyashita, Simple TwoDimensional Model for the Elastic Origin of Cooperativity among Spin States of SpinCrossover Complexes, Phys. Rev. Lett. 98, 247203 (2007)
 K. Boukheddaden, J. Linares, R. Tanasa, and C. Chong, Theoretical investigations on an axial next nearest neighbour Isinglike model for spin crossover solids: one and twostep spin transitions, J. Phys.: Condens. Matter 19, 106201 (2007) (1D ANNNItype model)
 S. M. Patchedjiev, J. P. Whitehead, and K. De'Bell, The role of the exchange and dipolar interactions in the determination of the magnetic ordering of a twodimensional lattice with random vacancies, J. Phys.: Condens. Matter 19, 196207 (2007)
 A. GordilloGuerrero and J. J. RuizLorenzo, Lack of SelfAveraging in the Three Dimensional Site Diluted Heisenberg Model at the critical point, condmat/0703820, J. Stat. Mech. (2007), P06014 (quenched dilution on simple cubic lattice, find agreement with Harris criterion, i.e., same universality class as for the undiluted lattice)
 D. J. Priour Jr. and S. Das Sarma, The critical behavior of three dimensional Heisenberg models on disordered lattices: Possible violation of Harris criterion in diluted magnetic semiconductors, arXiv:0710.5735 (site and bonddiluted Heisenberg models, critical exponents are found, from classical MC simulations, to depend on disorder, in apparent disagreement with the Harris criterion)
 H. O. Jeschke, L. A. Salguero, B. Rahaman, C. Buchsbaum, V. Pashchenko, M. U. Schmidt, T. SahaDasgupta, and R. Valentí, Microscopic modeling of a spin crossover transition, New J. Phys. 9, 448 (2007) (DFT and MD for a model spincrossover compound based on Fe(II) and triazole ligands, also has a shorter experimental part)
 E. Agliari, A. Barra, and F. Camboni, Criticality in diluted ferromagnet, arXiv:0804.4503 (apparently Ising model on random network)
 S. Shi, G. Schmerber, J. Arabski, J.B. Beaufrand, D. J. Kim, S. Boukari, M. Bowen, N. T. Kemp, N. Viart, G. Rogez, E. Beaurepaire, H. Aubriet, J. Petersen, C. Becker, and D. Ruch, Study of molecular spincrossover complex Fe(phen)_{2}(NCS)_{2} thin films, Appl. Phys. Lett. 95, 043303 (2009) (currentvoltage characteristics)
 N. Baadji, M. Piacenza, T. Tugsuz, F. Della Sala, G. Maruccio, and S. Sanvito, Electrostatic spin crossover effect in polar magnetic molecules, Nature Mater. 8, 813 (2009) (DFT calculation, propose spin crossover induced by an applied electric field through the Stark effect)
 K. Szalowski and T. Balcerzak, In search of antiferromagnetic interlayer coupling in diluted magnetic thin films with RKKY interaction, arXiv:0901.2088 (triple layer, the two outer ones with diluted magnetic moments)
 R. Yu, S. Haas, and T. Roscilde, Revealing Novel Quantum Phases in Quantum Antiferromagnets on Random Lattices, arXiv:0905.0693
 L. Wang and A. W. Sandvik, Nature of the lowenergy excitations of twodimensional diluted Heisenberg quantum antiferromagnets, arXiv:0909.5211
 M. Nishino, C. Enachescu, S. Miyashita, K. Boukheddaden, and F. Varret, Intrinsic effects of the boundary condition on the switching process of spin crossover solids, arXiv:0910.4519
 H. Hsu, P. Blaha, M. Cococcioni, and R. M. Wentzcovitch, SpinState Crossover and Hyperfine Interactions of Ferric Iron in MgSiO_{3} Perovskite, Phys. Rev. Lett. 106, 118501 (2011) (DFT+U calculations; the material has iron in two sites, one of which undergoes a highspintolowspin crossover for increasing pressure)
 I. S. Lyubutin, V.V. Struzhkin, A. A. Mironovich, A. G. Gavriliuk, P. G. Naumov, J. F. Lin, S. G. Ovchinnikov, S. Sinogeikin, P. Chow, and Y. Xiao, Quantum critical point and spin fluctuations in the lowermantle ferropericlase, arXiv:1110.3956 ((Mg,Fe)O spincrossover quantumcritical point)
 T. Nakada, T. Mori, S. Miyashita, M. Nishino, S. Todo, W. Nicolazzi, and P. A. Rikvold, Critical temperature and correlation length of an elastic interaction model for spincrossover materials, arXiv:1110.6257 (with effective longrange interaction)
 A. Droghetti, D. Alf´, and S. Sanvito, The ground state of a spincrossover molecule calculated by diffusion Monte Carlo, arXiv:1204.5336
 A. Droghetti, D. Alfè, and S. Sanvito, Assessment of density functional theory for iron(II) molecules across the spincrossover transition, arXiv:1206.1293
 H. Raebiger, S. Fukutomi, and H. Yasuhara, Crossover of high and low spin states in transition metal complexes, arXiv:1209.6432
Magnetic molecules, singlemolecule magnets
 K. Park, T. Baruah, N. Bernstein, and M. R. Pederson, Secondorder transverse magnetic anisotropy induced by disorder in the singlemolecule magnet Mn_{12}, Phys. Rev. B 69, 144426 (2004) (DFT paper containing clear discussion of symmetry of Mn_{12} acetate and resulting magnetic anisotropies)
 K. Park and M. R. Pederson, Effect of extra electrons on the exchange and magnetic anisotropy in the anionic singlemolecule magnet Mn_{12}, Phys. Rev. B 70, 054414 (2004) (DFT, total spin generally increases with increasing charge, easyaxis anisotropy decreases, and an inplane anisotropy appears; the LUMO of neutral Mn_{12}act is not degenerate, but there are further orbitals right above it)
 W. Wernsdorfer, N. E. Chakov, and G. Christou, Determination of the magnetic anisotropy axes of singlemolecule magnets, condmat/0405565 (magnetometry)
 O. Shafir, A. Keren, S. Maegawa, M. Ueda, A. Amato, and C. Baines, Demonstrating multibit magnetic memory in the Fe_{8} highspin molecule by muon spin rotation, Phys. Rev. B 72, 092410 (2005)
 C. H. Booth, M. D. Walter, M. Daniel, W. W. Lukens, and R. A. Andersen, SelfContained Kondo Effect in Single Molecules, Phys. Rev. Lett. 95, 267202 (2005) (carbon ring systems, i.e., metallocenes)
 J. J. L. Morton, A. M. Tyryshkin, A. Ardavan, K. Porfyrakis, S. A. Lyon, G. Andrew, and D. Briggs, Electron spin relaxation of N@C_{60} in CS_{2}, condmat/0510610, J. Chem. Phys. 124, 014508 (2006)
 V. Iancu, A. Deshpande, and S.W. Hla, Manipulating Kondo Temperature via Single Molecule Switching, condmat/0603187, Nano. Lett.
 P. Messina, M. Mannini, A. Caneschi, D. Gatteschi, L. Sorace, P. Sigalotti, C. Sandrin, P. Pittana, and Y. Manassen, Spin Noise Fluctuations from Paramagnetic Molecular Adsorbates on Surfaces, condmat/0605075
 R. LopezRuiz, F. Luis, A. Millan, C. Rillo, D. Zueco, and J. L. GarciaPalacios, Nonlinear response of singlemolecule magnets: fieldtuned quantumtoclassical crossovers, condmat/0606091 (Mn_{12} clusters, experimental paper)
 F. Simon, H. Kuzmany, B. Nafradi, T. Feher, L. Forro, F. Fulop, A. Janossy, L. Korecz, A. Rockenbauer, F. Hauke, and A. Hirsch, Magnetic fullerenes inside singlewall carbon nanotubes, condmat/0606597
 X. ChangTan and J.Q. Liang, EPR spectrum via entangled states for an exchangecoupled dimer of singlemolecule magnets, condmat/0606602, Euro. Phys. J. B 44, 469 (2005)
 A. Keren, O. Shafir, E. Shimshoni, V. Marvaud, A. Bachschmidt, and J. Long, Experimental Estimates of Dephasing Time in Molecular Magnets, Phys. Rev. Lett. 98, 257204 (2007) (muon spin relaxation, metalorganic complexes)
 Z. Salman, K. H. Chow, R. I. Miller, A. Morello, T. J. Parolin, M. D. Hossain, T. A. Keeler, C. D. P. Levy, W. A. MacFarlane, G. D. Morris, H. Saadaoui, D. Wang, R. Sessoli, G. G. Condorelli, and R. F. Kiefl, Local Magnetic Properties of a Monolayer of Mn12 Single Molecule Magnets, arXiv:0804.4794
 D. A. Garanin, Density Matrix Equation for a Bathed Small System and its Application to Molecular Magnets, arXiv:0805.0391
 M. Trif, F. Troiani, D. Stepanenko, and D. Loss, SpinElectric Coupling in Molecular Magnets, arXiv:0805.1158 (Cu_{3}, which has antiferromagnetic coupling between three spins forming a triangle)
 G.H. Kim and E. M. Chudnovsky, Macroscopic quantum effects generated by the acoustic wave in a molecular magnet, arXiv:0812.3590 (modelbased theory)
 M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A. M. Talarico, M.A. Arrio, A. Cornia, D. Gatteschi, and R. Sessoli, Magnetic memory of a singlemolecule quantum magnet wired to a gold surface, Nature Materials, doi:10.1038/nmat2374 (2009) (Fe_{4} derivatives, monolayer)
 D. A. Garanin and E. M. Chudnovsky, SelfOrganized Patterns of Macroscopic Quantum Tunneling in Molecular Magnets, Phys. Rev. Lett. 102, 097206 (2009); D. A. Garanin, Fronts of spin tunneling in molecular magnets, arXiv:0904.4685; D. A. Garanin and S. Shoyeb, Quantum deflagration and supersonic fronts of tunneling in molecular magnets, arXiv:1112.5171; D. A. Garanin, Theory of deflagration and fronts of tunneling in molecular magnets, arXiv:1211.4192 (detailed paper); Turbulent fronts of quantum detonation in molecular magnets, arXiv:1305.1405
 S. McHugh, B. Wen, X. Ma, M. P. Sarachik, Y. Myasoedov, E. Zeldov, R. Bagai, and G. Christou, Tuning Magnetic Avalanches in Mn12ac, arXiv:0902.0531 (experiments, support deflagration picture of Chudnovsky and Garanin)
 J. Wang, Y. Liu, and Y.C. Li, Magnetic Silicon Fullerene, arXiv:0908.1494 (Eu@Si_{20} and its dimers and polymers, DFT/GGA, Eu is redicted to carry a large moment)
 L. Udvardi, The exchange coupling between the valence electrons of the fullerene cage and the electrons of the N atoms in N@C60^{1,3}, arXiv:0909.3939 (calculation using nonabinitio quantum chemistry methods, finds a ferromagnetic exchange interaction of approximately 1 meV)
 Z. Salman, S. J. Blundell, S. R. Giblin, M. Mannini, L. Margheriti, E. Morenzoni, T. Prokscha, A. Suter, A. Cornia, and R. Sessoli, Proximal magnetometry of monolayers of single molecule magnets on gold using polarized muons, arXiv:0909.4634
 J. Schnack, Effects of frustration on magnetic molecules: a survey from Olivier Kahn till today, arXiv:0912.0411
 C. Schroder, X. Fang, Y. Furukawa, M. Luban, R. Prozorov, F. Borsa, and K. Kumagai, Spin freezing and slow magnetization dynamics in geometrically frustrated magnetic molecules with exchange disorder, J. Phys.: Condens. Matter 22, 216007 (2010)
 X. L. Wang, M. Y. Ni, and Z. Zeng, Growth model investigation of VanadiumBenzene Polymer, arXiv:1002.4323 (GGA, relaxed positions, find one Bohr magneton per vanadium, see papers by Maslyuk et al. and Mokrousov et al.)
 E. del Barco, S. Hill, C.C. Beedle, D.N. Hendrickson, I. S. Tupitsyn, and P. C. E. Stamp, Tunneling and inversion symmetry in singlemolecule magnets: the case of the Mn12 wheel molecule, arXiv:1007.0949 (symmetry and DzyaloshinskiMoriya interaction)
 J. F. Nossa, M. F. Islam, C. M. Canali, and M. R. Pederson, Firstprinciple studies of the spinorbit and the DzyaloshinskiiMoriya interactions in the Cu_{3} singlemolecule magnet, arXiv:1111.3078
 S. Lindner, M. Knupfer, R. Friedrich, T. Hahn, and J. Kortus, Hybrid States and Charge Transfer at a Phthalocyanine Heterojunction: MnPc^{δ+}/F_{16}CoPc^{δ}, Phys. Rev. Lett. 109, 027601 (2012)
 L. Horváthová, M. Dubecký, L. Mitas, and I. Stich, Spin Multiplicity and Symmetry Breaking in VanadiumBenzene Complexes, Phys. Rev. Lett. 109, 053001 (2012) (QMC with standard exchangecorrelation functionals, predict highspin ground states, comparison with DFT)
 T. R. Umbach, M. Bernien, C. F. Hermanns, A. Krüger, V. Sessi, I. FernandezTorrente, P. Stoll, J. I. Pascual, K. J. Franke, and W. Kuch, Ferromagnetic coupling of mononuclear Fe centers in a selfassembled metalorganic network on Au(111), arXiv:1212.3434 (ferromagnetic coupling on the order of 80 µeV)
 A. Chiesa1, S. Carretta, P. Santini, G. Amoretti, and E. Pavarini, ManyBody Models for Molecular Nanomagnets, Phys. Rev. Lett. 110, 157204 (2013) (how to obtain onsite energies and twoelectron interactions in a generalized Hubbard model from DFT; then transform to spinonly model by SchriefferWolff transformation) P
 M. Callsen, V. Caciuc, N. Kiselev, N. Atodiresei, and S. Blügel, Magnetic Hardening Induced by Nonmagnetic Organic Molecules, Phys. Rev. Lett. 111, 106805 (2013) (DFT, nonmagnetic molecule with two stacked aromatic rings on one monolayer of Fe on W(110), molecules develops local moment, FeFe exchange becomes much stronger beneath molecule); see also Physics 6, 96 (2013)
 C. F. Hermanns, M. Bernien, A. Krüger, C. Schmidt, S. T. Waßerroth, G. Ahmadi, B. W. Heinrich, M. Schneider, P. W. Brouwer, K. J. Franke, E. Weschke, and W. Kuch, Magnetic Coupling of Gd3N@C80 Endohedral Fullerenes to a Substrate, Phys. Rev. Lett. 111, 167203 (2013) (XMCD, the three Gd spins align ferromagnetically, the resulting large spin couples either moderately strongly antiferromagnetically or strongly ferromagnetically to the substrate, depending on the geometry)
 C. F. Hermanns, K. Tarafder, M. Bernien, A. Krüger, Y.M. Chang, P. M. Oppeneer, and W. Kuch, Magnetic coupling of porphyrin molecules through graphene, arXiv:1304.4755 (cobalt moment in Cooctaethylporphyrin is coupled to magnetization of nickel substrate through graphene layer)
 A. Hurley, N. Baadji, and S. Sanvito, Detection of the electrostatic spin crossover effect in magnetic molecules, arXiv:1304.4822 (changing the sign of the exchange interaction between two local moments by the external electric field due to an STM tip)
 Y . Liu and A. Garg, LowTemperature Phonoemissive Tunneling Rates in Single Molecule Magnets, arXiv:1307.6600
 J. H. Atkinson, R. Inglis, E. del Barco, and E. K. Brechin, ThreeLeaf Quantum Interference Clovers in a Trigonal SingleMolecule Magnet, Phys. Rev. Lett. 113, 087201 (2014) (seen in the spintunneling rate vs. orientation of the applied magnetic field)
 M. Gruber et al., Exchange bias and roomtemperature magnetic order in molecular layers, Nature Mat. (2015), doi:10.1038/nmat4361 (thin MnPc layer on Co)

A. Kostanyan, R. Westerström, Y. Zhang, D. Kunhardt, R. Stania, B. Büchner, A. A. Popov, and T. Greber, Switching Molecular Conformation with the Torque on a Single Magnetic Moment, Phys. Rev. Lett. 119, 237202 (2017) (experiments on HoLu_{2}N@C_{80} and related endohedral fullerenes)
For transport through magnetic systems see also Mesoscopic and nanoscopic transport
Other magnetic systems and phenomena
 M. R. Oliver, J. O. Dimmock, A. L. McWhorter, and T. B. Reed, Conductivity Studies in Europium Oxide, Phys. Rev. B 5, 1078 (1972) (including Eurich EuO)
 P. C. E. Stamp, Spin fluctuation theory in condensed quantum systems, J. Phys. F: Met. Phys. 15, 1829 (1985) (very interesting remarks, e.g., on difference between Stoner and Hubbard model)
 M. Bartkowiak and K. A. Chao, Magnetic susceptibility of the strongly correlated Hubbard model, Phys. Rev. B 46, 9228 (1992) (application of Hubbard operators)
 N. E. Bonesteel, Theory of anisotropic superexchange in insulating cuprates, Phys. Rev. B 47, 11302 (1993) (DzyaloshinkskiMoriya interaction)
 I. V. Lerner, Dependence of the RudermanKittelKasuyaYosida interaction on nonmagnetic disorder, Phys. Rev. B 48, 9462 (1993)
 A. Gelfert and W. Nolting, Absence of a Magnetic Phase Transition in Heisenberg, Hubbard, and Kondolattice (sf) Films, condmat/9910492, phys. stat. sol. (b) 217, 805 (2000) (generalization of the MerminWagner theorem, contains review of previous work)
 V. Yu. Irkhin and M. I. Katsnelson, Electron spectrum, thermodynamics, and transport in antiferromagnetic metals at low temperatures, Phys. Rev. B 62, 5647 (2000)
 R. P. Cowburn and M. E. Welland, Room Temperature Magnetic Quantum Cellular Automata, Science 287, 1466 (2000) (experiment, using singledomain magnetic nanodots)
 I. Ya. Korenblit, Charge and spin modulation in ferromagnetic semimetals, Phys. Rev. B 64, 100405(R) (2001) (meanfield theory for coupled local moments and carriers, applicable to DMS, reentrant transition to stripe phase)
 J. C. Angles d'Auriac, R. Melin, P. Chandra, and B. Doucot, Spin models on nonEuclidean hyperlattices: Griffiths phases without extrinsic disorder, J. Phys. A: Math. Gen. 34, 675 (2001) (e.g., hyperbolic surfaces, i.e., negative curvature, importance of nonvanishing boundary effects in the largeN limit)
 J. König, M. C. Bønsager, and A. H. MacDonald, Dissipationless Spin Transport in Thin Film Ferromagnets, Phys. Rev. Lett. 87, 187202 (2001) (for an unusual form of spiral order, not a ferromagnet)
 T. Senthil, S. Sachdev, and M. Vojta, Small and large Fermi surfaces in metals with local moments, condmat/0209144
 V. Yu. Irkhin and A. V. Zarubin, Densityofstates picture and stability of ferromagnetism in the highly correlated Hubbard model, Phys. Rev. B 70, 035116 (2004) (more Hubbard operators, for a semicircular bare band)
 G. Zaránd, L. Borda, J. von Delft, and N. Andrei, Theory of Inelastic Scattering from Magnetic Impurities, Phys. Rev. Lett. 93, 107204 (2004)

I. Milat, F. Assaad, and M. Sigrist, Field induced magnetic ordering transition in Kondo insulators, Eur. Phys. J. B 38, 571 (2004) (mean field and QMC, diverging transverse spin susceptibility because of finetuned perfact nesting)
 A. L. Kuzemsky, Theory of Magnetic Polaron, condmat/0408404
 Y. Zhang and S. Das Sarma, Exchange instabilities in electron systems: Bloch versus Stoner ferromagnetism, Phys. Rev. B 72, 115317 (2005) (clean 2D and 3D systems)
 I. Paul, C. Pépin, B. N. Narozhny, and D. L. Maslov, Quantum Correction to Conductivity close to Ferromagnetic Quantum Critical Point in Two Dimensions, Phys. Rev. Lett. 95, 017206 (2005)
 V. Bach, E. H. Lieb, and M. V. Travaglia, Ferromagnetism of the Hubbard Model at Strong Coupling in the HartreeFock Approximation, condmat/0506695, Rev. Math. Phys. 18, 519 (2006) (rigorous statements about the ground state in the HF approximation)
 N. BrayAli, J. E. Moore, T. Senthil, and A. Vishwanath, Ordering near the percolation threshold in models of 2D interacting bosons with quenched dilution, condmat/0507587 (quantum effects vs. percolation, relevant for 2D spin models with quenched dilution)
 E. Y. Vedmedenko, U. Grimm, and R. Wiesendanger, Interplay between magnetic and spatial order in quasicrystals, condmat/0509461
 A. S. Núñez, R. A. Duine, and A. H. MacDonald, Antiferromagnetic Metal Spintronics, condmat/0510797
 A. Kolezhuk and S. Sachdev, Magnon decay in gapped quantum spin systems, condmat/0511353 (contains discussion of O(3) sigma model and physics beyond it)
 P. Bruno, Berry phase, topology, and diabolicity in quantum nanomagnets, quantph/0511186 (short paper containing introduction to diabolical points)
 A. L. Kuzemsky, Statistical Theory of Spin Relaxation and Diffusion in Solids, condmat/0512182, J. Low Temp. Phys. 143, N 5/6 (2006) (long paper outlining and using the nonequilibrium statistical operator approach)
 K. P. Schmidt and G. S. Uhrig, Hardcore Magnons in the S=1/2 Heisenberg Model on the Square Lattice, condmat/0512244 (new method to treat constraints imposed by bosonization)
 W. M. Witzel and S. Das Sarma, A quantum theory for nuclear spin dynamics induced electron spin decoherence in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid state environment, condmat/0512323
 A. Singh, Spin waves in a band ferromagnet: spinrotationally symmetric study with selfenergy and vertex corrections, condmat/0512648 (good overview over previous work, diagrammatics)
 L. Chioncel, P. Mavropoulos, M. Lezaic, S. Blügel, E. Arrigoni, M. I. Katsnelson, and A. I. Lichtenstein, Halfmetallic ferromagnetism induced by dynamic electron correlations in VAs, Phys. Rev. Lett. 96, 197203 (2006) (zincblende VAs is not a ferromagnetic semiconductor but a halfmetal due to correlations, abinitio plus DMFT)
 J. Kienert and W. Nolting, Magnetic phase diagram of the Kondo lattice model with quantum localized spins, Phys. Rev. B 73, 224405 (2006) (discussion of the phase diagram for spins from S=1/2 to classical, momentumconserving decoupling of the Green function)
 S. K. Srivastava, S. N. Mishra, and G. P. Das, Spin fluctuations of isolated Fe impurities in Pdbased dilute alloys: effect of ferromagnetic host spin polarization, J. Phys.: Condens. Matter 18, 9463 (2006) (experimental, giant moments of Fe)
 R. K. Kaul, G. Zaránd, S. Chandrasekharan, D. Ullmo, and H. U. Baranger, Spectroscopy of the Kondo Problem in a Box, Phys. Rev. Lett. 96, 176802 (2006) (Kondo physics for a spin coupled to electrons in a finite but large dot)
 A. Mitra, S. Takei, Y. B. Kim, and A. J. Millis, Nonequilibrium Quantum Criticality in Open Electronic Systems, Phys. Rev. Lett. 97, 236808 (2006) (theory of quantum critical points in interacting electron system coupled to two leads with voltage bias, specifically ferromagnetic metallic layer driven out of equilibrium by a current in an N/F/N structure, use the Keldysh formalism)
 Y. Y. Wang and M. W. Wu, Control of spin coherence in semiconductor double quantum dots, condmat/0601028 (scheme to change the spin relaxation rate over 12 orders of magnitude)
 P. J. Jensen, K. H. Bennemann, D. K. Morr, and H. Dreyssé, Twodimensional Heisenberg antiferromagnet in a transverse field, condmat/0602033 (Green function approach)
 U. K. Roessler, A. N. Bogdanov, and C. Pfleiderer, Spontaneous Skyrmion Ground States in Magnetic Metals, condmat/0603103; Supplementary Information for: 'Spontaneous Skyrmion Ground States in Magnetic Metals', condmat/0603104
 A. V. Syromyatnikov, Renormalization of the spinwave spectrum in 3D ferromagnets with dipolar interaction, condmat/0603741
 P. Larson and W. R. L. Lambrecht, Electronic structure of Gd pnictides, condmat/0604374, Phys. Rev. B (electronic and magnetic properties of the series GdN, GdP, ..., GdBi, from LSDA+U calculations)
 M. Geshi, K. Kusakabe, H. Nagara, and N. Suzuki, New Ferromagnetic Nitrides CaN and SrN and their recipe, condmat/0604484 (DFT prediction of halfmetallic ferromagnets)
 G. Metalidis and P. Bruno, Study of the topological Hall effect on simple models, condmat/0604545 (for 2DEG, the mechanism involves Berry phases in real space and does not rely on spinorbit coupling)
 I. Paul, C. Pepin, and M. R. Norman, Kondo Breakdown and Hybridization Fluctuations in the KondoHeisenberg Lattice, condmat/0605152
 X. Wang, G. E. W. Bauer, B. J. van Wees, A. Brataas, and Y. Tserkovnyak, Voltage generation by ferromagnetic resonance, condmat/0608022
 I. S. Elfimov, A. Rusydi, S. I. Csiszar, Z. Hu, H. H. Hsieh, H.J. Lin, C. T. Chen, R. Liang, and G. A. Sawatzky, Nitrogen based magnetic semiconductors, condmat/0608313 (proposal: replacement of oxygen by nitrogen in oxides introduces strongly coupled magnetic moments)
 A. Paramekanti and J. B. Marston, SU(N) quantum spin models: A variational wavefunction study, condmat/0608691
 U. Krey, On the dynamics of spin systems in the LandauLifshitz theory, condmat/0610122
 A. Tanaka and H. Tasaki, Metallic ferromagnetism in the Hubbard model: A rigorous example, condmat/0611318 (itinerant ferromagnetism in a Hubbard model of arbitrary dimension)
 K. H. Hoglund, A. W. Sandvik, and S. Sachdev, Impurity induced spin texture in quantum critical 2D antiferromagnets, condmat/0611418
 Y. J. Uemura et al., Phase separation and suppression of critical dynamics at quantum transitions of itinerant magnets: MnSi and (Sr_{1x}Ca_{x})RuO_{3}, condmat/0612437 (muSR experiments)
 S. Schwieger, J. Kienert, K. Lenz, J. Lindner, K. Baberschke, and W. Nolting, Spin wave excitations: The main source of the temperature dependence of Interlayer exchange coupling in nanostructures, condmat/0612568 (theory and experiment)
 S. Saremi, RKKY in halffilled bipartite lattices: Graphene as an example, Phys. Rev. B 76, 184430 (2007) (proof that the RKKY interaction on such lattices is antiferromagnetic between spins on different sublattices and ferromagnetic on the same sublattice, also approximate results for honeycomb lattice)
 S. Ryu, O. I. Motrunich, J. Alicea, and M. P. A. Fisher, Algebraic vortex liquid theory of a quantum antiferromagnet on the kagome lattice, condmat/0701020 (with easyplane anisotropy)
 J. Kienert and W. Nolting, Curie temperature of Kondo lattice films with finite itinerant charge carrier density, condmat/0701389 (RKKY to double exchange crossover)
 W. A. Harrison, Heisenberg exchange in magnetic monoxides, condmat/0701423, Phys. Rev. B (discusses microscopic exchange mechanism in FeO etc., strong direct exchange, compared to superexchange)
 K. H. Hoglund and A. W. Sandvik, Anomalous Curie response of impurities in quantumcritical spin1/2 Heisenberg antiferromagnets, condmat/0701472
 S. Burdin and P. Fulde, Random Kondo Alloys, condmat/0701598 (CPAtype approach) P
 L. Zeng, E. Helgren, F. Hellman, R. Islam, D. J. Smith, and J. W. Ager III, Microstructure, magnetotransport and magnetic properties of Gddoped magnetronsputtered amorphous carbon, condmat/0701675
 Yu. V. Pershin and M. Di Ventra, Spin blockade at semiconductor/ferromagnet junctions, condmat/0701678
 I. Fischer, N. Shah, and A. Rosch, Blue Phases in Chiral Ferromagnets, condmat/0702287
 M. Ferrero, L. De Leo, P. Lecheminant, and M. Fabrizio, Strong Correlations in a nutshell, condmat/0702629, Rev. Mod. Phys. (NRG for two to four Anderson impurities, discussion of results from conformal field theory and DMFT)
 S. Nishimoto and P. Fulde, Magnetic impurity in correlated electrons system, condmat/0703074 (1D Hubbard model treated with DMRG) P
 S. Henning, F. Koermann, J. Kienert, S. Schwieger, and W. Nolting, Green function theory versus Quantum Monte Carlo calculations for thin magnetic films, arXiv:0704.1552 (ferromagnetic model with easyplane anisotropy and magnetic field along the hard axis)
 A. Khitun, D. E. Nikonov, M. Bao, K. Galatsis, and K. L. Wang, Feasibility Study of Logic Circuits with Spin Wave Bus, arXiv:0704.2862
 L. Brey, H. A. Fertig, and S. Das Sarma, Diluted Graphene Antiferromagnet, arXiv:0705.1229 (RKKY interaction in graphene is predominantly ferromagnetic (antiferromagnetic) on the same (different) sublattices)
 E. Nielsen and R. N. Bhatt, Nanoscale ferromagnetism in nonmagnetic doped semiconductors, arXiv:0705.2038 (for slightly more than one electron per dopant, essentially due to weaker binding of second electron by dopant, uses exact diagonalization) P
 A. Khitun, M. Bao, J.Y. Lee, K. L. Wang, D. W. Lee, S. Wang, and I. V. Roshchin, Inductively Coupled Circuits with Spin Wave Bus for Information Processing, arXiv:0705.3864
 S. Sakai, R. Arita, and H. Aoki, Itinerant ferromagnetism in the multiorbital Hubbard model: a dynamical meanfield study, arXiv:0706.3109 (also uses QMC, compares various lattice structures)
 M. Arnold and J. Kroha, Simultaneous ferromagnetic metalsemiconductor transition in electrondoped EuO, arXiv:0708.0416
 C. Castelnovo, R. Moessner, and S. L. Sondhi, Magnetic Monopoles in Spin Ice, arXiv:0710.5515 (prediction of monopoles as emergent quasiparticles)
 A. Morello, Quantum nanomagnets and nuclear spins: an overview, arXiv:0712.0638, Les Houches summer school 2006 (Quantum Magnetism) (tunneling of "large" moment through anisotropy barrier assisted by nuclear spins)
 M. Carubelli, O. V. Billoni, S. Pighin, S. A. Cannas, D. A. Stariolo, and F. A. Tamarit, The Spin Reorientation Transition and Phase Diagram of Ultrathin Ferromagnetic Films, arXiv:0712.2426 (2D Heisenberg model with anisotropy and dipolar interactions, Monte Carlo simulations)
 G.W. Chern, R. Moessner, and O. Tchernyshyov, Partial order from disorder in a classical pyrochlore antiferromagnet, arXiv:0803.2332
 D. V. Efremov, J. J. Betouras, and A. V. Chubukov, Nonanalytic behavior of 2D itinerant ferromagnets, arXiv:0804.2736 (nonanalyticities destroy the secondorder QCP)
 A. Mitra and A. J. Millis, Current driven quantum criticality in itinerant electron ferromagnets, arXiv:0804.3980 (also compare previous paper) P
 A. Kalz, A. Honecker, S. Fuchs, and T. Pruschke, Phase diagram of the Ising square lattice with competing interactions, arXiv:0805.0983 (Monte Carlo simulations)
 M. Vojta, From itinerant to localmoment antiferromagnetism in Kondo lattices: Adiabatic continuity vs. quantum phase transitions, arXiv:0805.4272
 S. Altieri, M. Finazzi, H. H. Hsieh, M. W. Haverkort, H.J. Lin, C. T. Chen, S. Frabboni, G. C. Gazzadi, A. Rota, S. Valeri, and L. H. Tjeng, Image charge screening: a new approach to enhance magnetic ordering temperatures, arXiv:0806.1710 (thin antiferromagnetic NiO and MgO films on silver show much higher Neel temperatures than on an insulating substrate)
 K. V. Kavokin, The puzzle of magnetic resonance effect on the magnetic compass of migratory birds, arXiv:0808.2401
 C. Xu and S. Sachdev, Global phase diagrams of frustrated quantum antiferromagnets in two dimensions: doubled ChernSimons theory, arXiv:0811.1220
 D. Chassé and A.M. S. Tremblay, SpinJosephson effect in antiferromagnetic tunnel junctions, arXiv:0811.2999
 N. Sandschneider and W. Nolting, Microscopic model for currentinduced switching of magnetization for halfmetallic leads, Phys. Rev. B 79, 184423 (2009) (Hubbard model for the active layer, nonequilibrium spectral density approach)
 D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, Dirac Strings and Magnetic Monopoles in Spin Ice Dy_{2}Ti_{2}O_{7}, Science DOI: 10.1126/science.1178868; T. Fennell, P. P. Deen, A. R. Wildes, K. Schmalzl, D. Prabhakaran, A. T. Boothroyd, R. J. Aldus, D. F. McMorrow, S. T. Bramwell, Magnetic Coulomb Phase in the Spin Ice Ho_{2}Ti_{2}O_{7}, Science DOI: 10.1126/science.1177582
 S. T. Bramwell, S. R. Giblin, S. Calder, R. Aldus, D. Prabhakaran, and T. Fennell, Measurement of the charge and current of magnetic monopoles in spin ice, Nature 461, 956 (2009)
 J. Cervenka, M. I. Katsnelson, and C. F. J. Flipse, Roomtemperature ferromagnetism in graphite driven by twodimensional networks of point defects, Nature Physics (2009), DOI: 10.1038/nphys1399 (note similarity of d^{0} magnetism in semiconductors)
 A. V. Chubukov and D. L. Maslov, Spin Conservation and Fermi Liquid near a Ferromagnetic Quantum Critical Point, Phys. Rev. Lett. 103, 216401 (2009) (show that the lowenergy physics of an itinerant system close to a ferromagnetic QCP is not described by a spinfermion model, also show that the system has a pwave spinnematic instability)
 D. Peters, I. P. McCulloch, and W. Selke, Spin1 Heisenberg antiferromagnetic chain with exchange and singleion anisotropies, arXiv:0901.2081
 S. Henning and W. Nolting, The ground state magnetic phase diagram of the ferromagnetic Kondolattice model, arXiv:0901.2855 (cubic lattices in 1D, 2D, and 3D with spins 3/2, considering only bipartite orderings, essentially exact phase diagrams as function of band filling and exchange interaction with the local spins)
 M. Kastner and M. Pleimling, Microcanonical phase diagrams of shortrange ferromagnets, arXiv:0903.2341 (phase diagrams in energymagnetization space)
 M. Greiter and R. Thomale, NonAbelian Statistics in a Quantum Antiferromagnet, arXiv:0903.4547 (2D S=1 antiferromagnet, the spinon and holon excitation show nonabelian statistics)
 A. Sundaresan and C. N. R. Rao, Implications and consequences of ferromagnetism universally exhibited by inorganic nanoparticles, arXiv:0905.0183
 T. R. S. Prasanna, Role of thermal vibrations in phase transitions, arXiv:0908.1873 (it is found that vibrations are generally important in magnetic phase transitions)
 J. SanchezBarriga, J. Fink, V. Boni, I. Di Marco, J. Braun, J. Minar, A. Varykhalov, O. Rader, V. Bellini, F. Manghi, H. Ebert, M. I. Katsnelson, A. I. Lichtenstein, O. Eriksson, W. Eberhardt, and H. A. Duerr, About the strength of correlation effects in the electronic structure of iron, arXiv:0910.4360 (correlation effects are stronger than predicted by current theory)
 Y. Magnin, K. Akabli, H. T. Diep, and I. Harada, Monte Carlo Study of the Spin Transport in Magnetic Materials, arXiv:0910.4619 (transport of charged spinfull particles with Heisenberg coupling to each other and to local spins, which also have a Heisenberg coupling; dynamics unclear since Hamiltonian does not contain a kineticenergy term)
 A. C. Swaving and R. A. Duine, Currentinduced torques in continuous antiferromagnetic textures, arXiv:0912.4519
 N. Sandschneider and W. Nolting, A microscopic model of currentinduced switching of magnetization, J. Phys.: Condens. Matter 22, 026003 (2010) (essentially a ferromagnetic metal/nonmagnetic insulator/thin ferromagnetic metal layer tunnel junction, microscopic description of thin ferromagnetic layer starting from Hubbard model)
 D. Chassé and A.M. S. Tremblay, Generalized dc and ac Josephson effects in antiferromagnets and in antiferromagnetic dwave superconductors, Phys. Rev. B 81, 115102 (2010) (interesting generalization of the concept of Josephson effects to other broken symmetries, in particular to antiferromagnets) P
 X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Realspace observation of a twodimensional skyrmion crystal, Nature 465, 901 (2010) (Fe_{0.5}Co_{0.5}Si)
 L. K. Werake and H. Zhao , Observation of secondharmonic generation induced by pure spin currents, Nature Physics (8 August 2010) doi:10.1038/nphys1742 (in GaAs)
 R. Steinigeweg and R. Schnalle, Projection operator approach to spin diffusion in the anisotropic Heisenberg chain at high temperatures, Phys. Rev. E 82, 040103(R) (2010) (TCL master equation)
 T. Sugano, S. J. Blundell, T. Lancaster, F. L. Pratt, and H. Mori, Magnetic order in the purely organic quasionedimensional ferromagnet 2benzimidazolyl nitronyl nitroxide, Phys. Rev. B 82, 180401(R) (2010)
 S. A. Yang, Q. Niu, D. A. Pesin, and A. H. MacDonald, Theory of IV characteristics of magnetic Josephson junctions, Phys. Rev. B 82, 184402 (2010) (no superconducting component but analogy to superconducting Josephson effect)
 S. Kumar and J. van den Brink, FrustrationInduced Insulating Chiral Spin State in Itinerant TriangularLattice Magnets, Phys. Rev. Lett. 105, 216405 (2010)
 A. Sharma and W. Nolting, Additional carriermediated ferromagnetism in GdN, arXiv:1002.1426 (modified RKKY for realistic band structure)
 D. Belitz and T. R. Kirkpatrick, Quantum Electrodynamics and the Origins of the Exchange, DipoleDipole, and DzyaloshinskyMoriya Interactions in Itinerant Fermion Systems, arXiv:1002.2008
 J. Wu and M. Berciu, Heat transport in quantum spin chains: the relevance of integrability, arXiv:1003.1559
 V. Yu. Irkhin and A. V. Zarubin, Ferromagnetism in the HighlyCorrelated Hubbard Model, arXiv:1005.4795
 Y. Magnin, K. Akabli, and H. T. Diep, Spin Resistivity in Frustrated Antiferromagnets, arXiv:1006.1081
 S. J. Yamamoto and Q. Si, Global Phase Diagram of the Kondo Lattice: From Heavy Fermion Metals to Kondo Insulators, arXiv:1006.4868
 A. Sen, K. Damle, and R. Moessner, Fractional spin textures in the frustrated magnet SrCr_{9p}Ga_{129p}O_{19}, arXiv:1007.4507
 N. Karchev, Ferromagnetic phases in spinFermion systems, arXiv:1008.1148 (extended Kondolattice model, two ferromagnetic phases with and without magnetization of the itinerant electrons)
 H. Essen, Classical diamagnetism, arXiv:1008.1182 (a way around the Bohrvan Leeuwen theorem)
 M. O. Lavrentovich and R. K. P. Zia, Energy flux near the junction of two Ising chains at different temperatures, arXiv:1008.5099 (Ising chains, all sites i = 0,1,... coupled to one heat bath, all i = 1,2,... to another)
 J.J. Zhu, D.X. Yao, S.C. Zhang, and K. Chang, Electrically controllable surface magnetism on the surface of topological insulator, arXiv:1010.4134 (calculate RKKY interaction between two impurity spins, also taking into account the possible gapping of the Dirac dispersion by the presence of the impurity spins) P
 S. Gupta and D. Mukamel, Quasistationarity in a model of classical spins with longrange interactions, arXiv:1011.0738 (explore situations for which the life time of such that scales algebraically with system size)
 C. Tomaras and S. Kehrein, Scaling approach for the timedependent Kondo model, arXiv:1011.1281 (a ferromagnetic exchange interaction is monotonically switched on)
 Y. Iqbal, F. Becca, and D. Poilblanc, Valencebond crystal in the extended Kagomé spin1/2 quantum Heisenberg antiferromagnet: A variational Monte Carlo approach, arXiv:1011.3954 (J_{1}J_{2} model)
 F.J. Jiang and U.J. Wiese, Very High Precision Determination of LowEnergy Parameters: The 2d Heisenberg Quantum Antiferromagnet as a Test Case, arXiv:1011.6205
 A. E. Feiguin and G. A. Fiete, SpinIncoherent Behavior in the Ground State of Strongly Correlated Systems, Phys. Rev. Lett. 106, 146401 (2011) (1D KondotJ model: local spins coupled to tJ chain, the surprise is that this is seen for the ground state)
 P. M. Sarte, H. J. Silverstein, B. T. K. Van Wyk, J. S. Gardner, Y. Qiu, H. D. Zhou, and C. R. Wiebe, Absence of longrange magnetic ordering in the pyrochlore compound Er2Sn2O7, J. Phys.: Condens. Matter 23, 382201 (2011)
 Z. Wang, Y. Sun, M. Wu, V. Tiberkevich, and A. Slavin, Control of Spin Waves in a Thin Film Ferromagnetic Insulator through Interfacial Spin Scattering, Phys. Rev. Lett. 107, 146602 (2011)
 K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents, Quantum Excitations in Quantum Spin Ice, Phys. Rev. X 1, 021002 (2011) (experiment, emergent electrodynamics), see also Viewpoint
 J. Inoue, Analytical expression for the spintransfer torque in a magnetic junction with a ferromagnetic insulator, Phys. Rev. B 84, 180402(R) (2011) (ferromagnetic metal/nonmagnetic metal or insulator/ferromagnetic insulator/nonmagnetic metal stack)
 M. Fähnle and C. Illg, Electron theory of fast and ultrafast dissipative magnetization dynamics, J. Phys.: Condens. Matter 23, 493201 (2011)
 S. Powell, Higgs transitions of spin ice, Phys. Rev. B 84, 094437 (2015) (long paper)
 T. S. Nunner and F. von Oppen, Quasilinear spin voltage profiles in spin thermoelectrics, arXiv:1101.3277 (semiclassical transport theory)
 B. Kamble and A. Singh, An effective quantum parameter for strongly correlated metallic ferromagnets, arXiv:1102.2115 (multiorbital model)
 F. Maca, J. Masek, O. Stelmakhovych, X. Marti, K. Uhlirova, P. Beran, H. Reichlova, P. Wadley, V. Novak, and T. Jungwirth, CuMnV compounds: a transition from semimetal lowtemperature to semiconductor hightemperature antiferromagnets, arXiv:1102.5373 (theory and experiment for nondiluted magnetic semiconductors and semimetals, in particular CuMnAs and CuMnP, also contains short review of related compounds)
 J. Zang, M. Mostovoy, J. H. Han, and N. Nagaosa, Dynamics of Skyrmion Crystals in Metallic Thin Films, arXiv:1102.5384
 I. Franke, P. J. Baker, S. J. Blundell, T. Lancaster, W. Hayes, F. L. Pratt, and G. Cao, Measurement of the internal magnetic field in the correlated iridates Ca4IrO6, Ca5Ir3O12, Sr3Ir2O7 and Sr2IrO4, arXiv:1103.1036
 M. J. Lawler, Emergent gauge dynamics of highly frustrated magnets, arXiv:1104.0721
 A. Mitra and A. J. Millis, Current driven defect unbinding transition in an XY ferromagnet, arXiv:1104.1345
 Y. Singh, S. Manni, and P. Gegenwart, Realization of the HeisenbergKitaev model in the honeycomb lattice iridates A_{2}IrO_{3}, arXiv:1106.0429
 A. J. Willans, J. T. Chalker, and R. Moessner, Site dilution in Kitaev's honeycomb model, arXiv:1106.0732
 M. Arlego and W. Brenig, Series Expansion Analysis of a Frustrated FourSpinTube, arXiv:1106.2101
 S. Srinivasan, A. Sarkar, B. BehinAein, and S. Datta, All Spin Logic device with inbuilt NonReciprocity, arXiv:1106.2789 (how to ensure directional flow of information)
 E. M. Epshtein, Yu. V. Gulyaev, and P. E. Zilberman, Current effect on magnetization oscillations in a ferromagnetantiferromagnet junction, arXiv:1106.3519
 R. F. Sobreiro and V. J. Vasquez Otoya, The role of gauge symmetry in spintronics, arXiv:1107.0332 (fieldtheoretical approach applied to nonconserved spin currents)
 T. Adams, S. Mühlbauer, C. Pfleiderer, F. Jonietz, A. Bauer, A. Neubauer, R. Georgii, P. Böni, U. Keiderling, K. Everschor, M. Garst, and A. Rosch, Longrange crystalline nature of the skyrmion lattice in MnSi, arXiv:1107.0993 (neutron scattering)
 D. Loss, F. L. Pedrocchi, and A. J. Leggett, Absence of spontaneous magnetic order of lattice spins coupled to itinerant interacting electrons in one and two dimensions, arXiv:1107.1223 (very general proof, includes the RKKY interaction in 2D [and 1D, solved earlier] as well as interaction via Anderson localized or interacting electrons; spinorbit coupling generically invalidates the proof) P
 O. E. Peil, A. Georges, and F. Lechermann, Strong correlations enhanced by chargeordering in highly doped cobaltates, arXiv:1107.4374
 C. Castelnovo, R. Moessner, and S. Sondhi, DebyeHückel theory for spin ice at low temperature, arXiv:1107.5482
 S. Bhattacharjee, S.S. Lee, and Y. B. Kim, SpinOrbital Locking, Emergent PseudoSpin, and Magnetic order in Na2IrO3, arXiv:1108.1806
 A. Hamann, D. Lamago, T. Wolf, H. von Lohneysen, and D. Reznik, Magnetic Blue Phase in the Chiral Itinerant Magnet MnSi, arXiv:1108.2923
 G.W. Chern and C. D. Batista, Spin superstructure and noncoplanar ordering in metallic pyrochlore magnets with degenerate orbitals, arXiv:1108.3066
 T. Qin, Q. Niu, and J. Shi, Energy Magnetization and Thermal Hall Effect, arXiv:1108.3879 (linear response)
 A. Honecker, D. C. Cabra, H.U. Everts, P. Pujol, and F. Stauffer, Order by disorder and phase transitions in a highly frustrated spin model on the triangular lattice, arXiv:1108.5268
 P. Stasiak, P. A. McClarty, and M. J. P. Gingras, OrderbyDisorder in the XY Pyrochlore Antiferromagnet Revisited, arXiv:1108.6053
 A. Isidori, A. Ruppel, A. Kreisel, P. Kopietz, A. Mai, and R. M. Noack, Quantum criticality of dipolar spin chains, arXiv:1108.6064 (1D quantum Heisenberg model with nearestneighbor exhange and longrange dipolar interactions, in a transverse field, also derive magnon dispersion)
 L. Seabra, T. Momoi, P. Sindzingre, and N. Shannon, Phase diagram of the classical Heisenberg antiferromagnet on a triangular lattice in applied magnetic field, arXiv:1109.2211 (Monte Carlo simulations)
 S. Iguchi, Y. Kumano, K. Ueda, S. Kumakura, and Y. Tokura, Impact of geometrical frustration on charge transport near the Mott transition in pyrochlore (Y_{1x}Cd_{x})_{2}Mo_{2}O_{7}, arXiv:1109.3744 (experimental, interplay of strong electronic correlations with geometrical frustration)
 J. Romhanyi, F. Pollmann, and K. Penc, Supersolid phase and magnetization plateaus observed in anisotropic spin3/2 Heisenberg model on bipartite lattices, arXiv:1109.4078
 O. Petrova and O. Tchernyshyov, Spin waves in a skyrmion crystal, arXiv:1109.4990 (3D MnSitype systems)
 S. K. Baek, H. Mäkelä, P. Minnhagen, and B. J. Kim, Ising model on a hyperbolic plane with a boundary, arXiv:1109.6227
 L. Savary and L. Balents, Coulombic Quantum Liquids in Spin1/2 Pyrochlores, arXiv:1110.2185 (develop a novel gauge meanfield theory)
 V. A. Zyuzin and G. A. Fiete, Spatially anisotropic kagome antiferromagnet with DzyaloshinskiiMoriya interaction, arXiv:1110.6229
 H. Lee, J. Kim, E. R. Mucciolo, G. Bouzerar, and S. Kettemann, RKKY Interaction in Disordered Graphene, arXiv:1110.6272
 K. A. van Hoogdalem and D. Loss, Frequency dependent transport through a spin chain, arXiv:1111.4803 (propose a "spin capacitor")
 M. Mochizuki, SpinWave Modes and Their Intense Excitation Effects in Skyrmion Crystals, arXiv:1111.5667, Phys. Rev. Lett. (LLG equations are integrated numerically for driving linearly polarized ac magnetic field, three modes are analyzed in detail) P
 G. Li, P. Höpfner, J. Schäfer, C. Blumenstein, S. Meyer, A. Bostwick, E. Rotenberg, R. Claessen, and W. Hanke, MagneticOrder Induced SpectralWeight Redistribution in a Triangular Surface System, arXiv:1112.5062 (ARPES and theory for Sn on reconstructed Si(111) surface)
 N. Shannon, O. Sikora, F. Pollmann, K. Penc, and P. Fulde, Quantum Ice: A Quantum Monte Carlo Study, Phys. Rev. Lett. 108, 067204 (2012) (employ QMC to find ground state of spin ice models, ground state is described by a 3+1 dimensional QED)
 A. Biltmo and P. Henelius, Unreachable glass transition in dilute dipolar magnet, Nature Commun. 3, 857 (2012) (extreme slowing down due to rare ordered clusters, Griffiths phase)
 R. Oja, M. Tyunina, L. Yao, T. Pinomaa, T. Kocourek, A. Dejneka, O. Stupakov, M. Jelinek, V. Trepakov, S. van Dijken, and R. M. Nieminen, d^{0} Ferromagnetic Interface between Nonmagnetic Perovskites, Phys. Rev. Lett. 109, 127207 (2012)
 E. C. Andrade and M. Vojta, Disorder, Cluster Spin Glass, and Hourglass Spectra in Striped Magnetic Insulators, Phys. Rev. Lett. 109, 147201 (2012)
 C. C. Price and N. B. Perkins, Critical Properties of the KitaevHeisenberg Model, Phys. Rev. Lett. 109, 187201 (2012) (applied to iridates)
 L.J. Chang, S. Onoda, Y. Su, Y.J. Kao, K.D. Tsuei, Y. Yasui, K. Kakurai, and M. R. Lees, Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7, Nature Commun. 3, 992 (2012) (neutron scattering; a firstorder transition between a spinice phase and a ferromagnetic phase is explained in terms of a Higgs mechanism; based on theoretical work by S. Powell) P
 H. M. Revell, L. R. Yaraskavitch, J. D. Mason, K. A. Ross, H. M. L. Noad, H. A. Dabkowska, B. D. Gaulin, P. Henelius, and J. B. Kycia, Evidence of impurity and boundary effects on magnetic monopole dynamics in spin ice, Nature Physics (2012), doi:10.1038/nphys2466 (experiment and Monte Carlo simulations)
 T.H. Han et al., Fractionalized excitations in the spinliquid state of a kagomelattice antiferromagnet, Nature 492, 406 (2012) (neutron scattering, herbertsmithite)
 L. D. C. Jaubert, S. Piatecki, M. Haque, and R. Moessner, Itinerant electrons in the Coulomb phase, arXiv:1201.0677 (study the interplay between frustration and itineracy, two and three dimensions, electrons are assumed to move only along loops of parallel Ising spins)
 S. M. Disseler, Chetan Dhital, T. C. Hogan, A. Amato, S. Giblin, Clarina de la Cruz, S. D. Wilson, and M. J. Graf, Magnetic frustration and the onset of magnetic order in the pyrochlore iridate Nd2Ir2O7, arXiv:1201.4606
 T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, and A. Rosch, Emergent electrodynamics of skyrmions in a chiral magnet, arXiv:1202.1176 (MnSi, theory and Hall measurements)
 P. Quémerais, P. McClarty, and R. Moessner, Possible Quantum Diffusion of Polaronic Muons in Dy_{2}Ti_{2}O_{7} Spin Ice, arXiv:1203.3039
 T. R. Kirkpatrick and D. Belitz, Universal lowtemperature tricritical point in metallic ferromagnets and ferrimagnets, arXiv:1203.3826 (universal: also if magnetic moments and mobile electrons are from different bands, Heisenberg/XY/Ising symmetry, ferro and ferrimagnets)
 S. Pielawa, E. Berg, and S. Sachdev, Frustrated quantum Ising spins simulated by spinless bosons in a tilted lattice: from a quantum liquid to antiferromagnetic order, arXiv:1203.6653
 V. Khemani, R. Moessner, S. A. Parameswaran, and S. L. Sondhi, A Bionic Coulomb Phase on the Pyrochlore Lattice, arXiv:1204.3646 (fourstate Potts model on pyrochlore lattice, three emergent gauge fields)
 A. Gendiar, R. Krcmar, S. Andergassen, M. Daniska, and T. Nishino, Weak correlation effects in the Ising model on triangulartiled hyperbolic lattices, arXiv:1205.3850 (triangular lattices with q triangles meeting at each node on negatively curved surfaces; find meanfield universality class for all q > 6)
 A. Wollny, E. C. Andrade, and M. Vojta, Singular field response and singular screening of vacancies in antiferromagnets, arXiv:1206.2927
 B. Mera, V. R. Vieira, and V. K. Dugaev, Dynamics of magnetic moments coupled to electrons and lattice oscillations, arXiv:1206.7092 (in 3d ferromagnets)
 Z. Xiong and X.G. Wen, General method for finding families of exact ground states of broad classes of classical Heisenberg models, arXiv:1208.1512 (very general proof for lattices with one spin per unit cell, also for several spins per unit cell under certain conditions)
 A. Schwabe, D. Gütersloh, and M. Potthoff, The KondoversusRKKY quantum box, arXiv:1208.2209 (1D chain, noninteracting electrons, Zener coupling to local spins at finite number of sites)
 J. H. H. Perk, Erroneous solution of threedimensional (3D) simple orthorhombic Ising lattices, arXiv:1209.0731 (criticizes work by Z. Zhang and N. H. March)
 Y. Li, N. Kanazawa, X. Z. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X. F. Jin, F. Kagawa, and Y. Tokura, Robust formation of skyrmions and topological Hall effect in epitaxial thin films of MnSi, arXiv:1209.4480 (differences compared to bulk MnSi)
 M. F. Lapa and C. L. Henley, Ground States of the Classical Antiferromagnet on the Pyrochlore Lattice, arXiv:1210.6810 (Heisenberg model with nearest and nextnearest neighbor interaction)
 W. Brenig and A. L. Chernyshev, Highly Dispersive Scattering From Defects In NonCollinear Magnets, arXiv:1212.2972
 G.W. Chern, A. Rahmani, I. Martin, and C. D. Batista, Quantum Hall ice, arXiv:1212.3617
 S. Boseggia, R. Springell, H. C. Walker, C. Rüegg, H. Okabe, M. Isobe, R. S. Perry, S. P. Collins, and D. F. McMorrow, Robustness of basalplane antiferromagnetic order and the J_{eff}=1/2 state in singlelayer iridate spinorbit Mott insulators, arXiv:1212.5912 (Ba2IrO4)
 G.W. Chern and R. Moessner, Dipolar Order by Disorder in the Classical Heisenberg Antiferromagnet on the Kagome Lattice, Phys. Rev. Lett. 110, 077201 (2013) (Monte Carlo simulations at low temperatures)
 J.Y. Fortin, Random site dilution properties of frustrated magnets on a hierarchical lattice, J. Phys.: Condens. Matter 25, 296004 (2013)
 S. B. Lee, A. Paramekanti, and Y. B. Kim, RKKY Interactions and the Anomalous Hall Effect in Metallic RareEarth Pyrochlores, Phys. Rev. Lett. 111, 196601 (2013) (relevant for the iridate Pr_{2}Ir_{2}O_{7}, RKKY interaction between Pr local moments calculated from oneband model, can lead to complex dipolar/quadrupolar order, which in turn causes Weyltype reconstruction of the electronic Ir 5d band structure)
 R. Flint and P. A. Lee, Emergent Honeycomb Lattice in LiZn2Mo3O8, Phys. Rev. Lett. 111, 217201 (2013)
 R. Flint and T. Senthil, Chiral RKKY interaction in Pr2Ir2O7, arXiv:1301.0815 (chiral RKKY interaction between Pr moments, due to chiral fluctuations of [itinerant] Ir moments)
 K. Matsuhira, M. Tokunaga, M. Wakeshima, Y. Hinatsu, and S. Takagi, Giant Magnetoresistance Effect in the MetalInsulator Transition of Pyrochlore Oxide Nd2Ir2O7, arXiv:1301.3969, J. Phys. Soc. Jpn. 82, 023706 (2013) (giant magnetoresistance in the insulating state, also depends on the type of lanthanide ion)
 M. Vojta, Excitation spectra of disordered dimer magnets near quantum criticality, arXiv:1301.4223 (genearalized bondoperator approach)
 I. Kimchi and A. Vishwanath, KitaevHeisenberg Models for Iridates on the Triangular, (Hyper) Kagome, FCC and Pyrochlore Lattices, arXiv:1303.3290
 G.W. Chern, S. Maiti, R. M. Fernandes, and P. Wölfle, Electronic Transport in the Coulomb Phase of the Pyrochlore Spin Ice, Phys. Rev. Lett. 110, 146602 (2013) (residual and finitetemperature resistity, results are compared to experiments on Nd2Ir2O7 and Pr2Ir2O7) P
 I. I. Mazin, S. Manni, K. Foyevtsova, H. O. Jeschke, P. Gegenwart, and R. Valenti, Origin of the insulating state in honeycomb iridates and rhodates, arXiv:1304.2258
 T. Prosen and B. Zunkovic, Macroscopic Diffusive Transport in a Microscopically Integrable Hamiltonian System, arXiv:1304.7452
 T. Kernreiter, RKKY interaction induced by twodimensional hole gases, arXiv:1305.5274
 G. Cao, T. F. Qi, L. Li, J. Terzic, S. J. Yuan, L. E. DeLong, G. Murthy, and R. K. Kaul, Novel Magnetism of Ir5+(5d4) Ions in the Double Perovskite Sr2YIrO6, Phys. Rev. Lett. 112, 056402 (2014) (unusual magnetic order in spite of strong spinorbit coupling and frustration)
 H. Watanaebe, T. Shirakawa, and S. Yunoki, Theoretical study of insulating mechanism in multiorbital Hubbard models with a large spinorbit coupling: Is Sr2IrO4 a Slater insulator or a Mott insulator?, arXiv:1402.0935 (variational Monte Carlo simulations; conclude that it is a Slater insulator, i.e., due to longrange magnetic order; gap closes at Néel temperature); A. Yamasaki et al., Bulk Nature of Layered Perovskite Iridates beyond the Mott Scenario: An Approach from Bulk Sensitive Photoemission Study, arXiv:1310.7160 (experimental support for Slater picture)
 C. Sürgers, G. Fischer, P. Winkel, and H. v. Löhneysen, Large topological Hall effect in the noncollinear phase of an antiferromagnet, Nature Commun. 5, 3400 (2014) (Mn_{5}Si_{3})
 C. Franz, F. Freimuth, A. Bauer, R. Ritz, C. Schnarr, C. Duvinage, T. Adams, S. Blügel, A. Rosch, Y. Mokrousov, and C. Pfleiderer, RealSpace and ReciprocalSpace Berry Phases in the Hall Effect of Mn1xFexSi, Phys. Rev. Lett. 112, 186601 (2014)
 J.H. Kim, A. Jain, M. Reehuis, G. Khaliullin, D. C. Peets, C. Ulrich, J. T. Park, E. Faulhaber, A. Hoser, H. C. Walker, D. T. Adroja, A. C. Walters, D. S. Inosov, A. Maljuk, and B. Keimer, Competing Exchange Interactions on the Verge of a MetalInsulator Transition in the TwoDimensional Spiral Magnet Sr3Fe2O7, Phys. Rev. Lett. 113, 147206 (2014)
 F. Krüger, C. J. Pedder, and A. G. Green, FluctuationDriven Magnetic HardAxis Ordering in Metallic Ferromagnets, Phys. Rev. Lett. 113, 147001 (2014)
 E. Svanidze, J. K. Wang, T. Besara, L. Liu, Q. Huang, T. Siegrist, B. Frandsen, J. W. Lynn, A. H. Nevidomskyy, M. B. Gamza, M. C. Aronson, Y. J. Uemura, and E. Morosan, Novel Itinerant Antiferromagnet TiAu, arXiv:1409.0811 (magnetization measurements, also μSR and XPS, accompanied by DFT calculations; SDW system, apparently due to nesting of quasi2D [abplane] Fermisurface sheets; calculated Fermi surface is complicated, various bands intersect Fermi energy)
 C. Lester et al., Fieldtunable spindensitywave phases in Sr3Ru2O7, Nature Mater. (2015) doi:10.1038/nmat4181
 M. Yoshida, H. Kobayashi, I. Yamauchi, M. Takigawa, S. Capponi, D. Poilblanc, F. Mila, K. Kudo, Y. Koike, and N. Kobayashi, Real Space Imaging of Spin Polarons in ZnDoped SrCu_{2}(BO_{3})_{2}, Phys. Rev. Lett. 114, 056402 (2015) (^{11}B NMR, theoretical analysis gives local magnetization at the Cu sites)
 B. Javanparast, Z. Hao, M. Enjalran, and M. J. P. Gingras, FluctuationDriven Selection at Criticality in a Frustrated Magnetic System: The Case of Multiplek Partial Order on the Pyrochlore Lattice, Phys. Rev. Lett. 114, 130601 (2015) (orderings on the pyrochlore lattice with periodically arranged disordered, paramagnetic sides; meanfield approximation, QMC, Landau theory)
 S. M. Wu, J. E. Pearson, and A. Bhattacharya, Paramagnetic Spin Seebeck Effect, Phys. Rev. Lett. 114, 186602 (2015) (temperature gradient drives spin current, experimentally distinguished from other effects by dependence on magneticfield orientation)
 S. H. Chun et al., Direct evidence for dominant bonddirectional interactions in a honeycomb lattice iridate Na_{2}IrO_{3}, Nature Phys. 11, 462 (2015) (xray scattering experiments); see also News and Views: P. Gegenwart and S. Trebst, Spinorbit physics: Kitaev matter, Nature Phys. 11, 444 (2015)
 E. Lefrancois, V. Simonet, R. Ballou, E. Lhotel, A. HadjAzzem, S. Kodjikian, P. Lejay, P. Manuel, D. Khalyavin, and L. C. Chapon, AnisotropyTuned Magnetic Order in Pyrochlore Iridates, Phys. Rev. Lett. 114, 247202 (2015) (magnetization and neutron scattering experiments; Tb2Ir2O7 probably has allinallout magnetic order)
 M. Schecter, M. S. Rudner, and K. Flensberg, SpinLattice Order in OneDimensional Conductors: Beyond the RKKY Effect, Phys. Rev. Lett. 114, 247205 (2015) (nonperturbative theory)
 K. Ueda, J. Fujioka, B.J. Yang, J. Shiogai, A. Tsukazaki, S. Nakamura, S. Awaji, N. Nagaosa, and Y. Tokura, Magnetic FieldInduced InsulatorSemimetal Transition in a Pyrochlore Nd2Ir2O7, Phys. Rev. Lett. 115, 056402 (2015)
 Z. Wang, Y. Kamiya, A. H. Nevidomskyy, and C. D. Batista, ThreeDimensional Crystallization of Vortex Strings in Frustrated Quantum Magnets, Phys. Rev. Lett. 115, 107201 (2015) (theory)
 I. Kézsmárki et al., Néeltype skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8, Nature Mat. (2015), doi:10.1038/nmat4402
 G. Zhang and Z. Song, Topological Characterization of Extended Quantum Ising Models, Phys. Rev. Lett. 115, 177204 (2015) (interesting geometrical mapping)
 L. Zhao, D. H. Torchinsky, H. Chu, V. Ivanov, R. Lifshitz, R. Flint, T. Qi, G. Cao, and D. Hsieh, Evidence of an oddparity hidden order in a spinorbit coupled correlated iridate, Nature Phys. (2015), doi:10.1038/nphys3517 (Sr_{2}IrO_{4})
 C. M. Varma, Quantum Criticality in QuasiTwoDimensional Itinerant Antiferromagnets, Phys. Rev. Lett. 115, 186405 (2015) (for example iron pnictides)
 M. Powalski, G. S. Uhrig, and K. P. Schmidt, Roton Minimum as a Fingerprint of MagnonHiggs Scattering in Ordered Quantum Antiferromagnets, Phys. Rev. Lett. 115, 207202 (2015) (continuous similarity transformation)
 H. Skarsvåg, C. Holmqvist, and A. Brataas, Spin Superfluidity and LongRange Transport in ThinFilm Ferromagnets, Phys. Rev. Lett. 115, 237201 (2015) (important result: dipoledipole interaction prevents superfluid spin transport)
 R. Steinigeweg, J. Herbrych, X. Zotos, and W. Brenig, Heat Conductivity of the Heisenberg Spin1/2 Ladder: From Weak to Strong Breaking of Integrability, Phys. Rev. Lett. 116, 017202 (2016)
 H. Gretarsson, N. H. Sung, M. Höppner, B. J. Kim, B. Keimer, and M. Le Tacon, TwoMagnon Raman Scattering and PseudospinLattice Interactions in Sr2IrO4 and Sr3Ir2O7, Phys. Rev. Lett. 116, 136401 (2016)
 A. Marrazzo and R. Resta, Irrelevance of the Boundary on the Magnetization of Metals, Phys. Rev. Lett. 116, 137201 (2016)
 L. Balents and O. A. Starykh, Quantum Lifshitz Field Theory of a Frustrated Ferromagnet, Phys. Rev. Lett. 116, 177201 (2016) (onedimensional frustrated systems, field theory)
 S.Z. Lin, S. Hayami, and C. D. Batista, Magnetic Vortex Induced by Nonmagnetic Impurity in Frustrated Magnets, Phys. Rev. Lett. 116, 187202 (2016)
 T. Liu, G. Vignale, and M. E. Flatté, Nonlocal Drag of Magnons in a Ferromagnetic Bilayer, Phys. Rev. Lett. 116, 237202 (2016) (due to dipolar interactions, semiclassical Boltzmann theory) P
 T. Kikuchi, T. Koretsune, R. Arita, and G. Tatara, DzyaloshinskiiMoriya Interaction as a Consequence of a Doppler Shift due to SpinOrbitInduced Intrinsic Spin Current, Phys. Rev. Lett. 116, 247201 (2016)
 K. Aoyama and H. Kawamura, SpinLatticeCoupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice, Phys. Rev. Lett. 116, 257201 (2016) (classical MC simulations)
 Z. Wang, K. Barros, G.W. Chern, D. L. Maslov, and C. D. Batista, Resistivity Minimum in Highly Frustrated Itinerant Magnets, Phys. Rev. Lett. 117, 206601 (2016) (twodimensional Zener model with classical spins, numerical integration of the Langevin dynamics and Kubo formula for resistivity, use a kernelpolynomial method)

J. D. Thompson, P. A. McClarty, D. Prabhakaran, I. Cabrera, T. Guidi, and R. Coldea, Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb_{2}Ti_{2}O_{7} in a Magnetic Field, Phys. Rev. Lett. 119, 057203 (2017) (inelastic neutron scattering, heat capacity, indicating absence of sharp magnons)
 D. Wesenberg, T. Liu, D. Balzar, M. Wu, and B. L. Zink, Longdistance spin transport in a disordered magnetic insulator, Nature Phys. 13, 987 (2017)

J. Tsurumi et al., Coexistence of ultralong spin relaxation time and coherent charge transport in organic singlecrystal semiconductors, Nature Phys. 13, 994 (2017)

Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Gatetunable roomtemperature ferromagnetism in twodimensional Fe_{3}GeTe_{2}, Nature 563, 94 (2018)

H. Liu and G. Khaliullin, PseudoJahnTeller Effect and Magnetoelastic Coupling in SpinOrbit Mott Insulators, Phys. Rev. Lett. 122, 057203 (2019) (explaining puzzling experiments on J_{eff} = 1/2 Sr_{2}IrO_{4} and J_{eff} = 0 Ca_{2}RuO_{4})

J. Gaudet, E. M. Smith, J. Dudemaine, J. Beare, C. R. C. Buhariwalla, N. P. Butch, M. B. Stone, A. I. Kolesnikov, G. Xu, D. R. Yahne, K. A. Ross, C. A. Marjerrison, J. D. Garrett, G. M. Luke, A. D. Bianchi, and B. D. Gaulin, Quantum Spin Ice Dynamics in the DipoleOctupole Pyrochlore Magnet Ce_{2}Zr_{2}O_{7}, Phys. Rev. Lett. 122, 187201 (2019) (neutron scattering)

Ø. Johansen, V. Risinggård, A. Sudbø, J. Linder, and A. Brataas, Current Control of Magnetism in TwoDimensional Fe_{3}GeTe_{2}, Phys. Rev. Lett. 122, 217203 (2019) (monolayer with perpendicular current leading to spinorbit torque, can be described by effective Hamiltonian, tuning between easyaxis and easyplane anisotropy)

Z. Wang, Y. Su, S.Z. Lin, and C. D. Batista, Skyrmion Crystal from RKKY Interaction Mediated by 2D Electron Gas, Phys. Rev. Lett. 124, 207201 (2020) (theory)

J. Schnack, J. Schulenburg, A. Honecker, and J. Richter, Magnon Crystallization in the Kagome Lattice Antiferromagnet, Phys. Rev. Lett. 125, 117207 (2020) (related to flat magnon band, i.e., localized magnon eigenmodes)

F. P. Toldin, Boundary Critical Behavior of the ThreeDimensional Heisenberg Universality Class, Phys. Rev. Lett. 126, 135701 (2021) (boundary effects; Monte Carlo simulations for improved lattice model)

O. Hart, S. Gopalakrishnan, and C. Castelnovo, Logarithmic Entanglement Growth from DisorderFree Localization in the TwoLeg Compass Ladder, Phys. Rev. Lett. 126, 227202 (2021)

V. Shyta, J. van den Brink, and F. S. Nogueira, Deconfined Criticality and Bosonization Duality in EasyPlane ChernSimons TwoDimensional Antiferromagnets, Phys. Rev. Lett. 127, 045701 (2021)

W.X. Qiu, J.Y. Zou, A.Y. Luo, Z.H. Cui, Z.D. Song, J.H. Gao, Y.L. Wang, and G. Xu, Efficient Method for Prediction of Metastable or Ground Multipolar Ordered States and Its Application in Monolayer α−RuX_{3} (X=Cl, I), Phys. Rev. Lett. 127, 147202 (2021) (theory, symmetry analysis of RPA response functions, based on DFT)
For transport through magnetic systems see also Mesoscopic and nanoscopic transport
For spin liquids see also Other systems with nontrivial topology
Semiconductor physics, except magnetic phenomena
Inorganic semiconductors, except DMS
(including doped diamond)
 G. Lucovsky, On the photoionization of deep impurity centers in semiconductors, Solid State Commun. 3, 299 (1965) (uses a zerorange potential to model deep impurities)
 P. W. Anderson, Model for the Electronic Structure of Amorphous Semiconductors, Phys. Rev. Lett. 34, 953 (1975) ("In ... impurity bands in covalent semiconductors, the localized electrons show Curielaw paramagnetism due to repulsive Coulomb interactions.")
 B. K. Ridley, The photoionisation cross section of deeplevel impurities in semiconductors, J. Phys. C: Solid State Phys. 13, 2015 (1980)
 D. Olego and M. Cardona, Raman scattering by coupled LOphononplasmon modes and forbidden TOphonon Raman scattering in heavily doped ptype GaAs, Phys. Rev. B 24, 7217 (1981) (contains review and bibliography for coupling of phonon and plasmon modes in doped sermiconductors; disorder scattering plays a big role) P
 J. Neugebauer and C. G. Van de Walle, Atomic geometry and electronic structure of native defects in GaN, Phys. Rev. B 50, 8067 (1994)
 K. Milants, J. Verheyden, T. Barancira, W. Deweerd, H. Pattyn, S. Bukshpan, D. L. Williamson, F. Vermeiren, G. Van Tendeloo, C. Vlekken, S. Libbrecht, and C. Van Haesendonck , Size distribution and magnetic behavior of lead inclusions in silicon single crystals, J.Appl. Phys. 81, 2148 (1997)
 N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, Scattering of electrons at threading dislocations in GaN, J. Appl. Phys. 83, 3656 (1998) (mostly theoretical); H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, The role of dislocation scattering in ntype GaN films, Appl. Phys. Lett. 73, 821 (1998) (corresponding experiment)
 M. G. Burt, Fundamentals of envelope function theory for electronic states and photonic modes in nanostructures, J. Phys.: Condens. Matter 11, R53 (1999) (contains review of author's generalization of envelope function method and addresses various misconceptions, also discusses calculation of dipole matrix elements)
 W. R. L. Lambrecht, Electronic structure and optical spectra of the semimetal ScAs and of the indirectbandgap semiconductors ScN and GdN, Phys. Rev. B 62, 13538 (2000) (DFT)
 C. Persson, R. Ahuja, and B. Johansson, Full band calculation of dopinginduced bandgap narrowing in ptype GaAs, Phys. Rev. B 64, 033201 (2001)
 W. J. Moore, J. A. Freitas, Jr., S. K. Lee, S. S. Park, and J. Y. Han, Magnetooptical studies of freestanding hydridevaporphase epitaxial GaN, Phys. Rev. B 65, 081201(R) (2002)
 M. A. Reshchikov and H. Morkoc, Luminescence properties of defects in GaN, J. Appl. Phys. 97, 061301 (2005) (long paper reviewing many experiments and relevant new abinitio calculations, represents significant change in the view of nitrogen vacancies)
 K. Takashina, Y. Ono, A. Fujiwara, Y. Takahashi, and Y. Hirayama, Valley Polarization in (100) Silicon at Zero Magnetic Field, condmat/0604118
 R. O. Kuzian, A. M. Daré, P. Sati, and R. Hayn, Crystal field theory of Co^{2+} in ZnO revisited, condmat/0604322
 J. L. Gavartin, D. Munoz Ramo, A. L. Shluger, G. Bersuker, and B. H. Lee, Negative oxygen vacancies in HfO_{2} as charge traps in highk stacks, condmat/0605593
 Y. Qi and M. E. Flatté, Currentinduced spin polarization in nonmagnetic semiconductor junctions, condmat/0607354 (... in the absence of spinorbit coupling)
 R. Hanson, O. Gywat, and D. D. Awschalom, Roomtemperature manipulation and decoherence of a single spin in diamond, quantph/0608233 (nitrogenvacancy centers)
 A. J. Zaleski, M. Nyk, and W. Strek, Magnetic studies of GaN nanoceramics, condmat/0612389, Appl. Phys. Lett. (effects of deviation from perfect crystal on diamagnetism of GaN)
 N. Manyala, J. F. DiTusa, G. Aeppli, and A. P. Ramirez, Doping a semiconductor to create an unconventional metal, arXiv:0810.2544, Nature 454, 976 (2008) (propose the realization of a nonFermi liquid by doping a narrowgap semiconductor)
 H. Zhao, M. Mower, and G. Vignale, Ambipolar spin diffusion and D'yakonovPerel' spin relaxation in GaAs quantum wells, Phys. Rev. B 79, 115321 (2009)
 S. Das Sarma, E. H. Hwang, and Q. Li, Valley dependent manybody effects in 2D semiconductors, arXiv:0904.2622
 F. Zhao, A. Balocchi, A. Kunold, J. Carrey, H. Carrère, T. Amand, N. Ben Abdallah, J. C. Harmand, and X. Marie, Room temperature Giant Spindependent Photoconductivity in dilute nitride semiconductors, arXiv:0907.4321 (due to paramagnetic Ga interstitials in Ga(As,N))
 J. Schliemann, The dielectric function of the semiconductor hole gas, arXiv:1003.4820
 M.L. Zhang and D. A. Drabold, A new approach to computing transport coefficients: application to conductivity and Hall coefficient of hydrogenated amorphous silicon, arXiv:1006.3800
 D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. JohnstonHalperin, Defect states and disorder in charge transport in semiconductor nanowires, arXiv:1106.4492
 D. Futterer, M. Governale, U. Zuelicke, and J. König, Bandmixingmediated Andreev reflection of semiconductor holes, arXiv:1107.2039 (ptype semiconductor/swave superconductor interface, Andreev reflection involving mixing of heavy and light holes)
 V. M. Acosta, C. Santori, A. Faraon, Z. Huang, K.M. C. Fu, A. Stacey, D. A. Simpson, K. Ganesan, S. TomljenovicHanic, A. D. Greentree, S. Prawer, and R. G. Beausoleil, Dynamic Stabilization of the Optical Resonances of Single NitrogenVacancy Centers in Diamond, Phys. Rev. Lett. 108, 206401 (2012)
 A. I. Shames, V. Yu. Osipov, H. J. von Bardeleben, and A. Ya Vul', Spin S = 1 centers: a universal type of paramagnetic defects in nanodiamonds of dynamic synthesis, J. Phys.: Condens. Matter 24, 225302 (2012)
 F. Nichele, S. Chesi, S. Hennel, A. Wittmann, C. Gerl, W. Wegscheider, D. Loss, T. Ihn, and K. Ensslin, Characterization of SpinOrbit Interactions of GaAs Heavy Holes Using a Quantum Point Contact, Phys. Rev. Lett. 113, 046801 (2014) (find a quadratic spinorbit coupling term, in addition to the cubic Rashba effect)
Organic semiconductors and conductors, hydrid structures
 F. Ortmann, F. Bechstedt, and K. Hannewald, Theory of charge transport in organic crystals: Beyond Holstein's smallpolaron model, Phys. Rev. B 79, 235206 (2009) (Holstein Hamiltonian, LangFirsov transformation onto polarons and phonons; resulting hopping terms containing phonon operators are replaced by the phonon thermal average, giving an effective polaron Hamiltonian; in current operators such an approximation is not made, they are averaged in standard Kubo expression; no further approximations, in particular of vanishing hopping of polarons ["narrowband approximation"]; paper contains good review of approaches)
 P. A. Bobbert, Organic semiconductors: What makes the spin relax?, Nature Mat. 9, 288 (2010)
 R. C. Roundy, Z. V. Vardeny, and M. E. Raikh, Organic magnetoresistance near saturation: mesoscopic effects in small devices, arXiv:1210.3443 (OMAR)
 J. Aragó and A. Troisi, Dynamics of the Excitonic Coupling in Organic Crystals, Phys. Rev. Lett. 114, 026402 (2015)

H. Memmi, O. Benson, S. Sadofev, and S. Kalusniak, Strong Coupling between Surface Plasmon Polaritons and Molecular Vibrations, Phys. Rev. Lett. 118, 126802 (2017)

S. RefaelyAbramson, F. H. da Jornada, S. G. Louie, and J. B. Neaton, Origins of Singlet Fission in Solid Pentacene from an ab initio Green’s Function Approach, Phys. Rev. Lett. 119, 267401 (2017)

C. Liu et al., Tunable Semiconductors: Control over Carrier States and Excitations in Layered Hybrid OrganicInorganic Perovskites, Phys. Rev. Lett. 121, 146401 (2018)

J. H. Fetherolf, D. Golež, and T. C. Berkelbach, A Unification of the Holstein Polaron and Dynamic Disorder Pictures of Charge Transport in Organic Crystals, Phys. Rev. X 10, 021062 (2020) (tightbinding model for electrons, with Holstein coupling to one intramolecular vibration mode and Peierls coupling to one intermolecular mode) P
Neural networks, neural circuits, memristive devices
 Y. V. Pershin and M. Di Ventra, Experimental demonstration of associative memory with memristive neural networks, arXiv:0905.2935, Neural Networks 23, 881 (2010)
 M. D. Pickett, G. MedeirosRibeiro, and R. S. Williams, A scalable neuristor built with Mott memristors, Nature Materials (2012), doi:10.1038/nmat3510
 M. Sharad, C. Augustine, G. Panagopoulos, and K. Roy, Ultra Low Energy Analog Signal Processing Using Spin Neurons Based on Nano Magnets, arXiv:1206.2466 (spin neurons made up of several nanomagnets interacting through nonmagnetic metals); Proposal For Neuromorphic Hardware Using Spin Devices, arXiv:1206.3227
 O. Bichler, W. Zhao, F. Alibart, S. Pleutin, S. Lenfant, D. Vuillaume, and C. Gamrat, Pavlov's dog associative learning demonstrated on synapticlike organic transistors, arXiv:1302.3261, Neural Computation 25, 549 (2013) (associative memory, design using FETs involving Au nanoparticles in organic matrix, experimental demonstration)
 Y. V. Pershin and M. Di Ventra, Memcapacitive neural networks, arXiv:1307.6921
 M. Sharad, D. Fan, and K. Roy, Spin Neurons: A Possible Path to EnergyEfficient Neuromorphic Computers, arXiv:1309.3303 (macroscopic spintorque devices)
 M. Prezioso, F. MerrikhBayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov, Training and operation of an integrated neuromorphic network based on metaloxide memristors, Nature 521, 61 (2015) (CMOS, 12 by 12 crossbar)
 S. Vongehr and X. Meng, The Missing Memristor has Not been Found, Sci. Rep. 5, 11657 (2015) (partially sociological discussion of disputed realization of memristor in 2008)
For nanoscopic systems see also Mesoscopic and nanoscopic transport
Mesoscopic and nanoscopic transport, localization, magnetotransport
Experiments on artificial quantum dots and wires, point contacts, and larger systems
(including carbon nanotubes)
 K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube, Nature 401, 572 (1999)
 K. I. Bolotin, F. Kuemmeth, and D. C. Ralph, Anisotropic magnetoresistance and anisotropic tunneling magnetoresistance in ferromagnetic metal break junctions, condmat/0602251
 D. M. Schröer, A. K. Hüttel, K. Eberl, S. Ludwig, M. N. Kiselev, and B. L. Altshuler, Magnetic control of resonant tunneling and Kondo effect in a oneelectron double quantum dot, condmat/0607044
 D. Rohrlich, O. Zarchin, M. Heiblum, D. Mahalu, and V. Umansky, Controlled Dephasing of a Quantum Dot: From Coherent to Sequential Tunneling, condmat/0607495 (experiment and theory)
 K. Hamaya, S. Masubuchi, M. Kawamura, T. Machida, M. Jung, K. Shibata, K. Hirakawa, T. Taniyama, S. Ishida, and Y. Arakawa, Spin transport through a single selfassembled InAs quantum dot with ferromagnetic leads, condmat/0611269 (study the tunnel magnetoresistance)
 L. Vila, R. Giraud, L. Thevenard, A. Lemaitre, F. Pierre, J. Dufouleur, D. Mailly, B. Barbara, and G. Faini, Universal Conductance Fluctuations in Epitaxial GaMnAs Ferromagnets: Dephasing by Structural and Spin Disorder, Phys. Rev. Lett. 98, 027204 (2007) (show a large phase coherence length, compare nanowires with anisotropic layers)
 R. L. Willett, M. J. Manfra, L. N. Pfeiffer, and K. W. West, Mesoscopic structures and 2D hole systems in fully field effect controlled heterostructures, condmat/0703719
 J. V. Holm, H. I. Jørgensen, K. GroveRasmussen, J. Paaske, K. Flensberg, and P. E. Lindelof, Gatedependent tunnelinginduced level shifts in carbon nanotube quantum dots, arXiv:0711.4913 (experiment and theory, observe many Coulomb diamonds, Kondo resonances, do secondorder perturbation theory for level shifts)
 D. Neumaier, K. Wagner, U. Wurstbauer, M. Reinwald, W. Wegscheider, and D. Weiss, Phase coherent transport in (Ga,Mn)As, arXiv:0801.3363 (small devices, universal conductance fluctuations, AharonovBohm effect, weak localization)
 S. Kafanov and P. Delsing, Measurement of the shot noise in a single electron transistor, arXiv:0812.0282
 R. Leturcq, C. Stampfer, K. Inderbitzin, L. Durrer, C. Hierold, E. Mariani, M. G. Schultz, F. von Oppen, and K. Ensslin, FranckCondon blockade in suspended carbon nanotube quantum dots, arXiv:0812.3826, Nature Physics (2009) (experiment and modeling)
 H. I. Jørgensen, K. GroveRasmussen, K. Flensberg, and P. E. Lindelof, Critical and excess current through an open quantum dot: Temperature and magnetic field dependence, arXiv:0812.4175
 E. A. Chekhovich, M. N. Makhonin, J. SkibaSzymanska, A. B. Krysa, V. D. Kulakovskii, V. I. Fal'ko, M. S. Skolnick, and A. I. Tartakovskii, Polarization freezing of 10000 opticallycooled nuclear spins by coupling to a single electron, arXiv:0901.4249, Nature Materials
 C. H. L. Quay, T. L. Hughes, J. A. Sulpizio, L. N. Pfeiffer, K. W. Baldwin, K. W. West, D. GoldhaberGordon, and R. de Picciotto, Observation of a OneDimensional SpinOrbit Gap in a Quantum Wire, arXiv:0911.4311 (clear signatures of spin currents induced by spinorbit coupling in the charge conductivity)
 H. A. Nilsson, O. Karlström, M. Larsson, P. Caroff, J. N. Pedersen, L. Samuelson, A. Wacker, L.E. Wernersson, and H. Q. Xu, CorrelationInduced Conductance Suppression at Level Degeneracy in a Quantum Dot, Phys. Rev. Lett. 104, 186804 (2010) (contains a theory part)
 C. Fricke, F. Hohls, C. Flindt, and R. J. Haug, High cumulants in the counting statistics measured for a quantum dot, arXiv:1003.0517
 S. Amasha, I. G. Rau, M. Grobis, R. M. Potok, H. Shtrikman, and D. GoldhaberGordon, Coulomb Blockade in an Open Quantum Dot, arXiv:1009.5348
 S. Kim, Y. Hashimoto, Y. Iye, and S. Katsumoto, Evidence of SpinFiltering in Quantum Constrictions with SpinOrbit Interaction, arXiv:1102.4648 (InGaAs quantum well, also model, assumes one contact to have spindependent tunneling amplitude) P
 Y. Yamauchi, K. Sekiguchi, K. Chida, T. Arakawa, S. Nakamura, K. Kobayashi, T. Ono, T. Fujii, and R. Sakano, Evolution of the Kondo Effect in a Quantum Dot Probed by Shot Noise, Phys. Rev. Lett. 106, 176601 (2011)
 A. Kumar, A. Singh, S. Samanta, K. Vasundhara, A. K. Debnath, D. K. Aswal, S. K. Gupta, and J. V. Yakhmi, Charge transport in ultrathin ironphthalocyanine thin films under high electric fields, J. Phys.: Condens. Matter 23, 355801 (2011) (inplane transport)
 M. R. Delbecq, V. Schmitt, F. D. Parmentier, N. Roch, J. J. Viennot, G. Fève, B. Huard, C. Mora, A. Cottet, and T. Kontos, Coupling a Quantum Dot, Fermionic Leads, and a Microwave Cavity on a Chip, Phys. Rev. Lett. 107, 256804 (2011) (carbonnanotube cicuit in a superconducting cavity)
 C. Rössler, S. Baer, E. de Wiljes, P.L. Ardelt, T. Ihn, K. Ensslin, C. Reichl, and W. Wegscheider, Transport Properties of Clean Quantum Point Contacts, arXiv:1106.2982
 B. Küng, C. Rössler, M. Beck, M. Marthaler, D. S. Golubev, Y. Utsumi, T. Ihn, and K. Ensslin, Irreversibility on the Level of SingleElectron Tunneling, arXiv:1107.4240
 N. C. Bishop, R. W. Young, G. A. Ten Eyck, J. R. Wend, E. S. Bielejec, K. Eng, L. A. Tracy, M. P. Lilly, M. S. Carroll, C. Borrás Pinilla, and H. L. Stalford, Triangulating tunneling resonances in a point contact, arXiv:1107.5104 (can determine position of resonant dopand through comparison of experiment with simulations)
 K. Gloos and E. Tuuli, Breakjunction experiments on the zerobias anomaly of nonmagnetic and ferromagnetically ordered metals, arXiv:1109.3774
 S. Fahlvik Svensson, A. I. Persson, E. A. Hoffmann, N. Nakpathomkun, H. A. Nilsson, H. Q. Xu, L. Samuelson, and H. Linke, Lineshape of the thermopower of quantum dots, arXiv:1110.0352 (experiment and theory based on Landauer formula for noninteracting electrons)
 T.M. Liu, A. N. Ngo, B. Hemingway, S. Herbert, M. Melloch, S. E. Ulloa, and A. Kogan, A quantitative study of spinflip cotunneling transport in a quantum dot, arXiv:1110.5924 (experiments on lateral GaAs/AlGaAs quantum dot, compared to theory using rate equations in cotunneling approximation, close agreement)
 X. Zhou, B. Schmidt, L. W. Engel, G. Gervais, L. N. Pfeiffer, K. W. West, and S. Das Sarma, Resistivity saturation in a weakly interacting 2D Fermi liquid at intermediate temperatures, arXiv:1111.0011
 N. Ubbelohde, C. Fricke, C. Flindt, F. Hohls, and R. J. Haug, Measurement of finitefrequency current statistics in a singleelectron transistor, Nature Commun. 3, 612 (2012) (measurement of two and threecurrent correlation functions or corresponding Fano factors)
 K. Shibata, A. Umeno, K. M. Cha, and K. Hirakawa, PhotonAssisted Tunneling through SelfAssembled InAs Quantum Dots in the Terahertz Frequency Range, Phys. Rev. Lett. 109, 077401 (2012)
 E. J. H. Lee, X. Jiang, R. Aguado, G. Katsaros, C. M. Lieber, and S. De Franceschi, ZeroBias Anomaly in a Nanowire Quantum Dot Coupled to Superconductors, Phys. Rev. Lett. 109, 186802 (2012) (zerobias conductance peak emerges beyond a certain [small] magnetic field, not due to Majorana states, note that field splitting of Kondo peak is unobservable due to small field)
 B. Küng, C. Rössler, M. Beck, J. Faist, T. Ihn, and K. Ensslin, Quantum dot occupation and electron dwell time in the cotunneling regime, arXiv:1204.4553
 B.K. Kim, Y.H. Ahn, J.J. Kim, M.S. Choi, M.H. Bae, K. Kang, J. S. Lim, R. López, and N. Kim, Transport Measurement of Andreev Bound States in a KondoCorrelated Quantum Dot, Phys. Rev. Lett. 110, 076803 (2013)
 M. Urdampilleta, S. Klyatskaya, J.P. Cleuziou, M. Ruben, and W. Wernsdorfer, Supramolecular Spin Valves, arXiv:1304.6543 (magnetic TbPc_{2} molecule side coupled to CNT quantum dot, large magnetoresistance); M. Urdampilleta, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, LandauZener tunneling of a single Tb3+ magnetic moment allowing the electronic readout of a nuclear spin, arXiv:1304.6585 (use to read out the single Tb nuclear spin)
 Y.Y. Liu, K. D. Petersson, J. Stehlik, J. M. Taylor, and J. R. Petta, Photon Emission from a CavityCoupled Double Quantum Dot, Phys. Rev. Lett. 113, 036801 (2014)
 S. Takada, C. Bäuerle, M. Yamamoto, K. Watanabe, S. Hermelin, T. Meunier, A. Alex, A. Weichselbaum, J. von Delft, A. Ludwig, A. D. Wieck, and S. Tarucha, Transmission Phase in the Kondo Regime Revealed in a TwoPath Interferometer, Phys. Rev. Lett. 113, 126601 (2014) (transport through quantum dot in one arm of twopath interferometer)
 A. Pourkabirian, M. V. Gustafsson, G. Johansson, J. Clarke, and P. Delsing, Nonequilibrium Probing of TwoLevel Charge Fluctuators Using the Step Response of a SingleElectron Transistor, Phys. Rev. Lett. 113, 256801 (2014)
 T. Arakawa et al., Shot Noise Induced by Nonequilibrium Spin Accumulation, Phys. Rev. Lett. 114, 016601 (2015)
 M. J. MartínezPérez, A. Fornieri, and F. Giazotto, Rectification of electronic heat current by a hybrid thermal diode, Nature Nano. (2015), doi:10.1038/nnano.2015.11 (report rectification ratio of 140)
 F. Hartmann, P. Pfeffer, S. Höfling, M. Kamp, and L. Worschech, Voltage Fluctuation to Current Converter with CoulombCoupled Quantum Dots, Phys. Rev. Lett. 114, 146805 (2015) (voltage fluctuations are rectified to yield a direct current)
 C. Barraud et al., Unidirectional SpinDependent MoleculeFerromagnet Hybridized States Anisotropy in Cobalt Phthalocyanine Based Magnetic Tunnel Junctions, Phys. Rev. Lett. 114, 206603 (2015) (experimental: layer structure, CoPc layer made effectively thin, "nanometer range" by identation)
 G. Cheng, M. Tomczyk, S. Lu, J. P. Veazey, M. Huang, P. Irvin, S. Ryu, H. Lee, C.B. Eom, C. S. Hellberg, and J. Levy, Electron pairing without superconductivity, Nature 521, 196 (2015) (quantum dot realized in part of a SrTiO_{3} nanowire; transport measurement showing evidence for pair tunneling, which can be understood assuming an attractive Hubbard interaction on the dot)
 C. Rössler, D. Oehri, O. Zilberberg, G. Blatter, M. Karalic, J. Pijnenburg, A. Hofmann, T. Ihn, K. Ensslin, C. Reichl, and W. Wegscheider, Transport Spectroscopy of a SpinCoherent DotCavity System, Phys. Rev. Lett. 115, 166603 (2015) (the cavity acts like a tunable second quantum dot)
 D. Imanaka, S. Sharmin, M. Hashisaka, K. Muraki, and T. Fujisawa, ExchangeInduced Spin Blockade in a TwoElectron Double Quantum Dot, Phys. Rev. Lett. 115, 176802 (2015) (experiments compared to an extension of an existing masterequation approach)
 M. AkaiKasaya, Y. Okuaki, S. Nagano, T. Mitani, and Y. Kuwahara, Coulomb Blockade in a TwoDimensional Conductive Polymer Monolayer, Phys. Rev. Lett. 115, 196801 (2015)
 J. Gramich, A. Baumgartner, and C. Schönenberger, Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot, Phys. Rev. Lett. 115, 216801 (2015) (superconductorquantum dotnormal metal structure; claims to be the first observation of elastic/resonant and inelastic Andreev tunneling in quantum dots; coupling of electrons to a bosonic bath, the nature of which is difficult to ascertain, or even to two bosonic baths)
 D. B. Szombati, S. NadjPerge, D. Car, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Josephson φ_{0}junction in nanowire quantum dots, Nature Phys. 12, 568 (2016) (phase difference in ground state different from 0 or π, can be controlled by gate voltage)
 A. Kurzmann, B. Merkel, P. A. Labud, A. Ludwig, A. D. Wieck, A. Lorke, and M. Geller, Optical Blocking of Electron Tunneling into a Single SelfAssembled Quantum Dot, Phys. Rev. Lett. 117, 017401 (2016) (experiments compared to masterequation theory)
 A. J. Keller, J. S. Lim, David Sánchez, Rosa López, S. Amasha, J. A. Katine, H. Shtrikman, and D. GoldhaberGordon, Cotunneling Drag Effect in CoulombCoupled Quantum Dots, Phys. Rev. Lett. 117, 066602 (2016) (experiment and theory [rate equations]; artificial double quantum dot, in parallel; cotunneling is needed to understand the drag effect)
 T. Khouri, U. Zeitler, C. Reichl, W. Wegscheider, N. E. Hussey, S. Wiedmann, and J. C. Maan, Linear Magnetoresistance in a Quasifree TwoDimensional Electron Gas in an Ultrahigh Mobility GaAs Quantum Well, Phys. Rev. Lett. 117, 256601 (2016) (very large linear MR over broad field range in ndoped GaAs quantum well; but no sign of unconventional quasiparticles)

B. Dutta, J. T. Peltonen, D. S. Antonenko, M. Meschke, M. A. Skvortsov, B. Kubala, J. König, C. B. Winkelmann, H. Courtois, and J. P. Pekola, Thermal Conductance of a SingleElectron Transistor, Phys. Rev. Lett. 119, 077701 (2017) (heat current is stronger than given by the WiedemannFranz law)

A. Hofmann, V. F. Maisi, T. Krähenmann, C. Reichl, W. Wegscheider, K. Ensslin, and T. Ihn, Anisotropy and Suppression of SpinOrbit Interaction in a GaAs Double Quantum Dot, Phys. Rev. Lett. 119, 176807 (2017) (tuning the spinflip tunneling rate)

A. Svilans, M. Josefsson, A. M. Burke, S. Fahlvik, C. Thelander, H. Linke, and M. Leijnse, Thermoelectric Characterization of the Kondo Resonance in Nanowire Quantum Dots, Phys. Rev. Lett. 121, 206801 (2018)
 C. Putzke, M. D. Bachmann, P. McGuinness, E. Zhakina, V. Sunko, M. Konczykowski, T. Oka, R. Moessner, A. Stern, M. König, S. Khim, A. P. Mackenzie, and P. J. W. Moll, h/e oscillations in interlayer transport of delafossites, Science 368, 1234 (2020) (magnetoelectric transport in ultraclean materials, also theory; observe normalstate flux quantum, demonstrate coherence over long distances)
Experiments on molecular and singleatom systems, including empty break junctions and isolated impurities
 V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance, Science 280, 5363 (1998)
 J. Li, W.D. Schneider, R. Berndt, and B. Delley, Kondo Scattering Observed at a Single Magnetic Impurity, Phys. Rev. Lett. 80, 2893 (1998) (single Ce adatoms, STM study)
 S. K. Nielsen, Y. Noat, M. Brandbyge, R. H. M. Smit, K. Hansen, L. Y. Chen, A. I. Yanson, F. Besenbacher, and J. M. van Ruitenbeek, Conductance of singleatom platinum contacts: Voltagedependence of the conductance histogram, Phys. Rev. B 67, 245411 (2003)
 H. B. Heersche, Z. de Groot, J. A. Folk, H. S. J. van der Zant, C. Romeike, M. R. Wegewijs, L. Zobbi, D. Barreca, E. Tondello, and A. Cornia, Electron Transport through Single Mn_{12} Molecular Magnets, Phys. Rev. Lett. 96, 206801 (2006) P
 W. H. A. Thijssen, D. Djukic, A. F. Otte, R. H. Bremmer, and J. M. van Ruitenbeek, Vibrationally Induced TwoLevel Systems in SingleMolecule Junctions, Phys. Rev. Lett. 97, 226806 (2006)
 M.H. Jo, J. E. Grose, K. Baheti, M. M. Deshmukh, J. J. Sokol, E. M. Rumberger, D. N. Hendrickson, J. R. Long, H. Park, and D. C. Ralph, Signatures of Molecular Magnetism in SingleMolecule Transport Spectroscopy, condmat/0603276, Nano Lett. 6, 2014 (2006) P
 Z. K. Keane, J. W. Ciszek, J. M. Tour, and D. Natelson, Threeterminal devices to examine single molecule conductance switching, condmat/0605609 ("threeterminal" here refers to source, drain, and gate electrodes)
 L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, Dependence of Single Molecule Junction Conductance on Molecular Conformation, condmat/0607836, Nature
 V. Iancu, A. Deshpande, and S.W. Hla, Manipulation of Kondo Effect via TwoDimensional Molecular SelfAssembly, condmat/0611180 (STM study)
 M. Kiguchi, R. Stadler, I. S. Kristensen, D. Djukic, and J.M. van Ruitenbeek, Evidence for a single hydrogen molecule connected by an atomic chain, condmat/0612681 (experiment and theory, discuss detailed structure of tipmoleculetip region for H_{2} with Pt electrodes)
 N. Néel, J. Kröger, L. Limot, T. Frederiksen, M. Brandbyge, and R. Berndt, Controlled Contact to a C_{60} Molecule, Phys. Rev. Lett. 98, 065502 (2007) (STM study)
 J. J. Parks, A. R. Champagne, G. R. Hutchison, S. FloresTorres, H. D. Abruna, and D. C. Ralph, Tuning the Kondo Effect with a Mechanically Controllable Break Junction, Phys. Rev. Lett. 99, 026601 (2007) (Kondo effect observed for C_{60})
 J. J. Henderson, C. M. Ramsey, E. del Barco, A. Mishra, and G. Christou, Fabrication of NanoGapped SingleElectron Transistors for Transport Studies of Individual SingleMolecule Magnets, J. Appl. Phys. 101, 09E102 (2007) (demonstrated for tunneling through Mn_{12}, relatively low voltage resolution)
 W. Harneit, C. Boehme, S. Schaefer, K. Huebener, K. Fostiropoulos, and K. Lips, Room Temperature Electrical Detection of Spin Coherence in C_{60}, condmat/0702604 (tunneling through thick C_{60} film)
 F. Miao, D. Ohlberg, D. Stewart, R. S. Williams, and C. N. Lau, Quantum Conductance Oscillations in Metal/Molecule/Metal Switches at Room Temperature, condmat/0703259 (molecular monolayer of stearic acid)
 A. Halbritter, P. Makk, Sz. Csonka, and G. Mihaly, Huge negative differential conductance in AuH_{2} molecular nanojunctions, arXiv:0706.2083 (junction is in stronghybridization regime, G shows a smearedout downward step at certain bias; also contains theory, which applies rate equation in sequentialtunneling approximation to twolevel system)
 E. A. Osorio, K. O'Neill, M. Wegewijs, N. StuhrHansen, J. Paaske, T. Bjornholm, and H. S. J. van der Zant, Electronic excitations of a single molecule contacted in a threeterminal configuration, arXiv:0711.2592, Nano lett. 7, 3336 (2007) (experiment and theory, a long molecule with long side chains, observe four charge states and Kondo peaks)
 H. B. Akkerman and B. de Boer, Electrical conduction through single molecules and selfassembled monolayers, J. Phys.: Condens. Matter 20, 013001 (2008) (comparison of different setups)
 O. Tal, M. Krieger, B. Leerink, and J. M. van Ruitenbeek, Electronvibration interaction in singlemolecule junctions: from contact to tunneling regime, arXiv:0801.3031 (H_{2}O)
 C. Li, I. Pobelov, T. Wandlowski, A. Bagrets, A. Arnold, and F. Evers, Charge Transport in Single AuAlkanedithiolAu Junctions: Coordination Geometries and Conformational Degrees of Freedom, arXiv:0802.2407, J. Am. Chem. Soc. 130, 318 (2008) (STM experiments and quantum chemistry calculations)
 M. Kiguchi, O. Tal, S. Wohlthat, F. Pauly, M. Krieger, D. Djukic, J. C. Cuevas, and J. M. van Ruitenbeek, Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes, arXiv:0803.0563
 M. S. Hybertsen, L. Venkataraman, J. E. Klare, A. C. Whalley, M. L. Steigerwald, and C. Nuckolls, AmineLinked Single Molecule Circuits: Systematic Trends Across Molecular Families, arXiv:0803.0582 (experiments and static DFT calculations in the GGA)
 T. Frederiksen, K. J. Franke, A. Arnau, G. Schulze, J. I. Pascual, and N. Lorente, Dynamic JahnTeller effect in electron transport through single C_{60} molecules, arXiv:0804.3415 (STM experiments and theory)
 C. Iacovita, M. V. Rastei, B. W. Heinrich, T. Brumme, J. Kortus, L. Limot, and J. P. Bucher, Visualizing the spin of individual molecules, arXiv:0805.0485 (STM for magnetic molecule on ferromagnetic nanoscopic electrode)
 N. Roch, C. B. Winkelmann, S. Florens, V. Bouchiat, W. Wernsdorfer, and F. Balestro, Kondo effects in a C_{60} singlemolecule transistor, arXiv:0809.2700; N. Roch, S. Florens, V. Bouchiat, W. Wernsdorfer, and F. Balestro, Outofequilibrium singlettriplet Kondo effect in a single C_{60} quantum dot, arXiv:0809.2706; N. Roch, S. Florens, V. Bouchiat, W. Wernsdorfer, and F. Balestro, Quantum phase transition in a singlemolecule quantum dot, arXiv:0809.2906, Nature 453, 633 (2008), supplementary information at arXiv:0809.2922
 O. Tal, M. Kiguchi, W. H. A. Thijssen, D. Djukic, C. Untiedt, R. H. M. Smit, and J. M. van Ruitenbeek, The molecular signature of highly conductive metalmoleculemetal junctions, arXiv:0810.1873
 G. Kirczenow, P. G. Piva, and R. A. Wolkow, Modulation of Electrical Conduction Through Individual Molecules on Silicon by the Electrostatic Fields of Nearby Polar Molecules: Theory and Experiment, arXiv:0812.3459 (STM experiments and abinitio calculations)
 G. D. Scott, Z. K. Keane, J. W. Ciszek, J. M. Tour, and D. Natelson, Universal scaling of nonequilibrium transport in the Kondo regime of single molecule devices, Phys. Rev. B 79, 165413 (2009) (with C_{60} and a Cu^{2+} complex)
 G. Schull, T. Frederiksen, M. Brandbyge, and R. Berndt, Passing Current through Touching Molecules, Phys. Rev. Lett. 103, 206803 (2009) (STM experiments on C_{60} on metal, also with C_{60} at tip, includes static DFT calculations)
 H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, Observation of molecular orbital gating, Nature 462, 1039 (2009) (electromigration of Au wire, transport data are interpreted in terms of specific molecular orbitals and the excitation of molecular vibrations, what is new?)
 S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, MechanicallyControlled Binary Conductance Switching of a SingleMolecule Junction, arXiv:0901.1139 (experiments and static DFG/GGA+Landauer calculations for Au4,4'bipyridineAu junctions)
 M. R. Calvo, J. FernándezRossier, J. J. Palacios, D. Jacob, D. Natelson, and C. Untiedt, The Kondo effect in ferromagnetic atomic contacts, arXiv:0906.3135 (experiments on stretched wires of Fe, Co, and Ni, also with LSDA and LSDA+Ubased theory)
 C. B. Winkelmann, N. Roch, W. Wernsdorfer, V. Bouchiat, and F. Balestro, Superconductivity in a single C_{60} transistor, arXiv:0908.3638, Nature Physics 5, 876 (2009) (single C_{60} in superconducting aluminum break junction, see clear signatures of superconducting gap and also the Kondo effect)
 N. Roch, S. Florens, T. A. Costi, W. Wernsdorfer, and F. Balestro, Observation of the underscreened Kondo effect in a molecular transistor, arXiv:0910.1092 (based on C_{60})
 G. Schull, T. Frederiksen, M. Brandbyge, and R. Berndt, Passing current through touching molecules, arXiv:0910.1281 (STM experiments using C_{60} and abinitio calculations using static DFT)
 A. Eliasen, J. Paaske, K. Flensberg, S. Smerat, M. Leijnse, M. R. Wegewijs, H. I. Jørgensen, M. Monthioux, and J. Nygård, Transport via coupled states in a C60 peapod quantum dot, arXiv:1002.0477 (see signs of coupling to enclosed C60 molecules, with theoretical discussion)
 D. Guérin, S. Lenfant, S. Godey, and D. Vuillaume, Synthesis and electrical properties of fullerenebased molecular junctions on silicon substrate, arXiv:1003.1371, J. Mater. Chem. (2010), DOI: 10.1039/b924255d (selfassembled monolayers of C_{60} attached to electrodes by alkyl chains)
 Y. F. Wang, J. Kröger, R. Berndt, H. Vázquez, M. Brandbyge, and M. Paulsson, AtomicScale Control of Electron Transport through Single Molecules, Phys. Rev. Lett. 104, 176802 (2010) (STM experiments and static DFT calculations [SIESTA, TRANSIESTA], detailed study of various orientations of a flat molecule and of moleculesurface bonds)
 A. D. Jewell, H. L. Tierney, A. E. Baber, E. V. Iski, M. M. Laha, and E. C. H. Sykes, Timeresolved studies of individual molecular rotors, J. Phys.: Condens. Matter 22, 264006 (2010) (STM)
 C. Chen, P. Chu, C. A. Bobisch, D. L. Mills, and W. Ho, Viewing the Interior of a Single Molecule: Vibronically Resolved Photon Imaging at Submolecular Resolution, Phys. Rev. Lett. 105, 217402 (2010) (local excitation by STM, observe resulting luminescence), see also Viewpoint: M. Pivetta, Mapping the luminescence of a single molecule, Physics 3, 97 (2010)
 A. BernandMantel, J. S. Seldenthuis, A. Beukman, H. S. J. van der Zant, V. Meded, R. Chandrasekhar, K. Fink, M. Ruben, and F. Evers, Spincoupled doublequantumdot behavior inside a singlemolecule transistor, arXiv:1004.4556
 J. J. Parks, A. R. Champagne, T. A. Costi, W. W. Shum, A. N. Pasupathy, E. Neuscamman, S. FloresTorres, P. S. Cornaglia, A. A. Aligia, C. A. Balseiro, G. K.L. Chan, H. D. Abruñna, and D. C. Ralph, Mechanical Control of Spin States in Spin1 Molecules and the Underscreened Kondo Effect, arXiv:1005.0621
 N. Atodiresei, J. Brede, P. Lazic, V. Caciuc, G. Hoffmann, R. Wiesendanger, and S. Blügel, Design of the Local Spin Polarization at the OrganicFerromagnetic Interface, Phys. Rev. Lett. 105, 066601 (2010) (STM and DFT calculations for various cyclic molecules on iron on W(110)); see also Synopsis, Physics
 A. S. Zyazin, J. W. G. van den Berg, E. A. Osorio, H. S. J. van der Zant, N. P. Konstantinidis, M. Leijnse, M. R. Wegewijs, F. May, W. Hofstetter, C. Danieli, and A. Cornia, Electric Field Controlled Magnetic Anisotropy in a Single Molecule, arXiv:1009.2027, Nano Lett. 10, 3307 (2010) (experiment on Fe_{4} complex and calculations up to fourth order in the hybridization; anisotropy found to depend strongly on charge state)
 D. Secker, S. Wagner, S. Ballmann, R. Härtle, M. Thoss, and H. B. Weber, Resonant vibrations, peak broadening and noise in single molecule contacts: beyond the resonant tunnelling picture, arXiv:1010.2998 (mechanical break junctions with different molecules)
 C. Toher, R. Temirov, A. Greuling, F. Pump, M. Kaczmarski, M. Rohlfing, G. Cuniberti, and F. S. Tautz, Electrical transport through a mechanically gated molecular wire, arXiv:1011.1400 (STM experiment and DFT calculations)
 Y. Kim, H. Song, F. Strigl, H.F. Pernau, T. Lee, and E. Scheer, Mechanical control of vibrational states in singlemolecule junctions, arXiv:1011.3226 (1,6hexanedithiol, Au or Pt leads, mechanical break junction)
 Z. Cheng, S. Du, W. Guo, L. Gao, Z. Deng, N. Jiang, H. Guo, H. Tang, and H.J. Gao, Direct imaging of molecular orbitals of metal phthalocyanines on metal surfaces with an O_{2}functionalized tip of a scanning tunneling microscope, Nano Research 4, 523 (2011)
 L. Gross, N. Moll, F. Mohn, A. Curioni, G. Meyer, F. Hanke, and M. Persson, HighResolution Molecular Orbital Imaging Using a pWave STM Tip, Phys. Rev. Lett. 107, 086101 (2011) (veryhighresolution STM images showing absolute value square of molecular orbitals, compared to TersoffHamann theory)
 S. Schmaus, A. Bagrets, Y. Nahas, T. K. Yamada, A. Bork, M. Bowen, E. Beaurepaire, F. Evers, and W. Wulfhekel, Magnetoresistance through a single molecule, arXiv:1102.2630, Nature Nano. (H_{2}Pc, STM experiments and DFT+NEGF theory)
 B. Chilian, A. A. Khajetoorians, S. Lounis, A. T. Costa, D. L. Mills, J. Wiebe, and R. Wiesendanger, Anomalously large gfactor of single atoms adsorbed on a metal substrate, arXiv:1108.2443 (Fe on Ag(111), enhanced gfactor can be understood from abinitio calculations)
 C. M. Guedon, H. Valkenier, T. Markussen, K. S. Thygesen, J. C. Hummelen, and S. J. van der Molen, Observation of Quantum Interference in Molecular Charge Transport, arXiv:1108.4357 (several πconjugated molecules, at room temperature)
 A. CastellanosGomez, S. Bilan, L. A. Zotti, C. R. Arroyo, N. Agrait, J. C. Cuevas, and G. RubioBollinger, Carbon tips as electrodes for singlemolecule junctions, arXiv:1109.2089 (STMbased break junctions)
 M. L. Perrin, C. A. Martin, F. Prins, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, H. S. J. van der Zant, and D Dulic, Charge Transport in a ZnPorphyrin single molecule junction, arXiv:1109.6434 (mechanically controlled break junction, no gate electrode, IV characteristics for molecular spectroscopy); M. L. Perrin, F. Prins, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, T. Briza, R. Kaplanek, V. Kral, J. M. van Ruitenbeek, H. S. J. van der Zant, and D. Dulic, Influence of chemical structure on the stability and the conductance of porphyrin singlemolecule junctions, arXiv:1109.6447; D. Dulic, F. Pump, S. Campidelli, P. Lavie, G. Cuniberti, and A. Filoramo, Controlled Stability of Molecular Junctions, arXiv:1109.6450
 W. Chen, J. R. Widawsky, H. Vázquez, S. T. Schneebeli, M. S. Hybertsen, R. Breslow, and L. Venkataraman, Highly Conducting piConjugated Molecular Junctions Covalently Bonded to Gold Electrodes, arXiv:1110.0344 (STM break junction, strong coupling to electrodes, also compared to DFT calculations)
 F. Prins, A. Barreiro, J. W. Ruitenberg, J. S. Seldenthuis, N. AliagaAlcalde, L. M. K. Vandersypen, H. S. J. van der Zant, Roomtemperature gating of molecular junctions using fewlayer graphene nanogap electrodes, arXiv:1110.2335 (experimental methods)
 I. FernándezTorrente, D. KreikemeyerLorenzo, A. Strózecka, K. J. Franke1, and J. I. Pascual, Gating the Charge State of Single Molecules by Local Electric Fields, Phys. Rev. Lett. 108, 036801 (2012) (molecules on surfaces, among other results show how an effective gate voltage can be realized by the lateral [parallel to the surface] tip position)
 T. Miyamachi, M. Gruber, V. Davesne, M. Bowen, S. Boukari, L. Joly, F. Scheurer, G. Rogez, T. K. Yamada, P. Ohresser, E. Beaurepaire, and W. Wulfhekel, Robust spin crossover and memristance across a single molecule, Nat. Commun. 3, 938 (2012) (demonstrate purely electronic highspin/lowspin switching)
 J. R. Widawsky, P. Darancet, J. B. Neaton, and L. Venkataraman, Simultaneous Determination of Conductance and Thermopower of Single Molecule Junctions, arXiv:1201.1837, Nano Lett. (2012) (STM, AumoleculeAu, various molecules, mostly aromatic)
 S. Ballmann, R. Härtle, P. B. Coto, M. Mayor, M. Elbing, M. R. Bryce, M. Thoss, and H. B. Weber, Experimental Evidence for Quantum Interference and Vibrationally Induced Decoherence in SingleMolecule Junctions, Phys. Rev. Lett. 109, 056801 (2012) (breakjunction experiments and DFT: stronger vibrations at higher temperatures can suppress interference and thereby enhance the current)
 V. A. Sydoruk, D. Xiang, S. A. Vitusevich, M. V. Petrychuk, A. Vladya, Y. Zhang, A. Offenhäusser, V. A. Kochelap, A. E. Belyaev, and D. Mayer, Noise and Transport Characterization of Single Molecular Break Junctions with Individual Molecule, arXiv:1206.3869 (mechanical break junctions, 1,4benzenediamine)
 J. Schwöbel, Y. Fu, J. Brede, A. Dilullo, G. Hoffmann, S. Klyatskaya, M. Ruben, and R. Wiesendanger, Realspace observation of spinsplit molecular orbitals of adsorbed singlemolecule magnets, Nature Commun. 3, 953 (2012) (TbPc_{2} on Co, spinpolarized STM)
 R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer, and F. Balestro, Electronic readout of a single nuclear spin using a molecular spin transistor, Nature 488, 357 (2012) (TbPc_{2}, tunneling via the Pc system, exchange coupling to easyaxis Tb angular momentum J = 6, which is coupled to the Tb nuclear spin I = 3/2)
 E. Minamitani, N. Tsukahara, D. Matsunaka, Y. Kim, N. Takagi, and M. Kawai, SymmetryDriven Novel Kondo Effect in a Molecule, Phys. Rev. Lett. 109, 086602 (2012) (STM, FePc on Au(111), SU(2) or SU(4) Kondo effect depending on position and thus symmetry)
 E. Burzurí, A. S. Zyazin, A. Cornia, and H. S. J. van der Zant, Direct Observation of Magnetic Anisotropy in an Individual Fe4 SingleMolecule Magnet, Phys. Rev. Lett. 109, 147203 (2012)
 Y. Kim, A. GarciaLekue, D. Sysoiev, T. Frederiksen, U. Groth, and E. Scheer, Charge Transport in AzobenzeneBased SingleMolecule Junctions, Phys. Rev. Lett. 109, 226801 (2012) (mechanically controlled break junctions without gate, cistrans isomerism, compared to calculations using static DFT + NEGF)
 J. Fock, M. Leijnse, K. Jennum, A. S. Zyazin, J. Paaske, P. Hedegård, M. B. Nielsen, and H. S. J. van der Zant, Manipulation of organic polyradicals in a singlemolecule transistor, Phys. Rev. B 86, 235403 (2012) (threecenter molecule, junction produced by electromigration, also theory: valencebond model for the molecular, no details)
 J. Bauer, J. I. Pascual, and K. J. Franke, Microscopic resolution of the interplay of Kondo screening and superconducting pairing, arXiv:1208.3211 (MnPc on Pb(111), STS experiments, compared to NRG calculations)
 D. Li, P. M. Gannet, and D. Lederman, An investigation into the feasibility of myoglobinbased singleelectron transistors, arXiv:1208.4184
 G. Ricœur, S. Lenfant, D. Guérin, and D. Vuillaume, MoleculeElectrode Interface Energetics in Molecular Junction: a Transition Voltage Spectroscopy Study, arXiv:1208.5901, J. Phys. Chem C. (long paper, several selfassembled monolayers, various types of top contacts)
 K. Reaves, K. Kim, K. Iwaya, T. Hitosugi, H. Zhao, K. R. Dunbar, H. G. Katzgraber, and W. Teizer, STM Studies of Isolated Mn12Ph Single Molecule Magnets, arXiv:1210.5934 (on HOPG, which is imaged with atomic resolution, but the Mn12Ph shows up as a bright blob in constantcurrent scans)
 M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, Strong spinphonon coupling between a singlemolecule magnet and a carbon nanotube nanoelectromechanical system, Nature Nanotechnology (2013), doi:10.1038/nnano.2012.258 (TbPc_{2} side coupled to carbon nanotube)
 S. Wagner et al., Switching of a coupled spin pair in a singlemolecule junction, Nature Nanotechnology (2013), doi:10.1038/nnano.2013.133 (mechanical break junction, switched between singlet and triplet)
 R. Chen, P. J. Wheeler, M. Di Ventra, and D. Natelson, Electron heating in atomicscale Au break junctions, arXiv:1306.6639
 G. Reecht, F. Scheurer, V. Speisser, Y. J. Dappe, F. Mathevet, and G. Schull, Electroluminescence of a Polythiophene Molecular Wire Suspended between a Metallic Surface and the Tip of a Scanning Tunneling Microscope, Phys. Rev. Lett. 112, 047403 (2014) (luminiscence of a junction involving a single molecule suspended between a metal surface and an STM tip, induced by a bias voltage, emission from localized plasmon)
 B. Weber et al., Spin blockade and exchange in Coulombconfined silicon double quantum dots, Nature Nanotech. (2014), doi:10.1038/nnano.2014.63 (two P donors in Si forming double quantum dot, by "spin blockade" apparently mean Pauli blockade for equalspin electrons in one of the dots)
 T. Meier, F. Menges, P. Nirmalraj, H. Hölscher, H. Riel, and B. Gotsmann, LengthDependent Thermal Transport along Molecular Chains, Phys. Rev. Lett. 113, 060801 (2014)
 S. Müllegger, S. Tebi, A. K. Das, W. Schöfberger, F. Faschinger, and R. Koch, Radio Frequency Scanning Tunneling Spectroscopy for SingleMolecule Spin Resonance, Phys. Rev. Lett. 113, 133001 (2014) (TbPc_{2})
 D. Rakhmilevitch, R. Korytár, A. Bagrets, F. Evers, and O. Tal, ElectronVibration Interaction in the Presence of a Switchable Kondo Resonance Realized in a Molecular Junction, Phys. Rev. Lett. 113, 236603 (2014) (transport experiment compared to DFT)
 A. Burtzlaff, A. Weismann, M. Brandbyge, and R. Berndt, Shot Noise as a Probe of SpinPolarized Transport through Single Atoms, Phys. Rev. Lett. 114, 016602 (2015) (measurements of noise spectra and corresponding Fano factors, compared to DFT/Landauer calculations)
 B. Warner, F. El Hallak, H. Prüser, J. Sharp, M. Persson, A. J. Fisher, and C. F. Hirjibehedin, Tunable magnetoresistance in an asymmetrically coupled singlemolecule junction, Nature Nanotech. (2015), doi:10.1038/nnano.2014.326 (very large effect of magnetic field in negativdifferentialconductance regime)
 H. RascónRamos, J. M. Artés, Y. Li, and J. Hihath, Binding configurations and intramolecular strain in singlemolecule devices, Nature Mat. (2015), doi:10.1038/nmat4216 (STM experiment with oscillating tip)
 L. Liu et al., Revealing the Atomic SiteDependent g Factor within a Single Magnetic Molecule via the Extended Kondo Effect, Phys. Rev. Lett. 114, 126601 (2015) (STM experiment on MnPc on Au(111); the Zeeman splitting of the Kondo peak in applied magnetic field depends on the tip position)
 S. Karan, D. Jacob, M. Karolak, C. Hamann, Y. Wang, A. Weismann, A. I. Lichtenstein, and R. Berndt, Shifting the Voltage Drop in Electron Transport Through a Single Molecule, Phys. Rev. Lett. 115, 016802 (2015) (STM experiments compared to DFT calculations; shape of Kondo peak depends on the proximity of the tip from ligated Mn, attributed to change in voltage division and small geometric relaxation)
 T. Yelin, R. Korytár, N. Sukenik, R. Vardimon, B. Kumar, C. Nuckolls, F. Evers, and O. Tal, Conductance saturation in a series of highly transmitting molecular junctions, Nature Mat. (2016), doi:10.1038/nmat4552 (breakjunction experiments at large conductance, also DFT and model calculations)
 C. Xu, C.l. Chiang, Z. Han, and W. Ho, Nature of Asymmetry in the Vibrational Line Shape of SingleMolecule Inelastic Electron Tunneling Spectroscopy with the STM, Phys. Rev. Lett. 116, 166101 (2016) (experiment, compared to approximate Greenfunction calculations, Mathematica notebook included in supplement)
 R. Frisenda and H. S. J. van der Zant, Transition from Strong to Weak Electronic Coupling in a SingleMolecule Junction, Phys. Rev. Lett. 117, 126804 (2016) (break junction, separation is tuned)

J. Brand, P. Ribeiro, N. Néel, S. Kirchner, and J. Kröger, Impact of AtomicScale Contact Geometry on Andreev Reflection, Phys. Rev. Lett. 118, 107001 (2017) (STMtip/C_{60}/superconducting Nb, compared to BlonderTinkhamKlapwijk model with surprisingly good agreement, probably due to strong moleculesubstrate hybridization)

F. Troiani, C. Godfrin, S. Thiele, F. Balestro, W. Wernsdorfer, S. Klyatskaya, M. Ruben, and M. Affronte, LandauZener Transition in a Continuously Measured SingleMolecule Spin Transistor, Phys. Rev. Lett. 118, 257701 (2017) (also analyzed in terms of master equation)

T. JasperTönnies, A. GarciaLekue, T. Frederiksen, S. Ulrich, R. Herges, and R. Berndt, Conductance of a Freestanding Conjugated Molecular Wire, Phys. Rev. Lett. 119, 066801 (2017) (STM experiments on molecule on Au(111), compared to DFTNEGF calculations)

C. Godfrin, A. Ferhat, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer, and F. Balestro, Operating Quantum States in Single Magnetic Molecules: Implementation of Grover’s Quantum Algorithm, Phys. Rev. Lett. 119, 187702 (2017)
 M. H. Garner et al., Comprehensive suppression of singlemolecule conductance using destructive σinterference, Nature online (2018) (experiments and Landauer/DFT calculations; siliconbased molecules, multipath interference)

J. de Bruijckere, P. Gehring, M. PalaciosCorella, M. ClementeLeón, E. Coronado, J. Paaske, P. Hedegård, and H. S. J. van der Zant, GroundState Spin Blockade in a SingleMolecule Junction, Phys. Rev. Lett. 122, 197701 (2019) (transport, Mn(III)(MoO_{6})_{6} complex in break junction, with theory)
Theory of transport and weak and strong localization in extended systems
 P. W. Brouwer and A. Altland, Anderson localization from classical trajectories, arXiv:0802.0976 (in ballistic quasi1D conductors)
 Y. Imry and A. Amir, The localization transition at finite temperatures: electric and thermal transport, arXiv:1004.0966
 J. T. Chalker, T. S. Pickles, and P. Shukla, Anderson localisation in tightbinding models with flat bands, arXiv:1008.3256
 S. Johri and R. N. Bhatt, Singular Behavior of Eigenstates in Anderson's Model of Localization, arXiv:1106.1131 (inverse participation ratio shows singularities at certain energies, which are distinct from the mobility edge and are present in any number of dimensions, bounded disorder is required for this); Singular Behavior of Anderson Localized Wavefunctions for a TwoSite Model, arXiv:1205.5096
 C. Wickles and W. Belzig, Effective Quantum Theories for Transport in Inhomogeneous Systems with Nontrivial Band Structure, arXiv:1209.4933 (semiclassical approach plus Berry curvatures)
 C. Karrasch, R. Ilan, and J. E. Moore, Nonequilibrium thermal transport and its relation to linear response, arXiv:1211.2236 (for the case of diverging linear response due to nonzero Drude weight, applied to dimerized spin chain)
 M. P. Mink, H. T. C. Stoof, R. A. Duine, M. Polini, and G. Vignale, Unified Boltzmanntransport theory for the drag resistivity close to a secondorder phase transition, arXiv:1306.5078
 A. R. Kolovsky, Master equation approach to conductivity of bosonic and fermionic carriers in one and twodimensional lattices, arXiv:1306.6422 (beyond linear response)
 J. D. Bodyfelt, D. Leykam, C. Danieli, X. Yu, and S. Flach, Flatbands under Correlated Perturbations, Phys. Rev. Lett. 113, 236403 (2014) (effects of correlated disorder on flat bands)
 G. Tatara, Thermal vector potential theory of transport induced by temperature gradient, arXiv:1502.00347 (proposes a new description of thermal transport, starting from and apparently equivalent to Luttinger's; the introduced thermal vector potential is minimally coupled to the energy current; not a rigorous gauge theory but the author heuristically discusses its relation to energy conservation)
 H. Javan Mard, E. C. Andrade, E. Miranda, and V. Dobrosavljevic, NonGaussian Spatial Correlations Dramatically Weaken Localization, Phys. Rev. Lett. 114, 056401 (2015)
 I. L. Aleiner, A. V. Andreev, and V. Vinokur, AharonovBohm Oscillations in Singly Connected Disordered Conductors, Phys. Rev. Lett. 114, 076802 (2015) (due to transport along surfaces)
 S. V. Syzranov, L. Radzihovsky, and V. Gurarie, Critical Transport in Weakly Disordered Semiconductors and Semimetals, Phys. Rev. Lett. 114, 166601 (2015)
 M. Schütt and R. M. Fernandes, Antagonistic InPlane Resistivity Anisotropies from Competing Fluctuations in Underdoped Cuprates, Phys. Rev. Lett. 115, 027005 (2015)
 A. Principi and G. Vignale, Violation of the WiedemannFranz Law in Hydrodynamic Electron Liquids, Phys. Rev. Lett. 115, 056603 (2015) (finding a simple relation between the relaxation time of the thermal current and the quasiparticle scattering rate)
 R. Biele, R. D'Agosta, and A. Rubio, TimeDependent Thermal Transport Theory, Phys. Rev. Lett. 115, 056801 (2015) P
 D. K. Efimkin and V. Galitski, Anomalous Coulomb Drag in ElectronHole Bilayers due to the Formation of Excitons, Phys. Rev. Lett. 116, 046801 (2016) (concentrations of electrons, holes, and interlayer excitons are calculated assuming equilibrium; the electrons/holes and the excitons are decoupled in the model and thus their contributions to the conductivity tensor simply add up; the excitons contribute a Drude conductivity, which also appears in the interlayer terms due to the interlayer nature of the excitons; the transconductivity of the electrons/holes results from standard Coulomb drag, which is calculated microscopically)

R. P. Fornari, P. W. M. Blom, and A. Troisi, How Many Parameters Actually Affect the Mobility of Conjugated Polymers?, Phys. Rev. Lett. 118, 086601 (2017) (only two)

S. Tamaki, M. Sasada, and K. Saito, Heat Transport via LowDimensional Systems with Broken TimeReversal Symmetry, Phys. Rev. Lett. 119, 110602 (2017) (chain with conservative noise)

A. Bruch, C. Lewenkopf, and F. von Oppen, LandauerBüttiker Approach to Strongly Coupled Quantum Thermodynamics: InsideOutside Duality of Entropy Evolution, Phys. Rev. Lett. 120, 107701 (2018)

A. S. Mishchenko, L. Pollet, N. V. Prokof'ev, A. Kumar, D. L. Maslov, and N. Nagaosa, Polaron Mobility in the “Beyond Quasiparticles” Regime, Phys. Rev. Lett. 123, 076601 (2019) (Fröhlich polaron; diagrammatic Monte Carlo simulations)

J. C. Szabo, K. Lee, V. Madhavan, and N. Trivedi, Local Spectroscopies Reveal Percolative Metal in Disordered Mott Insulators, Phys. Rev. Lett. 124, 137402 (2020) (nonFermi liquid induced by increasing disorder in a Mott insulator)

M. Panhans and F. Ortmann, Efficient TimeDomain Approach for Linear Response Functions, Phys. Rev. Lett. 127, 016601 (2021)
Modelbased theory for quantum dots, nanojunctions, and related structures (not specifically molecules)
 J. Appelbaum, "sd" Exchange Model of ZeroBias Tunneling Anomalies, Phys. Rev. Lett. 17, 91 (1966) (this is the original suggestion that the zerobias anomaly in tunneling is a manifestation of the Kondo effect; shows logarithmic singularity in third order of perturbation theory)
 D. Ahn, Timeconvolutionless reduceddensityoperator theory of an arbitrary driven system coupled to a stochastic reservoir: Quantum kinetic equations for semiconductors, Phys. Rev. B 50, 8310 (1994) (not for a quantum dot, but technique is applicable) P
 H. Schoeller and G. Schön, Mesoscopic quantum transport: Resonant tunneling in the presence of a strong Coulomb interaction, Phys. Rev. B 50, 18436 (1994) (large dot with dense spectrum) P
 S. A. Gurvitz and Ya. S. Prager, Microscopic derivation of rate equations for quantum transport, Phys. Rev. B 53, 15932 (1996) (exact derivation of full master equation for reduced density matrix of a (double) dot with interaction and phonons, T = 0, applicable if at least one resonance lies deep inside the energy interval between the lead chemical potentials) P
 K. A. Matveev, L. I. Glazman, and H. U. Baranger, Coulomb blockade of tunneling through a double quantum dot, Phys. Rev. B 54, 5637 (1996)
 J. König, J. Schmid, H. Schoeller, and G. Schön, Resonant tunneling through ultrasmall quantum dots: Zerobias anomalies, magneticfield dependence, and bosonassisted transport, Phys. Rev. B 54, 16820 (1996) (developing a diagrammatic approach employing the Keldysh time contour) P
 J. König, H. Schoeller, and G. Schön, Cotunneling at Resonance for the SingleElectron Transistor, Phys. Rev. Lett. 78, 4482 (1997) (uses method of König et al., PRB 54, 16820 (1996), does not require an ad hoc cutoff to make the cotunneling contribution finite)
 J. König, H. Schoeller, and G. Schön, Cotunneling and renormalization effects for the singleelectron transistor, Phys. Rev. B 58, 7882 (1998) (limit of many channels, uses method of König et al., PRB 54, 16820 (1996), also comparison with renormalization group approach) P
 W. B. Thimm, J. Kroha, and J. von Delft, Kondo Box: A Magnetic Impurity in an Ultrasmall Metallic Grain, Phys. Rev. Lett. 82, 2143 (1999)
 M. Pustilnik and L. I. Glazman, Kondo effect induced by a magnetic field, Phys. Rev. B 64, 045328 (2001)
 P. Coleman, C. Hooley, and O. Parcollet, Is the Quantum Dot at Large Bias a WeakCoupling Problem?, Phys. Rev. Lett. 86, 4088 (2001) (no)
 M. Turek and K. A. Matveev, Cotunneling thermopower of single electron transistors, Phys. Rev. B 65, 115332 (2002) (discusses renormalization scheme for divergence in the cotunneling contribution, later applied by J. Koch et al.)
 P. S. Cornaglia and C. A. Balseiro, Kondo impurities in nanoscopic systems: Confinementinduced regimes, Phys. Rev. B 66, 115303 (2002)
 N. A. Mortensen and J. C. Egues, Universal spinpolarization fluctuations in onedimensional wires with magnetic impurities, Phys. Rev. B 66, 153306 (2002)
 J.X. Zhu and A. V. Balatsky, Quantum Electronic Transport through a Precessing Spin, Phys. Rev. Lett. 89, 286802 (2002) P
 D. A. Bagrets and Yu. V. Nazarov, Full counting statistics of charge transfer in Coulomb blockade systems, Phys. Rev. B 67, 085316 (2003) (important work on FCS, uses rate equations)
 J. Paaske, A. Rosch, and P. Wölfle, Nonequilibrium transport through a Kondo dot in a magnetic field: Perturbation theory, Phys. Rev. B 69, 155330 (2004) (starts with rather extensive review, applies diagrammatic perturbation theory for Keldysh Green functions to a fermionized impurity spin between reservoirs to obtain local spin polarization and current under a bias voltage to leading logarithmic order; no charge fluctuations); J. Paaske, A. Rosch, J. Kroha, and P. Wölfle, Nonequilibrium transport through a Kondo dot: Decoherence effects, Phys. Rev. B 70, 155301 (2004)
 S. Kehrein, Scaling and Decoherence in the Nonequilibrium Kondo Model, Phys. Rev. Lett. 95, 056602 (2005) (Kondo spin between two leads under bias, same model as in Paaske et al., infinitesimal unitary transformations)
 M. P. Das and F. Green, Ballistic transport is dissipative: the why and how, condmat/0601459, J. Phys.: Condens. Matter 17, V13 (2005) (the Landauer formula gives a finite resistivity  how is the energy dissipated?)
 W. Belzig, Full counting statistics of superPoissonian shot noise in multilevel quantum dots, Phys. Rev. B 71, 161301(R) (2005)
 S. Braig and P. W. Brouwer, Rate equations for Coulomb blockade with ferromagnetic leads, Phys. Rev. B 71, 195324 (2005)
 B. Dong, N. J. M. Horing, and H. L. Cui, Inelastic cotunnelinginduced decoherence and relaxation, charge, and spin currents in an interacting quantum dot under a magnetic field, Phys. Rev. B 72, 165326 (2005) (extended Kondo model: local spin coupled to two leads, no other tunneling between the leads)
 F. B. Anders and A. Schiller, RealTime Dynamics in QuantumImpurity Systems: A TimeDependent Numerical RenormalizationGroup Approach, Phys. Rev. Lett. 95, 196801 (2005) (NRG for impurity coupled to bath subject to a perturbation that is suddenly switched on, no transport geometry)
 A. Donarini, T. Novotny, and A.P. Jauho, Simple models suffice for the singledot quantum shuttle, New J. Phys. 7, 237 (2005) (using and showing Wigner function of oscillator in various regimes)
 I. Sela and D. Cohen, Adiabatic Transport is counterintuitive, condmat/0512500 (in a closed ring with two adiabatically changed delta barriers the transported charge per cycle can be made Q >> e)
 O. Parcollet and X. Waintal, Theory of Spin Torque in a nanomagnet, condmat/0512508
 M. Braun, J. König, and J. Martinek, Manipulating Single Spins in Quantum Dots Coupled to Ferromagnetic Leads, condmat/0512519 (long paper using Keldysh formalism)
 M. Albrecht, B. Song, and A. Schnurpfeil, A wave function based ab initio nonequilibrium Green's function approach to charge transport, condmat/0512554 (another long paper introducing a wavefunction based Keldysh formalism for charge transport)
 R. Swirkowicz, M. Wilczynski, and J. Barnas, Spinpolarized transport through a singlelevel quantum dot in the Kondo regime, J. Phys.: Condens. Matter 18, 2291 (2006) (also consider the case of one ferromagnetic and one nonmagnetic lead; Keldysh formalism with approximate equation of motion approach) P
 F. Pistolesi and R. Fazio, Dynamics and Current Fluctuations in AC driven Charge Shuttle, New Journal of Physics 8, 113 (2006)
 P. Mehta and N. Andrei, Nonequilibrium Transport in Quantum Impurity Models: The Bethe Ansatz for Open Systems, Phys. Rev. Lett. 96, 216802 (2006)
 U. Harbola, J. Maddox, and S. Mukamel, Manybody theory of currentinduced fluorescence in molecular junctions, Phys. Rev. B 73, 075211 (2006); Nonequilibrium superoperator Green's function approach to inelastic resonances in STM currents, Phys. Rev. B 73, 205404 (2006)
 U. Harbola, M. Esposito, and S. Mukamel, Quantum master equation for electron transport through quantum dots and single molecules, Phys. Rev. B 74, 235309 (2006) (Hamiltonian without electronelectron interaction or internal degrees of freedom, deriving the master equation for the reduced density matrix, projected onto sectors with specific electron number, in second order [sequential tunneling]) P
 A. Ueda and M. Eto, Resonant tunneling and Fano resonance in quantum dots with electronphonon interaction, condmat/0601327 (Keldysh formalism)
 M. Braun, J. König, and J. Martinek, FrequencyDependent Current Noise through QuantumDot Spin Valves, condmat/0601366 (using Keldysh formalism to obtain time dependence of reduced density matrix)
 J. Twamley, D. W. Utami, H.S. Goan, and G. J. Milburn, Spindetection in a quantum electromechanical shuttle system, condmat/0601448
 G. Vasseur, D. Weinmann, and J. A. Jalabert, Coulomb blockade without potential barriers, condmat/0602166
 J. Luo, X.Q. Li, and Y. Yan, Calculation of the current noise spectrum in mesoscopic transport: an efficient quantum master equation approach, condmat/0603164, Phys. Rev. B
 K. Zabrocki, S. Trimper, S. Tatur, and R. Mahnke, Relationship between a NonMarkovian Process and FokkerPlanck Equation, condmat/0603252
 C. Flindt, A. S. Sorensen, and K. Flensberg, SpinOrbit Mediated Control of Spin Qubits, condmat/0603559
 H. Frahm, C. von Zobeltitz, N. Maire, and R. J. Haug, Fermi Edge Singularities in Transport through Quantum Dots, condmat/0603668
 M. Hatami and M. Zareyan, Shot noise in diffusive ferromagnetic metals, condmat/0604142
 Y. Tanaka and N. Kawakami, Transport through DoubleDots coupled to normal and superconducting leads, condmat/0604212
 D. Klauser, W. A. Coish, and D. Loss, Quantumdot spin qubit and hyperfine interaction, condmat/0604252, Advances in Solid State Physics 46 (2006)
 V. Meden, Correlation effects on electronic transport through dots and wires, condmat/0604302, Advances in Solid State Physics 46 (2006) (functional renormalization group approach for quantum dots and wires)
 J. Splettstoesser, M. Governale, J. König, and R. Fazio, Adiabatic pumping through interacting quantum dots: A perturbation expansion in the tunnel coupling, condmat/0604369
 P. Stano and J. Fabian, Orbital and spin relaxation in single and coupled quantum dots, condmat/0604633
 S. Kettemann, Dimensional Control of Antilocalisation and Spin Relaxation in Quantum Wires, condmat/0605243
 D. A. Bagrets, Y. Utsumi, D. S. Golubev, and G. Schön, Full Counting Statistics of Interacting Electrons, condmat/0605263 (one example considered is electron transport through quantum dots with strong interaction)
 A. F. Izmaylov, A. I. Goker, P. Nordlander, and B. Friedman, On universality and nonuniversality for a quantum dot in the Kondo regime, condmat/0605544
 M. Tolea and B. R. Bulka, Electronic transport through a quantum dot with a magnetic impurity using the equation of motion, condmat/0606057
 J. Foros, A. Brataas, G. E. W. Bauer, and Y. Tserkovnyak, Resistance noise in spin valves, condmat/0606131
 M. Pustilnik, E. G. Mishchenko, and O. A. Starykh, Generation of spin current by Coulomb drag, condmat/0606185 (Coulomb drag between two quantum wires in a magnetic field)
 I. Adagideli, G. E. W. Bauer, and B. I. Halperin, Detection of currentinduced spins by ferromagnetic contacts, condmat/0606193
 W. Wetzels, G. E. W. Bauer, and M. Grifoni, Exchange effects on electron transport through singleelectron spinvalve transistors, condmat/0608217
 A. Golub, Impact of Coulomb interaction and Kondo effect on transport in quantum dots, condmat/0609436
 L. Dell'Anna, A. Zazunov, R. Egger, and T. Martin, Josephson current through a quantum dot with spinorbit coupling, condmat/0609577
 J. Fransson and J.X. Zhu, Spin Dynamics in a Tunnel Junction between Ferromagnets, condmat/0609673
 C.Y. Tsau, D. Nghiem, R. Joynt, and J. W. Halley, Energy Level Statistics of Quantum Dots, condmat/0610095
 W. A. Coish and D. Loss, Exchangecontrolled singlespin rotations in quantum dots, condmat/0610443
 P. Stano and J. Fabian, Control of electron spin and orbital resonance in quantum dots through spinorbit interactions, condmat/0611228
 F. M. Souza, J. C. Egues, and A. P. Jauho, Quantum Dot as a SpinCurrent Diode, condmat/0611336 (with one ferromagnetic lead) P
 I. Weymann and J. Barnas, Cotunneling through quantum dots coupled to magnetic leads: zerobias anomaly for noncollinear magnetic configurations, condmat/0611447
 C. Karrasch, Transport Through Correlated Quantum Dots  A Functional Renormalization Group Approach, condmat/0612329 (linear response regime)
 T. Domanski, A. Donabidowicz, and K.I. Wysokinski, Influence of the pair coherence on the charge tunneling through a quantum dot connected to a superconducting lead, condmat/0612440 (SdotN structure)
 V. Koerting, P. Wölfle, and J. Paaske, Transconductance of a double quantum dot system in the Kondo regime, condmat/0612566 (two separately contacted quantum dots coupled by antiferromagnetic exchange interaction)
 J. FernandezRossier and R. Aguado, Single Electron Transport in electrically tunable nanomagnets, Phys. Rev. Lett. 98, 106805 (2007)
 A. Mitra and A. J. Millis, Coulomb Gas on the Keldysh Contour: AndersonYuvalHamann representation of the Nonequilibrium Two Level System, Phys. Rev. B 76, 085342 (2007) (renormalization group for a degenerate orbital with nonstandard coupling to a local pseudospin 1/2, under nonzero bias, highenergy states in the leads are integrated out, main focus on methodology of RG for nonequilibrium system) P
 D. Segal, D. R. Reichman, and A. J. Millis, Nonequilibrium quantum dissipation in spinfermion systems, Phys. Rev. B 76, 195316 (2007) (considering the reduced density operator of a spin coupled to two leads at different chemical potential) P
 D. Sztenkiel and R. Swirkowicz, Interference effects in a double quantum dot system with interdot Coulomb correlations, J. Phys.: Condens. Matter 19, 176202 (2007) (Green function formalism)
 F. J. Kaiser and S. Kohler, Shot noise in nonadiabatically driven nanoscale conductors, Annalen der Physik 16, 702 (2007) (Floquet approach within both Greenfunction and masterequation formalisms)
 B. Muralidharan and S. Datta, A Generic Model for Current Collapse in Spin Blockaded Transport, condmat/0702161
 B. Lassen and A. Wacker, Electron Transport through Nanosystems Driven by Coulomb Scattering, condmat/0703286
 C. Emary, D. Marcos, R. Aguado, and T. Brandes, Frequencydependent counting statistics in interacting nanoscale conductors, condmat/0703781 (using the nresolveddensitymatrix approach and assuming infinite bias)
 Y. Y. Wang, J. H. Jiang, and M. W. Wu, Reexamination of spin decoherence in semiconductor quantum dots from equationofmotion approach, arXiv:0704.0148 (detailed study of the various spin relaxation mechanisms)
 A. Nishino and N. Hatano, Resonance in an open quantum dot system with a Coulomb interaction: a Betheansatz approach, arXiv:0705.3994
 D. Herman, T. T. Ong, G. Usaj, H. Mathur, and H. U. Baranger, Level Spacings in Random Matrix Theory and Coulomb Blockade Peaks in Quantum Dots, arXiv:0707.1620
 E. Sela, H. S. Sim, Y. Oreg, M. E. Raikh, and F. von Oppen, Electron Pair Resonance in the Coulomb Blockade, arXiv:0707.2892 (timedependent perturbation theory)
 C.H. Chung, G. Zaránd, and P. Wölfle, Twostage Kondo effect in sidecoupled quantum dots: Renormalized perturbative scaling theory and Numerical Renormalization Group analysis, arXiv:0707.3498
 N. Sandschneider and W. Nolting, Spinpolarized tunneling currents through a ferromagnetic insulator between two metallic or superconducting leads, arXiv:0708.2881
 T. L. Schmidt, A. Komnik, and A. O. Gogolin, Full counting statistics of spin transfer through ultrasmall quantum dots, arXiv:0709.2779
 E. Bascones, V. Estevez, J. A. Trinidad, and A. H. MacDonald, Electronic correlations and disorder in transport through onedimensional nanoparticle arrays, arXiv:0709.3718; E. Bascones, J. A. Trinidad, V. Estevez, and A. H. MacDonald, Effect of the longrange interaction in transport through onedimensional nanoparticle arrays, arXiv:0709.3724
 D. Becker and D. Pfannkuche, Transport Through a SingleLevel Quantum Dot in the Cotunneling Regime: Increase of Differential Conductance Peaks by Spin Relaxation, arXiv:0710.1977
 F. Delgado and P. Hawrylak, Theory of electronic transport through a triple quantum dot in the presence of magnetic field, arXiv:0712.0624 (no electronelectron interaction on dot, magnetic field enters through Peierls factors)
 R. P. Hornberger, S. Koller, G. Begemann, A. Donarini, and M. Grifoni, Transport through a double quantum dot system with noncollinearly polarized leads, arXiv:0712.0757 (WangsnessBlochRedfield master equation)
 J. E. Birkholz and V. Meden, Spinorbit coupling effects in onedimensional ballistic quantum wires, J. Phys.: Condens. Matter 20, 085226 (2008)
 M. Governale, M. G. Pala, and J. König, Realtime diagrammatic approach to transport through interacting quantum dots with normal and superconducting leads, Phys. Rev. B 77, 134513 (2008), see also erratum
 J. Gao, Q. Sun, and X. C. Xie, Quantum coherence effect in spinpolarized transport through nanomagnets, J. Phys.: Condens. Matter 20, 415216 (2008) (tunneling through magnetic dot described using the full quantum master equation)
 N. A. Zimbovskaya, The electron transport through a quantum dot in the Coulomb blockade regime: Nonequilibrium Green's functions based model, Phys. Rev. B 78, 035331 (2008) (this works brings NEGF results for the step heights in line with master equation results)
 A. L. Chudnovskiy, J. Swiebodzinski, and A. Kamenev, SpinTorque Shot Noise in Magnetic Tunnel Junctions, Phys. Rev. Lett. 101, 066601 (2008) (derive stochastic LandauLifshitzGilbert equations for a free ferromagnetic layer in contact with a fixed one, use the Keldysh formalism)
 C. Flindt, T. Novotny, A. Braggio, M. Sassetti, and A.P. Jauho, Counting Statistics of NonMarkovian Quantum Stochastic Processes, arXiv:0801.0661 (master equation)
 C. L. Romano, G. E. Marques, L. Sanz, and A. M. Alcalde, Phonon modulation of the spinorbit interaction as a spin relaxation mechanism in quantum dots, arXiv:0801.1699
 J. J. Krich and B. I. Halperin, Spin polarized current generation from quantum dots without magnetic fields, arXiv:0801.2592 (due to spinorbit coupling, use randommatrix theory)
 M. Braun and G. Burkard, Nonadiabatic twoparameter charge and spin pumping in a quantum dot, arXiv:0801.4925
 J. Splettstoesser, M. Governale, and J. König, Adiabatic charge and spin pumping through quantum dots with ferromagnetic leads, arXiv:0802.0422
 V. V. Mkhitaryan and M. E. Raikh, Supergap anomalies in cotunneling between NS and between SS leads via a small quantum dot, arXiv:0802.0586 (normalsuperconducting and superconductingsuperconducting leads, timedependent perturbation theory in the tunneling amplitudes)
 F. M. Souza, A. P. Jauho, and J. C. Egues, Spinpolarized Current and Shot Noise in the Presence of Spinflip in a Quantum Dot, arXiv:0802.0982
 L. O. Baksmaty, C. Yannouleas, and U. Landman, Nonuniversal transmission phases through a quantum dot: An exactdiagonalization of the manybody transport problem, arXiv:0802.1064 (use a realspace wavefunction approach, the "entailed exact diagonalization" [references are given], related to the CI method)
 T. Brandes, Waiting Times and Noise in Single Particle Transport, arXiv:0802.2233
 J. Koch and K. Le Hur, Discontinuous currentphase relations in small 1D Josephson junction arrays, arXiv:0802.2351
 E. Khosravi, S. Kurth, G. Stefanucci, and E. K. U. Gross, The Role of Bound States in TimeDependent Quantum Transport, arXiv:0802.2516; E. Khosravi, G. Stefanucci, S. Kurth, and E. K. U. Gross, Bound States in TimeDependent Quantum Transport: Oscillations and Memory Effects in Current and Density, arXiv:0803.0914
 S. Weiss, J. Eckel, M. Thorwart, and R. Egger, Iterative realtime path integral approach to nonequilibrium quantum transport, arXiv:0802.3374
 M. Krawiec, Thermoelectric transport through a quantum dot coupled to a normal metal and BCS superconductor, arXiv:0803.0208
 B. Solis, M. L. Ladron de Guevara, and P. A. Orellana, Friedel phase discontinuity and bound states in the continuum in quantum dot systems, arXiv:0803.3573
 P. Wächter, V. Meden, and K. Schönhammer, The conductance of Luttinger liquid wires: towards experimental setups, arXiv:0804.4108
 S. Kirino, T. Fujii, J. Zhao, and K. Ueda, Timedependent DMRG Study on Quantum Dot under a Finite Bias Voltage, arXiv:0805.0218
 Y. Dubi and M. Di Ventra, Theory of nonequilibrium thermoelectric effects in nanoscale junctions, arXiv:0805.1415 (for noninteracting electrons, Lindblad equation) P
 T. Hecht, A. Weichselbaum, Y. Oreg, and J. von Delft, Interplay of mesoscopic and Kondo effects for transmission amplitude of fewlevel quantum dots, arXiv:0805.3145 (use NRG to calculate the dot Green function and from this the transmission amplitude, regime of small level width compared to level spacing, i.e., regime relevant for molecular junctions)
 D. Urban, J. König, and R. Fazio, CoulombInteraction Effects in Full Counting Statistics of a QuantumDot AharonovBohm Interferometer, arXiv:0805.3697 (master equation formalism on the Keldysh contour)
 J. Tailleur, J. Kurchan, and V. Lecomte, Mapping out of equilibrium into equilibrium in onedimensional transport models, arXiv:0809.0709, J. Phys. A (map several driving models onto isolated models showing detailed balance, also possible for some interacting problems; of general interest for nonequilibrium statistical physics)
 A. Levchenko and A. Kamenev, Coulomb drag in quantum circuits, arXiv:0809.1670 (two point contacts coupled by Coulomb interaction)
 P. Werner, T. Oka, and A. J. Millis, Diagrammatic Monte Carlo simulation of nonequilibrium systems, arXiv:0810.2345 (based on Keldysh formalism)
 V. Kashcheyevs, C. Karrasch, T. Hecht, A. Weichselbaum, V. Meden, and A. Schiller, A quantum criticality perspective on the charging of narrow quantumdot levels, arXiv:0810.2538
 V. Koerting, T. L. Schmidt, C. B. Doiron, B. Trauzettel, and C. Bruder, Transport properties of a superconducting singleelectron transistor coupled to a nanomechanical oscillator, arXiv:0810.5718
 Y. Dubi and M. Di Ventra, Thermospin effects in a quantum dot connected to ferromagnetic leads, arXiv:0811.3265
 H. Zhang, G.M. Zhang, and L. Yu, Spin transport properties of a quantum dot coupled to ferromagnetic leads with noncollinear magnetizations, arXiv:0811.3800 (using nonequilibrium KeldyshGreen functions)
 P. Stefanski, Tunnelling magnetoresistance anomalies of Coulomb blockaded quantum dot, arXiv:0812.1109
 P. Parida, S. Lakshmi, and S. K. Pati, Negative differential resistance in nanoscale transport in the Coulomb blockade regime, J. Phys.: Condens. Matter 21, 095301 (2009)
 S.H. Chen, C.R. Chang, J. Q. Xiao, and B. K. Nikolic, Spin and charge pumping in magnetic tunnel junctions with precessing magnetization: A nonequilibrium Green function approach, Phys. Rev. B 79, 054424 (2009)
 N. Winkler, M. Governale, and J. König, Diagrammatic realtime approach to adiabatic pumping through metallic singleelectron devices, Phys. Rev. B 79, 235309 (2009)
 S. Lindebaum, D. Urban, and J. König, Spininduced charge correlations in transport through interacting quantum dots with ferromagnetic leads, Phys. Rev. B 79, 245303 (2009) (full counting statistics)
 P. Zedler, G. Schaller, G. Kießlich, C. Emary, and T. Brandes, Weak coupling approximations in nonMarkovian Transport, Phys. Rev. B 80, 045309 (2009) (comparison of masterequation results with exact solution using Green functions)
 R. K. Kaul, D. Ullmo, G. Zarand, S. Chandrasekharan, and H. U. Baranger, Ground State and Excitations of Quantum Dots with "Magnetic Impurities", arXiv:0901.0016
 A. M. Lunde, A. De Martino, A. Schulz, R. Egger, and K. Flensberg, Electronelectron interaction effects in quantum point contacts, arXiv:0901.1183 (relevant for 0.7 anomaly)
 G. Benenti, G. Casati, T. Prosen, D. Rossini, and M. Znidaric, Charge and spin transport in strongly correlated 1D quantum systems driven far from equilibrium, arXiv:0901.2032 (two interacting 1D electronic systems, mapped onto spin models, Lindblad master equation with biased insertion/extraction of electrons at the boundaries described by Lindblad operators, find distinct ballistic and diffusive regimes, the latter with strong negative differential conductance) P
 T. Kwapinski, S. Kohler, and P. Hänggi, Discontinuous conductance of bichromatically acgated quantum wires, arXiv:0901.2452
 T. Domanski and A. Donabidowicz, Electron pair current through the correlated quantum dot, arXiv:0901.4248 (charge Kondo effect and pair tunneling)
 T. Birol and P. W. Brouwer, Spin torque from tunneling through impurities in a magnetic tunnel junction, arXiv:0902.1150
 Z. Ratiani and A. Mitra, 1/N expansion of the nonequilibrium infiniteU Anderson Model, arXiv:0902.1263 (slaveboson approach and Keldysh functional integral)
 J. Prachar and T. Novotny, Charge conservation breaking within generalized master equation description of electronic transport through dissipative double quantum dots, arXiv:0902.2382
 S.H. Ouyang, C.H. Lam, and J. Q. You, Shot noise in electron transport through a double quantum dot: A master equation approach, arXiv:0902.3085
 R. S. Whitney, P. Marconcini, and M. Macucci, Symmetry causes a huge conductance peak in double quantum dots, arXiv:0902.3099 (interference effect for mirrorsymmetric double quantum dot)
 C. Emary, Counting statistics of cotunneling electrons, arXiv:0902.3544
 U. Schroeter and E. Scheer, Transport Channels in a Double Junction  coherent coupling changes the picture, arXiv:0902.3545
 G. Cohen, V. Fleurov, and K. Kikoin, Timedependent single electron tunneling through a shuttling nanoisland, arXiv:0903.1964 (between halfmetallic ferromagnetic leads)
 F. Elste, S. M. Girvin, and A. A. Clerk, Quantum Noise Interference and Backaction Cooling in Cavity Nanomechanics, arXiv:0903.2242 (coupled electrodynamical and mechanical resonators, propose that the mechanical resonator can be cooled down to arbitrarily low temperatures)
 F. HeidrichMeisner, A. E. Feiguin, and E. Dagotto, Realtime simulations of nonequilibrium transport in the singleimpurity Anderson model, arXiv:0903.2414 (employ timedependent DMRG)
 P. Fritsch and S. Kehrein, NonEquilibrium Kondo Model with Voltage Bias in a Magnetic Field, arXiv:0903.2865
 V. Gudmundsson, C. Gainar, C.S. Tang, V. Moldoveanu, and A. Manolescu, Timedependent transport via the generalized master equation through a finite quantum wire with an embedded subsystem, arXiv:0903.3491
 M. Leijnse, M. R. Wegewijs, and M. H. Hettler, Pairtunneling resonance in the singleelectron transport regime, arXiv:0903.3559 (produces a peak in the second derivative of the current at fourth order in tunneling amplitudes, but shows a slope in the (V_{g},V)diagram identical to that of sequential tunneling; not the mechanism discussed by Koch et al.)
 R. Steinigeweg, J. Gemmer, H.P. Breuer, and H.J. Schmidt, Projection operator approach to transport in complex singleparticle quantum systems, arXiv:0903.5427 (timeconvolutionless master equation with judicious choice of projection operator, for complex quasi1D systems, the approach is applied to a singleparticle model to facilitate comparison with numerical results)
 S. M. Huang, Y. Tokura, H. Akimoto, K. Kono, J. J. Lin, S. Tarucha, and K. Ono, Spin bottleneck in resonant tunneling through double quantum dots with different Zeeman splittings, arXiv:0904.1046 (different gfactors, effect of misalignment of levels)
 F. Cavaliere, M. Governale, and J. König, Nonadiabatic pumping through interacting quantum dots, arXiv:0904.1687
 J. N. Pedersen and A. Wacker, Modeling of cotunneling in quantum dot systems, arXiv:0904.3249, Physica E 42, 595 (2010)
 J. Danon and Yu. V. Nazarov, Pauli Spin Blockade in the Presence of Strong SpinOrbit Coupling, arXiv:0905.1818
 Ya. I. Rodionov, I. S. Burmistrov, and A. S. Ioselevich, Charge relaxation resistance in the Coulomb blockade problem, arXiv:0905.2688
 D. Schuricht and H. Schoeller, Dynamical spinspin correlation functions in the Kondo model out of equilibrium, arXiv:0905.3095 P
 T. Ulbricht and P. Schmitteckert, Is spincharge separation observable in a transport experiment?, arXiv:0905.4743 (the authors claim yes)
 R. S. Whitney, H. Schomerus, and M. Kopp, Semiclassical transport in nearly symmetric quantum dots I: internal symmetry breaking, arXiv:0906.0891; Semiclassical transport in nearly symmetric quantum dots II: symmetrybreaking due to asymmetric leads, arXiv:0906.0892
 A. R. Hernández, F. A. Pinheiro, C. H. Lewenkopf, and E. R. Mucciolo, Adiabatic Charge Pumping through Quantum Dots in the Coulomb Blockade Regime, arXiv:0907.0038
 T. Ojanen, F. C. Gethmann, and F. von Oppen, Electromechanical instability in vibrating quantum dots with effectively negative charging energy, arXiv:0907.3041
 S. Rotter and Y. Alhassid, The strongcoupling limit of a Kondo spin coupled to a mesoscopic quantum dot: effective Hamiltonian in the presence of exchange correlations, arXiv:0907.5297 (a large, chaotic quantum dot with a Kondo spin)
 K. Schönhammer, Full counting statistics for noninteracting fermions: Exact finite temperature results and generalized long time approximation, arXiv:0908.1892 (1D tightbinding model and quantum dot with 1D leads)
 X. Wang and A. J. Millis, Quantum criticality and nonFermiliquid behavior in a two level, two lead quantum dot, arXiv:0909.3120 (QMC, also analytical results)
 T. Karzig and F. von Oppen, Signatures of critical full counting statistics in a quantumdot chain, arXiv:0909.4470
 M. Pletyukhov, D. Schuricht, and H. Schoeller, Relaxation vs decoherence: Spin and current dynamics in the anisotropic Kondo model at finite bias and magnetic field, arXiv:0910.0119
 M. W. Y. Tu, M.T. Lee, and W.M. Zhang, Exact Master Equation and NonMarkovian Decoherence for Quantum Dot Quantum Computing, arXiv:0910.0302 (based on the "exact master equation" formalism developed by Tu and Zhang); J. Jin, M. W. Y. Tu, W.M. Zhang, and Y. Yan, A nonequilibrium theory for transient transport dynamics in nanostructures via the FeynmanVernon influence functional approach, arXiv:0910.1675
 O. EntinWohlman, A. Aharony, Y. Tokura, and Y. Avishai, Spinpolarized electric currents in quantum transport, arXiv:0911.1347
 S. Smirnov, D. Bercioux, M. Grifoni, and K. Richter, Charge ratchet from spin flip: spacetime symmetry paradox, arXiv:0911.3273 (a ratchet effect on charge transport due to spinorbit coupling, even though the periodic potential is symmetric)
 H. Schmidt and P. Wölfle, Transport through a Kondo quantum dot: Functional RG approach, arXiv:0911.4383
 C. Karrasch, S. Andergassen, M. Pletyukhov, D. Schuricht, L. Borda, V. Meden, and H. Schoeller, Nonequilibrium current and relaxation dynamics of a chargefluctuating quantum dot, arXiv:0911.5496
 S. G. Jakobs, M. Pletyukhov, and H. Schoeller, Nonequilibrium functional RG with frequency dependent vertex function  a study of the single impurity Anderson model, arXiv:0911.5502
 S. Bandopadhyay and M. Hentschel, Anderson orthogonality catastrophe in realistic quantum dots, arXiv:0912.1525 (parabolic quantum dot)
 I. Weymann, The tunnel magnetoresistance in chains of quantum dots weakly coupled to external leads, arXiv:0912.1948 (diagrammatics on Keldysh contour)
 O. A. Tretiakov and A. Mitra, ac and dcdriven noise and IV characteristics of magnetic nanostructures, Phys. Rev. B 81, 024416 (2010) (Keldysh formalism, macrospin in ferromagnetic layer of N/F/N junction)
 M. A. Laakso, T. T. Heikkilä, and Y. V. Nazarov, Fully Overheated SingleElectron Transistor, Phys. Rev. Lett. 104, 196805 (2010) (quantum dot coupled to phonons, electronic excitations may relax with excitation of phonons, thereby heating the dot; master equation with counting fields)
 C. P. Moca, I. Weymann, and G. Zaránd, Theory of frequencydependent spin current noise through correlated quantum dots, Phys. Rev. B 81, 241305(R) (2010)
 A. Donarini, G. Begemann, and M. Grifoni, Interference effects in the Coulomb blockade regime: Current blocking and spin preparation in symmetric nanojunctions, Phys. Rev. B 82, 125451 (2010)
 S. Koller, M. Leijnse, M. R. Wegewijs, and M. Grifoni, Densityoperator approaches to transport through interacting quantum dots: simplifications in fourth order perturbation theory, Phys. Rev. B 82, 235307 (2010) (with a comparison of various masterequation approaches) P
 V. Moldoveanu, A. Manolescu, C.S. Tang, and V. Gudmundsson, Coulomb interaction and transient charging of excited states in open nanosystems, arXiv:1001.0047 (focus on the transient currents, employ the quantum master equation)
 I. Weymann and J. Barnas, Kondo effect in a quantum dot coupled to ferromagnetic leads and sidecoupled to a nonmagnetic reservoir, arXiv:1001.2475, Phys. Rev. B
 J. Splettstoesser, M. Governale, J. König, and M. Büttiker, Charge and spin dynamics in interacting quantum dots, arXiv:1001.2664
 R. Van Roermund, S.Y. Shiau, and M. Lavagna, Anderson Model out of equilibrium: decoherence effects in transport through a quantum dot, arXiv:1001.3873
 M. Lee, T. Jonckheere, and T. Martin, Josephson effect through a multilevel dot near a singlettriplet transition, arXiv:1001.3914
 I. C. Fulga, F. Hassler, and C. W. J. Beenakker, Nonzero temperature effects on antibunched photons emitted by a quantum point contact out of equilibrium, arXiv:1001.4389
 C.S. Tang, K. Torfason, and V. Gudmundsson, Magnetotransport in a timemodulated double quantum point contact system, arXiv:1002.1551 (LippmannSchwinger scattering theory)
 V. Gudmundsson, C.S. Tang, O. Jonasson, V. Moldoveanu, and A. Manolescu, Correlated timedependent transport through a 2D quantum structure, arXiv:1002.1556 (quantum master equation)
 V. Gudmundsson, C.S. Tang, C. M. Gainar, V. Moldoveanu, and A. Manolescu, Timedependent magnetotransport in semiconductor nanostructures via the generalized master equation, arXiv:1002.1579 (quantum master equation)
 C.H. Chung, K.V.P. Latha, K. Le Hur, M. Vojta, and P. Wölfle, Tunable KondoLuttinger systems far from equilibrium, arXiv:1002.1757 (quantum dot coupled to strictly onedimensional leads)
 C. Flindt, T. Novotny, A. Braggio, and A.P. Jauho, Counting statistics of transport through Coulomb blockade nanostructures: highorder cumulants and nonMarkovian effects, arXiv:1002.4506 (nonMarkovian quantum master equation, use superoperator notation)
 A. Braggio, M. Governale, M. G. Pala, and J. König, Superconducting proximity effect in interacting quantum dots revealed by shot noise, arXiv:1002.4629 (SdotN junction)
 F. Elste, D. R. Reichman, and A. J. Millis, Effect of a Coulombic dotlead coupling on the dynamics of a quantum dot, arXiv:1003.0845
 C. A. Balseiro, Gonzalo Usaj, and M. J. Sanchez, Out of equilibrium transport through an Anderson impurity: Probing scaling laws within the equation of motion approach, arXiv:1003.3847 (based on MeirWingreen formula)
 T. A. Costi and V. Zlatic, Thermoelectric transport through strongly correlated quantum dots, arXiv:1004.1519 (using a renormalizationgroup approach, relevance of the Kondo effect)
 D. Marcos, C. Emary, T. Brandes, and R. Aguado, Finitefrequency counting statistics of electron transport: Markovian Theory, arXiv:1004.1572 (quantum master equation, full counting statistics)
 N. B. Kopnin, Y. M. Galperin, and V. M. Vinokur, Coulombenhanced resonance transmission of quantum SINIS junctions, arXiv:1004.5288 (charging of Andreev bound states can preserve the resonanttunneling condition)
 P. Dutt, J. Koch, J. E. Han, and K. Le Hur, Effective Equilibrium Description of Nonequilibrium Quantum Transport I: Fundamentals and Methodology, arXiv:1004.5591 (based on effectivedensitymatrix approach of Hershfield) P; Effective Equilibrium Description of Nonequilibrium Quantum Transport II: Perturbation Theory for Interacting Models, arXiv:1101.1526
 H. D. Cornean, C. Gianesello, and V. Zagrebnov, A partitionfree approach to transient and steadystate charge currents, arXiv:1005.3914
 H. Dai and D. K. Morr, Nonequilibrium Transport in dissipative onedimensional Nanostructures, arXiv:1006.1893 (Keldysh nonequilibrium Green functions, Coulomb repulsion treated perturbatively to second order, also include disordered onsite energies) P
 J. Paaske, A. Andersen, and K. Flensberg, Exchange cotunneling through quantum dots with spinorbit coupling, arXiv:1006.2371 (start from quantum dot with charging energy, applied magnetic field, and spinorbit coupling, reduce this to Andersontype and then Kondotype models, discuss effect of spinorbit coupling)
 C. Chamon, E. R. Mucciolo, L. Arrachea, and R. C. Capaz, Heat pumping in nanomechanical systems, arXiv:1006.4874
 P. Wang and S. Kehrein, Flow Equation Calculation of Transient and Steady State Currents in the Anderson Impurity Model, arXiv:1006.5203 (beyond linear response theory, use flow equation/infinitesimal unitary transformations)
 J. Hong, Green's function technique for a twoelectrode mesoscopic system under bias, arXiv:1007.0615 (calculation of the local retarded Green function for the MeirWingreen formula in superoperator formalism)
 H. Ness, L. K. Dash, and R. W. Godby, Generalization and applicability of the Landauer formula for nonequilibrium current in the presence of interactions, arXiv:1007.1104
 K. R. Patton, Theory of correlated electron transport and inelastic tunneling spectroscopy, arXiv:1007.1238 (derivation of the tunneling Hamiltonian, which contains a correlatedtunneling term)
 L. Mühlbacher, D. F. Urban, and A. Komnik, Anderson impurity model in nonequilibrium: analytical results versus quantum Monte Carlo data, arXiv:1007.1793 (with two leads, MC simulation vs. perturbation theory)
 S. Y. Mueller, V. Koerting, D. Schuricht, and S. Andergassen, Spin and orbital fluctuations in nonequilibrium transport through quantum dots: A renormalisationgroup analysis, arXiv:1007.3605
 S. A. Bender, Y. Tserkovnyak, and A. Brataas, Microwave Detection by a Magnetic SingleElectron Transistor, arXiv:1007.4966
 C. P. Moca, P. Simon, C. H. Chung, and G. Zarand, Nonequilibrium frequencydependent noise through a quantum dot: A real time functional renormalization group approach, arXiv:1008.0150
 B. Sothmann, J. König, and A. Kadigrobov, Influence of spin waves on transport through a quantumdot spin valve, arXiv:1008.0948 (consider one bosonic spinwave mode in each lead) P
 D. Segal, A. J. Millis, and D. R. Reichman, Numerically exact path integral simulation of nonequilibrium quantum transport and dissipation, arXiv:1008.5200 (numerical approach related to S. Weiss, J. Eckel, M. Thorwart, and R. Egger, Phys. Rev. B 77, 195316 (2008))
 L. Tosi, P. RouraBas, A. M. Llois, and L. O. Manuel, Effects of vertex corrections on diagrammatic approximations applied to the study of transport through a quantum dot, arXiv:1009.1157 (Anderson model with two leads, linear response, conductance from local spectral function at the dot)
 K. Flensberg, Tunneling characteristic of a chain of Majorana bound states, arXiv:1009.3533 (Majorana bound states at randomnessinduced boundaries between topologically trivial and nontrivial superconductors)
 M. Tsaousidou and G. P. Triberis, Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency, J. Phys.: Condens. Matter 22, 355304 (2010)
 M. Baumgärtel, M. Hell, S. Das, and M. R. Wegewijs, Spin quadrupoletronics: moving spin anisotropy around, arXiv:1009.5874 (spin anisotropy, quantified by the average of the quadropole tensor, can be transfered to a quantum dot)
 B. Sothmann and J. König, Transport through quantumdot spin valves containing magnetic impurities, arXiv:1009.5901 (two models: local spin in dot or in barrier, full master equation in sequentialtunneling approximation) P
 G. Weick, F. von Oppen, and F. Pistolesi, Euler buckling instability and enhanced current blockade in suspended singleelectron transistors, arXiv:1010.0800
 F. Elste, D. R. Reichman, and A. J. Millis, Transport through a quantum dot with excitonic dotlead coupling, arXiv:1010.2251 (excitonic coupling to image charges, leads are Luttinger liquids)
 A. Mitra and A. Rosch, Current induced decoherence in the multichannel Kondo problem, arXiv:1010.2404
 S. Andergassen, M. Pletyukhov, D. Schuricht, H. Schoeller, and L. Borda, A renormalizationgroup analysis of the interacting resonant level model at finite bias: Generic analytic study of static properties and quench dynamics, arXiv:1010.5666
 O. Karlström, J. N. Pedersen, P. Samuelsson, and A. Wacker, Correlation and InterferenceInduced Suppression and Enhancement of Current in a twolevel Quantum Dot, arXiv:1011.4182 (2ndorder von Neumann approach [relation to perturbative master equation is briefly discussed], also compared to NEGF)
 S. Grap, S. Andergassen, J. Paaske, and V. Meden, Spinorbit interaction and asymmetry effects on Kondo ridges at finite magnetic field, arXiv:1011.5916 (functional RG, leads integrated out, giving Γ's)
 S. Walter and B. Trauzettel, Momentum and position detection in nanoelectromechanical systems beyond Born and Markov approximations, arXiv:1012.4649 (Keldysh formalism)
 M. Leijnse and K. Flensberg, Majorana bound state spectroscopy via a Coulombblockaded quantum dot, arXiv:1012.4650 (rate equations)
 M. Znidaric, Quantum transport in 1d systems via a master equation approach: numerics and an exact solution, arXiv:1012.4684 (timedependent DMRG for the solution of the stationary Lindblad master equation for quantum wires)
 B. Horváth, B. Lazarovits, and G. Zaránd, Fluctuationexchange approximation theory of the nonequilibrium singlettriplet transition, arXiv:1012.5326 (Keldysh Green functions with FLEX, for tunneling through a quantum dot)
 J. Y. Luo, H. J. Jiao, G. Cen, X.L. He, and C. Wang, Full Counting statistics of level renormalization in electron transport through double quantum dots, J. Phys.: Condens. Matter 23, 145301 (2011) (quantum master equation, sequentialtunneling approximation)
 S.P. Chao and G. Palacios, Nonequilibrium transport in the Anderson model of a biased quantum dot: Scattering Bethe ansatz phenomenology, Phys. Rev. B 83, 195314 (2011)
 F. Elste, D. Reichman, and A. Millis, Transport through a quantum dot with two parallel Luttinger liquid leads, Phys. Rev. B 83, 245405 (2011) ("*" geometry)
 J. Hong, Kondo dynamics of quasiparticle tunneling in a tworeservoir Anderson model, J. Phys.: Condens. Matter 23, 275602 (2011)
 K. A. Matveev and A. V. Andreev, Equilibration of Luttinger Liquid and Conductance of Quantum Wires, Phys. Rev. Lett. 107, 056402 (2011) (corrections beyond the Luttinger liquid approximation)
 P. RouraBas, L. Tosi, A. A. Aligia, and K. Hallberg, Interplay between quantum interference and Kondo effects in nonequilibrium transport through nanoscopic systems, Phys. Rev. B 84, 073406 (2011) (short paper, NCA, how is the current obtained?)
 S. Smirnov and M. Grifoni, Slaveboson Keldysh field theory for the Kondo effect in quantum dots, Phys. Rev. B 84, 125303 (2011) (local constraint is implemented by exact projection, bosonic action is truncated after bilinear term); Kondo effect in interacting nanoscopic systems: Keldysh field integral theory, arXiv:1109.1540
 D. A. Lovey, S. S. Gomez, and R. H. Romero, Transmission through a quantum dot molecule embedded in an AharonovBohm interferometer, J. Phys.: Condens. Matter 23, 425303 (2011) (four quantum dots in a ring with tunable tunneling along one diameter, no interactions, Landauer formula)
 T. Karzig, G. Refael, L. I. Glazman, and F. von Oppen, Energy Partitioning of Tunneling Currents into Luttinger Liquids, Phys. Rev. Lett. 107, 176403 (2011)
 A. Golub, I. Kuzmenko, and Y. Avishai, Kondo Correlations and Majorana Bound States in a Metal to QuantumDot to TopologicalSuperconductor Junction, Phys. Rev. Lett. 107, 176802 (2011)
 D. Breyel and A. Komnik, Nonequilibrium transport properties of a double quantum dot in the Kondo regime, Phys. Rev. B 84, 155305 (2011)
 B. M. Andersen, K. Flensberg, V. Koerting, and J. Paaske, Nonequilibrium Transport through a Spinful quantum Dot with Superconducting Leads, Phys. Rev. Lett. 107, 256802 (2011) (NEGF)
 D. W. H. Swenson, T. Levy, G. Cohen, E. Rabani, and W. H. Miller, Application of a semiclassical model for the secondquantized manyelectron Hamiltonian to nonequilibrium quantum transport: The resonant level model, arXiv:1103.4405 (interesting semiclassical approach based on approximate expression for matrix elements in terms of actionangle variables; for noninteracting electron system)
 Y. Li, M. B. A. Jalil, and S. G. Tan, Nonequilibrium Keldysh Formalism for Interacting Leads  Application to Quantum Dot Transport Driven by Spin Bias, arXiv:1103.4920
 C. LópezMonís, C. Emary, G. Kiesslich, G. Platero, and T. Brandes, LimitCycles and Chaos in the Current Through a Quantum Dot, arXiv:1104.3995 (based on Ehrenfest equations of motion, truncated in meanfield spirit, find periodic and chaotic solutions of the resulting nonlinear system of differential equations) P
 V. Moldoveanu, H. D. Cornean, and C.A. Pillet, Nonequilibrium steadystates for interacting open systems: exact results, arXiv:1104.5399 (proof existence of steady state under certain weak conditions, Greenfunction approach)
 H. D. Cornean and V. Moldoveanu, On the cotunneling regime of interacting quantum dots, arXiv:1104.5412 (rigorous results for the current when the coupling to the leads is suddenly switched on) P
 J. Jin, W.M. Zhang, X.Q. Li, and Y.J. Yan, Cotunneling current noise spectrum through noninteracting systems: An exact nresolved master equation approach, arXiv:1105.0136
 E. Gull, D. R. Reichman, and A. J. Millis, Numerically Exact Long Time Behavior of Nonequilibrium Quantum Impurity Models, arXiv:1105.1175 (corrections to the noncrossing approximation are evaluated by Monte Carlo simulations)
 M. Schubotz and T. Brandes, Random backaction in tunneling of single electrons through nanostructures, arXiv:1105.4422
 M. Tahir and A. MacKinnon, Timedependent transport via a quantum shuttle, arXiv:1105.5614 (NEGF)
 A. Dhar, K. Saito, and P. Hänggi, Nonequilibrium density matrix description of steady state quantum transport, arXiv:1106.3207 (exact but restricted to completely bilinear Hamiltonians)
 F. W. Jayatilaka, M. R. Galpin, and D. E. Logan, Twochannel Kondo physics in tunnelcoupled double quantum dots, arXiv:1106.5450
 A.M. Uimonen, E. Khosravi, G. Stefanucci, S. Kurth, R. van Leeuwen, and E. K. U. Gross, Realtime switching between multiple steadystates in quantum transport, arXiv:1106.5631
 B. Hiltscher, M. Governale, J. Splettstoesser, and J. König, Adiabatic pumping in a doubledot Cooper pair beam splitter, arXiv:1107.4236
 C. P. Moca, I. Weymann, and G. Zarand, Theory of a.c. spin current noise and spin conductance through a quantum dot in the Kondo regime I: The equilibrium case, arXiv:1107.4265
 P. Trocha and J. Barnas, Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena, arXiv:1108.2422 (linear response, Green function approach, HartreeFock approximation)
 A. Zazunov, A. Levy Yeyati, and R. Egger, Coulomb blockade of Majorana fermion induced transport, arXiv:1108.4308 (topological superconductor dot with Majorana bound states at contacts, Keldysh formalism) P
 A. Rahmani, C.Y. Hou, A. Feiguin, M. Oshikawa, C. Chamon, and I. Affleck, A general method for calculating the universal conductance of stronglycorrelated junctions of multiple quantum wires, arXiv:1108.4418 (linear response, zero temperature, based on boundary conformal field theory)
 K. Torfason, A. Manolescu, V. Molodoveanu, and V. Gudmundsson, Generalized Master equation approach to mesoscopic timedependent transport, arXiv:1109.2301 (timedependent coupling to leads, master equation is numerically integrated)
 M. Nita, D. C. Marinescu, B. Ostahie, A. Manolescu, and V. Gudmundsson, Nonadiabatic generation of spin currents in a quantum ring with Rashba and Dresselhaus spinorbit interactions, arXiv:1109.2572
 A. Levchenko, T. Micklitz, Z. Ristivojevic, and K. A. Matveev, Interaction effects on thermal transport in quantum wires, arXiv:1109.3657 (weak electronelectron interaction)
 W. A. Coish and F. Qassemi, Leakagecurrent lineshapes from inelastic cotunneling in the Pauli spin blockade regime, arXiv:1109.4445
 M. Imran, B. Tariq, M. Tahir, and K. Sabeeh, Electron transport through a coupled double dot molecule: role of interdot coupling, phononic and dissipative effects, arXiv:1109.4477 (MeirWingreen formula, no electronelectron interaction, first treat case of no electronphonon interaction, then with electronphonon interaction at the meanfield level)
 H. Soller and A. Komnik, Hamiltonian approach to the charge transfer statistics of Kondo quantum dots contacted by a normal metal and a superconductor, arXiv:1109.4520 (full counting statistics)
 V. Gudmundsson, O. Jonasson, C.S. Tang, H.S. Goan, and A. Manolescu, Timedependent transport of electrons through a photon cavity, arXiv:1109.4728 (with Coulomb interaction, nondiagonal master equation with memory kernel, to second order in the tunneling)
 S. Lindebaum and J. König, Theory of transport through noncollinear singleelectron spinvalve transistors, arXiv:1109.5800 (magnetization in ferromagnetic leads is noncollinear; quantum master equation, sequential tunneling approximation for the stationary state)
 N. Bode, S. V. Kusminskiy, R. Egger, and F. von Oppen, Currentinduced forces in mesoscopic systems: a scattering matrix approach, arXiv:1109.6043 (long paper, unified theory for nanoelectromechanical systems)
 S. Koller, J. Paaske, and M. Grifoni, Sources of negative tunneling magnetoresistance in multilevel quantum dots with ferromagnetic contacts, arXiv:1109.6599
 A. A. Aligia, Nonequilibrium conductance of a nanodevice for small bias voltage, arXiv:1110.0816 (NEGF, mainly linear response)
 M. Dierl, P. Maass, and M. Einax, Classical Driven Transport in Open Systems with Particle Interactions and General Couplings to Reservoirs, arXiv:1110.2198 (1D chains, modelbased timedependent DFT)
 P. Zedler, C. Emary, T. Brandes, and T. Novotny, Noise calculations within the secondorder von Neumann approach, arXiv:1110.3253 (master equation)
 J. Li, J. Jin, X.Q. Li, and Y.J. Yan, Improved master equation approach to quantum transport: From Born to selfconsistent Born approximation, arXiv:1110.4417 (based on NakajimaZwanzig master equation, "Born approximation" here means the sequentialtunneling approximation)
 B. Muralidharan and M. Grifoni, Nanocaloritronic performance analysis of an interacting quantum dot thermoelectric system, arXiv:1110.4537
 A. Croy, U. Saalmann, A. R. Hernández, and C. H. Lewenkopf, Nonadiabatic Electron Pumping through Interacting Quantum Dots, arXiv:1110.5298 (Greenfunction equationofmotion approach using auxiliarymode expansion for the Fermi function)
 R. Zitko, J. S. Lim, R. Lopez, J. Martinek, and P. Simon, Tunable Kondo effect in double quantum dot coupled to ferromagnetic contacts, arXiv:1110.5819
 C. Eltschka and J. Siewert, Evenodd effect in the thermopower and strongly enhanced thermoelectric efficiency for superconducting singleelectron transistors, arXiv:1111.2629 (NSN structure)
 K. Liu, K. Xia, and G. E. W. Bauer, Shot noise in magnetic tunnel junctions from first principles, arXiv:1111.2681 (Fe/MgO/Fe)
 L. D. ContrerasPulido, J. Splettstoesser, M. Governale, J. König, and M. Büttiker, Time scales in the dynamics of an interacting quantum dot, arXiv:1111.4135 (a single reservoir; charge and spin relaxation times and a third time scale related to twoparticle processes)
 P. Myöhänen, R. Tuovinen, T. Korhonen, G. Stefanucci, and R. van Leeuwen, Image charge dynamics in timedependent quantum transport, arXiv:1111.6104 (important effects of image charges, dot with two interacting orbitals, leads are onedimensional chains, NEGF using the embedded KadanoffBaym method developed by some of the authors)
 D. M. Kennes, S. G. Jakobs, C. Karrasch, and V. Meden, A renormalization group approach to time dependent transport through correlated quantum dots, arXiv:1111.6982 (Keldysh NEGF with MeirWingreen type current expression and realtime fRG as approximation)
 K. H. Bennemann, Spin Dependent Thermoelectric Currents of Tunnel Junctions, Small Rings and Quantum Dots: Onsager Theory, arXiv:1112.1379 (review on transport in systems with reduced dimensions, emphasis on linear response, mostly own works)
 E. G. Kavousanaki and G. Burkard, Signatures of spin blockade in the optical response of a charged quantum dot, arXiv:1112.5596
 A. Oguri and Y. Tanaka, Transport through a single Anderson impurity coupled to one normal and two superconducting leads, arXiv:1112.6053 (crossover between Kondo and Josephson/Andreev physics)
 H. Ness and L. K. Dash, Nonequilibrium Charge Susceptibility and Dynamical Conductance: Identification of Scattering Processes in Quantum Transport, Phys. Rev. Lett. 108, 126401 (2012) (conceptionally important extension of charge susceptibility to nonequilibrium situation for junstions)
 M. Busl and G. Platero, Triple quantum dots as charge rectifiers, J. Phys.: Condens. Matter 24, 154001 (2012) (due to destructive interference)
 P. Stano, J. Fabian, and P. Jacquod, Nonlinear spin to charge conversion in mesoscopic structures, arXiv:1201.0249
 W. Lai, Y. Cao, and Z. Ma, Currentoscillator correlation and Fano factor spectrum of quantum shuttle with finite bias voltage and temperature, J. Phys.: Condens. Matter 24, 175301 (2012) (master equation, various regimes)
 D. Nandi, A. D. K. Finck, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Exciton condensation and perfect Coulomb drag, Nature 488, 481 (2012) (interlayer excitons moving without dissipation); S. M. Girvin, Quantum physics: Electrons in perfect drag, Nature 488, 464 (2012)
 A. MartínRodero and A. Levy Yeyati, The Andreev states of a superconducting quantum dot: mean field vs exact numerical results, J. Phys.: Condens. Matter 24, 385302 (2012) (despite the title concerned with normal quantum dot with superconducting leads)
 G. A. Skorobagatko, S. I. Kulinich, I. V. Krive, R. I. Shekhter, and M. Jonson, Magnetopolaronic effects in electron transport through a singlelevel vibrating quantum dot, Low Temp. Phys. 37, 1032 (2011) (without electronelectron interaction, dotlead hopping couples to a vibronic mode, LandauerBüttiker approach)
 A. A. Dzhioev and D. S. Kosov, Nonequilibrium perturbation theory in LiouvilleFock space for inelastic electron transport, arXiv:1201.1230 (inelastic charge transport through a quantum dot, method related to Lindblad and Keldysh NEGF approaches)
 I. A. Sadovskyy, G. B. Lesovik, G. Blatter, T. Jonckheere, and T. Martin, Andreev quantum dot with several conducting channels, arXiv:1201.2831 (a quantum dot in a gap in a superconducting ring pierced by magnetic flux)
 A. G. Moghaddam, M. Governale, and J. König, Driven superconducting proximity effect in interacting quantum dots, arXiv:1201.5032 (timedependent tunneling between dot and superconducting lead)
 D. J. Luitz, F. F. Assaad, T. Novotny, C. Karrasch, and V. Meden, Understanding the Josephson current through a Kondocorrelated quantum dot, arXiv:1201.5117 (QMC, linear conductance and dc Josephson effect)
 A. Croy and U. Saalmann, Nonadiabatic Rectification and Current Reversal in Electron Pumps, arXiv:1201.6333 (NEGF and auxiliarymode expansion)
 A. V. Kretinin, H. Shtrikman, and D. Mahalu, Universal lineshape of the Kondo zerobias anomaly in a quantum dot, arXiv:1201.6470
 K. Torfason, A. Manolescu, V. Molodoveanu, and V. Gudmundsson, Excitation of collective modes in a quantum flute, arXiv:1202.0566 (master equation for short wire)
 H. Ness and L. K. Dash, Manybody current formula and current conservation for nonequilibrium fully interacting nanojunctions, arXiv:1202.3393 (NEGF, methodological development beyond Meir/Wingreen/Jauho)
 V. Gudmundsson, O. Jonasson, T. Arnold, C.S. Tang, H.S. Goan, and A. Manolescu, Stepwise introduction of model complexity in a generalized master equation approach to timedependent transport, arXiv:1203.3048 (electronic system in photonic cavity)
 T. Can, H. Dai, and D. K. Morr, Current Eigenmodes and Dephasing in Nanoscopic Quantum Networks, arXiv:1203.3198
 J. Li, T. C. A. Yeung, and C. H. Kam, Influence of electron scatterings on thermoelectric effect, arXiv:1203.5562
 S. Ajisaka, F. Barra, C. MejiaMonasterio, and T. Prosen, Nonequlibrium particle and energy currents in quantum chains connected to mesoscopic Fermi reservoirs, arXiv:1204.1321 (the relaxation of the mesoscopic reservoirs is included explicitly by a Lindblad equation)
 D. M. Kennes and V. Meden, Quench dynamics of correlated quantum dots, arXiv:1204.2100
 A. Croy and A. Eisfeld, Dynamics of a nanoscale rotor driven by singleelectron tunneling, arXiv:1204.5918
 C. P. Orth, D. F. Urban, and A. Komnik, Finite frequency noise properties of the nonequilibrium Anderson impurity model, arXiv:1205.0876 (Greenfunction approach, diagrammatic perturbation theory in U, for small and, using partial resummation, intermediate U)
 J. E. Han, A. Dirks, and T. Pruschke, Imaginarytime quantum manybody theory out of equilibrium I: Formal equivalence to Keldysh realtime theory and calculation of static properties, arXiv:1205.1816 P; A. Dirks, J. E. Han, M. Jarrell, and T. Pruschke, Imaginarytime quantum manybody theory out of equilibrium II: Analytic continuation of dynamic observables and transport properties, arXiv:1205.1817 P
 D. Becker, S. Weiss, M. Thorwart, and D. Pfannkuche, Nonequilibrium quantum dynamics of the magnetic Anderson model, arXiv:1205.2462 (method: iterative summation of realtime path integrals)
 J. Splettstoesser, M. Governale, and J. König, Tunnelinginduced renormalization in interacting quantum dots, arXiv:1205.4913 (renormalization of system parameters by tunneling processes, perturbative analysis)
 S. Lindebaum and J. Köonig, Current fluctuations of noncollinear singleelectron spinvalve transistors, arXiv:1206.0954 (Anderson impurity coupled to two leads with not collinear magnetization, nondiagonal master equation in sequentialtunneling approximation)
 D. S. Kosov, T. Prosen, and B. Zunkovic, Markovian kinetic equation approach to electron transport through quantum dot coupled to superconducting leads, arXiv:1206.3450 (Anderson impurity model, BornMarkov approximation, Lindblad equation to second order, complication lies in calculating the bath correlation functions)
 K. Mosshammer, G. Kiesslich, and T. Brandes, Transport and semiclassical dynamics of coupled quantum dots interacting with a local magnetic moment, arXiv:1206.5994 (electron spin coupled to a large local spin, which is treated semiclassical by Blochtype equation, Lindblad equation, only at infinite bias)
 M. Leijnse and K. Flensberg, Parity qubits and poor man's Majorana bound states in double quantum dots, arXiv:1207.4299 (two dots connected by a superconducting wire realize two Majorana states, not topologically protected)
 S. Illera, J. D. Prades, A. Cirera, and A. Cornet, A Transfer Hamiltonian model for devices based in quantum dot arrays, arXiv:1207.5513 (for any distribution of quantum dots, bipolar transport [electrons and holes], sequentialtunneling approximation, interaction included via Poisson equation; illustrated for system of few quasirandomly distributed dots); see also J. Sée, P. Dollfus, S. Galdin, and P. Hesto, From wavefunctions to currentvoltage characteristics: overview of a Coulomb blockade device simulator using fundamental physical parameters, condmat/0511652
 A. Goker and B. Uyanik, Transient thermoelectricity in a vibrating quantum dot in Kondo regime, arXiv:1207.6054
 H. T. Mebrahtu, I. V. Borzenets, D. E. Liu, H. Zheng, Y. V. Bomze, A. I. Smirnov, H. U. Baranger, and G. Finkelstein, Quantum Phase Transition in a Resonant Level Coupled to Interacting Leads, arXiv:1208.1988
 T. Yuge, T. Sagawa, A. Sugita, and H. Hayakawa, Geometrical Pump in Quantum Transport: Quantum Master Equation Approach, arXiv:1208.3926 (pumping by cycling tempertures and chemical potentials in the two leads, show that pumping is then only possible for interacting electrons)
 A. Metelmann and T. Brandes, Transport through singlelevel systems: spindynamics in the nonadiabatic regime, arXiv:1208.4574
 S. Pfaller, A. Donarini, and M. Grifoni, Subgap features due to quasiparticle tunneling in quantum dots coupled to superconducting leads, arXiv:1208.6168
 M. Thomas, T. Karzig, S. V. Kusminskiy, G. Zarand, and F. von Oppen, Scattering theory of adiabatic reaction forces due to outofequilibrium quantum environments, arXiv:1209.0620 (for nanoelectromechanical systems, scattering theory)
 C. Pöltl, C. Emary, and T. Brandes, Spin entangled twoparticle dark state in quantum transport through coupled quantum dots, arXiv:1209.0992
 K.C. Ri, C.W. Ri, and G.H. Jong, Electronic Transport through QD in the whole temperature range including both the high and the lowT limits with the equationofmotion technique, arXiv:1209.2247 (NEGF, equationofmotion approach)
 S. Rojek, J. König, and A. Shnirman, Adiabatic pumping through an interacting quantum dot with spinorbit coupling, arXiv:1209.4770 (diagrammatic realtime approach)
 R. D'Agosta, Towards a dynamical approach to the calculation of the figure of merit of thermoelectric nanoscale devices, arXiv:1209.5530 (beyond Landauer)
 D. Futterer, J. Swiebodzinski, M. Governale, and J. König, Renormalization effects in interacting quantum dots coupled to superconducting leads, arXiv:1210.2267 (two superconducting, one normal lead)
 C.H. Chung, K. Le Hur, G. Finkelstein, M. Vojta, and P. Wölfle, Nonequilibrium quantum transport through a dissipative resonant level, arXiv:1211.3748 (spinless orbital coupled to one vibrational mode, finite bias voltage, Keldysh NEGF and RG to study nonequilibrium [charge] Kondo effect)
 R. S. Whitney, Thermodynamic and quantum bounds on nonlinear thermoelectric devices, arXiv:1211.4737
 K. H. Thomas and C. Flindt, Electron Waiting Times in NonMarkovian Quantum Transport, arXiv:1211.4995
 L. G. G. V. Dias da Silva, E. Vernek, K. Ingersent, N. P. Sandler, and S. E. Ulloa, Spinpolarized conductance in double quantum dots: Interplay of Kondo, Zeeman and interference effects, arXiv:1211.5289
 B. Abdollahipour, J. Abouie, and A. A. Rostami, Pumping ac Josephson current in the Single Molecular Magnets by spin nutation, arXiv:1211.6879 (rotating echange field, NEGF)
 S. Y. Mueller, M. Pletyukhov, D. Schuricht, and S. Andergassen, Magnetic field effects on the finitefrequency noise and ac conductance of a Kondo quantum dot out of equilibrium, arXiv:1211.7072 (no charge fluctuations; realtime RG approach of Schoeller and Schuricht)
 K. P. Wojcik, I. Weymann, and J. Barnas, Asymmetryinduced effects in Kondo quantum dots coupled to ferromagnetic leads, J. Phys.: Condens. Matter 25, 075301 (2013) (strong coupling to leads)
 E. Arrigoni, M. Knap, and W. von der Linden, Nonequilibrium Dynamical Mean Field Theory: An Auxiliary Quantum Master Equation Approach, Phys. Rev. Lett. 110, 086403 (2013) (nonequilibrium extension of DMFT, impurity problem involves single interacting site coupled to two chains, which are coupled to two reservoirs, the latter coupling described by Lindblad master equation with "forced insertion and removal" Lindblad operators and fitted coefficents; applied to a Hubbard layer with current flowing through it in the normal, z direction)
 N. M. Chtchelkatchev, A. Glatz, and I. S. Beloborodov, Interplay of charge and heat transport in a nanojunction in the outofequilibrium cotunneling regime, J. Phys.: Condens. Matter 25, 185301 (2013) (inelastic cotunneling, Boltzmanntype kinetic equation)
 S. Kim and Y.W. Son, Scattering theory approach to inelastic transport in nanoscale systems, Phys. Rev. B 87, 195423 (2013)
 R. BustosMarún, G. Rafael, and F. von Oppen, Adiabatic Quantum Motors, Phys. Rev. Lett. 111, 060802 (2013) (charges moving in a ring, driven by interaction with electrons flowing through a nanowire), see also Physics Viewpoint
 L. Rajabi, C. Pöltl, and M. Governale, Waiting Time Distributions for the Transport through a QuantumDot Tunnel Coupled to One Normal and One Superconducting Lead, Phys. Rev. Lett. 111, 067002 (2013) (master equation)
 X. Zheng, Y.J. Yan, and M. Di Ventra, Kondo Memory in Driven Strongly Correlated Quantum Dots, Phys. Rev. Lett. 111, 086601 (2013) (use the hierarchicalequationofmotion approach of Yan et al., leads effectively have Lorentzian density of states)
 F. Bauer, J. Heyder, E. Schubert, D. Borowsky, D. Taubert, B. Bruognolo, D. Schuh, W. Wegscheider, J. von Delft, and S. Ludwig, Microscopic origin of the '0.7anomaly' in quantum point contacts, Nature 501, 73 (2013) (experiment and theory; explain 0.7 anomaly and zerobias peak in terms of van Hove singularity of lower 1D subband; mechanism is essentially different from the Kondo effect); M. J. Iqbal, R. Levy, J. Koop, J. B. Dekker, J. P. de Jong, J. H. M. van der Velde, D. Reuter, A. D. Wieck, R. Aguado, Y. Meir, and C. H. van der Wal, Odd and even Kondo effects from emergent localization in quantum point contacts, Nature 501, 79 (2013) (experiment and theory; contains conflicting explanation of 0.7 anomaly in terms of localized states in the contact region due to electronelectron interactions; this is essentially Kondo physics); see also Nature Phys. 9, 530 (2013)
 J. Zhang, Z. Yin, X. Zheng, C. Yam, and G. Chen, A gaugeinvariant and currentcontinuous microscopic ac quantum transport theory, arXiv:1301.0183
 D. M. Kennes, D. Schuricht, and V. Meden, Efficiency and power of a thermoelectric quantum dot device, arXiv:1301.3355 (linear response, with shortrange dotlead interaction)
 A. Dirks, S. Schmitt, J. E. Han, F. Anders, P. Werner, and T. Pruschke, Double Occupancy and Magnetic Susceptibility of the Anderson Impurity Model out of Equilibrium, arXiv:1302.0269
 J. Kern, Tunneling Hamiltonian, arXiv:1302.1391
 K. F. Albrecht, A. MartinRodero, R. C. Monreal, L. Mühlbacher, and A. Levy Yeyati, Long transient dynamics in the AndersonHolstein model out of equilibrium, arXiv:1302.3108 (polaron effects)
 L. Simine and D. Segal, Pathintegral simulations with fermionic and bosonic reservoirs: Transport and dissipation in molecular electronic junctions, arXiv:1302.5761 (numerical influencefunctional pathintegral approach to the time evolution)
 J. Kern, A perturbation theory for the Anderson model, arXiv:1302.6511 (master equation, expansion in the tunneling amplitude, partial resummation)
 A. Koga, Quantum Monte Carlo study of nonequilibrium transport through a quantum dot coupled to normal and superconducting leads, arXiv:1303.0288 (continuoustime QMC for time evolution of quantum dot)
 O. V. Ogloblya and G. M. Kuznetsova, Nanotube Quantum Dot Transport With SpinOrbit Coupling and Interacting Leads, arXiv:1303.1451 (Coulomb interaction between dot and leads, NEGF)
 S. Kohler, Measurement correlations in mesoscopic charge detection, arXiv:1303.1662
 M. O. Assuncão, E. J. R. de Oliveira, J. M. VillasBoas, and F. M. Souza, Thermal effects on photoninduced quantum transport in a single quantum dot, J. Phys.: Condens. Matter 25, 135301 (2013) (laserinduced transport, NEGF)
 A. Goker and E. Gedik, Time dependent quantum transport through Kondo correlated quantum dots, arXiv:1303.2859 (slaveboson transformation, MeirWingreen formula, linear conductance and thermopower only)
 N. Winkler, M. Governale, and J. König, Theory of spin pumping through an interacting quantum dot tunnel coupled to a ferromagnet with timedependent magnetization, arXiv:1303.4184 (diagrammatic realtime formulation, extended to allow for timedependent lead properties)
 A. Ivanov, G. Kordas, A. Komnik, and S. Wimberger, Bosonic transport through a chain of quantum dots, arXiv:1304.5503
 H. Ness and L. K. Dash, Nonequilibrium FluctuationDissipation Theorems for Interacting Quantum Transport, arXiv:1305.5077 (NEGF approach)
 R. Sánchez, B. Sothmann, A. N. Jordan, and M. Büttiker, Correlations of heat and charge currents in quantumdot thermoelectric engines, arXiv:1307.0598 (master equation with counting fields)
 J. Baranski and T. Domanski, Ingap states of the quantum dot coupled between a normal and superconducting lead, arXiv:1307.1004
 E. Wach, D. P. Zebrowski, and B. Szafran, Charge density mapping of stronglycorrelated fewelectron twodimensional quantum dots by scanning probe technique, arXiv:1307.1206 (relatively large dots, calculate charge density, not dI/dV, taking the effect of the tip on the dot into account)
 F. G. Eich, A. Principi, M. Di Ventra, and G. Vignale, Luttingerfield approach to thermoelectric transport in nanoscale conductors, Phys. Rev. B 90, 115116 (2014) (application of ideas related to Phys. Rev. Lett. 112, 196401 (2014) to a model system)
 J. Danon and M. S. Rudner, Multilevel Interference Resonances in Strongly Driven ThreeLevel Systems, Phys. Rev. Lett. 113, 247002 (2014)
 R. Härtle and A. J. Millis, The formation of nonequilibrium steady states in interacting double quantum dots: When coherences dominate the charge distribution, arXiv:1409.3504 P
 R. Avriller and F. Pistolesi, Andreev BoundState Dynamics in QuantumDot Josephson Junctions: A Washing Out of the 0π Transition, Phys. Rev. Lett. 114, 037003 (2015) (BornMarkov master equation, Floquet theory)
 M. Esposito, M. A. Ochoa, and M. Galperin, Quantum Thermodynamics: A Nonequilibrium Green's Function Approach, Phys. Rev. Lett. 114, 080602 (2015) (noninteracting, fermionic leaddotlead system) P
 J.T. Lü, R. B. Christensen, J.S. Wang, P. Hedegård, and M. Brandbyge, CurrentInduced Forces and Hot Spots in Biased Nanojunctions, Phys. Rev. Lett. 114, 096801 (2015) (heat flow carried by phonons, induced by electron current; physics seems to be that rightmoving electrons emit more rightmoving phonons than leftmoving phonons; manyparticle theory and DFT)
 E. Taylor and D. Segal, Quantum Bounds on Heat Transport Through Nanojunctions, Phys. Rev. Lett. 114, 220401 (2015) (MeirWingreen approach)
 Z.Z. Li, C.H. Lam, and J. Q. You, Probing Majorana bound states via counting statistics of a single electron transistor, Sci. Rep. 5, 11416 (2015) (noninteracting model, Pauli master equation in sequentialtunneling approximation, for large bias)
 A. E. Antipov, Q. Dong, and E. Gull, Voltage Quench Dynamics of a Kondo System, Phys. Rev. Lett. 116, 036801 (2016)
 G. Vionnet and O. P. Sushkov, Enhancement Mechanism of the Electron g Factor in Quantum Point Contacts, Phys. Rev. Lett. 116, 126801 (2016) (due to combination of electronelectron interaction and nonequilibrium; HartreeFock approximation)
 K. Kaasbjerg and A.P. Jauho, Correlated Coulomb Drag in Capacitively Coupled QuantumDot Structures, Phys. Rev. Lett. 116, 196801 (2016) (higherorder master equation)
 K. Joulain, J. Drevillon, Y. Ezzahri, and J. OrdonezMiranda, Quantum Thermal Transistor, Phys. Rev. Lett. 116, 200601 (2016) (with application to three spins)
 A. Dorda, M. Ganahl, S. Andergassen, W. von der Linden, and E. Arrigoni, Thermoelectric response of a correlated impurity in the nonequilibrium Kondo regime, arXiv:1608.05714 (nonequilibrium Anderson model; Keldysh approach) P
 A. Vikström, A. M. Eriksson, S. I. Kulinich, and L. Y. Gorelik, Nanoelectromechanical Heat Engine Based on ElectronElectron Interaction, Phys. Rev. Lett. 117, 247701 (2016)

A. Oguri and A. C. Hewson, HigherOrder FermiLiquid Corrections for an Anderson Impurity Away from Half Filling, Phys. Rev. Lett. 120, 126802 (2018) (exact results to first order in frequencies, also applied to transport through an interacting quantum dot)

A. Zazunov, S. Plugge, and R. Egger, FermiLiquid Approach for Superconducting Kondo Problems, Phys. Rev. Lett. 121, 207701 (2018)

A. Altland, D. Bagrets, and A. Kamenev, SachdevYeKitaev NonFermiLiquid Correlations in Nanoscopic Quantum Transport, Phys. Rev. Lett. 123, 226801 (2019) (sequential and cotunneling)
Modelbased theory for nanotubes and nanowires
 L. Mayrhofer and M. Grifoni, Linear and nonlinear transport across carbon nanotube quantum dots, condmat/0612286 (applies secondorder Blumtype perturbation theory to a partly bosonized model for interacting electrons on a large singlewall nanotube)
 J.S. Wang, N. Zeng, J. Wang, and C. K. Gan, Nonequilibrium Green's function method for thermal transport in junctions, condmat/0701164 (note: thermal transport, also for carbonnanotube junctions) P
 A. V. Andreev, Magnetoconductance of carbon nanotube pn junctions, arXiv:0706.0735
 I. Weymann, J. Barnas, and S. Krompiewski, Theory of shot noise in singlewalled metallic carbon nanotubes weakly coupled to nonmagnetic and ferromagnetic leads, arXiv:0710.2327
 N. Nemec, K. Richter, and G. Cuniberti, Diffusion and localization in carbon nanotubes and graphene nanoribbons, arXiv:0804.4833
 B. Wunsch, Fewelectron physics in a nanotube quantum dot with spinorbit coupling, arXiv:0904.0445
 E. Mariani and F. von Oppen, Electronvibron coupling in suspended carbon nanotube quantum dots, arXiv:0904.4653 (mainly interested in calculating the electronvibron coupling, not the transport)
 F. Cavaliere, E. Mariani, R. Leturcq, C. Stampfer, and M. Sassetti, Anisotropic FranckCondon factors in suspended carbon nanotube quantum dots, arXiv:0911.2122
 A. W. Cummings and F. Léonard, Electrostatic effects on contacts to carbon nanotube transistors, arXiv:1106.2186
 A. Pályi, P. R. Struck, M. Rudner, K. Flensberg, and G. Burkard, SpinOrbitInduced Strong Coupling of a Single Spin to a Nanomechanical Resonator, Phys. Rev. Lett. 108, 206811 (2012), see also Physics Focus
 G. Kirsanskas, J. Paaske, and K. Flensberg, Cotunneling renormalization in carbon nanotube quantum dots, arXiv:1206.1359
 K. Goß, M. Leijnse, S. Smerat, M. R. Wegewijs, C. M. Schneider, and C. Meyer, Parallel carbon nanotube quantum dots and their interactions, arXiv:1208.5860
 P. R. Struck, H. Wang, and G. Burkard, Nanomechanical readout of a single spin, arXiv:1212.1569 (spinorbit coupling is required; master equation)
 J. E. Han and J. Li, Energy dissipation in DCfield driven electron lattice coupled to fermion baths, arXiv:1304.4269 (noninteracting model, electric field included by timedependent Peierls phase)
 G. Micchi, R. Avriller, and F. Pistolesi, Mechanical Signatures of the Current Blockade Instability in Suspended Carbon Nanotubes, Phys. Rev. Lett. 115, 206802 (2015)
 B. Brun, F. Martins, S. Faniel, B. Hackens, A. Cavanna, C. Ulysse, A. Ouerghi, U. Gennser, D. Mailly, P. Simon, S. Huant, V. Bayot, M. Sanquer, and H. Sellier, Electron Phase Shift at the ZeroBias Anomaly of Quantum Point Contacts, Phys. Rev. Lett. 116, 136801 (2016)
 A. Zazunov, F. Buccheri, P. Sodano, and R. Egger, 6π Josephson Effect in Majorana Box Devices, Phys. Rev. Lett. 118, 057001 (2017)

S. S. Pershoguba, T. Veness, and L. I. Glazman, Landauer Formula for a Superconducting Quantum Point Contact, Phys. Rev. Lett. 123, 067001 (2019)
Modelbased theory for molecular and atomic systems other than nanotubes
 A. V. Balatsky and I. Martin, Theory of single spin detection with STM, condmat/0112407
 M. Zwolak and M. Di Ventra, DNA spintronics, Appl. Phys. Lett. 81, 925 (2002)
 A. S. Alexandrov, A. M. Bratkovsky, and R. S. Williams, Bistable tunneling current through a molecular quantum dot, Phys. Rev. B 67, 075301 (2003) (hysteresis in IV characteristics for ground state with degeneracy d > 2)
 K. D. McCarthy, N. Prokof'ev, and M. T. Tuominen, Incoherent dynamics of vibrating singlemolecule transistors, Phys. Rev. B 67, 245415 (2003)
 A. Thielmann, M. H. Hettler, J. König, and G. Schön, Shot noise in tunneling transport through molecules and quantum dots, Phys. Rev. B 68, 115105 (2003)
 Y. Xue and M. A. Ratner, Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop, and highfield transport, Phys. Rev. B 68, 115406 (2003); Microscopic study of electrical transport through individual molecules with metallic contacts. II. Effect of the interface structure, Phys. Rev. B 68, 115407 (2003)
 K. Flensberg, Tunneling broadening of vibrational sidebands in molecular transistors, Phys. Rev. B 68, 205323 (2003)
 V. Aji, J. E. Moore, and C. M. Varma, Electronicvibrational coupling in singlemolecule devices, condmat/0302222, Int. J. Nanosci. 3, 255 (2004)
 A. Mitra, I. Aleiner, and A. J. Millis, Phonon effects in molecular transistors: Quantal and classical treatment, Phys. Rev. B 69, 245302 (2004) (inelastic tunneling, WangsnessBlochRedfield approach for weak tunneling and NEGF approach for strong tunneling) P
 G.H. Kim and T.S. Kim, Electronic Transport in SingleMolecule Magnets on Metallic Surfaces, Phys. Rev. Lett. 92, 137203 (2004) (model similar to Romeike et al., without molecular orbitals, applied to STM tunneling in the weaktunneling limit, uses Fermi's Golden Rule)
 J. Paaske and K. Flensberg, Vibrational Sidebands and the Kondo Effect in Molecular Transistors, Phys. Rev. Lett. 94, 176801 (2005)
 M. Galperin, M. A. Ratner, and A. Nitzan, Hysteresis, Switching, and Negative Differential Resistance in Molecular Junctions: A Polaron Model, Nano Lett. 5, 125 (2005); A. S. Alexandrov and A. M. Bratkovsky, Comment on "Hysteresis, Switching, and Negative Differential Resistance in Molecular Junctions: A Polaron Model", condmat/0603467; M. Galperin, M. A. Ratner, and A. Nitzan, Reply to Comment by Alexandrov and Bratkovsky, condmat/0604112
 M. R. Wegewijs and K. C. Nowack, Nuclear wavefunction interference in singlemolecule electron transport, New J. Phys. 7, 239 (2005) (effect of changes of the vibration potentials with electronic occupation, related to Koch and von Oppen)
 K. A. AlHassanieh, C. A. Büsser, G. B. Martins, and E. Dagotto, Electron Transport through a Molecular Conductor with CenterofMass Motion, Phys. Rev. Lett. 95, 256807 (2005) (conductance dip at zero bias)
 M. Galperin, A. Nitzan, and M. A. Ratner, Resonant inelastic tunneling in molecular junctions, condmat/0510452, Phys. Rev. B
 K. Walczak, The influence of vibronic coupling on the shape of transport characteristics in inelastic tunneling through molecules, condmat/0510802
 N. Jean and S. Sanvito, Inelastic transport in molecular spin valves, condmat/0511574 (1D chain with Einstein phonons)
 T. T. Heikkila and W. Belzig, Slow Vibrations in Transport through Molecules, condmat/0512047
 C. Romeike, M. R. Wegewijs, W. Hofstetter, and H. Schoeller, Quantum tunneling induced Kondo effect in single molecular magnets, Phys. Rev. Lett. 96, 196601 (2006) (zero bias, no molecular orbitals, discuss effect of anisotropy, use poor man's scaling and NRG) P
 C. Romeike, M. R. Wegewijs, and H. Schoeller, Spin quantum tunneling in single molecular magnets: fingerprints in transport spectroscopy of current and noise, Phys. Rev. Lett. 96, 196805 (2006) (sequential tunneling, allow mixing of S^{z} eigenstates by magnetic tunneling not related to electronic tunneling, which leads to additional peaks in differential conductance) P
 Z.Z. Chen, H. Lu, R. Lü, and B. Zhu, Phononassisted Kondo effect in a singlemolecule transistor out of equilibrium, J. Phys.: Condens. Matter 18, 5435 (2006)
 H. Ness, Quantum inelastic electronvibration scattering in molecular wires: Landauerlike versus Green's function approaches and temperature effects, J. Phys.: Condens. Matter 18, 6307 (2006)
 M. N. Leuenberger and E. R. Mucciolo, Berry Phase Oscillations of the Kondo Effect in SingleMolecule Magnets, Phys. Rev. Lett. 97, 126601 (2006) (transverse magnetic field can quench the Kondo effect in transport, assuming strong coupling to metallic leads; Ni_{4} cluster)
 K. Walczak, Coulomb blockade in molecular quantum dots, condmat/0601379
 H. Ness and A. J. Fisher, Vibrational inelastic scattering effects in molecular electronics, condmat/0603494, Proc. Nat. Acad. Sci. 102, 8826 (2005)
 M. Galperin, A. Nitzan, and M. A. Ratner, Inelastic tunneling effects on noise properties of molecular junctions, condmat/0604029 (singleorbital molecule with one vibrational mode, which is coupled to a phonon bath, concentrate on noise)
 A. Donarini, M. Grifoni, and K. Richter, Dynamical symmetry breaking in transport through molecules, condmat/0605123 (... due to quasidegenerate vibrational eigenstates)
 C. Benjamin, T. Jonckheere, A. Zazunov, and T. Martin, Controllable pi junction in a Josephson quantumdot device with molecular spin, condmat/0605338 (model with one molecular orbital without Coulomb interaction, coupled to a local static exchange field and superconducting leads in equilibrium [thus does not really belong here]) P
 C. Romeike, M. R. Wegewijs, W. Hofstetter, and H. Schoeller, Kondotransport spectroscopy of single molecule magnets, Phys. Rev. Lett. 97, 206601 (2006) (zero bias, discuss strong anisotropy, employ NRG) P
 G. Fagas, P. Delaney, and J. C. Greer, Independent particle descriptions of tunneling from a manybody perspective, condmat/0606026 (applied to metalmoleculemetal junction, goal is to find an optimal singleelectron description for the manybody system)
 J. Lehmann and D. Loss, Sequential Tunneling through Anisotropic Heisenberg Spin Rings, condmat/0608642 (molecules with spins arranged in a ring, importance of Zener double exchange [the Hamiltonian describes a phenomenological Zener model, double exchange is at best present as the possible origin of the nearestneighbor exchange interaction])
 B. Muralidharan, A. W. Ghosh, S. K. Pati, and S. Datta, Theory of high bias Coulomb Blockade in ultrashort molecules, condmat/0610244 (benzene, Hubbard model, rate equations for manyparticle states, also compares to singleelectron approach)
 M. Galperin, M. A. Ratner, and A. Nitzan, Heat conduction in molecular transport junctions, condmat/0611169 (long paper)
 F. Pump and G. Cuniberti, Rectification effects in coherent transport through single molecules, condmat/0611436
 M. Misiorny and J. Barnas, Quantum Tunneling of Magnetization in Single Molecular Magnets Coupled to Ferromagnetic Reservoirs, condmat/0611644 (with timedependent magnetic field)
 M. Misiorny and J. Barnas, Magnetic Switching of a Single Molecular Magnet due to SpinPolarized Current, Phys. Rev. B 75, 134425 (2007) (with two ferromagnetic leads, no explicit molecular orbital, direct leftright tunneling similar to Romeike et al.)
 B. Song, D. A. Ryndyk, and G. Cuniberti, Molecular junctions in the Coulomb blockade regime: rectification and nesting, Phys. Rev. B 76, 045408 (2007) (connects master equation and Green functions)
 M. Misiorny and J. Barnas, Spin polarized transport through a singlemolecule magnet: Currentinduced magnetic switching, Phys. Rev. B 76, 054448 (2007) (with explicit LUMO exchangecoupled to local spin, Fermi's Golden Rule)
 T. Korb, F. Reininghaus, H. Schoeller, and J. König, Realtime renormalization group and cutoff scales in nonequilibrium, Phys. Rev. B 76, 165316 (2007) (exchange scattering from single spin between two leads, with anisotropic exchange and onsite anisotropy, cotunneling regime, meaning here: no charge fluctuations) P
 G. Gonzalez and M. N. Leuenberger, Berryphase blockade in singlemolecule magnets, Phys. Rev. Lett. 98, 256804 (2007) (sequential tunneling, two ferromagnetic leads, interference effects) P
 S. Florens, NanoDMFT for molecules, ultrasmall particles and inhomogeneous materials in the strong correlation regime, condmat/0701725 (includes a bias voltage)
 M. Paulsson and M. Brandbyge, Transmission eigenchannels from nonequilibrium Green's functions, condmat/0702295
 M. G. Schultz, T. S. Nunner, and F. von Oppen, Berryphase effects in transport through single JahnTeller molecules, condmat/0702489
 H. Raza, An EHT based model for Single Molecule Incoherent Resonant Scanning Tunneling Spectroscopy, condmat/0703236 (EHT = extended Hückel theory)
 K. Walczak, Vibrational features in inelastic electron tunneling spectra, condmat/0703559 (nonperturbative approach for strongtunneling regime)
 M. Misiorny and J. Barnas, CurrentInduced Switching of a SingleMolecule Magnet with Arbitrary Oriented Easy Axis, arXiv:0704.2497 (a model without explicit molecular orbitals, but with spinscattering of tunneling electrons off the local spin, find strong dependence of current on misalignment angle) P
 P. SanJose, G. Schön, A. Shnirman, and G. Zarand, Spin dephasing due to a random Berry phase, arXiv:0704.2974 (effect of spinorbit coupling)
 B. Dong, X. L. Lei, and N. J. M. Horing, Elimination of negative differential conductance in an asymmetric molecular transistor by an acvoltage, arXiv:0705.2624
 A. S. Alexandrov and A. M. Bratkovsky, Fast polaron switching in degenerate molecular quantum dots, J. Phys.: Condens. Matter 19, 255203 (2007)
 A. Landau, L. Kronik, and A. Nitzan, Cooperative effects in molecular conduction, arXiv:0707.3038 (tunneling through molecular monolayers, tightbinding model)
 G. Li, M. Schreiber, and U. Kleinekathöfer, Coherent laser control of the current through molecular junctions, arXiv:0708.3429, Europhys. Lett. 79, 27006 (2007); U. Kleinekathöfer, G. Li, S. Welack, and M. Schreiber, Switching the current through molecular wires, arXiv:0708.3432, Europhys. Lett. 75, 129 (2006); U. Kleinekathöfer, G. Li, S. Welack, and M. Schreiber, Coherent destruction of the current through molecular wires using short laser pulses, arXiv:0708.3433, phys. stat. sol. (b) 243, 3775 (2006)
 J. Lagerqvist, M. Zwolak, and M. Di Ventra, Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport, arXiv:0708.4395 (tightbinding model, result is that sequencing in a nanochannel should be feasible)
 M. C. Lüffe, J. Koch, and F. von Oppen, Vibrational absorption sidebands in the Coulomb blockade regime, arXiv:0709.0876
 P. S. Cornaglia, Gonzalo Usaj, and C. A. Balseiro, Electronic Transport through Magnetic Molecules with Soft Vibrating Modes, arXiv:0711.0394 (employing the NRG)
 R. Egger and A. O. Gogolin, Vibrationinduced correction to the current through a single molecule, arXiv:0712.0750 (NEGF formalism, perturbation theory for small electronvibron coupling)
 G. Begemann, D. Darau, A. Donarini, and M. Grifoni, Symmetry fingerprints of a benzene singleelectron transistor: Interplay between Coulomb interaction and orbital symmetry, Phys. Rev. B 77, 201406(R) (2008), also note erratum (Hubbardtype model, quantum master equation in secular and sequentialtunneling approximation; find different conductance for meta and paracontacted benzene due to interference between degenerate MOs); D. Darau, G. Begemann, A. Donarini, and M. Grifoni, A benzene interference singleelectron transistor, Phys. Rev. B 79, 235404 (2009) (extension, with symmetry analysis); A. Donarini, G. Begemann, and M. Grifoni, AllElectric Spin Control in Interference Single Electron Transistors, Nano Lett. 9, 2897 (2009) (with ferromagnetic leads)
 G. Gonzalez, M. N. Leuenberger, and E. R. Mucciolo, Kondo effect in singlemolecule magnet transistors, Phys. Rev. B 78, 054445 (2008)
 P. D'Amico, D. A. Ryndyk, G. Cuniberti, and K. Richter, Chargememory effect in a polaron model: equationofmotion method for Green functions, New J. Phys. 10, 085002 (2008); D. A. Ryndyk, P. D'Amico, G. Cuniberti, and K. Richter, Chargememory polaron effect in molecular junctions, Phys. Rev. B 78, 085409 (2008)
 J. S. Seldenthuis, H. S. J. van der Zant, M. A. Ratner, and J. M. Thijssen, Vibrational Excitations in Weakly Coupled SingleMolecule Junctions: A Computational Analysis, ACS Nano 2, 1445 (2008) (rate equations for sequential tunneling, vibration modes obtained from DFT); Understanding electroluminescence spectra in weakly coupled singlemolecule junctions, arXiv:1002.4542
 J. K. Viljas, F. Pauly, and J. C. Cuevas, Photoassisted transport in organic molecular wires: lengthdependence and currentvoltage characteristics, arXiv:0801.1323 (tightbinding model for polyphenylene chains without electronelectron interactin)
 R. Härtle, C. Benesch, and M. Thoss, Multimode vibrational effects in single molecule conductance: A nonequilibrium Green's function approach, arXiv:0801.3602 (NEGF approach, long laper)
 J. Skoldberg, T. Lofwander, V. S. Shumeiko, and M. Fogelstrom, Andreev bound state spectroscopy in superconducting molecular junctions, arXiv:0801.3608 (molecule between superconducting leads, the focus is on properties of the leads and the point contact, not the molecule)
 M. Misiorny and J. Barnas, Effects of Intrinsic SpinRelaxation in Molecular Magnets on CurrentInduced Magnetic Switching, arXiv:0801.3655 (with two ferromagnetic leads, tunneling included at GoldenRule level)
 M. Galperin, A. Nitzan, and M. A. Ratner, Nonlinear response of molecular junctions: The polaron model revisited, arXiv:0801.3783 (Green function approach)
 H. Raza and E. C. Kan, An atomistic quantum transport solver with dephasing for fieldeffect transistors, arXiv:0802.2357 (detailed modelling of atomistic structure and electric potential, interaction treated at Hartree level)
 F. Reckermann, M. Leijnse, M. R. Wegewijs, and H. Schoeller, Transport signature of pseudoJahnTeller dynamics in a singlemolecule transistor, arXiv:0802.3326; Vibrational detection and control of spin in mixedvalence molecular transistors, arXiv:0802.3498, Europ. Phys. Lett. 83, 58001 (2008)
 M. Leijnse and M. R. Wegewijs, Kinetic equations for transport through singlemolecule transistors, Phys. Rev. B 78, 235424 (2008) (consistent perturbative expansion of master equation to fourth order, discuss cotunnelingassisted sequential tunneling) P
 J. P. Bergfield and C. A. Stafford, Manybody treatment of quantum transport through single molecules, arXiv:0803.2756 (combines exact diagonalization of molecular Hamiltonian with NEGF approach to obtain the current)
 T. Jonckheere, K.I. Imura, and T. Martin, Colossal spin fluctuations in a molecular quantum dot magnet with ferromagnetic electrodes, arXiv:0803.3058 (analytical expressions for various averages and fluctuations for a simple model at zero temperature, in sequentialtunneling approximation, one or two ferromagnetic leads) P
 W. Lee and S. Sanvito, Exploring the limits of the self consistent Born approximation for inelastic electronic transport, arXiv:0804.3389 (nonequilibrium Green function formalism)
 M. Lee, T. Jonckheere, and T. Martin, Josephson Effect through a Magnetic Metallofullerene Molecule, arXiv:0805.0301 (endohedral fullerene, employ NRG)
 F. Pistolesi, Ya. M. Blanter, and I. Martin, Selfconsistent theory of molecular switching, arXiv:0806.1151
 M. Galperin, M. A. Ratner, and A. Nitzan, Raman scattering in current carrying molecular junctions. A preliminary account, arXiv:0808.0292
 A. Saffarzadeh, Electronic transport through a C_{60} molecular bridge: The role of single and multiple contacts, arXiv:0808.1352 (tightbinding model for C_{60}, no JahnTeller distortion, LandauerBüttiker approach, effect due to interference of tunneling paths)
 S. Vasudevan, K. Walczak, N. Kapur, M. Neurock, and A. W. Ghosh, Modeling electrostatic and quantum detection of molecules, arXiv:0808.2262
 M. Galperin, A. Nitzan, and M. A. Ratner, Nonequilibrium isolated molecule limit, arXiv:0808.3115 (using Green functions for Hubbard operators) P
 K. Kaasbjerg and K. Flensberg, Strong polarizationinduced reduction of addition energies in singlemolecule nanojunctions, arXiv:0809.1774
 M.Crisan and I.Grosu, Temperature effect in the conductance of hydrogen molecule, arXiv:0810.3120, Physica E 41, 130 (2008)
 J. P. Bergfield and C. A. Stafford, Manybody theory of electronic transport in singlemolecule heterojunctions, arXiv:0812.0867 (nonequilibrium Green functions, including rigorous result for the Coulombinteraction self energy in the sequential tunneling limit)
 F. Reckermann, M. Leijnse, and M. R. Wegewijs, Vibrational detection and control of spin in mixedvalence molecular transistors, Phys. Rev. B 79, 075313 (2009)
 H.Z. Lu, B. Zhou, and S.Q. Shen, Spinbias driven magnetization reversal and nondestructive detection in a single molecular magnet, Phys. Rev. B 79, 174419 (2009) (spin bias = different chemical potential for up and down spins)
 M. A. Romero, S. C. GomezCarrillo, P. G. Bolcatto, and E. C. Goldberg, Spin fluctuation effects on the conductance through a single Pd atom contact, J. Phys.: Condens. Matter 21, 215602 (2009)
 M. Esposito and M. Galperin, Transport in molecular states language: Generalized quantum master equation approach, Phys. Rev. B 79, 205303 (2009) (using Hubbard operators for the interacting molecular part of the Hamiltonian and KeldyshGreen functions for the Hubbard and (lead) Fermi operators, equation of motion for the expectation value of Hubbard operators is written down and approximately decoupled by inserting projection superoperators P, leading to a master equation that is nonlocal in time, broadening of molecular levels by coupling is here taken into account; relation to standard Markovian master equation is explained)
 M. Misiorny, I. Weymann, and J. Barnas, Spin effects in transport through singlemolecule magnets in the sequential and cotunneling regimes, Phys. Rev. B 79, 224420 (2009) (magnetic molecule with anisotropic spin, coupled to two ferromagnetic leads, realtime diagrammatics)
 J. Loos, T. Koch, A. Alvermann, A. R. Bishop, and H. Fehske, Phonon affected transport through molecular quantum dots, J. Phys.: Condens. Matter 21, 395601 (2009) (employing the LangFirsov transformation of the vibrons)
 M. G. Schultz and F. von Oppen, Quantum transport through nanostructures in the singularcoupling limit, Phys. Rev. B 80, 033302 (2009) (perturbation theory for nearly degenerate states, full master equation vs. rate equations; title changed compared to preprint) P
 T. L. Schmidt and A. Komnik, Charge transfer statistics of a molecular quantum dot with a vibrational degree of freedom, Phys. Rev. B 80, 041307(R) (2009) (full counting statistics, arbitrary tunneling, but weak electronvibron coupling, see also the paper by Avriller and Levy Yeyati, below)
 I. Baldea and H. Köppel, Critical analysis of a variational method used to describe molecular electron transport, Phys. Rev. B 80, 165301 (2009), also arXiv:1108.0299 (strong critique of a generalization of the variational approach of P. Delaney and J. C. Greer, said to give unphysical results in simple limiting cases); there is also a comment by Delaney and Greer and a reply by Baldea and Köppel
 F. Haupt, T. Novotny, and W. Belzig, Phononassisted current noise in molecular junctions, Phys. Rev. Lett. 103, 136601 (2009) (nonequilibrium Green functions)
 B. B. Schmidt, M. H. Hettler, and G. Schön, Charge correlations in polaron hopping through molecules, arXiv:0902.3183 (chain molecules such as DNA with strong chargedeformation coupling)
 L. G. Dias da Silva and E. Dagotto, Phononassisted tunneling and twochannel Kondo physics in molecular junctions, arXiv:0902.3225 P
 R. Avriller and A. Levy Yeyati, Electronphonon interaction and full counting statistics in molecular junctions, arXiv:0903.0939 (see also the paper by Schmidt and Komnik, above)
 A. Schulz, A. Zazunov, and R. Egger, Critical Josephson current through a bistable singlemolecule junction, arXiv:0903.2007 (I_{c} for a molecule with one orbital, coupled to a twolevel system, at zero bias, cotunneling) P
 O. EntinWohlman, Y. Imry, and A. Aharony, Voltageinduced singularities in transport through molecular junctions, arXiv:0904.4385 (Keldysh formalism, consider the cases of linear response at nonzero temperature and nonzero bias at zero temperature)
 B. Dong, H. Y. Fan, X. L. Lei, and N. J. M. Horing, Counting statistics of tunneling through a single molecule: effect of distortion and displacement of vibrational potential surface, arXiv:0904.4737 (rate equations)
 J. Loos, T. Koch, A. Alvermann, A. R. Bishop, and H. Fehske, Phonon affected transport through molecular quantum dots, arXiv:0905.0248 (onedimensional model for leaddotlead system, for zero bias only, approach based on equilibrium MatsubaraGreen functions, addressing weak to strong electronphonon coupling)
 S. K. Shukla and S. Sanvito, Electron transport across electrically switchable magnetic molecules, arXiv:0905.1607 (magnetic dimer: two sites exchangecoupled to one classical spin each, no electronelectron interaction, local spins are frozen; employ nonequilibrium Green functions)
 J. Mravlje and A. Ramsak, Kondo effect in oscillating molecules, arXiv:0905.2409, phys. stat. sol. (b) 246, 994 (2009); Electron transport through molecules in the Kondo regime: the role of molecular vibrations, arXiv:0912.3536
 M. Galperin, K. Saito, A. V. Balatsky, and A. Nitzan, Cooling mechanisms in molecular conduction junctions, arXiv:0905.2748
 E. Prodan and A. LeVee, Tunneling transport in devices with semiconducting leads, arXiv:0907.4636 (mostly interested in the extension of the theory of tunneling transport to include semiconducting leads)
 D. Nozaki, H. Sevincli, W. Li, R. Gutierrez, and G. Cuniberti, Engineering the thermopower in semiconductormolecule junctions: towards high thermoelectric efficiency at the nanoscale, arXiv:0908.0438
 R. Gutierrez, R. Caetano, P. B. Woiczikowski, T. Kubar, M. Elstner, and G. Cuniberti, Structural fluctuations and quantum transport through DNA molecular wires: a combined molecular dynamics and model Hamiltonian approach, arXiv:0910.0348 (for short oligomers)
 G.Q. Li, B. D. Fainberg, A. Nitzan, P. Hänggi, and S. Kohler, Coherent charge transport through molecular wires: "Exciton blocking" and current from electronic excitations in the wire, arXiv:0910.4972 (double dot, full quantum master equation with offdiagonal components treated in the rotatingwave approximation; study effects of interaction between dots, which can suppress or enhance the current)
 A. Soncini and L. F. Chibotaru, Spintronics of noncollinear molecular magnets, arXiv:0910.5235 (two or three local spins with noncollinear anisotropy axes; stationarystate rate equations in the sequentialtunneling limit)
 S. Herzog and M. R. Wegewijs, DzyaloshinskiiMoriya interaction in transport through single molecule transistors, arXiv:0911.0571
 S. Tornow and G. Zwicknagl, Conductance Through a Redox System in the Coulomb Blockade Regime: ManyParticle Effects and Influence of Electronic Correlations, arXiv:0911.5297 (employing a twosite extended Hubbard model and rate equations)
 O. EntinWohlman, Y. Imry, and A. Aharony, Transport through molecular junctions with a nonequilibrium phonon distribution, arXiv:0912.1569 (strong hybridization, Green functions)
 R. Jaafar, E. M. Chudnovsky, and D. A. Garanin, Single magnetic molecule between conducting leads: Effect of mechanical rotations, arXiv:0912.1882 (meanfieldtype decoupling of expectation values)
 A. Zazunov and R. Egger, Adiabatic polaron dynamics and Josephson effect in a superconducting molecular quantum dot, arXiv:0912.2626 (a resonant level coupled to superconducting leads and to a slow oscillator)
 R.Q. Wang, L. Sheng, R. Shen, B. Wang, and D. Y. Xing, Thermoelectric Effect in SingleMoleculeMagnet Junctions, Phys. Rev. Lett. 105, 057202 (2010) (spin with easy axis coupled to local orbital, rate equations in sequentialtunneling approximation; define and calculate thermopower [Seebeck coefficient] for charge and spin) P
 J. P. Bergfield, P. Jacquod, and C. A. Stafford, Coherent Destruction of Coulomb Blockade Peaks in Molecular Junctions, arXiv:0912.4066, Phys. Rev. B 82, 205405 (2010) (using the Greenfunction approach developed by two of the authors, cited above)
 M. Misiorny, I. Weymann, and J. Barnas, Spin diode behavior in transport through singlemolecule magnets , EPL 89, 18003 (2010) (one ferromagnetic, one nonmagnetic lead)
 Z. G. Yu, Noninvasive electrical detection of electron spin dynamics at the N atom in N@C60, J. Phys.: Condens. Matter 22, 295305 (2010) (mostly interested in the nitrogenspin dynamics, using Keldysh nonequilibrium Green functions)
 B. Sothmann and J. König, Nonequilibrium current and noise in inelastic tunneling through a magnetic atom, New J. Phys. 12, 083028 (2010)
 G. Begemann, S. Koller, M. Grifoni, and J. Paaske, Inelastic cotunneling in quantum dots and molecules with weakly broken degeneracies, Phys. Rev. B 82, 045316 (2010), arXiv:1003.5834 (contains a summary of problems with the Tmatrix approach and regularization) P
 S. Teber, Transport and magnetization dynamics in a superconductor/singlemolecule magnet/superconductor junction, arXiv:1002.3929 (a classical and isotropic spin [no orbitals] coupled to two leads, Keldysh formalism for electron current, also considers the spin current)
 M. G. Schultz, Quantum transport through singlemolecule junctions with orbital degeneracies, arXiv:1004.1536 (full quantum master equation with Markov and sequentialtunneling approximations)
 M. Esposito and M. Galperin, A selfconsistent quantum master equation approach to molecular transport, arXiv:1004.2533 (derive an approximate timeconvolutionless master equation using an approximate backward propagation of the reduced density operator; suggested to be of similar accuracy as the timenonlocal form derived earlier by the authors; tested against exact results for a noninteracting dot)
 M. Leijnse, M. R. Wegewijs, and K. Flensberg, Nonlinear thermoelectrics of molecular junctions with vibrational coupling, arXiv:1004.4500
 O. EntinWohlman, Y. Imry, and A. Aharony, Threeterminal thermoelectric transport through a molecular junction, arXiv:1005.3940 (Keldysh Green functions, perturbative expansion in the electronvibration coupling, no other interaction, study what happens if the molecule is coupled to a bath at a different temperature from the leads)
 R. Härtle, R. Volkovich, M. Thoss, and U. Peskin, Modeselective vibrational excitation induced by nonequilibrium transport processes in singlemolecule junctions, arXiv:1006.4795
 F. Delgado and J. FernándezRossier, Spin dynamics of current driven single magnetic adatoms and molecules, arXiv:1006.5608 (theory for STM, rate equations, spinonly model)
 M. Zilly, O. Ujsaghy, and D. E. Wolf, Conductance of DNA molecules: Effects of decoherence and bonding, arXiv:1007.1721
 P. S. Cornaglia, P. Roura Bas, A. A. Aligia, and C. A. Balseiro, Quantum Transport Through a Stretched Spin1 Molecule, arXiv:1007.4214 (MeirWingreen formula, NRG, include anisotropy)
 I. Pshenichnyuk and M. Cizek, Motor effect in electron transport through a molecular junction with torsional vibrations, arXiv:1007.4826 (master equation, transport coupled to an anharmonic torsional mode that can overturn)
 J. P. Bergfield, J. D. Barr, and C. A. Stafford, The number of transmission channels through a singlemolecule junction, arXiv:1008.0035 (Greenfunction approach, linearresponse regime, molecular manybody states treated exactly, coupling by a constant imaginary selfenergy in the local Green function; number of open transmission channels is found to equal degeneracy of orbital closest to metal Fermi energy)
 S. Maier, T. L. Schmidt, and A. Komnik, Charge transfer statistics of a molecular quantum dot with strong electronphonon interaction, arXiv:1010.2918 (KeldyshGreen functions, polaron transformation, strong coupling to a vibration mode)
 A. Goker, Real time electron dynamics in an interacting vibronic molecular quantum dot, arXiv:1010.3369 (timedependent NCA)
 R. Härtle and M. Thoss, Resonant Electron Transport in SingleMolecule Junctions: Vibrational Excitation, Rectification, Negative Differential Resistance and Local Cooling, arXiv:1010.4993 (molecule coupled to a vibrational mode; quantum master equation in sequentialtunneling approximation)
 M. Misiorny, I. Weymann, and J. Barnas, Interplay of the Kondo Effect and SpinPolarized Transport in Magnetic Molecules, Adatoms and Quantum Dots, arXiv:1010.6030 (taking magnetic anisotropy into account); M. Misiorny, I. Weymann, and J. Barnas, Temperature dependence of electronic transport through molecular magnets in the Kondo regime, arXiv:1206.6069
 M. Dey, S. K. Maiti, and S. N. Karmakar, Effect of Dephasing on Electron Transport in a Molecular Wire: Green's Function Approach, arXiv:1011.2033 (Büttiker/Greenfunction approach)
 A. Nocera, C. A. Perroni, V. Marigliano Ramaglia, and V. Cataudella, Stochastic dynamics for a single vibrational mode in molecular junctions, arXiv:1011.4461 (derive a Langevin equation for the vibrational dynamics)
 H.B. Xue, Y.H. Nie, Z.J. Li, and J.Q. Liang, Effects of magnetic field and transverse anisotropy on full counting statistics in singlemolecule magnet, arXiv:1011.5546 (full counting statistics, sequentialtunneling approximation)
 R. C. Monreal, F. Flores, and A. MartinRodero, Nonequilibrium transport in molecular junctions with strong electronphonon interactions, arXiv:1012.2015 (Keldysh formalism)
 T. Markussen, J. Chen, and K. S. Thygesen, Improving Transition Voltage Spectroscopy of Molecular Junctions, arXiv:1012.3650 (how to extract molecularlevel energies from IV characteristics)
 M. Leijnse, W. Sun, M. Brøndsted Nielsen, P. Hedegård, and K. Flensberg, Interactioninduced negative differential resistance in asymmetric molecular junctions, arXiv:1012.3856 (master equation and quantum chemistry calculations)
 A. Ueda, O. EntinWohlman, and A. Aharony, Effects of coupling to vibrational modes on the ac conductance of molecular junctions, arXiv:1101.4440 (linear response, Keldysh formalism)
 R. Härtle and M. Thoss, Vibrational Instabilities in Resonant Electron Transport through SingleMolecule Junctions, arXiv:1102.0840 (2ndorder Markovian master equation; runaway of vibrational quantum number)
 T. Rangel, A. Ferretti, P. E. Trevisanutto, V. Olevano, and G.M. Rignanese, Transport properties of molecular junctions from manybody perturbation theory, arXiv:1102.1880 (Landauer formula and perturbation theory to include manybody effects)
 F. May, M. R. Wegewijs, and W. Hofstetter, Interaction of spin and vibrations in transport through singlemolecule magnets, arXiv:1102.2798 (NRG, the spectral function is calculated at zero bias) P
 R. Härtle, M. Butzin, O. RubioPons, and M. Thoss, Quantum Interference and Decoherence in SingleMolecule Junctions: How Vibrations Induce Electrical Current, arXiv:1102.4190 (... by suppressing electronic interference)
 M. Misiorny, I. Weymann, and J. Barnas, The Influence of Magnetic Anisotropy on the Kondo Effect and SpinPolarized Transport through Magnetic Molecules, Adatoms and Quantum Dots, arXiv:1103.1128
 Y.L. Lo, S.J. Sun, and Y.J. Kao, Length and temperature dependent crossover of charge transport across molecular junctions, arXiv:1103.1708 (NEGF)
 D. Segal, A. J. Millis, and D. R. Reichman, Nonequilibrium transport in quantum impurity models: Exact path integral simulations, arXiv:1103.1867 (contains discussion of iterative influencefunctional path integral method applied to transport through a quantum dot, it decouples the interactions on the dot via a HubbardStatonovich transformation and evaluate path integrals numerically)
 F. Delgado and J. FernándezRossier, Cotunneling theory of inelastic STM spin spectroscopy, arXiv:1103.3676 (map cotunneling onto an additional term in an effective Hamiltonian, which is then treated in leading order in the master equation)
 H. Wang and M. Thoss, Numerically exact, timedependent treatment of vibrationally coupled electron transport in singlemolecule junctions, arXiv:1103.4945 (using an advanced timedependent Hartree approach, see also references); Numerically exact, timedependent study of correlated electron transport in model molecular junctions, arXiv:1301.4489
 K. Kaasbjerg and K. Flensberg, Image charge effects in singlemolecule junctions: Breaking of symmetries and NDR in a benzene SET, arXiv:1104.2398 (explain how the image charge leads to a blocking state; rate equations in sequentialtunneling approximation)
 D. Kast, L. Kecke, and J. Ankerhold, Charge transfer through single molecule contacts: How reliable are rate descriptions?, arXiv:1104.4903 (conclude that they are rather reliable, even where one does not expect this; mostly interested in coupling to vibrations)
 T. Koch, J. Loos, A. Alvermann, and H. Fehske, Nonequilibrium transport through molecular junctions in the quantum regime, arXiv:1105.0576 (Greenfunction approach, no HubbardU, variational LangFirsov transformation to treat electronvibron interaction)
 L. Livadaru, J. Pitters, M. Taucer, and R. A. Wolkow, Theory of STM Imaging of Silicon Dangling Bonds on a H:Si(001) Surface: a Complex 3D Playground for Single Electron Dynamics, arXiv:1105.2332 (theory for observed halos based on nonequilibrium transport)
 O. EntinWohlman and A. Aharony, Threeterminal thermoelectric transport through a molecule placed on an AharonovBohm ring, arXiv:1105.3994
 R. Volkovich, R. Härtle, M. Thoss, and U. Peskin, BiasControlled Selective Excitation of Vibrational Modes in Molecular Junctions: A Route Towards ModeSelective Chemistry, arXiv:1106.0170
 A. C. Seridonio, F. S. Orahcio, F. M. Souza, and M. S. Figueira, Spinresolved STM for a Kondo adatom in a ferromagnetic island, arXiv:1106.2853
 I. A. Sadovskyy, D. Chevallier, T. Jonckheere, M. Lee, S. Kawabata, and T. Martin, Josephson effect through an anisotropic magnetic molecule, arXiv:1106.4193 P
 J. Ren, J.X. Zhu, J. E. Gubernatis, C. Wang, and B. Li, Thermoelectric transport with arbitrary electronphonon coupling and electronelectron interaction in molecular junctions, arXiv:1106.5208 (NEGF)
 F. Zhan, S. Denisov, and P. Hänggi, Electronic Heat Transport Across a Molecular Wire: Power Spectrum of Heat Fluctuations, arXiv:1107.3434 (NEGF)
 J. P. Bergfield, J. D. Barr, and C. A. Stafford, Transmission eigenvalue distributions in highlyconductive molecular junctions, arXiv:1107.5854 (essentially MeirWingreenJauho approach, although not called that; use additional singleresonance approximation; model system is benzene between Pt electrodes; the eigenvalues mentioned in title are the ones of the coupling matrix Γ)
 A. Yar, A. Donarini, S. Koller, and M. Grifoni, Dynamical symmetry breaking in vibrationassisted transport through nanostructures, arXiv:1108.0814
 S. Kruchinin and T. Pruschke, Thermopower for a molecule with vibrational degrees of freedom, arXiv:1108.4526 (one spinless electronic orbital coupled to a vibron, only two states of the harmonicoscillator ladder are taken into account, MeirWingreen formula using the local density of states in the limit of zero coupling); V. N. Ermakov, S. P. Kruchinin, H. T. Kim, and T. Pruschke, Thermoelectric properties of molecular nanostructures, arXiv:1109.0365 (extension, still without interactions)
 D. Rai, O. Hod, and A. Nitzan, Magnetic Fields Effects on the Electronic Conduction Properties of Molecular Ring Structures, arXiv:1109.0619 (AharonovBohm effect in molecular rings, dephasing, no interactions, Landauer approach)
 A. A. Dzhioev and D. S. Kosov, Solvent induced currentvoltage hysteresis and negative differential resistance in molecular junctions, arXiv:1109.2046 (NEGF, effect of solvent)
 R. Gutierrez, E. Diaz, R. Naaman, and G. Cuniberti, Spin selective transport through helical molecular systems, arXiv:1110.0354
 N. Bode, L. Arrachea, G. Lozano, T. S. Nunner, and F. von Oppen, Currentinduced switching in transport through anisotropic magnetic molecules, arXiv:1110.4270 (assuming slow spin dynamics, derive Langevin/LandauLifshitzGilbert equation for the spin)
 L. Kecke and J. Ankerhold, Voltage induced conformational changes and current control in charge transfer through molecules, arXiv:1110.5505 (electrons coupled to a slow [heavy] torsion mode of the molecule, master equation)
 H. Ness and L. K. Dash, Nonequilibrium quantum transport in fully interacting singlemolecule nanojunctions, arXiv:1112.1878 (NEGF for systems with interactions in the molecule, in the leads, and spanning molecule and leads)
 D. Bohr and P. Schmitteckert, The dark side of benzene: interference vs. interaction, arXiv:1112.4585 (linear response, employ the DMRG)
 D. A. Lovey and R. H. Romero, Quantum interference through gated singlemolecule junctions, Chem. Phys. Lett. 530, 86 (2012) (noninteracting tightbinding model, Landauer formula)
 I. Weymann, J. Barnas, and S. Krompiewski, Manifestation of the shape and edge effects in spinresolved transport through graphene quantum dots, Phys. Rev. B 85, 205306 (2012)
 S. Sobczyk, A. Donarini, and M. Grifoni, Theory of STM junctions for πconjugated molecules on thin insulating films, Phys. Rev. B 85, 205408 (2012) (quantum master equation, with spatial resolution, applied to benzene) P; A. Donarini, S. Sobczyk, B. Siegert, and M. Grifoni, Topographical fingerprints of manybody interference blocking in STM junctions on thin insulating films, Phys. Rev. B 86, 155451 (2012) (applied to Cu phthalocyanine) P
 F. R. Renani and G. Kirczenow, Tightbinding model of Mn_{12} singlemolecule magnets: Electronic and magnetic structure and transport properties, Phys. Rev. B 85, 245415 (2012) (extended Hückel model plus spinorbit coupling, transport with Landauer formula, for the specific ligands considered HOMO predicted on the core, LUMO etc. on the ligands, thus LUMO etc. should not show Coulomb blockade)
 L. Tosi, P. RouraBas, and A. A. Aligia, Nonequilibrium conductance through a benzene molecule in the Kondo regime, J. Phys.: Condens. Matter 24, 365301 (2012)
 A. Donarini, A. Yar, and M. Grifoni, Vibration induced memory effects and switching in acdriven molecular nanojunctions, Eur. Phys. J. B 85, 316 (2012) (polaron shift, FranckCondon blockade) P
 B. Popescu, P. B. Woiczikowski, M. Elstner, and U. Kleinekathöfer, TimeDependent View of Sequential Transport through Molecules with Rapidly Fluctuating Bridges, Phys. Rev. Lett. 109, 176802 (2012) (noninteracting electrons, NEGF)
 A. Valli, G. Sangiovanni, A. Toschi, and K. Held, Correlation effects in transport properties of interacting nanostructures, Phys. Rev. B 86, 115418 (2012) (DMFT, applied to benzenering, only linear response, DMFT is found to be valid unless hybridization is weak)
 G. Li, M. S. Shishodia, B. D. Fainberg, A. Nitzan, and M. A. Ratner, Compensation of Coulomb blocking and energy transfer in the current voltage characteristic of molecular conduction junctions, arXiv:1201.0245
 B. D. Fainberg and T. Seideman, Optically induced current in molecular conduction nanojunctions with intrinsic semiconductor contacts, arXiv:1201.4682
 R. Hützen, S. Weiss, M. Thorwart, and R. Egger, Iterative summation of path integrals for nonequilibrium molecular quantum transport, arXiv:1201.6466 (a spinless fermionic orbital, thus without fermionic interaction, with Fröhlich coupling to a single harmonic oscillator, approach works in the quantumcoherent [open] situation)
 V. Balachandran, R. Bosisio, and G. Benenti, Validity of Wiedemann Franz law in small molecular wires, arXiv:1202.5109
 L. Simine and D. Segal, Vibrational cooling, heating, and instability in molecular conducting junctions: Full counting statistics analysis, arXiv:1203.3910
 K. I. Wysokinski, Thermal transport of molecular junctions in the pair tunneling regime, arXiv:1204.3059
 H. Xie, Q. Wang, H. Jiao, and J.Q. Liang, Tunneling anisotropic magnetoresistance in singlemolecule magnet junctions, arXiv:1205.3916 (importance of angle between easy axis and magnetization of electrode)
 G. Schaller, T. Krause, T. Brandes, and M. Esposito, Fluctuation theorem for a single electron transistor strongly coupled to vibrations, arXiv:1206.3960 (master equation, full counting statistics, one or more vibrational modes, FranckCondon blockade)
 K. F. Albrecht, H. Wang, L. Muehlbacher, M. Thoss, and A. Komnik, Bistability signatures in nonequilibrium charge transport through molecular quantum dots, arXiv:1206.4464 (noninteracting orbital strongly coupled to a vibrational mode, dependence of current on the initial state is long lived, are careful not to claim a dependence of the true stationary state)
 C. Stevanato, M. Leijnse, K. Flensberg, and J. Paaske, Finitebias conductance anomalies at a singlettriplet crossing, arXiv:1207.3020 (full master equation including all fourthorder terms, effect of crossing between singlet and triptlet ground state inside a Coulomb diamond, e.g., for double dot)
 G. Gonzalez and M. N. Leuenberger, MQCFano effect in single molecule magnet transistors, arXiv:1208.0963 (MQC = magnetic quantum coherence, due to spin tunneling through anisotropy barrier)
 H. Ishida and A. Liebsch, Coulomb blockade and Kondo effect in the electronic structure of Hubbard molecules connected to metallic leads: a finitetemperature, arXiv:1208.6225 (linear response, leads modeled by finite clusters, exact diagonalization, Greenfunction approach)
 R. Härtle, M. Butzin, and M. Thoss, Vibrationally Induced Decoherence in SingleMolecule Junctions, arXiv:1209.5619 (LangFirsov transformation, NEGF)
 H. Ness and L. K. Dash, Nonequilibrium transport with selfconsistent renormalised contacts for a singlemolecule nanodevice with electronvibron interaction, arXiv:1210.1368, Phys. Rev. B (NEGF); Nonequilibrium renormalised contacts for transport in nanodevices with interaction: a quasiparticle approach, arXiv:1210.1372
 M. Leijnse, Interaction effects in transport through molecular monolayers, arXiv:1210.2843 (normal transport through layer with nearestneighbor Coulomb interaction, one spinless orbital per site, sequential tunneling, nonlinear master equation) P
 D. H. Santamore, N. Lambert, and F. Nori, Vibrationallymediated molecular transistors, arXiv:1210.7098
 M. B. Tagani and H. R. Soleimani, Photonphononassisted thermoelectric effects in the molecular devices, arXiv:1210.7322
 M. Knap, E. Arrigoni, and W. von der Linden, Phonon mediated correlation effects on the transport properties of a benzene molecular transistor, arXiv:1211.1384 (electronphonon coupling: electron hopping couples to six vibrational eigenmodes of benzene, focus on the lowest, i.e., breathing mode, no electronelectron interaction [U]; cluster perturbation theory and MeirWingreentype current formula)
 M. Filipovic, C. Holmqvist, F. Haupt, and W. Belzig, Spin transport and tunable Gilbert damping in a singlemolecule magnet junction, arXiv:1211.3611 (electronic orbital without Hubbard interaction coupled to timedependent local magnetic field [modeling a large precessing spin], Keldysh NEGF formalism)
 A. A. Dzhioev, D. S. Kosov, and F. von Oppen, Outofequilibrium catalysis of chemical reactions by electronic tunnel currents, arXiv:1212.2010 (Keldysh NEGF)
 R. A. Molina, P. Schmitteckert, D. Weinmann, R. A. Jalabert, and P. Jacquod, Mesoscopic behavior of the transmission phase through confined correlated electronic systems, arXiv:1212.2114 (linear response, "embedding method")
 M. Imran, Electron transport through a diatomic molecule, arXiv:1212.3775 (noninteracting, twosite model)
 G. D. Scott, D. Natelson, S. Kirchner, and E. Muñoz, Transport Characterization of KondoCorrelated Single Molecule Devices, arXiv:1301.2168
 L. Kecke and J. Ankerhold, Charge transfer through molecular junctions within Redfield theory: subtleties and pitfalls, arXiv:1301.2422 P
 A. Jovchev and F. Anders, Influence of vibrational modes on the quantum transport through a nanodevice, arXiv:1302.0184
 M. Misiorny and J. Barnas, Effects of Transverse Magnetic Anisotropy on CurrentInduced Spin Switching, arXiv:1302.1074
 J. I. Romero and E. R. Mucciolo, Berry phase interference and singleelectronic transport in a threeion magnetic molecule, arXiv:1302.4768 (magneticnonmagneticmagnetic ions, rate equations, stationary state, diabolical [degeneracy] points)
 W. R. French, C. R. Iacovella, I. Rungger, A. Melo Souza, S. Sanvito, and P. T. Cummings, Structural Origins of Conductance Fluctuations in GoldThiolate Molecular Transport Junctions, arXiv:1303.0315 (moleculardynamics simulations with semiempirical tightbinding potentials, transport calculations using static DFT [SMEAGOL])
 Y. Dubi, The effect of fluctuations  thermal and otherwise  on the temperature dependence of thermopower in aromatic chain singlemolecule junctions, arXiv:1303.0488 (linear response, tightbinding model based on DFT, NEGF)
 E. Eidelstein, D. Goberman, and A. Schiller, Crossover from adiabatic to antiadiabatic phononassisted tunneling in singlemolecule transistors, arXiv:1303.7161 (single level without Hubbard interaction coupled to vibrational mode, equilibrium [single reservoir] and linear response transport, NRG)
 R. Härtle, U. Peskin, and M. Thoss, Vibrationally coupled electron transport in singlemolecule junctions: The importance of electronhole pair creation processes, arXiv:1304.4846 (NEGF)
 H. Xie, Q. Wang, H.B. Xue, H.J. Jiao, and J.Q. Liang, Intrinsic spinrelaxation induced negative tunnel magnetoresistance in a singlemolecule magnet, arXiv:1304.6044 (standard model, rate equations including cotunneling used to find the stationary state, study effect of additional spin relaxation) P
 P. Stadler, C. Holmqvist, and W. Belzig, Josephson current through a quantum dot coupled to a molecular magnet, arXiv:1304.8030 (quantum dot with one orbital exchange coupled to a classical spin precessing in a constant magnetic field, i.e., rotating Zeeman field; NEGF) P
 P. RouraBas, L. Tosi, and A. A. Aligia, Nonequilibrium transport through magnetic vibrating molecules, arXiv:1305.3263 (Anderson impurity with infinite U coupled to vibrational mode, no local spin; Keldysh NEGF, Kondo peak is DOS vs. frequency shows vibron satellites)
 D. A. Lovey and R. H. Romero, Quantum transport through single and multilayer icosahedral fullerenes, arXiv:1305.6299 (tightbiding model, Landauer approach)
 A. Migliore and A. Nitzan, Nonlinear charge transport in redox molecular junctions: a Marcus perspective, arXiv:1306.4797, ACS Nano 5, 6669 (2011) (detailed study of sequential tunneling rates as they appear in rate equations and their effects on transport); Irreversibility and hysteresis in redox molecular conduction junctions, arXiv:1306.4812, J. Am. Chem. Soc. (memory effects, dependence on sweep rate); A. J. White, A. Migliore, M. Galperin, and A. Nitzan, Quantum Transport With Two Interacting Conduction Channels, arXiv:1306.4855, J. Chem. Phys. 138, 174111 (2013) (for example the redox molecules)
 M. Galperin and A. Nitzan, Cooperative effects in inelastic tunneling, arXiv:1306.4858
 B. Dong, G. H. Ding, and X. L. Lei, Full counting statistics of a singlemolecular quantum dot, arXiv:1307.0946 (with strong coupling to a vibrational mode; NEGF with LangFirsov transformation)
 E. Perfetto and G. Stefanucci, Screeninginduced negative differential conductance in the FranckCondon blockade regime, arXiv:1307.7527 (using bosonization)
 M. Nuss, W. von der Linden, and E. Arrigoni, Effects of electronic correlations and magnetic field on a molecular ring out of equilibrium, arXiv:1307.7530 (steadystate cluster perturbation theory; benzene model, leads are modeled as 1D chains and are, oddly, said to have semicircular density of states)
 J. Fransson, J. Ren, and J.X. Zhu, Electrical and Thermal Control of Magnetic Exchange Interactions, Phys. Rev. Lett. 113, 257201 (2014) (discuss various forms of indirect magnetic coupling mediated by electronic leads)
 S. Ajisaka, B. Zunkovic, and Y. Dubi, The Molecular PhotoCell: Quantum Transport and Energy Conversion at Strong NonEquilibrium, Sci. Rep. 5, 8312 (2015) (Lindblad master equation, including coupling to photons and vibrons)

R. Temirov et al., Molecular Model of a Quantum Dot Beyond the Constant Interaction Approximation, Phys. Rev. Lett. 120, 206801 (2018) (taking dependence of polarizability on charge state into account)

J. Fernández, P. RouraBas, and A. A. Aligia, Theory of Differential Conductance of Co on Cu(111) Including Co s and d Orbitals, and Surface and Bulk Cu States, Phys. Rev. Lett. 126, 046801 (2021)
Abinitio theory for nanoscopic transport
 F. Evers, F. Weigend, and M. Koentopp, The conductance of molecular wires and DFT based transport calculations, Phys. Rev. B 69, 235411 (2004) (why DFT is bad for weak coupling)
 N. Sai, M. Zwolak, G. Vignale, and M. Di Ventra, Dynamical corrections to the DFTLDA electron conductance in nanoscale systems, Phys. Rev. Lett. 94, 186810 (2005) (TDCDFT for a nanoscale constriction, then applied to a molecular junction; note comment)
 C. Toher, A. Filippetti, S. Sanvito, and K. Burke, SelfInteraction Errors in DensityFunctional Calculations of Electronic Transport, Phys. Rev. Lett. 95, 146402 (2005)
 R. Zikic, P. S. Krstic, X.G. Zhang, M. FuentesCabrera, J. Wells, and X. Zhao, Characterization of the tunneling conductance across DNA bases, Phys. Rev. E 74, 011919 (2006) (single nucleotides between gold electrodes, essentially Landauer picture); J. Lagerqvist, M. Zwolak, and M. Di Ventra, Comment on "Characterization of the tunneling conductance across DNA bases", condmat/0612493, and references therein
 V. V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge, T. Bredow, and I. Mertig, Organometallic BenzeneVanadium Wire: A OneDimensional HalfMetallic Ferromagnet, Phys. Rev. Lett. 97, 097201 (2006) P
 T. Ono and K. Hirose, FirstPrinciples Study on ElectronConduction Properties of C_{60} Chains, condmat/0606541
 C. Benesh, M. Thoss, W. Domcke, and M. Cizek, Vibronic effects on resonant electron conduction through single molecule junctions, condmat/0606756, Chem. Phys. Lett.
 X.Q. Li and Y. Yan, Quantum master equation scheme of timedependent density functional theory to timedependent transport in nanoelectronic devices, condmat/0606788
 C. J. Lambert, I. M. Grace, and T. Papadopolous, Controlled electron transport through single molecules, condmat/0609130 (for a specific class of molecular wires)
 F. Evers and A. Arnold, Molecular Conductance from Ab Initio Calculations: Self Energies and Absorbing Boundary Conditions, condmat/0611401
 T. Frederiksen, M. Paulsson, M. Brandbyge, and A.P. Jauho, Inelastic transport theory from firstprinciples: methodology and applications for nanoscale devices, condmat/0611562
 X.Q. Li, Y.J. Yan, Quantum master equation scheme of timedependent density functional theory to timedependent transport in nanoelectronic devices, Phys. Rev. B 75, 075114 (2007) (combines the master equation for the reduced manybody density operator, in the sequentialtunneling approximation, with TDDFT to reduce the manyparticle problem on the dot to solving timedependent KohnSham equations)
 E. Prodan and R. Car, DC conductance of molecular wires, Phys. Rev. B 76, 115102 (2007)
 N. Sai, N. Bushong, R. Hatcher, and M. Di Ventra, Microscopic durrent dynamics in nanoscale junctions, Phys. Rev. B 75, 115410 (2007)
 Z. Li and D. S. Kosov, Nature of welldefined conductance of amine anchored molecular junctions, condmat/0702507
 J. K. Viljas, F. Pauly, and J. C. Cuevas, Photoconductance of organic singlemolecule contacts, arXiv:0704.0408
 M. del Valle, R. Gutierrez, C. Tejedor, and G. Cuniberti, Tuning the conductance of a molecular switch, arXiv:0705.0527 (Landauer theory)
 P. Bokes, J. Jung, and R. W. Godby, Abinitio formulation of the 4point conductance of interacting electronic systems, arXiv:0705.1568 (TDDFT)
 F. Pauly, J. K. Viljas, J. C. Cuevas, and G. Schön, Tiltangle landscapes and temperature dependence of the conductance in biphenyldithiol singlemolecule junctions, arXiv:0705.3285 (DFT and Landauer formula)
 S.H. Ke, H. U. Baranger, and W. Yang, Electron transport through single conjugated organic molecules: Basis set effects in ab initio calculations, arXiv:0705.3409 (also DFT and Landauer formula)
 D. M. Cardamone and G. Kirczenow, SingleMolecule Device Prototypes for ProteinBased Nanoelectronics: Negative Differential Resistance and Current Rectification in Oligopeptides, arXiv:0708.1041 (semiempirical Hamiltonian, Landauer formula)
 W. Y. Kim and K. S. Kim, Carbon nanotube, graphene, nanowire, and moleculebased electron and spin transport phenomena using the nonequilibrium Green function method at the level of first principles theory, arXiv:0708.2459, J. Comp. Chem. 29, 1073 (2008) (DFT + Landauer formula)
 S. E. Baltazar, M. De Menech, U. Saalmann, A. H. Romero, and M. E. Garcia, Negative differential resistance of Styrene on an ideal Si[111] surface: dependence of the IV characteristics on geometry, surface doping and shape of the STMtip, arXiv:0708.2834 (LSDA, Landauer formula)
 M. Galperin and S. Tretiak, Linear optical response of currentcarrying molecular junction: A NEGFTDDFT approach, arXiv:0712.1166
 A. Saffarzadeh, Tunnel magnetoresistance of a singlemolecule junction, J. Appl. Phys. 104, 123715 (2008) (NEGF and LandauerBüttiker formula for C_{60} with ferromagnetic leads)
 D. J. Mowbray, G. Jones, and K. S. Thygesen, Influence of Functional Groups on Charge Transport in Molecular Junctions, arXiv:0802.2069 (static DFT + NEGF to obtain transmission coefficient, Landauer formula, model STM tip [Au]moleculesurface [Au], strong tunneling regime)
 Yu. V. Pershin, Y. Dubi, and M. Di Ventra, Effective singleparticle orderN scheme for the dynamics of open noninteracting manybody systems, arXiv:0803.3216 (mapping of manyparticle problem onto an effective singleparticle one in the context of TDCDFT)
 R. Pati, M. McClain, and A. Bandyopadhyay, Origin of negative differential resistance in a strongly coupled single moleculemetal junction device, arXiv:0803.3342
 R. Stadler, V. Geskin, and J. Cornil, Towards a theoretical description of molecular junctions in the Coulomb blockade regime based on density functional theory, arXiv:0803.3886 (static DFT and NEGF to calculate transmission coefficients, claims to obtain good description of Coulomb blockade regime); Screening effects in a density functional theory based description of molecular junctions in the Coulomb blockade regime, arXiv:0811.3114 (application of previous idea)
 K. Tao, V. S. Stepanyuk, P. Bruno, D. I. Bazhanov, V. V. Maslyuk, M. Brandbyge, and I. Mertig, Manipulating magnetism and conductance of an adatommolecule junction on metal surfaces: ab initio study, arXiv:0804.3337 (employing static LDA in the GGA and nonequilibrium Green functions)
 S.H. Ke, W. Yang, and H. U. Baranger, Quantum Interference Controlled Molecular Electronics, arXiv:0806.3593, Nano Lett. 8, 3257 (2008) (static LDA and also HF, combined with Landauer formula)
 F. Pauly, J. K. Viljas, U. Huniar, M. Häfner, S. Wohlthat, M. Bürkle, J. C. Cuevas, and G. Schön, Clusterbased densityfunctional approach to quantum transport through molecular and atomic contacts, arXiv:0806.4173 (static GGA plus LandauerBüttiker theory)
 V. M. GarciaSuarez and C. J. Lambert, Tailoring the Fermi level of the leads in molecularelectronic devices, arXiv:0807.4032 (static DFT and NEGF to obtain transmission coefficients)
 P. Hyldgaard, Densityfunctional theory of nonequilibrium tunneling: A LippmannSchwinger singleparticle scheme, arXiv:0807.4555 (promising alternative to static DFT plus LandauerBüttiker formalism and also to TDDFT) P
 H. He, R. Pandey, and S. P. Karna, Electronic conduction in a threeterminal molecular transistor, arXiv:0809.3796 (static DFT plus LandauerBüttiker formula)
 J. Ferrer and V. M. GarciaSuarez, Tuning the conductance of molecular junctions: transparent versus tunneling regimes, arXiv:0810.1863 (static DFT and Landauer formalism)
 G. Vignale and M. Di Ventra, Incompleteness of the Landauer Formula for Electronic Transport, arXiv:0810.2857 (viscosity of the electron liquid is important, develop formalism based on TDCDFT)
 C. M. Finch, V. M. GarcíaSuárez, and C. J. Lambert, Giant thermopower and figure of merit in singlemolecule devices, arXiv:0811.3029 (use static DFT and nonequilibrium Greenfunction method [SIESTA code], find strong effect of Fano resonances on heat transport)
 Y.S. Liu and Y.C. Chen, Thermoelectricity of Molecular Tunneling Junctions, arXiv:0812.0400 (linear response, Landauer approach)
 L. Michalak, C. M. Canali, M. R. Pederson, M. Paulsson, and V. G. Benza, Theory of tunneling spectroscopy in a Mn_{12} singleelectron transistor by DFT methods, arXiv:0812.1058 (using a manybody/spin Hamiltonian based on abinitio calculations, and rate equations)
 M. J. Verstraete, P. Bokes, and R. W. Godby, FirstPrinciples conductance of nanoscale junctions from the polarizability of finite systems, arXiv:0812.4205
 R. Zhang, G. Ma, R. Li, Z. Qian, Z. Shen, X. Zhao, S. Hou, and S. Sanvito, Effects of spinorbit coupling on the conductance of molecules contacted with gold electrodes, J. Phys.: Condens. Matter 21, 335301 (2009) (spinorbit coupling in the leads, not in the molecule)
 S. BarrazaLopez, K. Park, V. GarciaSuarez, and J. Ferrer, Spinfiltering effect in the transport through a singlemolecule magnet Mn_{12} bridged between metallic electrodes, arXiv:0901.4271 (static GGA and GGA+U, nonequilibrium Green functions to calculate the transmission coefficients, and LandauerBüttiker formula)
 Z. Zhou and S.I Chu, Description of electron transport dynamics in molecular devices: A timedependent density functional theoretical approach in momentum space makes it simple, arXiv:0902.1489
 C. D. Pemmaraju, I. Rungger, and S. Sanvito, Magnetic state electrical readout of Mn12 molecules, arXiv:0905.0281
 D. Nozaki and G. Cuniberti, Siliconbased molecular switch junctions, arXiv:0907.0155
 T. Ozaki, K. Nishio, and H. Kino, Efficient implementation of the nonequilibrium Green function method for electronic transport calculations, arXiv:0908.4142 (using static DFT)
 K. K. Saha, W. Lu, J. Bernholc, and V. Meunier, Electron transport in multiterminal molecular device, arXiv:0908.4346 (DFT and KeldyshNEGF, essentially Landauer approach)
 S. BarrazaLopez, K. Park, V.r GarciaSuarez, and J. Ferrer, Firstprinciples study of electron transport through the singlemolecule magnet Mn12, arXiv:0909.3672 (static DFT/GGA including spinorbit coupling, Landauer formula)
 T. Kostyrko, V. M. GarciaSuarez, C. J. Lambert, and B. R. Bulka, Current rectification in molecular junctions produced by local potential fields, Phys. Rev. B 81, 085308 (2010) (using SMEAGOL: static DFT and NEGF)
 V. V. Maslyuk, S. Achilles, and I. Mertig, Spinpolarized transport and thermopower of organometallic nanocontacts, Sol. State Commun. 150, 505 (2010) (static GGA + NEGF for short benzenevanadium wires)
 X. Shen, L. Sun, E. Benassi, Z. Shen, X. Zhao, S. Sanvito, and S. Hou, Spin filter effect of manganese phthalocyanine contacted with singlewalled carbon nanotube electrodes, J. Chem. Phys. 132, 054703 (2010)
 S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, and E. K. U. Gross, Dynamical Coulomb Blockade and the Derivative Discontinuity of TimeDependent Density Functional Theory, Phys. Rev. Lett. 104, 236801 (2010) (Coulomb blockade is associated with undamped oscillations, not a stationary state, if the tunneling is suddenly instead of adiabatically switched on); see also Viewpoint: C. A. Ullrich, A notsosteady state, Physics 3, 47 (2010)
 T. Olsen and J. Schiøtz, Vibrationally Mediated Control of Single Electron Transmission in Weakly Coupled MoleculeMetal Junctions, arXiv:1001.0455 (calculate transmission coefficients, idea is that a single electron can tunnel through the molecule if the molecule was prepared in the first excited vibrational state, the vibration is deexcited, providing the energy required for the tunneling)
 I. Rungger, X. Chen, U. Schwingenschlögl, and S. Sanvito, Finitebias electronic transport of molecules in water solution, arXiv:1002.0226 (NEGF based on SICLDA, calculate transmission coefficient at zero and nonzero bias voltage)
 S.H. Ke, R. Liu, W. Yang, and H. U. Baranger, TimeDependent Transport Through Molecular Junctions, arXiv:1002.1441 (static GGA and NEGF approach, focus on dynamics)
 K. Park, S. BarrazaLopez, V. M. GarciaSuarez, and J. Ferrer, Effects of bonding type and interface geometry on coherent transport through the singlemolecule magnet Mn12, arXiv:1003.2750 (static GGA and NEGF approach, SMEAGOL and SIESTA codes)
 R. Stadler, Conformation dependence of charge transfer and level alignment in nitrobenzene junctions with pyridyl anchor groups, arXiv:1004.1323
 J. Chen, T. Markussen, and K. S. Thygesen, Quantifying Transition Voltage Spectroscopy of Molecular Junctions, arXiv:1005.3937 (DFT and NEGF calculation is used to elucidate the method of transition voltage spectroscopy)
 K. Stokbro, Firstprinciples modelling of molecular singleelectron transistors, arXiv:1006.0082 (DFT used to calculate the charging energy) P
 C. D. Pemmaraju, I. Rungger, X. Chen, A. R. Rocha, and S. Sanvito, Ab initio study of electron transport in dry poly(G)poly(C) ADNA strands, arXiv:1007.0035 (DFT with selfinteraction correction and NEGF)
 D. Jacob, K. Haule, and G. Kotliar, Dynamical MeanField Theory for Molecular Electronics: Electronic Structure and Transport Properties, arXiv:1009.0523 (static LDA and DMFT with onecrossing approximation as impurity solver)
 S. Schenk, P. Schwab, M. Dzierzawa, and U. Eckern, Density functional theory for a model quantum dot: Beyond the localdensity approximation, arXiv:1009.3416 (various regimes, also stress that the linear conductance cannot, in general, be obtained from static DFT)
 F. Mirjani and J. M. Thijssen, DFTbased manybody analysis of electron transport through molecules, arXiv:1009.5312 (extract parameters of Hubbardtype models from LSDA groundstate energies with constrained charge and spin) P
 Y. Xing, B. Wang, and J. Wang, Firstprinciples investigation of dynamical properties of molecular devices under a steplike pulse, arXiv:1011.2625 (NEGF)
 R. E. Sparks, V. M. GarcíaSuárez, D. Zs. Manrique1, and C. J. Lambert, Quantum Interference in Single Molecule Electronic Systems, Phys. Rev. B 83, 075437 (2011)
 T. Ono, S. Tsukamoto, Y. Egami, and Y. Fujimoto, Realspace calculations for electron transport properties of nanostructures, J. Phys.: Condens. Matter 23, 394203 (2011)
 M. Karolak, D. Jacob, and A. I. Lichtenstein, Orbital Kondo Effect in CobaltBenzene Sandwich Molecules, Phys. Rev. Lett. 107, 146604 (2011) (static DFT + onecrossing approximation + Hubbard and Hund'sfirstrule interactions, Greenfunction approach to obtain MeirWingreentype transmission function)
 G. Stefanucci and S. Kurth, Towards a Description of the Kondo Effect Using TimeDependent DensityFunctional Theory, Phys. Rev. Lett. 107, 216401 (2011)
 D. Toroz, M. Rontani, and S. Corni, Visualizing electron correlation by means of abinitio scanning tunneling spectroscopy images of single molecules, arXiv:1101.2517, J. Chem. Phys. 134, 024104 (2011) (quantum chemistry)
 V. M. GarcíiaSuárez and C. J. Lambert, Firstprinciples scheme for spectral adjustment in nanoscale transport, arXiv:1101.2778
 F. D. Novaes, M. Cobian, A. Garcia, P. Ordejon, H. Ueba, and N. Lorente, Negative differential resistance in scanning tunneling microscopy: simulations on C_{60}based molecular overlayers, arXiv:1101.3714 (static DFT and Landauer formula, Transiesta package)
 Y. Wang, C.Y. Yam, G. H. Chen, T. Frauenheim, and T. A. Niehaus, An efficient method for quantum transport simulations in the time domain, arXiv:1101.5929 (TDDFT)
 M. Polok, D. V. Fedorov, A. Bagrets, P. Zahn, and I. Mertig, Evaluation of conduction eigenchannels of an adatom probed by an STM tip, arXiv:1103.1162 (DFT/KKR and Kubo formula for linear response, conductance is decomposed into channels in the spirit of Landauer theory)
 J. Prasongkit, A. Grigoriev, G. Wendin, and R. Ahuja, Interference effects in phtalocyanine controlled by HH tautomerization: a potential twoterminal unimolecular electronic switch, arXiv:1104.1441 (static DFT and NEGF: TranSIESTA code)
 M. Karolak, D. Jacob, and A. I. Lichtenstein, Orbital Kondo effect in CobaltBenzene sandwich molecules, arXiv:1105.4803 (LDA+OCA method, [OCA: onecrossing approximation])
 J. P. Bergfield, Z. Liu, K. Burke, and C. A. Stafford, Kondo effect given exactly by density functional theory, arXiv:1106.3104 (linear response is described exactly if the exact KohnSham potential of static DFT is used, which here can be obtained from the Bethe ansatz; this holds although the spectral function of static DFT completely misses the Kondo peak; overlaps with the following reference)
 P. Tröster, P. Schmitteckert, and F. Evers, DFTbased transport calculations, Friedel's sum rule and the Kondo effect, arXiv:1106.3669 (linearresponse conductance; overlaps with previous reference)
 A.M. Uimonen, E. Khosravi, A. Stan, G. Stefanucci, S. Kurth, R. van Leeuwen, and E. K. U. Gross, Comparative study of manybody perturbation theory and timedependent density functional theory in the outofequilibrium Anderson model, arXiv:1107.0162 (detailed comparison of various approximations)
 M. Bürkle, J. K. Viljas, A. Mishchenko, D. Vonlanthen, G. Schön, M. Mayor, T. Wandlowski, and F. Pauly, Conduction mechanisms in biphenyldithiol singlemolecule junctions, arXiv:1109.0273 (static DFT and LandauerBüttiker approach)
 C. Krzeminski, C. Delerue, G. Allan, D. Vuillaume, and R. M. Metzger, Theory of electrical rectification in a molecular monolayer, arXiv:1109.2695
 D. Hou and J. H. Wei, The Difficulty of Gate Control in Molecular Transistors, arXiv:1109.5940
 H. Hao, X.H. Zheng, L.L. Song, R.N. Wang, and Z. Zeng, Electrostatic Spin Crossover in a Molecular Junction of a SingleMolecule Magnet Fe_{2}, Phys. Rev. Lett. 108, 017202 (2012) (DFT, molecule in Au junction is predicted to show a transition between parallel and antiparallel alignment of the Fe spins, not a spincrossover transition; no transport calculation; transition is driven by the Stark effect in the applied electric field, main idea is that the polarizability of the molecule has opposite [negative] sign in the junction compared to free space)
 A. Calzolari, T. Jayasekera, K. W. Kim, and M. Buongiorno Nardelli, Ab initio thermal transport properties of nanostructures from density functional perturbation theory, J. Phys.: Condens. Matter 24, 492204 (2012) (due to phonons only, Landauer approach based on DFPT)
 P. Darancet, J. R. Widawsky, H. J. Choi, L. Venkataraman, and J. B. Neaton, Quantitative CurrentVoltage Characteristics in Molecular Junctions from First Principles, Nano Lett., Article ASAP DOI: 10.1021/nl3033137 (stong coupling to leads, nearly linear IV curve [cotunneling]; selfinteractioncorrected DFT + Landauer formula, SIC brings calculated conductance down to experimental range)
 Z. Liu, J. P. Bergfield, K. Burke, and C. A. Stafford, Accuracy of density functionals for molecular electronics: the Anderson junction, arXiv:1201.1310 (linear response, zero temperature, obtain exact exchangecorrelation functional and compare it to approximations)
 N. Baadji and S. Sanvito, Giant magnetoresistance across the phase transition in spin crossover molecules, arXiv:1201.2028 (single spincrossover molecule in junction studied by static DFT and Landauer approach, huge change in current between the two spin states)
 M. Bürkle, L. A. Zotti, J. K. Viljas, D. Vonlanthen, A. Mishchenko, T. Wandlowski, M. Mayor, G. Schön, and F. Pauly, Abinitio study of the thermopower of biphenylbased singlemolecule junctions, arXiv:1202.5709 (static DFT and NEGF)
 S. Bilan, L. A. Zotti, F. Pauly, and J. C. Cuevas, Theoretical study of the charge transport through C60based singlemolecule junctions, arXiv:1203.3101 (static DFT)
 D. Nozaki, H. Sevincli, S. M. Avdoshenko, R. Gutierrez, and G. Cuniberti, Control of quantum interference in molecular junctions: Understanding the origin of Fano and anti resonances with parabolic diagrams, arXiv:1203.5269; D. Nozaki, C. Gomes da Rocha, H. M. Pastawski, and G. Cuniberti, Disorder and dephasing effect on electron transport through conjugated molecular wires in molecular junctions, arXiv:1204.0152 (static DFT and NEGF)
 A. Pertsova, M. Stamenova, and S. Sanvito, Timedependent electron transport through a strongly correlated quantum dot: multipleprobe open boundary conditions approach, arXiv:1204.0937 (onedimensional chain, combination of LDA and Bethe ansatz)
 G. Géranton, C. Seiler, A. Bagrets, L. Venkataraman, and F. Evers, Transport properties of individual C60molecules, arXiv:1206.1226
 R. Stadler, J. Cornil, and V. Geskin, Electron transfer through a single barrier inside a molecule: from strong to weak coupling, arXiv:1207.7232, J. Chem. Phys. (charge distribution in biphenyl radical ions in electric field, not transport)
 S. Ulstrup, T. Frederiksen, and M. Brandbyge, Nonequilibrium electronvibration coupling and conductance fluctuations in a C60junction, arXiv:1209.5644 (DFT and NEGF)
 D. A. Ryndyk, A. Donarini, M. Grifoni, and K. Richter, Manybody localized molecular orbital approach to molecular transport, arXiv:1210.5615 (DFT/LDA, KohnSham orbitals transformed into localized molecular orbitals as basis, thereby obtain hopping amplitudes, calculate Coulomb matrix elements between them with adhoc dielectric constant but no screening, state that twocenter [densitydensity] terms are dominant, no discussion of double counting of interactions; finally apply NEGF and Pauli master equation)
 D. Toroz, M. Rontani, and S. Corni, Proposed alteration of images of molecular orbitals obtained using a scanning tunnelling microscope as a probe of electron correlation, arXiv:1212.0550, Phys. Rev. Lett.
 A. Pertsova, M. Stamenova, and S. Sanvito, Timedependent electron transport through a strongly correlated quantum dot: multipleprobe openboundary conditions approach, J. Phys.: Condens. Matter 25, 105501 (2013)
 A. Saffarzadeh and G. Kirczenow, Voltagecontrolled spin injection with an endohedral fullerene Co@C60 dimer, Appl. Phys. Lett. 102, 173101 (2013) (DFT and extended Hückel model, Landauer approach)
 S. Kurth and G. Stefanucci, Dynamical correction to KohnSham conductances from static density functional theory, Phys. Rev. Lett. 111, 030601 (2013) (linearresponse conductance, Kondo effect for one electron in ground state)
 G. Sclauzero and A. Dal Corso, Efficient DFT+U calculations of ballistic electron transport: Application to Au monatomic chains with a CO impurity, arXiv:1301.5746 (DFT+U combined with LandauerBüttiker approach)
 F. R. Renani and G. Kirczenow, Switching of a Quantum Dot Spin Valve by Single Molecule Magnets, arXiv:1303.1867 (two Mn_{12} molecules sidecoupled to gold nanoparticle between electrodes, extended Hückel approach with spinorbit coupling, Landauer formula for transmission coefficient)
 J. F. Nossa, M. Fhokrul Islam, C. M. Canali, and M. R. Pederson, Electric control of a Fe4 singlemolecule magnet in a singleelectron transistor, arXiv:1303.3283 (detailed paper, static DFT, motivated by transport but no transport calculation)
 W. R. French, C. R. Iacovella, I. Rungger, A. Melo Souza, S. Sanvito, and P. T. Cummings, Atomistic Simulations of Highly Conductive Molecular Transport Junctions Under Realistic Conditions, arXiv:1303.5036 (molecular dynamics using semiempirical potentials and SAu bonding modelled based on DFT)
 C. Oppenländer, B. Korff, T. Frauenheim, and T. A. Niehaus, Atomistic modeling of dynamical quantum transport, arXiv:1304.4157 (adiabatic timedependent density functional theory, compared to Landauer approach)
 T. Markussen, C. Jin, and K. S. Thygesen, Quantitatively Accurate Calculations of Conductance and Thermopower of Molecular Junctions, arXiv:1305.3048 (DFT with GW approximation, also selfinteraction correction, calculate transmission function at zero bias and from this the thermopower in linear response)
 C. Oppenländer, B. Korff, and T. A. Niehaus, Higher harmonics and ac transport from time dependent density functional theory, arXiv:1305.3746 (approximate TDDFT)
 G. Stefanucci and S. Kurth, Kondo effect in the KohnSham conductance of multiple levels quantum dots, arXiv:1307.6337 (point out that static DFT + Landauer formalism can describe the Kondo effect when appropriate XC functionals are used, namely ones that show steps at integer filling fraction; useful references)
 S. Liu, A. Nurbawono, and C. Zhang, Density Functional Theory for SteadyState Nonequilibrium Molecular Junctions, Sci. Rep. 5, 15386 (2015) (based on Hershfield's mapping to effectively equilibrium system; assumptions questionable, higherpotential lead what run dry before steady state is reached, see also endnote 20)
Cavities, optical properties, polaritons
 J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf, and R. F. Mahrt, Roomtemperature BoseEinstein condensation of cavity excitonpolaritons in a polymer, Nature Mat. 13, 247 (2014) (nonequilibrium BEC driven by pump laser, induced lasing)
 K. S. Daskalakis, S. A. Maier, R. Murray, and S. KénaCohen, Nonlinear interactions in an organic polariton condensate, Nature Mat. 13, 271 (2014) (similar to previous; nonequilibrium BEC and lasing)
 J. Feist and F. J. GarciaVidal, Extraordinary Exciton Conductance Induced by Strong Coupling, Phys. Rev. Lett. 114, 196402 (2015) (nearly unaffected by disorder)

F. Herrera and F. C. Spano, Dark Vibronic Polaritons and the Spectroscopy of Organic Microcavities, Phys. Rev. Lett. 118, 223601 (2017) (theory)
Other studies on nanoscopic and mesoscopic systems (not transport)
 M. Ludwig, B. Kubala, and F. Marquardt, The optomechanical instability in the quantum regime, arXiv:0803.3714
 H. E. Türeci, M. Hanl, M. Claassen, A. Weichselbaum, T. Hecht, B. Braunecker, A. Govorov, L. Glazman, J. von Delft, and A. Imamoglu, Shedding light on nonequilibrium dynamics of a spin coupled to fermionic reservoir, arXiv:0907.3854 (optically excited spin coupled to quantum dot, which is coupled to an electron bath)
 M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck, Quantumdot Carnot engine at maximum power, arXiv:1001.2192
 A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, Cooling and squeezing via quadratic optomechanical coupling, arXiv:1004.2510
 D. S. Kosov, T. Prosen, and B. Zunkovic, Lindblad master equation approach to superconductivity in open quantum systems, arXiv:1106.4656
 M. Misiorny, M. Hell, and M. R. Wegewijs, Spintronic magnetic anisotropy, Nature Phys. 9, 801 (2013) (coupling a quatum dot to a ferromagnetic lead induces a uniaxial anisotropy [here called quadrupolar field] to second order in the coupling Γ; also calculate the spectral function at finite frequency but zero bias using the density matrix numerical renormalization group)
Superconductivity
Experiments
 J. Demsar, B. Podobnik, V. V. Kabanov, D. Mihailovic, and T. Wolf, The superconducting gap Delta_{c}, the pseudogap Delta_{p} and pair fluctuations above T_{c} in overdoped Y_{1x}Ca_{x}Ba_{2}Cu_{3}O_{7delta} from femtosecond timedomain spectroscopy, condmat/9905026 (the pseudogap and the superconducting gap show different time dependence); J. Demsar, K. Zagar, V. V. Kabanov, and D. Mihailovic, Lowenergy electronic structure in Y_{1x}Ca_{x}Ba_{2}Cu_{3}O_{7y} comparison of timeresolved optical spectroscopy, NMR, neutron and tunneling data, condmat/9907028 P
 Y. Zuev, J. A. Skinta, M.S. Kim, T. R. Lemberger, E. Wertz, K. Wu, and Q. Li, The Role of Thermal Phase Fluctuations in Underdoped YBCO Films, condmat/0407113
 W. J. Padilla, Y. S. Lee, M. Dumm, G. Blumberg, S. Ono, K. Segawa, S. Komiya, Y. Ando, and D. N. Basov, Constant effective mass across the phase diagram of highT_{c} cuprates, Phys. Rev. B 72, 060511(R) (2005)
 A. Uldry, M. Mali, J. Roos, and P. F. Meier, Anisotropy of the antiferromagnetic spin correlations in the superconducting state of YBa_{2}Cu_{3}O_{7} and YBa_{2}Cu_{4}O_{8}, condmat/0506245, J. Phys.: Condens. Matter 17, L499 (2005) (NMR/NQR: claim that inplane antiferromagnetic correlations vanish at zero temperature in the superconducting phase)
 D. M. Broun, P. J. Turner, W. A. Huttema, S. Ozcan, B. Morgan, R. Liang, W. N. Hardy, and D. A. Bonn, InPlane Superfluid Density of Highly Underdoped YBa_{2}Cu_{3}O_{6+x}, condmat/0509223
 R. S. Keizer, S. T. B. Goennenwein, T. M. Klapwijk, G. Miao, G. Xiao, and A. Gupta, A spin triplet supercurrent through the halfmetallic ferromagnet CrO_{2}, condmat/0602359, Nature 439, 825 (2006)
 E. Bustarret, C. Marcenat, P. Achatz, J. Kacmarcik, F. Lévy, A. Huxley, L. Ortéga, E. Bourgeois, X. Blase, D. Débarre, and J. Boulmer, Superconductivity in doped cubic silicon, Nature 444, 465 (2006) (in heavily borondoped silicon, T_{c} about 0.35 K)
 H. Yamazaki, N. Shannon, and H. Takagi, Interplay between superconductivity and ferromagnetism in epitaxial Nb(110)/Au(111)/Fe(110) trilayers, condmat/0604030 (interesting oscillations of superconducting T_{c} with Au thickness, open questions)
 J. E. Sonier, F. D. Callaghan, Y. Ando, R. F. Kiefl, J. H. Brewer, C. V. Kaiser, V. Pacradouni, S.A. SabokSayr, X. F. Sun, S. Komiya, W. N. Hardy, D. A. Bonn, and R. Liang, Avoided Quantum Criticality in YBa_{2}Cu_{3}O_{y} and La_{2x}Sr_{x}CuO_{4}, condmat/0610051
 G.M. Zhao, Unambiguous exclusion of dwave gap symmetry in hightemperature superconductors, condmat/0610599 (analysis of existing ARPES data for two compounds supports extended swave gap) Q
 Y. Okada, T. Takeuchi, T. Baba, S. Shin, and H. Ikuta, The origin of the anomalously strong influence of outofplane disorder on highT_{c} superconductivity, arXiv:0704.1698
 E. E. M. Chia, J.X. Zhu, D. Talbayev, R. D. Averitt, K.H. Oh, I.S. Jo, S.I. Lee, and A. J. Taylor, Observation of Competing Order in a HighT_{c} Superconductor with Femtosecond Optical Pulses, arXiv:0705.1724 (Tl2223, competing order with second gap at low temperatures)
 M. C. Boyer, W. D. Wise, K. Chatterjee, M. Yi, T. Kondo, T. Takeuchi, H. Ikuta, and E. W. Hudson, Imaging the Two Gaps of the HighT_{C} Superconductor PbBi_{2}Sr_{2}CuO_{6+x}, arXiv:0705.1731 (evidence for second gap/competing order)
 H.H. Wen and X.G. Wen, Two energy scales and close relationship between the pseudogap and superconductivity in underdoped cuprate superconductors, arXiv:0708.3878, Physica C 460462, 28 (2007), Proceedings of M2S2006
 A. Kanigel, U. Chatterjee, M. Randeria, M. R. Norman, S. Souma, M. Shi, Z. Z. Li, H. Raffy, and J. C. Campuzano, Protected nodes and the collapse of the Fermi arcs in high T_{c} cuprates, arXiv:0708.4099
 J. M. Tranquada, G. D. Gu, M. Hücker, Q. Jie, H.J. Kang, R. Klingeler, Q. Li, N. Tristan, J. S. Wen, G. Y. Xu, Z. J. Xu, J. Zhou, and M. v. Zimmermann, Evidence for unusual superconducting correlations coexisting with stripe order in La_{1.875}Ba_{0.125}CuO_{4}, Phys. Rev. B 78, 174529 (2008)
 S. E. Sebastian, J. Gillett, N. Harrison, P. H. C. Lau, C. H. Mielke, and G. G. Lonzarich, Quantum oscillations in the parent magnetic phase of an iron arsenide high temperature superconductor, arXiv:0806.4726 (for a "122" compound, giving information on the Fermi surface in the paramagnetic and SDW phases)
 A. S. Mishchenko, N. Nagaosa, Z.X. Shen, G. De Filippis, V. Cataudella, T. P. Devereaux, C. Bernhard, K. W. Kim, and J. Zaanen, Charge dynamics of doped holes in high T_{c} cuprates  A clue from optical conductivity, arXiv:0804.0479 (experiment and theory; explanation for midinfrared band in terms of correlations and electronphonon coupling)
 A. Koitzsch, D. Inosov, J. Fink, M. Knupfer, H. Eschrig, S. V. Borisenko, G. Behr, A. Köhler, J. Werner, B. Büchner, R. Follath, and H. A. Dürr, Electronic structure of LaO_{1x}F_{x}FeAs from Photoemission Spectroscopy, arXiv:0806.0833 (doping is seen to lead to significant spectralweight transfer and Fedlike bands close to the Fermi energy are narrower than predicted by LDA)
 C. Liu, T. Kondo, M. Tillman, M. Tillman, G. D. Samolyuk, Y. Lee, C. Martin, J. L. McChesney, S. Bud'ko, M. Tanatar, E. Rotenberg, P. Canfield, R. Prozorov, B. Harmon, and A. Kaminski, Fermi surface and strong coupling superconductivity in single crystal NdFeAsO_{1x}F_{x}, arXiv:0806.2147 (ARPES, see relatively flat bands below the Fermi energy and pseudogap behaviour) P
 S. Margadonna, Y. Takabayashi, M. T. McDonald, M. Brunelli, G. Wu, R. H. Liu, X. H. Chen, and K. Prassides, Crystal structure and phase transitions across the metalsuperconductor boundary in the SmFeAsO_{1x}F_{x} (0 < x < 0.20) family, arXiv:0806.3962 (Structural transition is seen to persist into the superconducting range) P
 H. Luetkens, H.H. Klauss, M. Kraken, F. J. Litterst, T. Dellmann, R. Klingeler, C. Hess, R. Khasanov, A. Amato, C. Baines, J. HamannBorrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner, The electronic phase diagram of the LaO_{1x}F_{x}FeAs superconductor, arXiv:0806.3533, Nature Materials P
 S. C. Riggs, J. B. Kemper, Y. Jo, Z. Stegen, L. Balicas, G. S. Boebinger, F. F. Balakirev, A. Migliori, H. Chen, R. H. Liu, and X. H. Chen, LogT divergence and InsulatortoMetal Crossover in the normal state resistivity of fluorine doped SmFeAsO_{1x}F_{x}, arXiv:0806.4011 (logarithmic divergence of resistivity if superconductivity is suppressed by strong magnetic field, magnetoresistance is positive, effect is more pronounced in underdoped than in optimally doped sample) P
 F.C. Hsu, J.Y. Luo, K.W. Yeh, T.K. Chen, T.W. Huang, P. M. Wu, Y.C. Lee, Y.L. Huang, Y.Y. Chu, D.C. Yan, and M.K. Wu, Superconductivity in the PbOtype Structure alphaFeSe, arXiv:0807.2369 (superconductivity with T_{c} around 8K, requires Se deficiency)
 M. Shi, A. Bendounan, E. Razzoli, S. Rosenkranz, M. R. Norman, J. C. Campuzano, J. Chang, M. Mansson, Y. Sassa, T. Claesson, O. Tjernberg, L. Patthey, N. Momono, M. Oda, M. Ido, S. Guerrero, C. Mudry, and J. Mesot, Spectroscopic evidence for preformed Cooper pairs in the pseudogap phase of cuprates, arXiv:0810.0292 (ARPES, find Bogoliubovtype dispersion in the pseudogap phase, with a gap agreeing in size and angular dependence with the dwave superconducting gap)
 M. A. McGuire, R. P. Hermann, A. S. Sefat, B. C. Sales, R. Jin, D. Mandrus, F. Grandjean, and G. J. Long, Influence of the rareearth element on the effects of the structural and magnetic phase transitions in CeFeAsO, PrFeAsO, and NdFeAsO, arXiv:0811.0589 P
 C. Hess, A. Kondrat, A. Narduzzo, J. E. HamannBorrero, R. Klingeler, J. Werner, G. Behr, and B. Büchner, The intrinsic electronic phase diagram of ironpnictide superconductors, arXiv:0811.1601 P
 F. Pfuner, J. G. Analytis, J.H. Chu, I. R. Fisher, and L. Degiorgi, Charge dynamics of the spindensitywave state in BaFe_{2}As_{2}, arXiv:0811.2195 (Optical conductivity, suggesting a partially ungapped Fermi surface and, caused by the partial gapping, reduced electronic scattering in the SDW phase) P
 X. Zhang, Y. S. Oh, Y. Liu, L. Yan, K. H. Kim, R. L. Greene, and I. Takeuchi, Observation of the Josephson effect in Pb/(Ba,K)Fe_{2}As_{2} single crystal junctions, arXiv:0812.3605 (suggesting swave pairing)
 W. L. Yang, A. P. Sorini, CC. Chen, B. Moritz, W.S. Lee, F. Vernay, P. OlaldeVelasco, J. D. Denlinger, B. Delley, J.H. Chu, J. G. Analytis, I. R. Fisher, Z. A. Ren, J. Yang, W. Lu, Z. X. Zhao, J. van den Brink, Z. Hussain, Z.X. Shen, and T. P. Devereaux, Evidence for weak electronic correlations in iron pnictides, Phys. Rev. B 80, 014508 (2009) (xray absorption and xray scattering accompanied by abinitio and manybody theory, finding U of less than about 2eV and a Hund's rule coupling J of about 0.8 eV: intermediate coupling; changed relative to preprint); see also Viewpoint: Z. Tesanovic, Are iron pnictides new cuprates?, Physics 2, 60 (2009)
 J. Meng, G. Liu, W. Zhang, L. Zhao, H. Liu, X. Jia, D. Mu, S. Liu, X. Dong, J. Zhang, W. Lu, G. Wang, Y. Zhou, Y. Zhu, X. Wang, Z. Xu, C. Chen, and X. J. Zhou, Coexistence of Fermi arcs and Fermi pockets in a highT_{c} copper oxide superconductor, Nature 462, 335 (2009)
 A. Amato, R. Khasanov, H. Luetkens, and H.H. Klauss, Probing the Ground State Properties of Ironbased Superconducting Pnictides and Related Systems by MuonSpin Spectroscopy, arXiv:0901.3139
 V. Crespo, J. G. Rodrigo, H. Suderow, S. Vieira, D. Hinks, and I. K. Schuller, Evolution of the local superconducting density of states in ErRh_{4}B_{4} close to the ferromagnetic transition, arXiv:0902.0308 (tunneling spectroscopy, ferromagnetic correlations in superconducting state)
 P. Vilmercati, A. Fedorov, I. Vobornik, Manju U., G. Panaccione, A. Goldoni, A. S. Sefat, M. A. McGuire, B. C. Sales, R. Jin, D. Mandrus, D. J. Singh, and N. Mannella, Evidence for ThreeDimensionality in the Fermi Surface Topology of Layered Electron Doped Ba(Fe_{1X}Co_{x})_{2}As_{2} Iron Superconductors, arXiv:0902.0756 (ARPES)
 C. Bernhard, A. J. Drew, L. Schulz, V.K. Malik, M. Roessle, Ch. Niedermayer, Th. Wolf, G.D. Varma, G. Mu, H. H. Wen, H. Liu, G. Wu, and X.H. Chen, Muon spin rotation study of magnetism and superconductivity in BaFe_{2x}Co_{x}As_{2} and Pr_{1x}Sr_{x}FeAsO, arXiv:0902.0859 (muSR, find static but disordered local magnetic fields in superconducting phase for the electrondoped system, and microscopic phase separation for the holedoped system)
 V. V. Moshchalkov, M. Menghini, T. Nishio, Q. H. Chen, A. V. Silhanek, V. H. Dao, L. F. Chibotaru, and J. Karpinsky, Type1.5 Superconductors, arXiv:0902.0997, Phys. Rev. Lett. (2009) (MgB_{2} single crystals, which are type1 and type2 with respect to the two components of the order parameter, leading to novel vortexlattice states, also contains simulations)
 S. Sanna, R. De Renzi, G. Lamura, C. Ferdeghini, A. Palenzona, M. Putti, M. Tropeano, and T. Shiroka, Magneticsuperconducting phase boundary of SmFeAsO_{1x}F_{x} studied via muon spin rotation: Unified behavior in a pnictide family, arXiv:0902.2156
 D. H. Lu, M. Yi, S.K. Mo, J. G. Analytis, J.H. Chu, A. S. Erickson, D. J. Singh, Z. Hussain, T. H. Geballe, I. R. Fisher, and Z.X. Shen, ARPES studies of the electronic structure of LaOFe(P,As), arXiv:0902.2503, Physica C (2009) (ARPES compared to LDA, agreement is quite good for Pcompound but not for Ascompound); M. Yi, D. H. Lu, J. G. Analytis, J.H. Chu, S.K. Mo, R.H. He, X. J. Zhou, G. F. Chen, J. L. Luo, N. L. Wang, Z. Hussain, D. J. Singh, I. R. Fisher, and Z.X. Shen, Electronic Structure of the BaFe_{2}As_{2} Family of Iron Pnictides, arXiv:0902.2628 (only electron pockets, no hole pockets, reasonable agreement between ARPES and renormalized LDA results)
 I. Felner and Y. Kopelevich, Magnetization Measurement of a Possible HighTemperature Superconducting State in Amorphous Carbon Doped with Sulfur, arXiv:0902.4631 (superconductivity below 38 K, coexisting with ferromagnetism)
 L. Ortenzi, E. Cappelluti, L. Benfatto, and L. Pietronero, Fermi surface shrinking and interband coupling in ironbased pnictides, arXiv:0903.0315 (LaFePO, really not about superconducting compound, but relevant to it)
 S. Mukhopadhyay, S. Oh, A. M. Mounce, M. Lee, W. P. Halperin, N. Ni, S. L. Bud'ko, P. C. Canfield, A. P. Reyes, and P. L. Kuhns, Magnetic Impurities in the Pnictide Superconductor Ba_{1x}K_{x}Fe_{2}As_{2}, arXiv:0903.0674
 H. Ogino, Y. Matsumura, Y. Katsura, K. Ushiyama, S. Horii, K. Kishio, and J. Shimoyama, Superconductivity at 17K in Sr_{4}Sc_{2}Fe_{2}P_{2}O_{6}: new superconducting layered oxypnictides with thick perovskite oxide layer, arXiv:0903.3314
 D. Parshall, K. A. Lokshin, Jennifer Niedziela, A. D. Christianson, M. D. Lumsden, H. A. Mook, S. E. Nagler, M. A. McGuire, M. B. Stone, D. L. Abernathy, A. S. Sefat, B. C. Sales, D. G. Mandrus, and T. Egami, Spin Excitations in BaFe_{1.84}Co_{0.16}As_{2}Superconductor Observed by Inelastic Neutron Scattering, arXiv:0903.4621 (spin resonance peak, comparison to cuprates)
 A. de Visser, N. T. Huy, A. Gasparini, D. E. de Nijs, D. Andreica, C. Baines, and A. Amato, Muon spin rotation and relaxation in the superconducting ferromagnet UCoGe, arXiv:0904.0532 (coexistence of ferromagnetism and superconductivity)
 K. Ahilan, F. L. Ning, T. Imai, A. S. Sefat, M. A. McGuire, B. C. Sales, and D. Mandrus, The Electronic Phase Diagram of the Ironbased High Tc Superconductor Ba(Fe(1x)Co(x))2As2 Under Hydrostatic Pressure (0 less than x less than 0.099), arXiv:0904.2215 (resistivity measurements, pressure effect on SDW [suppressed] and superconductivity in the underdoped regime [strongly enhanced])
 J. Meng, G. Liu, W. Zhang, L. Zhao, H. Liu, X. Jia, D. Mu, S. Liu, X. Dong, W. Lu, G. Wang, Y. Zhou, Y. Zhu, X. Wang, Z. Xu, C. Chen, and X. J. Zhou, Direct Observation of Fermi Pocket in High Temperature Cuprate Superconductors, arXiv:0906.2682 (ARPES, observe Fermi pockets, not ungapped arcs, in the pseudogap phase)
 M. A. Tanatar, J. P. Reid, H. Shakeripour, X. G. Luo, N. DoironLeyraud, N. Ni, S. L. Bud'ko, P. C. Canfield, R. Prozorov, and L. Taillefer, Doping Evolution of the Gap Structure in the IronArsenide Superconductor Ba(Fe_{1x}Co_{x})_{2}As_{2} via Heat Transport, arXiv:0907.1276 (gap is nearly isotropic in the underdoped regime and becomes highly anisotropic in the overdoped regime, but remains gapless)
 C. R. Rotundu, D. T. Keane, B. Freelon, S. D. Wilson, A. Kim, P. N. Valdivia, E. BourretCourchesne, and R. J. Birgeneau, Phase diagram of the PrFeAsO_{1x}F_{x} superconductor, arXiv:0907.1308 P
 K. C. Kirshenbaum, S. R. Saha, N. P. Butch, J. D. Magill, and J. Paglione, Superconductivity in the IronPnictide Parent Compound SrFe2As2, arXiv:0907.4141 (superconductivity in nominally undoped parent compound, is suppressed by annealing, but reappears after coldworking, thus apparently defectinduced)
 J. L. Tallon and J. G. Storey, Energy gaps in highT_{c} superconductors: BCS after all?, arXiv:0908.4430 (reexamination of data, gap is found to scale with the meanfield T_{c} value, suggesting a BCStype theory)
 L. Luan, O. M. Auslaender, T. M. Lippman, C. W. Hicks, B. Kalisky, J.H. Chu, J. G. Analytis, I. R. Fisher, J. R. Kirtley, and K. A. Moler, Local measurement of the penetration depth in the pnictide superconductor Ba(Fe0.95Co0.05)2As, arXiv:0909.0744 (magnetic force microscopy, results consistent with two full gaps, superfluid density is found to be uniform)
 S. E. Sebastian, N. Harrison, M. M. Altarawneh, C. H. Mielke, R. Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich, Metalinsulator quantum critical point beneath the high T_{c} superconducting dome, arXiv:0910.2359 (YBCO, quantum oscillations in strong magnetic fields, find direct evidence for a metalinsulator QCP under the superconducting dome, but shifted to the underdoped side) P
 J. E. Sonier, C. V. Kaiser, V. Pacradouni, S. A. SabokSayr, C. Cochrane, D. E. MacLaughlin, S. Komiya, and N. E. Hussey, Emergence of a Novel Frozen Magnetic State in a Heavily Overdoped NonSuperconducting Copper Oxide, arXiv:0911.0407 (LSCO, a state with local moments tied to Srrich regions)
 S. A. J. Kimber, A. Kreyssig, Y.Z. Zhang, H. O. Jeschke, R. Valentí, F. Yokaichiya, E. Colombier, J. Yan, T. C. Hansen, T. Chatterji, R. J. McQueeney, P. C. Canfield, A. I. Goldman, and D. N. Argyriou, Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2, arXiv:0912.2376 (experiments and DFT calculations: effects of high pressure on lattice and electronic structure are similar to effects of doping, change in Fermi surface is likely more important for superconductivity than introduction of additional carriers with doping)
 S. R. Saha, T. Drye, K. Kirshenbaum, N. P. Butch, and J. Paglione, Superconductivity at 23 K in Ptdoped BaFe2As2 single crystals, arXiv:0912.2752 (Pt substituted for Fe, removes structural and SDW transitions, induces superconductivity at low temperatures)
 L. A. Wray, D. Hsieh, Y. Xia, S.Y. Xu, D. Qian, G. F. Chen, J. L. Luo, N. L. Wang, and M. Z. Hasan, Observation of intertwined Fermi surface topology, orbital parity symmetries and electronic interactions in iron arsenide superconductors, arXiv:0912.5089 (ARPES on optimally doped 122 compound)
 T. Zhang, P. Cheng, W.J. Li, Y.J. Sun, G. Wang, X.G. Zhu, K. He, L. Wang, X. Ma, X. Chen, Y. Wang, Y. Liu, H.Q. Lin, J.F. Jia, and Q.K. Xue, Superconductivity in oneatomiclayer metal films grown on Si(111), Nature Phys. 6, 104 (2010) (Pb and In films)
 R. Daou, J. Chang, David LeBoeuf, O. CyrChoiniere, F. Laliberte, N. DoironLeyraud, B. J. Ramshaw, Ruixing Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Broken rotational symmetry in the pseudogap phase of a highTc superconductor, Nature 463, 519 (2010)
 L. Li, Y. Wang, S. Komiya, S. Ono, Y. Ando, G. D. Gu, and N. P. Ong, Diamagnetism and Cooper pairing above T_{c} in cuprates, Phys. Rev. B 81, 054510 (2010), see also Viewpoint: S. A. Kivelson and E. H. Fradkin, Fluctuation diamagnetism in hightemperature superconductors, Physics 3, 15 (2010)
 B. Kalisky, J. R. Kirtley, J. G. Analytis, J.H. Chu, A. Vailionis, I. R. Fisher, and K. A. Moler, Stripes of increased diamagnetic susceptibility in underdoped superconducting Ba(Fe1xCox)2As2 single crystals: Evidence for an enhanced superfluid density at twin boundaries, Phys. Rev. B 81, 184513 (2010); J. R. Kirtley, B. Kalisky, L. Luan, and K. A. Moler, Meissner response of a bulk superconductor with an embedded sheet of reduced penetration depth, Phys. Rev. B 81, 184514 (2010); see also Viewpoint: J. M. Tranquada, Modulated superfluid density in an ironpnictide superconductor, Physics 3, 41 (2010)
 S. E. Sebastian, N. Harrison, P. A. Goddard, M. M. Altarawneh, C. H. Mielke, R. Liang, D. A. Bonn, W. N. Hardy, O. K. Andersen, and G. G. Lonzarich, Compensated electron and hole pockets in an underdoped highTc superconductor, Phys. Rev. B 81, 214524 (2010) (quantum oscillation experiments and theoretical interpretation in terms of two types of hole pockets and one type of electron pockets in underdoped YBCO, for which superconductivity was suppressed by a magnetic field, results support densitywave order); see also Viewpoint: A. V. Chubukov, Slicing the cuprate Fermi surface to reveal underlying order, Physics 3, 54 (2010)
 E. Bauer, G. Rogl, XingQiu Chen, R. T. Khan, H. Michor, G. Hilscher, E. Royanian, K. Kumagai, D. Z. Li, Y. Y. Li, R. Podloucky, and P. Rogl, Unconventional superconducting phase in the weakly correlated noncentrosymmetric Mo_{3}Al_{2}C compound, Phys. Rev. B 82, 064511 (2010); A. B. Karki, Y. M. Xiong, I. Vekhter, D. Browne, P. W. Adams, D. P. Young, K. R. Thomas, Julia Y. Chan, H. Kim, and R. Prozorov, Structure and physical properties of the noncentrosymmetric superconductor Mo_{3}Al_{2}C, Phys. Rev. B 82, 064512 (2010) (mixed singlettriplet superconductivity in a noncentrosymmetric compound); note also Synopsis
 T. Mertelj, P. Kusar, V. V. Kabanov, L. Stojchevska, N. D. Zhigadlo, S. Katrych, Z. Bukowski, J. Karpinski, and D. Mihailovic, Quasiparticle relaxation dynamics in spindensitywave and superconducting SmFeAsO_{1x}F_{x} single crystals, arXiv:1001.1047 (pumpprobe experiments on undoped/SDW and doped/superconducting samples)
 N. Pascher, J. Deisenhofer, H.A. Krug von Nidda, M. Hemmida, H. S. Jeevan, P. Gegenwart, and A. Loidl, Magnetic fluctuations and superconductivity in Fe pnictides probed by Electron Spin Resonance, arXiv:1001.1302 (Eu_{0.5}K_{0.5}Fe_{2}As_{2})
 X. Zhu, F. Han, G. Mu, J. Tang, J. Ju, K. Tanigaki, and H.H Wen, Superconductivity induced by doping Platinum in BaFe2As2, arXiv:1001.4913
 M. Eisterer, M. Zehetmayer, H. W. Weber, J. Jiang, J. D. Weiss, A. Yamamoto, E. E. Hellstrom, D. C. Larbalestier, N. D. Zhigadlo, and J. Karpinski, Disorder effects and current percolation in FeAs based superconductors, arXiv:1001.5386
 J. G. Analytis, J.H. Chu, R. D. McDonald, S. C. Riggs, and I. R. Fisher, Enhanced Fermi surface nesting in superconducting BaFe_{2}(As_{1x}P_{x})_{2} revealed by de Haasvan Alphen effect, arXiv:1002.1304
 T. Yamazaki, N. Takeshita, R. Kobayashi, H. Fukazawa, Y. Kohori, K. Kihou, C.H. Lee, H. Kito, A. Iyo, and H. Eisaki, Extremely high sensitivity to uniaxial stress in pressure induced superconductivity of BaFe2As2, arXiv:1003.0913
 M. S. Anwar, M. Hesselberth, M. Porcu, and J. Aarts, Supercurrents through halfmetallic ferromagnetic CrO_{2} revisited, arXiv:1003.4446 (surprising longrange proximity effect in the CrO_{2})
 D. Kalok, A. Bilusic, T. I. Baturina, V. M. Vinokur, and C. Strunk, Charge BKT Transition and ElectronPhonon Decoupling in Thin TiN Films, arXiv:1004.5153
 M. Hücker, M. v. Zimmermann, G. D. Gu, Z. J. Xu, J. S. Wen, G. Xu, H. J. Kang, A. Zheludev, and J. M. Tranquada, Stripe order in superconducting La(2x)Ba(x)CuO(4) for 0.095 <= x <= 0.155, arXiv:1005.5191
 D. Wu, N. Barisic, M. Dressel, G. H. Cao, ZA. Xu, J. Carbotte, and E. Schachinger, Eliashberg Analysis of Optical Spectra Reveals Strong Coupling of Charge Carriers to Spin Fluctuations in Superconducting Iron Pnictides, arXiv:1006.5468 (analysis of optical conductivity data)
 P. M. Shirage, K. Miyazawa, K. Kihou, H. Kito, Y. Yoshida, Y. Tanaka, H. Eisaki, and A. Iyo, Absence of an appreciable iron isotope effect on the transition temperature of the optimally doped SmFeAsO_{1y} superconductor, arXiv:1007.2666 (unlike for (Ba,K)Fe_{2}As_{2}, where there is a sizeable inverse isotope effect)
 D. Fournier, G. Levy, Y. Pennec, J. L. McChesney, A. Bostwick, E. Rotenberg, R. Liang, W. N. Hardy, D. A. Bonn, I. S. Elfimov, and A. Damascelli, Loss of nodal quasiparticle integrity in underdoped YBa2Cu3O6+x, arXiv:1007.4027 (ARPES to determine quasiparticle weight, found to vanish in the underdoped regime)
 M. Yoshizawa, R. Kamiya, R. Onodera, Y. Nakanishi, K. Kihou, H. Eisaki, and C. H. Lee, Strong electronlattice coupling and orbital fluctuations in iron pnictide superconductor Ba(Fe1xCox)2As2, arXiv:1008.1479
 B. Lee, S. Khim, J. S. Kim, G. R. Stewart, and K. H. Kim, Single crystal growth and superconducting properties of LiFeAs, arXiv:1008.2050 (also see next reference)
 H. Kim, M. A. Tanatar, Y. J. Song, Y. S. Kwon, and R. Prozorov, Nodeless twogap superconductivity in stoichiometric iron pnictide LiFeAs, arXiv:1008.3251 (suggest s_{+} symmetry; also see previous reference)
 J. Wen, Q. Jie, Q. Li, M. Hücker, M. von Zimmermann, Zhijun Xu, D. K. Singh, L. Zhang, G. Gu, and J. M. Tranquada, Magneticfieldinduced stripe order and twodimensional superconductivity in a highTc superconductor, arXiv:1009.0031
 C. Zhang, L. Sun, Z. Chen, X. Zhou, Q. Wu, W. Yi, J. Guo, X. Dong, and Z. Zhao, Phase Diagram of Pressureinduced Superconductivity and its Relation to Hall Coefficient in Bi2Te3 Single Crystal, arXiv:1009.3746 (superconductivity emerging from a topological insulator)
 M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. AbdElmeguid, Superconductivity in SnO: a Nonmagnetic Analog to Febased Superconductors?, arXiv:1009.3787 (same symmetry as FeSe, superconductivity in a certain pressure range)
 A. K. Pramanik, L. Harnagea, C. Nacke, A. U. B. Wolter, S. Wurmehl, V. Kataev, and B. Büchner, Fishtail effect and vortex dynamics in LiFeAs single crystals, arXiv:1009.4896 (observe strong pinning, also construct phase diagram of vortex lattice); O. Heyer, T. Lorenz, V. B. Zabolotnyy, D. V. Evtushinsky, S. V. Borisenko, I. Morozov, L. Harnagea, S. Wurmehl, C. Hess, and B. Büchner, Intrinsic scattering in pnictides: transport properties of LiFeAs single crystals, arXiv:1010.2876; U. Stockert, M. AbdelHafiez, D. V. Evtushinsky, V. B. Zabolotnyy, A. U. B. Wolter, S. Wurmehl, I. Morozov, R. Klingeler, S. V. Borisenko, and B. Büchner, The superconducting gaps in LiFeAs: Joint study of specific heat and ARPES, arXiv:1011.4246 (two distinct, nodeless gaps)
 C. Liu, A. D. Palczewski, T. Kondo, R. M. Fernandes, E. D. Mun, H. Hodovanets, A. N. Thaler, J. Schmalian, S. L. Bud'ko, P. C. Canfield, and A. Kaminski, Importance of Fermi surface topology for high temperature superconductivity in electrondoped iron arsenic superconductors, arXiv:1011.0980
 K. Cho, H. Kim, M. A. Tanatar, Y. J. Song, Y. S. Kwon, W. A. Coniglio, C. C. Agosta, A. Gurevich, and R. Prozorov, Anisotropic upper critical field and a possible FuldeFerrelLarkinOvchinnikov state in a stoichiometric pnictide superconductor LiFeAs, arXiv:1011.5126 (measure the components of the anisotropic H_{c}2)
 D. LeBoeuf, N. DoironLeyraud, B. Vignolle, M. Sutherland, B. J. Ramshaw, J. Levallois, R. Daou1, F.s Laliberté, O. CyrChoiniere1, J. Chang, Y. J. Jo, L. Balicas, R. Liang, D. A. Bonn, W. N. Hardy, C. Proust, and L. Taillefer, Lifshitz critical point in the cuprate superconductor YBa2Cu3Oy from highfield Hall effect measurements, Phys. Rev. B 83, 054506 (2011); see also Viewpoint: M. Vojta, Picking the cuprates' Fermi pockets, Physics 4, 12 (2011)
 H. Mizoguchi, S. Matsuishi, M. Hirano, M. Tachibana, E. TakayamaMuromachi, H. Kawaji, and H. Hosono, Coexistence of Light and Heavy Carriers Associated with Superconductivity and Antiferromagnetism in CeNi0.8Bi2 with a Bi Square Net, Phys. Rev. Lett. 106, 057002 (2011)
 U. Chatterjee, J. Zhao, D. Ai, S. Rosenkranz, A. Kaminski, H. Raffy, Z. Z. Li, K. Kadowaki, M. Randeria, M. R. Norman, and J. C. Campuzano, Electronic phase diagram of hightemperature copper oxide superconductors, PNAS 108, 9346 (2011)
 A. T. Bollinger, G. Dubuis, J. Yoon, D. Pavuna, J. Misewich, and I. Bozovic, Superconductorinsulator transition in La2xSrxCuO4 at the pair quantum resistance, Nature 472, 458 (2011)
 J. S. Kim, G. R. Stewart, S. Kasahara, T. Shibauchi, T. Terashima, and Y. Matsuda, Specific heat discontinuity, DC, at Tc in BaFe2(As0.7P0.3)2  consistent with unconventional superconductivity, J. Phys.: Condens. Matter 23, 222201 (2011)
 A. Maisuradze, A. Shengelaya, A. Amato, E. Pomjakushina, and H. Keller, Muon spin rotation investigation of the pressure effect on the magnetic penetration depth in YBa2Cu3Ox, Phys. Rev. B 84, 184523 (2011) (coupling increases with pressure)
 A. Piriou, N. Jenkins, C. Berthod, I. MaggioAprile, and Ø. Fischer, First direct observation of the Van Hove singularity in the tunneling spectra of cuprates, arXiv:1103.0850, Nature Commun. 2, 221 (2011) (Bi2201, also observe a pseudogap above the superconducting dome on the overdoped side)
 K. Jin, N. P. Butch, K. Kirshenbaum, J. Paglione, and R. L. Greene, Link between spin fluctuations and electron pairing in copper oxide superconductors, Nature 476, 73 (2011) (electrondoped La_{2x}Ce_{x}CuO_{4})
 E. A. Yelland, J. M. Barraclough, W. Wang, K. V. Kamenev, and A. D. Huxley, Highfield superconductivity at an electronic topological transition in URhGe, Nature Physics (2011), doi:10.1038/nphys2073
 C.L. Song et al., Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor, Science 332, 1410 (2011) (STS on superconducting FeSe, showing breaking of fourfold rotation symmetry [nematicity?])
 J. Chang, N. DoironLeyraud, F. Laliberté, R. Daou, D. LeBoeuf, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, C. Proust, I. Sheikin, K. Behnia, and L. Taillefer, Nernst effect in the cuprate superconductor YBCO: Broken rotational and translational symmetries, arXiv:1103.3044 (superconductivity suppressed by magnetic field, evolution of inplane anisotropy below T* and wouldbe T_{c})
 D. A. Dikin, M. Mehta, C. W. Bark, C. M. Folkman, C. B. Eom, and V. Chandrasekhar, Coexistence of superconductivity and ferromagnetism in two dimensions, arXiv:1103.4006 (at the interface between LaAlO_{3} and SrTiO_{3})
 S. E. Sebastian, N. Harrison, M. M. Altarawneh, R. Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich, Chemical potential oscillations from a single nodal pocket in the underdoped highTc superconductor YBa2Cu3O6+x, arXiv:1103.4180 (secondharmonic quantum oscillations, suggesting a single type of electronlike Fermi pocket in the nodal region)
 A. E. Taylor, M. J. Pitcher, R. A. Ewings, T. G. Perring, S. J. Clarke, and A. T. Boothroyd, Spin fluctuations in LiFeAs observed by neutron scattering, arXiv:1104.1609 (support the same type of superconductivity as in other pnictides, not triplet pairing)
 M. A. Tanatar, J.Ph. Reid, S. Rene de Cotret, N. DoironLeyraud, F. Laliberte, E. Hassinger, H. Kim, K. Cho, Yoo Jang Song, Yong Seung Kwon, R. Prozorov, and L. Taillefer, Isotropic threedimensional gap in the ironarsenide superconductor LiFeAs from directional heat transport measurements, arXiv:1104.2209 (support isotropic 3D gap, no signs of different gaps on different Fermi pockets)
 S. R. Saha, N. P. Butch, T. Drye, J. Magill, S. Ziemak, K. Kirshenbaum, P. Y. Zavalij, J. W. Lynn, and J. Paglione, Structural collapse and 45 K superconductivity in electrondoped CaFe2As2, arXiv:1105.4798
 T. Hänke, S. Sykora, R. Schlegel, D. Baumann, L. Harnagea, S. Wurmehl, M. Daghofer, B. Büchner, J. van den Brink, and C. Hess, Probing unconventional superconductivity in LiFeAs by quasiparticle interference, arXiv:1106.4217
 G. Koren and T. Kirzhner, Transport and spectroscopic properties of superconductor  ferromagnet  superconductor junctions of La1.9Sr0.1CuO4  La0.67Ca0.33MnO3  La1.9Sr0.1CuO4, arXiv:1107.0806; G. Koren, T. Kirzhner, and P. Aronov, Critical current measurements in superconductor  ferromagnet  superconductor junctions of YBa2Cu3Oy  SrRuO3  YBa2Cu3Oy: No evidence for a dominant proximity induced triplet superconductivity in the ferromagnetic barrier, arXiv:1107.0808
 S. HacohenGourgy, B. Almog, and G. Deutscher, Coexistence of a triplet nodal orderparameter and a singlet orderparameter at the interfaces of ferromagnetsuperconductor Co/CoO/In junctions, arXiv:1107.2252
 C. Putzke, A. I. Coldea, I. Guillamon, D. Vignolles, A. McCollam, D. LeBoeuf, M. D. Watson, I. I. Mazin, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, and A. Carrington, A de Haasvan Alphen study of the Fermi surfaces of superconducting LiFeP and LiFeAs, arXiv:1107.4375 (claim good agreement with DFT for LiFeAs, but disagreement with earlier ARPES results); S. V. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky, T. K. Kim, I. V. Morozov, A. A. Kordyuk, and B. Büchner, Comment, arXiv:1108.1159 (challenge the conclusions regarding LiFeAs); Reply, arXiv:1108.3956
 M. Mondal, S. Kumar, M. Chand, A. Kamlapure, G. Saraswat, G. Seibold, L. Benfatto, and P. Raychaudhuri, Role of the vortexcore energy on the BeresinkiiKosterlitzThouless transition in thin films of NbN, arXiv:1108.0912 (experiment and theory)
 P. Cai, C. Ye, W. Ruan, X. Zhou, A. Wang, M. Zhang, X. Chen, and Y. Wang, Imaging the coexistence of superconductivity and a charge density modulation in K0.73Fe1.67Se2 superconductor, arXiv:1108.2798 (STM, see also following article by Wiesenmayer et al.)
 E. Wiesenmayer, H. Luetkens, G. Pascua, R. Khasanov, A. Amato, H. Potts, B. Banusch, H.H. Klauss, and D. Johrendt, Microscopic coexistence of superconductivity and magnetism in Ba1xKxFe2As2, arXiv:1108.4307 (xray defraction and μSR, see also previous article by Cai et al.)
 A. Charnukha, J. Deisenhofer, D. Pröpper, M. Schmidt, Z. Wang, Y. Goncharov, A. N. Yaresko, V. Tsurkan, B. Keimer, A. Loidl, and A. V. Boris, Optical conductivity of superconducting Rb2Fe4Se5, arXiv:1108.5698
 N. Qureshi, P. Steffens, Y. Drees, A. C. Komarek, D. Lamago, Y. Sidis, L. Harnagea, H.J. Grafe, S. Wurmehl, B. Büchner, and M. Braden, Incommensurate magnetic excitations in superconducting LiFeAs, arXiv:1108.6187
 Y. Wang, W. P. Pratt, Jr., and N. O. Birge, Areadependence of spintriplet supercurrent in ferromagnetic Josephson junctions, arXiv:1108.6243
 X. Zhang, B. Lee, S. Khim, K. H. Kim, R. L. Greene, and I. Takeuchi, Probing the Superconducting Order Parameter of LiFeAs by Point Contact Spectroscopy, arXiv:1109.1537 (indicating that the pairing is at least partly of swave type)
 J.Y. Lin, Y. S. Hsieh, D. A. Chareev, A. N. Vasiliev, Y. Parsons, and H. D. Yang, Low temperature specificheat measurements of a coexistence of isotropic and extended swave order parameters in superconducting FeSe single crystals, arXiv:1109.5225
 D. S. Inosov, P. Bourges, A. Ivanov, A. Prokofiev, E. Bauer, and B. Keimer, Dispersion and damping of zoneboundary magnons in the noncentrosymmetric superconductor CePt3Si, arXiv:1109.5784
 T. Katase, H. Hiramatsu, T. Kamiya, and H. Hosono, Indirect electron doping in BaFe2As2 using metastable cation doped epitaxial films, arXiv:1110.0045
 S. Sanna, P. Carretta, P. Bonfà, G. Prando, G. Allodi, R. De Renzi, T. Shiroka, G. Lamura, A. Martinelli, and M. Putti, Correlated trends of coexisting magnetism and superconductivity in optimally electrondoped oxypnictides, arXiv:1110.6326 (susceptibility and μSR)
 S. V. Borisenko, V. B. Zabolotnyy, A. A. Kordyuk, D. V. Evtushinsky, T. K. Kim, I. V. Morozov, R. Follath, and B. Büchner, Onesign order parameter in iron based superconductor, arXiv:1110.6922 (ARPES on undoped LiFeAs; no sign changes of order parameter, but unclear how ARPES can rule out sign changes between Fermi sheets)
 E. H. da Silva Neto, C. V. Parker, P. Aynajian, A. Pushp, J. Wen, G. Gu, and A. Yazdani, Scattering from incipient stripe order in the hightemperature superconductor Bi2Sr2CaCu2O8+d, arXiv:1111.2564 (comparison of quasiparticle scattering with model calculations, confirm their previous finding of shortrange stripe order)
 K. Umezawa, Y. Li, H. Miao, K. Nakayama, Z.H. Liu, P. Richard, T. Sato, J. B. He, D.M. Wang, G. F. Chen, H. Ding, T. Takahashi, and S.C. Wang, Unconventional Anisotropic sWave Superconducting Gaps of LiFeAs IronPnictide Superconductor, arXiv:1111.3496
 W. Zhao, Q. Wang, M. Liu, W. Zhang, Y. Wang, M. Chen, Y. Guo, K. He, X. Chen, Y. Wang, J. Wang, X. Xie, Q. Niu, L. Wang, X. Ma, J. Jain, M. H. W. Chan, and Q.K. Xue, Phases and phase transitions in two dimensional superconducting films, arXiv:1112.1207 (STM and transport measurements on Pb films, find two transitions, consistent with vortex unbinding [BKT] and local pairing)
 M. Bendele, A. Ichsanow, Yu. Pashkevich, L. Keller, T. Strässle, A. Gusev, E. Pomjakushina, K. Conder, R. Khasanov, and H. Keller, Coexistence of Superconductivity and Magnetism in FeSe_{1x} under Pressure, arXiv:1112.2602
 S. Kasahara, K. Hashimoto, H. Ikeda, T. Terashima, Y. Matsuda, and T. Shibauchi, Contrasts in electron correlations and inelastic scattering between LiFeAs and LiFeP revealed by charge transport, arXiv:1112.5597
 K. Fujita, A. R. Schmidt, E.A. Kim, M. J. Lawler, D. H. Lee, J. C. Davis, H. Eisaki, and S. Uchida, Spectroscopic Imaging STM Studies of Electronic Structure in the Superconducting and Pseudogap Phases of Cuprate HighTc Superconductors, arXiv:1112.5893, J. Phys. Soc. Jpn. 81, 011005 (2012) (long paper presenting and discussing distinct states in arc and antinodal regions)
 K. Umezawa, Y. Li, H. Miao, K. Nakayama, Z.H. Liu, P. Richard, T. Sato, J. B. He, D.M. Wang, G. F. Chen, H. Ding, T. Takahashi, and S.C. Wang, Unconventional Anisotropic sWave Superconducting Gaps of the LiFeAs IronPnictide Superconductor, Phys. Rev. Lett. 108, 037002 (2012) (ARPES, nodeless but anisotropic gap on the Fermi surfaces)
 L. Sun et al., Reemerging superconductivity at 48 kelvin in iron chalcogenides, Nature doi:10.1038/nature10813 (2012)
 T. Scheike, W. Böhlmann, P. Esquinazi, J. BarzolaQuiquia, A. Ballestar, and A. Setzer, Can Doping Graphite Trigger Room Temperature Superconductivity? Evidence for Granular HighTemperature Superconductivity in WaterTreated Graphite Powder, Adv. Mat. DOI: 10.1002/adma.201202219 (2012) (based on magnetization hysteresis loops)
 L. Ma, G. F. Ji, J. Dai, X. R. Lu, M. J. Eom, J. S. Kim, B. Normand, and W. Yu, Microscopic Coexistence of Superconductivity and Antiferromagnetism in Underdoped Ba(Fe1xRux)2As2, Phys. Rev. Lett. 109, 197002 (2012)
 M. Mondal, B. Joshi, S. Kumar, A. Kamlapure, S. C. Ganguli, A. Thamizhavel, S. S. Mandal, S. Ramakrishnan, and P. Raychaudhuri, Observation of Andreev bound state and multiple energy gaps in the noncentrosymmetric superconductor BiPd, arXiv:1202.2454 (also observe zerobias conductance peak)
 D.J. Jang, J. B. Hong, Y. S. Kwon, T. Park, K. Gofryk, F. Ronning, J. D. Thompson, and Y. Bang, Evidence for +swave pairing symmetry in LiFeAs: specific heat study, arXiv:1203.1362
 V. Grinenko, M. AbdelHafiez, S. Aswartham, A. U. B. WolterGiraud, C. Hess, M. Kumar, S. Wurmehl, K. Nenkov, G. Fuchs, B. Holzapfel, S.L. Drechsler, and B. Büchner, KFe2As2: coexistence of superconductivity and local moment derived spinglass, arXiv:1203.1585
 S. V. Borisenko, A. N. Yaresko, D. V. Evtushinsky, V. B. Zabolotnyy, A. A. Kordyuk, J. Maletz, B. Büchner, Z. Shermadini, H. Luetkens, K. Sedlak, R. Khasanov, A. Amato, A. KrztonMaziopa, K. Conder, E. Pomjakushina, H.H. Klauss, and E. Rienks, "Cigar" Fermi surface as a possible requisite for superconductivity in ironbased superconductors, arXiv:1204.1316 (ARPES and μSR compared to DFT, for Rb_{0.77}Fe_{1.61}Se_{2}, suggest presence of superconducting and magnetic domains)
 T. Hanaguri, K. Kitagawa, K. Matsubayashi, Y. Mazaki, Y. Uwatoko, and H. Takagi, Scanning Tunneling Microscopy/Spectroscopy of Vortices in LiFeAs, arXiv:1204.4863
 S. Iimura, S. Matuishi, H. Sato, T. Hanna, Y. Muraba, S. W. Kim, J. E. Kim, M. Takata, and H. Hosono, Twodome structure in electrondoped iron arsenide superconductors, Nature Commun. 3, 943 (2012), also arXiv:1207.0583 (LaFeAsO doped by hydrogen substituting for oxygen)
 S. Grothe, S. Chi, P. Dosanjh, R. Liang, W. N. Hardy, S .A. Burke, D. A. Bonn, and Y. Pennec, Bound States of Defects in Superconducting LiFeAs Studied by Scanning Tunneling Spectroscopy, arXiv:1207.4249 (consistent with s_{+} pairing)
 J.Ph. Reid, A. JuneauFecteau, R. T. Gordon, S. Rene de Cotret, N. DoironLeyraud, X. G. Luo, H. Shakeripour, J. Chang, M. A. Tanatar, H. Kim, R. Prozorov, T. Saito, H. Fukazawa, Y. Kohori, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, B. Shen, H.H. Wen, and L. Taillefer, From dwave to swave pairing in the ironpnictide superconductor (Ba,K)Fe2As2, arXiv:1207.5719 (evidence for dwave pairing in this stoichiometric 122 compound)
 M. Wang, M. Wang, H. Miao, S. V. Carr, D. L. Abernathy, M. B. Stone, X. C. Wang, L.i Xing, C. Q. Jin, X. Zhang, J. Hu, T. Xiang, H. Ding, and P. Dai, Effect of Lideficiency impurities on the electronoverdoped LiFeAs superconductor, arXiv:1208.0909 (transport, ARPES, neutron scattering; superconducting and nonsuperconducting samples)
 Q. Q. Ge, Z. R. Ye, M. Xu, Y. Zhang, J. Jiang, B. P. Xie, Y. Song, C. L. Zhang, P. Dai, and D. L. Feng, Anisotropic but nodeless superconducting gap in the presence of spin density wave in ironpnictide superconductor NaFe1xCoxAs, arXiv:1209.1967 (ARPES, coexistence between stripelike SDW [but crystal is twinned], reconstruction due to SDW changes Fermi pockets only little, superconducting gap on both electron pockets is highly anisotropic but nodeless in the coexistence regime, whereas it is essentially isotropic for a more strongly Codoped sample without SDW, gap on hole pocket is isotropic in both samples)
 J. Knolle, V. B. Zabolotnyy, I. Eremin, S. V. Borisenko, N. Qureshi, M. Braden, D. V. Evtushinsky, T. K. Kim, A. A. Kordyuk, S. Sykora, Ch. Hess, I. V. Morozov, S. Wurmehl, R. Moessner, and B. Büchner, Incommensurate magnetic fluctuations and Fermi surface topology in LiFeAs, arXiv:1210.3792 (ARPES, also theoretical discussion)
 W. Li et al., Superconductivity in a single layer alkalidoped FeSe: a weakly coupled twoleg ladder system, arXiv:1210.4619 (Fermi surface of film is different from bulk, but superconductivity is similar, conclude that it is not nesting driven)
 H. Maeter, J. E. H. Borrero, T. Goltz, J. Spehling, A. Kwadrin, A. Kondrat, L. Veyrat, G. Lang, H.J. Grafe, C. Hess, G. Behr, B. Büchner, H. Luetkens, C. Baines, A. Amato, N. Leps, R. Klingeler, R.Feyerherm, D. Argyriou, and H.H. Klauss, Structural and electronic phase diagrams of CeFeAsO1xFx and SmFeAsO1xFx, arXiv:1210.6959
 D. V. Evtushinsky, V. B. Zabolotnyy, L. Harnagea, A. N. Yaresko, S. Thirupathaiah, A. A. Kordyuk, J. Maletz, S. Aswartham, S. Wurmehl, E. Rienks, R. Follath, B. Büchner, and S. V. Borisenko, Electronic band structure and momentum dependence of the superconducting gap in (Ca,Na)Fe2As2 from angleresolved photoemission spectroscopy, arXiv:1211.4593
 J. Timmerwilke, E. Kim, J. Maughan, J. S. Kim, G. R. Stewart, and A. Biswas, ab Plane Point Contact Spectroscopy measurements of optimally Cobalt doped Ba122 ironpnictide superconductors, arXiv:1211.4659 (two gaps, no nodes)
 C. Hess, S. Sykora, T. H\änke, R. Schlegel, D. Baumann, V. B. Zabolotnyy, L. Harnagea, S. Wurmehl, J. van den Brink, and B. Büchner, Resolving the quasiparticle scattering paradox in superconducting LiFeAs, arXiv:1212.2009 (quasiparticle interference experiments and theory)
 S. Yonezawa, T. Kajikawa, and Y. Maeno, FirstOrder Superconducting Transition of Sr2RuO4, arXiv:1212.4954
 G. Li, R. R. Urbano, P. Goswami, C. Tarantini, B. Lv, P. Kuhns, A. P. Reyes, C. W. Chu, and L. Balicas, Magnetic fieldinduced parity and timereversal symmetry broken superconducting state in LiFeAs, Phys. Rev. B 87, 024512 (2013) (experiment and GinzburgLandau analysis, suggest pairing in strong magnetic field that breaks timereversal and parity symmetries, might be d+id or p+ip)
 D. H. Torchinsky, F. Mahmood, A. T. Bollinger, I Bozovic, and N. Gedik, Fluctuating chargedensity waves in a cuprate superconductor, Nature Materials (2013), doi:10.1038/nmat3571 (competing CDW fluctuations and superconductivity in underdoped LSCO)
 A. F. May, M. A. McGuire, J. E. Mitchell, A. S. Sefat, and B. C. Sales, Influence of spin fluctuations on the thermal conductivity in superconducting Ba(Fe_{1x}Co_{x})_{2}As_{2}, Phys. Rev. B 88, 064502 (2013) (thermal conductivity shows an additional positive contribution below superconducting transition, attributed to scattering of lowenergy spin fluctuations becoming weaker by suppressed spin density of states [spingap formation])
 S. Sakai, S. Blanc, M. Civelli, Y. Gallais, M. Cazayous, M.A. Measson, J. S. Wen, Z. J. Xu, G. D. Gu, G. Sangiovanni, Y. Motome, K. Held, A. Sacuto, A. Georges, and M. Imada, RamanScattering Measurements and Theory of the EnergyMomentum Spectrum for Underdoped Bi2Sr2CaCuO8+δ Superconductors: Evidence of an sWave Structure for the Pseudogap, Phys. Rev. Lett. 111, 107001 (2013) (Ramanscattering experiment and theory, evidence for pseudogap having nodeless swave character; title changed)
 G. F. Ji, J. S. Zhang, L. Ma, P. Fan, P. S. Wang, J. Dai, G. T. Tan, Y. Song, C. L. Zhang, P. Dai, B. Normand, and W. Yu, Simultaneous Optimization of Spin Fluctuations and Superconductivity under Pressure in an IronBased Superconductor, Phys. Rev. Lett. 111, 107004 (2013) (NMR experiments on overdoped pnictide; strength of spin fluctuations, inferred from nuclearspin relaxation rate, shows peak as function of pressure, superconducting T_{x} shows the same pressure dependence)
 C. Richter, H. Boschker, W. Dietsche, E. FillisTsirakis, R. Jany, F. Loder, L. F. Kourkoutis, D. A. Muller, J. R. Kirtley, C. W. Schneider, and J. Mannhart, Interface superconductor with gap behaviour like a hightemperature superconductor, Nature (2013) doi:10.1038/nature12494 (2DEG at LaAlO3SrTiO3 interface, tunable by gate voltage)
 C. Richter, H. Boschker, W. Dietsche, E. FillisTsirakis, R. Jany, F. Loder, L. F. Kourkoutis, D. A. Muller, J. R. Kirtley, C. W. Schneider, and J. Mannhart, nterface superconductor with gap behaviour like a hightemperature superconductor, Nature 502, 528 (2013) (critical temperature shows a dome, whereas pseudogap increases with underdoping)
 N. Barišić, et al., Universal quantum oscillations in the underdoped cuprate superconductors, Nature Phys. (2013), doi:10.1038/nphys2792 (quantum oscillations observed in Hg1201)
 J. Engelmann et al., Strain induced superconductivity in the parent compound BaFe2As2, Nature Commun. 4, 2877 (2013) (tensile strain due to growth on substrate with lattice mismatch)
 K. J. Zhou, Y. B. Huang, C. Monney, X. Dai, V. N. Strocov, N. L. Wang, Z. G. Chen, C. Zhang, P. Dai, L. Patthey, J. van den Brink, H. Ding, and T. Schmitt, Persistent highenergy spin excitations in iron pnictide superconductors, arXiv:1301.1289 (resonant inelastic xray scattering; pronounced highenergy paramagnons in the superconducting state of Ba_{0.6}K_{0.4}Fe_{2}As_{2})
 D. Daghero, M. Tortello, G. A. Ummarino, V. A. Stepanov, F. Bernardini, M. Tropeano, M. Putti, and R. S. Gonnelli, Effects of isoelectronic Ru substitution at the Fe site on the energy gaps of optimally Fdoped SmFeAsO, arXiv:1301.3757 (Andreev reflection spectroscopy, also theory, ratios of gap to T_{c}, increase markedly for low T_{c})
 R. S. Gonnelli, M. Tortello, D. Daghero, P. Pecchio, S. Galasso, V. A. Stepanov, Z. Bukowski, N. D. Zhigadlo, J. Karpinski, K. Iida, and B. Holzapfel, The orderparameter symmetry and Fermi surface topology of 122 Febased superconductors: a pointcontact Andreevreflection study, arXiv:1301.3782, J. Supercond. Novel Magn. (Ba122 and Ca122 compounds) P
 T. Yoshida et al., Importance of both spin and orbital fluctuations in BaFe2(As1xPx)2: Evidence from superconducting gap anisotropy, arXiv:1301.4818 (ARPES, s_{+} pairing, support comparable strength of spin and orbital fluctuations as the pairing glue)
 F. F. Tafti, T. Fujii, A. JuneauFecteau, S. Rene de Cotret, N. DoironLeyraud, A. Asamitsu, and L. Taillefer, Superconductivity in the noncentrosymmetric halfHeusler compound LuPtBi: A possible topological superconductor, arXiv:1302.1943
 T. Ritschel, J. Trinckauf, G. Garbarino, M. Hanfland, M. v. Zimmermann, H. Berger, B. Buechner, and J. Geck, Pressure dependence of the charge density wave in 1TTaS2 and its relation to superconductivity, arXiv:1302.6449 (find microscopic coexistence of CDW and superconductivity)
 U. B. Paramanik, D. Das, R. Prasad, and Z. Hossain, Reentrant Superconductivity in Irdoped Eu(Fe1xIrx)2As2, arXiv:1303.2855 (due to Eu spin ordering)
 F. F. Tafti, A. JuneauFecteau, M.E. Delage, S. Rene de Cotret, J.Ph. Reid, A. F. Wang, X.G. Luo, X. H. Chen, N. DoironLeyraud, and L. Taillefer, Change of pairing symmetry in the ironbased superconductor KFe2As2, arXiv:1303.2961 (highpressure experiment)
 C. N. Veenstra, Z.H. Zhu, M. Raichle, B. M. Ludbrook, A. Nicolaou, B. Slomski, G. Landolt, S. Kittaka, Y. Maeno, J. H. Dil, I. S. Elfimov, M. W. Haverkort, and A. Damascelli, Observation of strong spinorbital entanglement in Sr2RuO4 by spinresolved ARPES, arXiv:1303.5444
 M. Wang, C. Zhang, X. Lu, G. Tan, H. Luo, Y. Song, M. Wang, X. Zhang, E. A. Goremychkin, T. G. Perring, T. A. Maier, Z. Yin, K. Haule, G. Kotliar, and P. Dai, A magnetic origin for high temperature superconductivity in iron pnictides, arXiv:1303.7339 (neutron scattering)
 T. Uchino et al., Enhancement of the superconducting transition temperature of MgB2 by proximity effect of d0 ferromagnet, arXiv:1304.4105 (suggest, based on magnetization measurements, that ferromagnetic transition is accompanied by [partial] superconducting transition in the 110K range)
 G. Grissonnanche et al., Direct measurement of the upper critical field in cuprate superconductors, Nature Commun. 5, 3280 (2014) (Y123, Y124, Tl_{2}Ba_{2}CuO_{6+x}, for Y14 find two peaks in H_{c2} as function of doping, separated by a dip around 1/8)
 Y. I. Joe et al., Emergence of charge density wave domain walls above the superconducting dome in 1TTiSe_{2}, Nature Phys. 10, 421 (2014)
 X. Shi, P. V. Lin, T. Sasagawa, V. Dobrosavljevic, and Dragana Popovic, Twostage magneticfieldtuned superconductorinsulator transition in underdoped La_{2x}Sr_{x}CuO_{4}, Nature Physics (2014), doi:10.1038/nphys2961 (magneticfielddriven twostep quantum phase transition)
 S. E. Sebastian, N. Harrison, F. F. Balakirev, M. M. Altarawneh, P. A. Goddard, R. Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich, Normalstate nodal electronic structure in underdoped highTc copper oxides, Nature 511, 61 (2014) (quantumoscillation experiments on underdoped YBCO in strong magnetic fields; report small electron pockets close to wouldbe nodal points)
 Z. Xu, C. Stock, S. Chi, A. I. Kolesnikov, G. Xu, G. Gu, and J. M. Tranquada, NeutronScattering Evidence for a Periodically Modulated Superconducting Phase in the Underdoped Cuprate La1.905Ba0.095CuO4, Phys. Rev. Lett. 113, 177002 (2014)
 J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y.T. Cui, W. Li, M. Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D.H. Lee, and Z.X. Shen, Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3, Nature 515, 245 (2014) (ARPES showing shadow bands from coupling to substrate phonons, also modeling), see also News & Views: J. Zaanen, Hightemperature superconductivity: Electron mirages in an iron salt, Nature 515, 205 (2014)
 J.F. Ge et al., Superconductivity above 100 K in singlelayer FeSe films on doped SrTiO_{3}, Nature Mat. (2014), doi:10.1038/nmat4153 (fourprobe resistance measurements)
 H. Mayaffre, S. Krämer, M. Horvatic, C. Berthier, K. Miyagawa, K. Kanoda, and V. F. Mitrovic, Evidence of Andreev bound states as a hallmark of the FFLO phase in κ(BEDTTTF)_{2}Cu(NCS)_{2}, Nature Phys. 10, 928 (2014)
 T. Yamashita, Y. Shimoyama, Y. Haga, T. D. Matsuda, E. Yamamoto, Y. Onuki, H. Sumiyoshi, S. Fujimoto, A. Levchenko, T. Shibauchi, and Y. Matsuda, Colossal thermomagnetic response in the exotic superconductor URu2Si2, Nature Phys. 11, 17 (2015) (Nernst coefficient is enhanced by 10^{6} compared to expectation based on Gaussian fluctuations; related to breaking of timereversal invariance?)
 B. J. Ramshaw, S. E. Sebastian, R. D. McDonald, J. Day, B. Tam, Z. Zhu, J. B. Betts, R. Liang, D. A. Bonn, W. N. Hardy, and N. Harrison, A quantum critical point at the heart of high temperature superconductivity, arXiv:1409.3990 (quantumoscillation [massenhancement] and some resistivity measurements in magnetic fields up to 90 T, indicating the existence of two QCPs below the superconducting dome in doped YBCO)
 A. P. Drozdov, M. I. Eremets, and I. A. Troyan, Conventional superconductivity at 190 K at high pressures, arXiv:412.0460 (transport in diamond anvil cell, also in magnetic field, also observe isotope effect; superconductivity might involve an unknown hydride of sulfur produced at hight pressures out of H_{2}S), see also commentary at Journal Club for Condensed Matter Physics; A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Conventional superconductivity at 203 K at high pressures, arXiv:1506.08190 and Nature (2015), doi:10.1038/nature14964 (isotope effect points to a phononic, conventional, mechanism of superconductivity; suggest that superconductivity emerges in H_{3}S)
 A. E. Böhmer, F. Hardy, L. Wang, T. Wolf, P. Schweiss, and C. Meingast, Superconductivityinduced reentrance of orthorhombic distortion in (Ba,K)Fe2As2, arXiv:1412.7038 (thermodynamic measurements, find tetragonal magnetic phase in an intermediate doping range; compare theory in arXiv:1412.7079)
 A. Pogrebna, T.