Virtuelle Bibliothek
Diese Seite ist als virtuelle Bibliothek für die Gruppe Theorie der kondensierten Materie und für Studierende und Mitarbeiterinnen und Mitarbeiter in verwandten Gebieten an der TU Dresden und anderswo gedacht. Die Auswahl und die Kommentare sind vollständig subjektiv und beruhen auf Prof. Timms Interessen und evtl. Mangel an Verständnis. Prof. Timm und die TU Dresden machen sich den Inhalt der hier verlinkten Artikel nicht zu eigen. Es würde uns freuen, wenn jemand diese Seite nützlich findet.
The collection is grouped into (a) pedagogical introductions, lecture notes etc., (b) review articles and dedicated journal issues, and (c) research papers. Each category is again divided by topic.
Pedagogical Introductions, Lecture Notes
Quantum mechanics
- C. K. Zachos, Deformation Quantization: Quantum Mechanics Lives and Works in Phase-Space, hep-th/0110114, Int. J. Mod. Phys. A 17, 297 (2002) (Groenewold-Moyal formulation of quantum mechanics based on Wigner-Weyl transform, includes historical bibliography)
- D. Cohen, Lecture Notes in Quantum Mechanics, quant-ph/0605180 (extensive, including a number of advanced topics, revised 2012)
Many-body theory
- A. Auerbach, Quantum Magnetism Approaches to Strongly Correlated Electrons, cond-mat/9801294 (renormalization group approach to the Hubbard model, spin path integrals, various useful mappings)
- D. Belitz, and T. R. Kirkpatrick, Quantum phase transitions, cond-mat/9811058, in Dynamics: Models and Kinetic Methods for Non-Equilibrium Many Body Systems, edited by J. Karkheck, (Kluwer, Dordrecht, 2000), p. 399
- J. Kroha and P. Wölfle, Fermi and Non-Fermi Liquid Behavior in Quantum Impurity Systems: Conserving Slave Boson Theory, cond-mat/9811074, Acta Phys. Pol. B 29, 3781 (1998)
- A. M. J. Schakel, Quantum Phase Transitions in 2d Quantum Liquids, cond-mat/9811393 (also discusses the functional integral method, superfluidity, superconductivity, Chern-Simons-Ginzburg-Landau theory)
- C. P. Burgess, An Ode to Effective Lagrangians, hep-ph/9812470 (explains why effective low-energy theories often work surprisingly well)
- A. E. Ruckenstein, Bose Condensation Without Broken Symmetries, cond-mat/0104010
- G. Sierra, Integrability and Conformal Symmetry in the BCS model, hep-th/0111114 (relationships between Richardson's pairing model, integrable models, CFT, and Chern-Simons theory)
- E. H. Lieb and F. Y. Wu, The one-dimensional Hubbard model: A reminiscence, cond-mat/0207529, Physica A 321, 1 (2003) (filling in the details of the well-known exact solution of 1968)
- M. Paulsson, Non Equilibrium Green's Functions for Dummies: Introduction to the One Particle NEGF equations, cond-mat/0210519 (short tutorial, aims to provide intuitive understanding, not Keldysh but single-particle resolvent; method is probably more general)
- I. V. Lerner, Nonlinear Sigma Model for Normal and Superconducting Systems: A Pedestrian Approach, cond-mat/0307471
- J. Richter, J. Schulenburg, and A. Honecker, Quantum magnetism in two dimensions: From semi-classical Neel order to magnetic disorder, Lect. Notes Phys. 645, 85 (2004); cond-mat/0412662 (Heisenberg antiferromagnet on the 11 Archimedean lattices) !
- C. Di Castro and R. Raimondi, Disordered Electron Systems, cond-mat/0402203
- M. Greiter, Is electromagnetic gauge invariance spontaneously violated in superconductors?, cond-mat/0503400
- L. Balents, L. Bartosch, A. Burkov, S. Sachdev, and K. Sengupta, Competing Orders and non-Landau-Ginzburg-Wilson Criticality in (Bose) Mott transitions, cond-mat/0504692
- F. D. M. Haldane, Luttinger's Theorem and Bosonization of the Fermi Surface, cond-mat/0505529 (hard to find set of lectures on bosonization of the Fermi liquid, in particular in higher dimensions)
- V. L. Libero and K. Capelle, Density-functional treatment of model Hamiltonians: basic concepts and application to the Heisenberg model, cond-mat/0506206
- P. Bruno, Berry phase effects in magnetism, cond-mat/0506270
- S. Forte, Spin in quantum field theory, hep-th/0507291 (spin, statistics, path integrals)
- F. Alet, A. M. Walczak, and M. P. A. Fisher, Exotic quantum phases and phase transitions in correlated matter, cond-mat/0511516 !
- S. Andergassen, T. Enss, C. Karrasch, and V. Meden, A gentle introduction to the functional renormalization group: the Kondo effect in quantum dots, cond-mat/0612229
- S. Eggert, One-dimensional quantum wires: A pedestrian approach to bosonization, arXiv:0708.0003 (with detailed discussion of transport)
- A. Stern, Anyons and the quantum Hall effect - a pedagogical review, arXiv:0711.4697
- A. J. M. Schmets and W. Montfrooij, Teaching superfluidity at the introductory level, arXiv:0804.3086 (...as part of introductory modern physics)
- G. Misguich, Quantum spin liquids, arXiv:0809.2257
- I. Affleck, Quantum Impurity Problems in Condensed Matter Physics, arXiv:0809.3474 (emphasizing boundary conformal field theory)
- A. Kamenev and A. Levchenko, Keldysh technique and nonlinear sigma-model: basic principles and applications, arXiv:0901.3586 (extensive introduction into the Keldysh formalism for fermions and bosons, application to the non-linear sigma model for disordered systems)
- B. J. Powell, An introduction to effective low-energy Hamiltonians in condensed matter physics and chemistry, arXiv:0906.1640
- L. Palova, P. Chandra, and P. Coleman, The Casimir Effect from a Condensed Matter Perspective, arXiv:0907.4976
- P. Coleman, Many Body Physics, http://www.physics.rutgers.edu/~coleman/mbody.html (an evolving textbook)
- D. Vollhardt, Dynamical Mean-Field Theory of Electronic Correlations in Models and Materials, arXiv:1004.5069, AIP Conf. Proc. 1297, 339 (2010)
- T. Kita, Introduction to Nonequilibrium Statistical Mechanics with Quantum Field, Prog. Theor. Phys. 123, 581 (2010) (interacting fermionic and bosonic systems outside of equilibrium; pedagogical introduction with large scope: Keldysh formalism, Wigner-Moyal formulation of quantum theory, Phi-derivable approximation, the Boltzmann equation...)
- V. Dotsenko, One more discussion of the replica trick: the examples of exact solutions, arXiv:1010.3913
- S. Bravyi, D. DiVincenzo, and D. Loss, Schrieffer-Wolff transformation for quantum many-body systems, arXiv:1105.0675
- N. Iqbal, H. Liu, and M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions, arXiv:1110.3814 (gauge-gravity duality)
- M. Potthoff, Static and dynamic variational principles for strongly correlated electron systems, arXiv:1202.4907
- J. Bünemann, The Gutzwiller Density Functional Theory, arXiv:1207.6456
- K. Schönhammer, Physics in one dimension: theoretical concepts for quantum many-body systems, arXiv:1212.1632, J. Phys.: Condens. Matter 25, 014001 (2013) (exact solutions, Luttinger liquid)
- P. Fulde, Wavefunction-based electronic-structure calculations for solids, Nature Phys. 12, 106 (2016) (using cumulants and scattering theory)
- M. Oshikawa, Jordan-Wigner Transformation in Higher Dimensions, Journal Club for Condens. Matter Phys. DOI:10.36471/JCCM_August_2021_01 (useful introduction and historical overview)
Density functional theory
- H. Eschrig, The Fundamentals of Density Functional Theory, book for download, revised version (2003)
- P. E. Blöchl, Theory and Practice of Density-Functional Theory, arXiv:1108.1104
- C. A. Ullrich and Z.-H. Yang, A brief compendium of time-dependent density-functional theory, arXiv:1305.1388
Statistical physics
- R. Savit, Duality in field theory and statistical systems, Rev. Mod. Phys. 52, 453 (1980)
- S. F. Gull, Some Misconceptions about Entropy (1989) http://www.ucl.ac.uk/~ucejph/reality/entropy/text.html
- J. P. Sethna, Order Parameters, Broken Symmetry, and Topology, cond-mat/9204009 (updated 2009), 1991 Lectures in Complex Systems, edited by L. Nadel and D. Stein (Addison Wesley, 1992), p. 243
- J. Cardy, Renormalisation group approach to reaction-diffusion problems, cond-mat/9607163 (short review, also discusses analogies of the master equation and the Schrödinger equation and the basics of the field-theoretical formulation)
- Z. Gulácsi and M. Gulácsi, Theory of phase transitions in two-dimensional systems, Adv. Phys. 47, 1 (1998)
- E. H. Lieb and J. Yngvason, A guide to entropy and the second law of thermodynamics, cond-mat/9805005
- H. Hinrichsen, Nonequilibrium Critical Phenomena and Phase Transitions into Absorbing States, Adv. Phys. 49, 815 (2000), cond-mat/0001070 (long review, discusses many specific examples, with good figures)
- K. Ghosh, K. Dill, M. M. Inamdar, E. Seitaridou, and R. Phillips, Teaching the Principles of Statistical Dynamics, cond-mat/0507388 (derivation of various dynamical laws from a maximum principle, similar to maximization of entropy in statics)
- C. Bustamante, J. Liphardt, and F. Ritort, The Nonequilibrium Thermodynamics of Small Systems, cond-mat/0511629 (long version of Physics Today 58, 43 (2005))
- W. Belzig, An introduction to Full Counting Statistics in Mesoscopic Electronics, http://www.lancs.ac.uk/users/esqn/nano2006/talks/Belzig.pdf, Lancaster School on Counting Statistics, January 2006
- G. De Chiara, M. Rizzi, D. Rossini, and S. Montangero, Density Matrix Renormalization Group for Dummies, cond-mat/0603842, J. Comput. Theor. Nanosci. 5, 1277 (2008)
- Yu. Holovatch, Introduction to renormalization, cond-mat/0606139, Condens. Matter Phys. 9, 325 (2006) (introduction and application to non-ideal, e.g., frustrated or disordered, spin models)
- K. J. Wiese and P. Le Doussal, Functional Renormalization for Disordered Systems, Basic Recipes and Gourmet Dishes, cond-mat/0611346
- M. Mobilia, T. Reichenbach, H. Hinsch, T. Franosch, and E. Frey, Generic principles of active transport, cond-mat/0612516 (discussing, among other things, the total asymmetric exclusion process [TASEP])
- W. Janke and A. M. J. Schakel, Spacetime Approach to Phase Transitions, cond-mat/0612655 (extensive lecture notes on path-integral approach to thermal phase transitions)
- J. Cardy, Conformal Field Theory and Statistical Mechanics, arXiv:0807.3472, Les Houches summer school
- J. Kurchan, Six out of equilibrium lectures, arXiv:0901.1271, Les Houches summer school 2008
- H. G. Katzgraber, Introduction to Monte Carlo Methods, arXiv:0905.1629, summer school on modern computational science, Oldenburg 2009
- M. Kastner, Monte Carlo methods in statistical physics: Mathematical foundations and strategies, arXiv:0906.0858
- L. P. Kadanoff, Theories of Matter: Infinities and Renormalization, arXiv:1002.2985 (on the theory of phase transitions)
- C. Gogolin, Pure State Quantum Statistical Mechanics, arXiv:1003.5058 (pedagogical review on how statistical physics arises from quantum mechanics, also contains new results)
- F. S. Nogueira, Introduction to the field theory of classical and quantum phase transitions, arXiv:1009.1603
- C. R. Laumann, R. Moessner, A. Scardicchio, and S. L. Sondhi, Statistical mechanics of classical and quantum computational complexity, arXiv:1009.1635, Les Houches, 2009
- H. M. Jaeger and A. J. Liu, Far-From-Equilibrium Physics: An Overview, arXiv:1009.4874
- N. Reshetikhin, Lectures on the integrability of the 6-vertex model, arXiv:1010.5031, Les Houches 2008
- A. W. Sandvik, Computational Studies of Quantum Spin Systems, AIP Conf. Proc. 1297, 135 (2010) (extensive lecture notes)
- M. Campisi, P. Hänggi, and P. Talkner, Colloquium: Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83, 771 (2011)
- F. J. Sevilla and L. Olivares-Quiroz, Revisiting the concept of chemical potential in classical and quantum gases: A perspective from Equilibrium Statistical Mechanics, arXiv:1104.2611, Am. J. Phys.
- Á. Rivas and S. F. Huelga, Open Quantum Systems. An Introduction, arXiv:1104.5242 (Springer, Heidelberg, 2011)
- H. Touchette, A basic introduction to large deviations: Theory, applications, simulations, arXiv:1106.4146
- M. Bachmann, Monte Carlo Simulations, arXiv:1107.0329
- I. Peschel, Entanglement in solvable many-particle models, arXiv:1109.0159, Brazilian School on Statistical Mechanics 2011
- T. Vojta, Phases and phase transitions in disordered quantum systems, arXiv:1301.7746 (and Griffiths phases)
Field theory
- G. Sierra and M. A. Martin-Delgado, The Density Matrix Renormalization Group, Quantum Groups and Conformal Field Theory, cond-mat/9811170
- F. Gronwald, F. W. Hehl, and J. Nitsch, Axiomatics of classical electrodynamics and its relation to gauge field theory, physics/0506219
Solid state physics and applications
- Y. M. Galperin, Introduction to Modern Solid State Physics, http://folk.uio.no/yurig/fys448/Fys448.html
- C. B. Kellogg, An Introduction to Relativistic Electronic Structure Theory in Quantum Chemistry, http://zopyros.ccqc.uga.edu/~kellogg/docs/rltvt/node1.html
- T. Dietl, Lecture Notes on Semiconductor Spintronics, arXiv:0801.0145, in Modern Aspects of Spin Physics, Lecture Notes in Physics 712, ed. J. Fabian (Springer, Berlin, 2007), p. 1
- D. Xiao, M.-C. Chang, and Q. Niu, Berry Phase Effects on Electronic Properties, arXiv:0907.2021
- J. T. Devreese, Lectures on Fröhlich Polarons from 3D to 0D - including detailed theoretical derivations, arXiv:1012.4576 (extensive lecture notes)
- N. A. Spaldin, A beginner's guide to the modern theory of polarization, arXiv:1202.1831 (electric polarization)
Superconductivity
- M. Sigrist, Introduction to Unconventional Superconductivity, AIP Conf. Proc. 789, 165 (2005)
-
N. R. Poniatowski, Superconductivity, broken gauge symmetry, and the Higgs mechanism, Amer. J. Phys. 87, 436 (2019) (relatively elementary and clear introducion to the theoretical understanding of superconductivity, with a focus on showing that gauge invariance does not in fact break and on the Anderson-Higgs mechanism)
Transport theory
- Y. M. Galperin, Quantum Transport, http://folk.uio.no/yurig/quTpdf.pdf
- D. A. Ryndyk, R. Gutierrez, B. Song, and G. Cuniberti, Green function techniques in the treatment of quantum transport at the molecular scale, arXiv:0805.0628
- S. Kirino and K. Ueda, Nonlinear Transport through Quantum Dots Studied by the Time-Dependent DMRG, arXiv:1105.1073
Other fields, interdisciplinary science
- A. K. Hartmann and M. Weigt, Introduction to graphs, cond-mat/0602129, in A. K. Hartmann and M. Weigt, Phase Transitions in Combinatorial Optimization Problems (Wiley-VCH, Berlin, 2005)
- G. Szabo and G. Fath, Evolutionary games on graphs, cond-mat/0607344 (tutorial on game theory for physicist, relating it to non-equilibrium statistical mechanics, with applications to three important cases discussed in detail)
- S. N. Majumdar, Random Matrices, the Ulam Problem, Directed Polymers & Growth Models, and Sequence Matching, cond-mat/0701193
- U. Krey, The Aharonov-Bohm-Effect, Non-commutative Geometry, Dislocation Theory, and Magnetism, arXiv:0711.0855 (short note sketching the connections between these topics)
- J. Preskill, Quantum Computation, http://www.theory.caltech.edu/people/preskill/ph229/ (also includes a review of quantum mechanics and quantum statistics)
- C. Gros, Complex and Adaptive Dynamical Systems: A Primer, arXiv:0807.4838, to be published by Springer (2008) (textbook on complex-system theory, mostly focusing on dynamical networks)
- S. Mertens, Random Number Generators: A Survival Guide for Large Scale Simulations, arXiv:0905.4238 (how to do it in parallel simulations)
- V. E. Kravtsov, Random matrix theory: Wigner-Dyson statistics and beyond, arXiv:0911.0639 (lecture notes, SISSA)
- A. Doikou, S. Evangelisti, G. Feverati, and N. Karaiskos, Introduction to Quantum Integrability, arXiv:0912.3350, Int. J. Mod. Phys. A 25, 3307 (2010) (in 1+1 dimension, mainly in Heisenberg-type models, algebraic Bethe ansatz)
- M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Gauge fields in graphene, arXiv:1003.5179 P
- R. Jackiw, Fractional and Majorana Fermions: The Physics of Zero Energy Modes, arXiv:1104.4486 (introductory)
- A. Gubin and L. F. Santos, Quantum chaos: an introduction via chains of spins-1/2, arXiv:1106.5557
- F. Wilczek, Introduction to Quantum Matter, arXiv:1109.1523, Nobel symposium 2010
- M. E. J. Newman, Complex Systems: A Survey, arXiv:1112.1440, Am. J. Phys. 79, 800 (2011)
- P. Young, Everything you wanted to know about Data Analysis and Fitting but were afraid to ask, arXiv:1210.3781
- H. Skarke, Why is the Legendre Transformation Involutive?, arXiv:1209.6193 (geometric interpretation of the Legendre transformation)
- T. J. Phillips, Exotic atoms: Antimatter may matter, Nature 529, 294 (2016) (interesting but not mean-stream comment on why repulsive gravitational interaction between matter and antimatter may solve many of today's mysteries)
- E. Witten, Symmetry and emergence, Nature Phys. 14, 116 (2018) (lucid discussion of global vs. gauge symmetries)
Reviews and Dedicated Journal Issues
General highly correlated systems
- D. Belitz and T. R. Kirkpatrick, The Anderson-Mott transition, Rev. Mod. Phys. 66, 261 (1994) (about the interplay of disorder and electronic correlations)
- S. Sachdev, Quantum phase transitions of correlated electrons in two dimensions, cond-mat/0109419, Physica A 313, 252 (2002)
- A. J. Millis, Whither Correlated Electron Theory?, cond-mat/0112508, Physica B P
- D. Belitz and T. R. Kirkpatrick, Why Quantum Phase Transitions are Interesting, J. Low Temp. Phys. 126, 1107 (2002)
- E. Dagotto, Complexity in Strongly Correlated Electronic Systems, Science 309, 257 (2005) (inhomogeneous equilibrium states)
- A. Auerbach, Computing Effective Hamiltonians of Doped and Frustrated Antiferromagnets By Contractor Renormalization, cond-mat/0510738
- P. Coleman, Theory Perspective: SCES '05 Vienna, cond-mat/0512463 (highlights from the SCES '05 conference on strongly correlated electron materials)
- P. Fulde, P. Thalmeier, and G. Zwicknagl, Strongly correlated electrons, cond-mat/0607165, Solid State Physics 60 (Elsevier, 2006) (high-resolution copy)
- T. P. Devereaux and R. Hackl, Inelastic Light Scattering From Correlated Electrons, cond-mat/0607554, Rev. Mod. Phys.
- G. A. Fiete, The spin-incoherent Luttinger liquid, cond-mat/0611597, Rev. Mod. Phys.
- I. Bloch, J. Dalibard, and W. Zwerger, Many-Body Physics with Ultracold Gases, arXiv:0704.3011
- S. Sachdev, Exotic phases and quantum phase transitions: model systems and experiments, arXiv:0901.4103
- J. K. Jain and P. W. Anderson, Beyond the Fermi Liquid Paradigm: Hidden Fermi Liquids, arXiv:0905.1105 (discussed for RVB state in HTSC and composite fermions in the fractional QHE)
- S. Sachdev, Finite temperature dissipation and transport near quantum critical points, arXiv:0910.1139
- E. C. Andrade, E. Miranda, and V. Dobrosavljevic, Quantum ripples in strongly correlated metals, arXiv:0910.1837 (Friedel oscillations are found to be suppressed by strong electronic correlations, method: slave-boson mean-field theory)
- D. J. Scalapino, E. Berg, and S. A. Kivelson, Mesoscopics and the High Tc Problem, arXiv:0911.3695 (a few example for what can be learned about the bulk systems from models in reduced dimensions)
- Q. Si and F. Steglich, Heavy Fermions and Quantum Phase Transitions, Science 329, 1161 (2010)
- P. Coleman, Quantum Criticality and Novel Phases: A panel discussion, arXiv:1001.0185, phys. stat. sol. (summary of panel discussion on quantum criticality and novel phases, Dresden 2009)
- A. A. Shashkin and S. V. Kravchenko, Quantum phase transitions in two-dimensional electron systems, arXiv:1002.2629, in Quantum Phase Transitions, ed. by L. Carr (CRC Press / Taylor & Francis)
- S. Sachdev, The landscape of the Hubbard model, arXiv:1012.0299 (phases of the Hubbard model on various lattices)
- Special issue on strongly correlated electron systems, J. Phys.: Condens. Matter 23, issue 9 (2011)
- S. Sachdev and B. Keimer, Quantum Criticality, arXiv:1102.4628, edited version: Physics Today 64, 29 (2011)
- S. Sachdev, The quantum phases of matter, arXiv:1203.4565
- I. A. Zaliznyak and J. M. Tranquada, Neutron Scattering and Its Application to Strongly Correlated Systems, arXiv:1304.4214
- W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Correlated quantum phenomena in the strong spin-orbit regime, arXiv:1305.2193, Ann. Rev. Cond. Mat. Phys. (relevant for iridates)
- J. P. Eisenstein, Exciton Condensation in Bilayer Quantum Hall Systems, arXiv:1306.0584
-
B. Keimer and J. E. Moore, The physics of quantum materials, Nature Phys. 13, 1045 (2017) (entanglement and topology...)
-
Y. Tokura, M. Kawasaki, and N. Nagaosa, Emergent functions of quantum materials, Nature Phys. 13, 1056 (2017)
-
D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium: Many-body localization, thermalization, and entanglement, Rev. Mod. Phys. 91, 021001 (2019)
Methods for many-body theory
- K. Hallberg, Density Matrix Renormalization, cond-mat/9910082
- W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Quantum Monte Carlo simulations of solids, Rev. Mod. Phys. 73, 33 (2001)
- M. Potthoff, Dynamical variational principles for strongly correlated electron systems, cond-mat/0503715; Systematics of approximations constructed from dynamical variational principles, cond-mat/0511729
- M. A. Stephanov, J. J. M. Verbaarschot, and T. Wettig, Random Matrices, hep-ph/0509286, in Wiley Encyclopedia of Electrical and Electronics Engineering, Supp. 1 (2001) (discusses both hermitian and nonhermitian random matrices)
- M. N. Kiselev, Semi-fermionic representation for spin systems under equilibrium and non-equilibrium conditions, cond-mat/0601338 (introduction to and generalization of Popov-Fedetov representation of spins, mapping of spins onto particles with neither bosonic nor fermionic Matsubara frequencies)
- P. Kopietz, Bosonization of Interacting Fermions in Arbitrary Dimensions, cond-mat/0605402, Lecture Notes in Physics (Springer, Berlin, 1997) (long review, put on archive because currently out of print)
- U. Schollwöck and S. R. White, Methods for Time Dependence in DMRG, cond-mat/0606018, in Effective models for low-dimensional strongly correlated systems, edited by G. G. Batrouni and D. Poilblanc (AIP, Melville, New York, 2006), p. 155
- K. Hallberg, New Trends in Density Matrix Renormalization, cond-mat/0609039, Adv. Phys. 55 (2006)
- I. P. McCulloch, From density-matrix renormalization group to matrix product states, cond-mat/0701428
- K. Held, O. K. Andersen, M. Feldbacher, A. Yamasaki, and Y.-F. Yang, Bandstructure meets many-body theory: The LDA+DMFT method, arXiv:0801.2634, J. Phys.: Condensed Matter
- M. Mineev-Weinstein, M. Putinar, and R. Teodorescu, Random Matrices in 2D, Laplacian Growth and Operator Theory, arXiv:0805.0049 (2D here means 2D support of eigenvalues in the complex plane, i.e., for nonhermitian random matrices)
- D. Sénéchal, An introduction to quantum cluster methods, arXiv:0806.2690 (including cluster generalization of DMFT and M. Posthoff's self-energy functional theory)
- S. Sachdev and M. Müller, Quantum criticality and black holes, J. Phys.: Condens. Matter 21, 164216 (2009) (review consequences of a duality between anti-de Sitter cosmology and conformal field theory for quantum critical points in certain systems); S. Sachdev, Condensed matter and AdS/CFT, arXiv:1002.2947; S. Sachdev, Strange metals and the AdS/CFT correspondence, arXiv:1010.0682; L. Huijse and S. Sachdev, Fermi surfaces and gauge-gravity duality, arXiv:1104.5022; S. Sachdev, What can gauge-gravity duality teach us about condensed matter physics?, arXiv:1108.1197, Annual Reviews of Condensed Matter Physics
- A. L. Kuzemsky, Statistical mechanics and the physics of many-particle model systems, Phys. Part. Nucl. 40, 949 (2009) (extensive review on many-particle theory, with many historical remarks)
- C. W. J. Beenakker, Applications of random matrix theory to condensed matter and optical physics, arXiv:0904.1432
- R. Resta, Electrical polarization and orbital magnetization: the modern theories, J. Phys.: Condens. Matter 22, 123201 (2010)
- M. Eckstein, A. Hackl, S. Kehrein, M. Kollar, M. Moeckel, P. Werner, and F. A. Wolf, New theoretical approaches for correlated systems in nonequilibrium, arXiv:1005.5097
- U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, arXiv:1008.3477
- D. W. Snoke, The Quantum Boltzmann Equation in Semiconductor Physics, arXiv:1011.3849
- E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Continuous-time Monte Carlo methods for quantum impurity models, arXiv:1012.4474
- A. W. Sandvik, Computational Studies of Quantum Spin Systems, arXiv:1101.3281, AIP Conf. Proc. 1297, 135 (2010) (extensive lecture notes)
- U. Schollwöck, The density-matrix renormalization group: a short introduction, Philos. Transact. A Math. Phys. Eng. Sci. 369, 2643 (2011) (using language of matrix-product states)
- A. L. Kuzemsky, Statistical Mechanics and the Physics of the Many-Particle Model Systems, arXiv:1101.3423, Phys. Part. Nuclei 40, 949 (2009)
- W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schönhammer, Functional renormalization group approach to correlated fermion systems, arXiv:1105.5289
- M. Potthoff, Self-energy-functional theory, arXiv:1108.2183, in Theoretical Methods for Strongly Correlated Systems, edited by A. Avella and F. Mancini (Springer, 2011)
- E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Generalized dynamical mean-field theory in physics of strongly correlated systems, arXiv:1109.2305
- D. Vollhardt, K. Byczuk, and M. Kollar, Dynamical Mean-Field Theory, arXiv:1109.4833
- I. Boettcher, J. M. Pawlowski, and S. Diehl, Ultracold atoms and the Functional Renormalization Group, arXiv:1204.4394
- J. E. Drut and A. N. Nicholson, Lattice methods for strongly interacting many-body systems, arXiv:1208.6556 (lattice field theory)
- A. Goetschy and S. E. Skipetrov, Euclidean random matrices and their applications in physics, arXiv:1303.2880 (euclidian random matrices: the components are deterministic functions of separations between random points in an euclidian space)
-
K. T. Williams et al., Direct Comparison of Many-Body Methods for Realistic Electronic Hamiltonians, Phys. Rev. X 10, 011041 (2020) (with transition-metal atoms and ions; broad range of methods including HF, DFT variants, CI, MC, DMRG)
-
J. I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete, Matrix product states and projected entangled pair states: Concepts, symmetries, theorems, Rev. Mod. Phys. 93, 045003 (2021) (detailed review, diagrammatics)
Density functional theory and its descendants
- P. Elliott, K. Burke, and F. Furche, Excited states from time-dependent density functional theory, cond-mat/0703590
- C. A. Ullrich and V. Turkowski, Time-dependent density-functional theory for electronic excitations in materials: basics and perspectives, arXiv:0808.2021
- R. C. Albers, N. E. Christensen, and A. Svane, Hubbard-U Band-Structure Methods, arXiv:0907.1028 (also clarifying their conceptual position compared to fully ab-initio and many-particle approaches)
- P. Koskinen and V. Mäkinen, Density-functional tight-binding for beginners, arXiv:0910.5861, Comp. Mat. Sci. 47, 237 (2009) (note that an open-source program exists, called hotbit)
- P. Gori-Giorgi and M. Seidl, Density functional theory for strongly-interacting electrons: Perspectives for Physics and Chemistry, arXiv:1008.2327, Phys. Chem. Chem. Phys.
- N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys. 84, 1419 (2012)
- K. Burke, Perspective on density functional theory, arXiv:1201.3679 (also discussing its limitations)
- R. O. Jones, Density functional theory: Its origins, rise to prominence, and future, Rev. Mod. Phys. 87, 897 (2015)
Magnetism
Spintronics, diluted magnetic semiconductors, and defect magnetism
- I. Zutic, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 (2004)
- R. Janisch, P. Gopal, and N. A. Spaldin, Transition metal-doped TiO2 and ZnO - present status of the field, J. Phys.: Condens. Matter 17, R657 (2005) P
- S. Saikin, Y. V. Pershin, and V. Privman, Modeling for Semiconductor Spintronics, cond-mat/0504001 (a review on semiclassical modelling for spintronics)
- T. Fukumura, H. Toyosaki, and Y. Yamada, Magnetic oxide semiconductors, cond-mat/0504168, Semicond. Sci. Technol. 20, S103 (2005)
- E. I. Rashba, Spin-orbit coupling and spin transport, cond-mat/0507007
- J. Sinova, S. Murakami, S.-Q. Shen, and M.-S. Choi, Spin-Hall effect: Back to the Beginning on a Higher Level, cond-mat/0512054 (summary of workshop, general agreement on what is understood and what is not)
- J. Schliemann, Spin Hall Effect, cond-mat/0602330, Int. J. Mod. Phys. B 20, 1015 (2006)
- T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A. H. MacDonald, Theory of ferromagnetic (III,Mn)V semiconductors, Rev. Mod. Phys. 78, 809 (2006)
- E. I. Rashba, Semiconductor Spintronics: Progress and Challenges, cond-mat/0611194
- W. J. M. Naber, S. Faez, and W. G. van der Wiel, Organic Spintronics, cond-mat/0703455
- Spin Electronics (special issue), J. Phys.: Condens. Matter 19, issue 16 (2007), contains several papers on DMS, including
- T. Dietl, Origin of ferromagnetic response in diluted magnetic semiconductors and oxides, ibid. 165204, also in arXiv:0711.0340
- T. C. Schulthess, W. M. Temmerman, Z. Szotek, A. Svane, and L. Petit, First-principles electronic structure of Mn-doped GaAs, GaP, and GaN semiconductors, ibid. 165207, also in cond-mat/0610378 (SIC-LSDA, supporting existing "standard models" for these DMS, in particular very different behavior of GaAs vs. GaN, with GaP intermediate)
- I. Zutic, J. Fabian, and S. C. Erwin, Bipolar spintronics: From spin injection to spin-controlled logic, arXiv:0706.2190
- M. Bibes and A. Barthelemy, Oxide spintronics, arXiv:0706.3015
- T. Dietl, Origin and control of ferromagnetism in dilute magnetic semiconductors and oxides, arXiv:0711.0343, 52nd MMM Conference 2007, J. Appl. Phys.
- J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, Semiconductor Spintronics, arXiv:0711.1461, Acta Physica Slovaca 57, 565 (2007) (extensive review, mostly concerned with spin dynamics and spin transport, not with materials-science aspects)
- H. Ohno and T. Dietl, Spin-transfer physics and the model of ferromagnetism in (Ga,Mn)As, J. Magn. Magn. Mat. 320, 1293 (2008)
- Focus on Dilute Magnetic Semiconductors (focus issue), New J. Phys. 10, May issue (part) (2008) (not limited to III-V compounds, mostly concerned with applied research)
- K. S. Burch, D. D. Awschalom, and D. N. Basov, Optical Properties of III-Mn-V Ferromagnetic Semiconductors, arXiv:0810.3669
- C. Ertler, A. Matos-Abiague, M. Gmitra, M. Turek, and J. Fabian, Perspectives in spintronics: magnetic resonant tunneling, spin-orbit coupling, and GaMnAs, arXiv:0811.0500
- E. M. Hankiewicz and G. Vignale, Spin-Hall effect and spin-Coulomb drag in doped semiconductors, J. Phys.: Condens. Matter 21 253202 (2009)
- V. L. Korenev, Comment on The Rise of Semiconductor Spintronics, arXiv:0904.3034; a comment on a timeline of spin physics published in Nature, pointing out that many important breakthroughs occured earlier than stated there
- D. Culcer, Steady-state spin densities and currents, arXiv:0906.5111
- K. Potzger and S. Zhou, Non-DMS related ferromagnetism in transition metal doped zinc oxide, arXiv:0908.0645
- J.-E. Wegrowe, Spin Transfer from the point of view of the ferromagnetic degrees of freedom, arXiv:0910.2890, Solid State Commun. (focus on dissipated power)
- N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010)
- A. Zunger, S. Lany, and H. Raebiger, The quest for dilute ferromagnetism in semiconductors: Guides and misguides by theory, Physics 3, 53 (2010) (possible pitfalls in applying DFT to diluted magnetic semiconductors, relatively long "Trends" article)
- A. Bonanni and T. Dietl, A story of high-temperature ferromagnetism in semiconductors, arXiv:1101.1981, Chem. Soc. Rev. 39, 528 (2010)
- T. Dietl, Ferromagnetism in semiconductors and oxides: prospects from a ten years' perspective, arXiv:1108.2582
- F. Natali, B. J. Ruck, N. O. V. Plank, H. J. Trodahl, S. Granville, C. Meyer, and W. R. L. Lambrecht, Rare-earth mononitrides, arXiv:1208.2410 (review on recent experimental and theoretical progress from a spintronics point of view)
- M. I. Dyakonov, Spin Hall Effect, arXiv:1210.3200
- P. Esquinazi, W. Hergert, D. Spemann, A. Setzer, and A. Ernst, Defect-Induced Magnetism in Solids, arXiv:1304.0137
- T. Dietl and H. Ohno, Dilute ferromagnetic semiconductors: Physics and spintronic structures, Rev. Mod. Phys. 86, 187 (2014) (extensive review on experiment and theory, focus on structured DMS)
- T. Jungwirth, J. Wunderlich, V. Novák, K. Olejnik, B. L. Gallagher, R. P. Campion, K. W. Edmonds, A. W. Rushforth, A. J. Ferguson, and P. Nemec, Spin-dependent phenomena and device concepts explored in (Ga,Mn)As, Rev. Mod. Phys. 86, 855 (2014)
- T. Dietl, K. Sato, T. Fukushima, A. Bonanni, M. Jamet, A. Barski, S. Kuroda, M. Tanaka, P. Nam Hai, and H. Katayama-Yoshida, Spinodal nanodecomposition in semiconductors doped with transition metals, Rev. Mod. Phys. 87, 1311 (2015) (review on computational modeling and experiments, various classes of DMS, importance of morphology [formation of nanodots or nanocolumns] of transition-metal-rich material for high-temperature ferromagnetic response)
- T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Antiferromagnetic spintronics, Nature Nanotechnology 11, 231 (2016)
-
F. Hellman et al., Interface-induced phenomena in magnetism, Rev. Mod. Phys. 89, 025006 (2017) (very long author list, broad review)
Other magnetic systems and phenomena
- N. Andrei, K. Furuya, and J. H. Lowenstein, Solution of the Kondo problem, Rev. Mod. Phys. 55, 331 (1983) (reviews the solution via the Bethe ansatz, also generalizations to arbitrary impurity spin and to SU(N) symmetry)
- N. E. Bickers, Review of techniques in the large-N expansion for dilute magnetic alloys, Rev. Mod. Phys. 59, 845 (1987)
- D. Belitz, and T. R. Kirkpatrick, Quantum critical behavior of itinerant ferromagnets, cond-mat/9609070, J. Phys.: Cond. Matter 8, 9707 (1996) (also including disorder)
- M. Ulmke, P. J. H. Denteneer, V. Janis, R. T. Scalettar, A. Singh, D. Vollhardt, and G. T. Zimanyi, Disorder and Impurities in Hubbard-Antiferromagnets, Advances in Solid State Physics 38, 369 (Vieweg, Wiesbaden, 1999)
- M. Kiwi, Origin of the magnetic proximity effect, Mat.Res. Soc. Symp. Proc. 746, Q5.2.1 (2003) P
- O. Fruchart and A. Thiaville, Magnetism in reduced dimensions, cond-mat/0511362 (short review on selected topics)
- A. L. Kuzemsky, Physics of Complex Magnetic Materials: Quasiparticle Many-Body Dynamics, cond-mat/0512183 (short survey of author's works)
- D. I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity, cond-mat/0601696
- H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, cond-mat/0606317, Rev. Mod. Phys.
- P. Fröbrich and P. J. Kuntz, Many-body Green's function theory of Heisenberg films, cond-mat/0607675, Phys. Rep.
- P. Mavropoulos and I. Galanakis, A review of the electronic and magnetic properties of tetrahedrally bonded half-metallic ferromagnets, cond-mat/0611006, J. Phys.: Condens. Matter (zinc-blende CrAs, CrTe etc.)
- D. Karevski, Ising Quantum Chains, cond-mat/0611327
- Half Metallic Ferromagnets (special issue), J. Phys.: Condens. Matter 19, issue 31 (2007)
- S. Jia, N. Ni, S. L. Bud'ko, and P. C. Canfield, Magnetic properties of GdxY1-xFe2Zn20: dilute, large, S moments in a nearly ferromagnetic Fermi liquid, arXiv:0708.1170 (magnetic moment per Gd is not enhanced, unlike in Gd-doped DMS)
- S. Sachdev, Quantum magnetism and criticality, arXiv:0711.3015 (links well-known magnetic phases with modern developments including deconfined criticality and emergent photons, also discusses superconductivity)
- N. A. Sinitsyn, Semiclassical theories of the anomalous Hall effect, J. Phys.: Condens. Matter 20, 023201 (2008)
- E. I. Rashba, Side jump contribution to spin-orbit mediated Hall effects and Berry curvature, arXiv:0804.4181
- E. B. Sonin, Spin currents and spin superfluidity, arXiv:0807.2524 (a long review, updated March 2010)
- A. Auerbach and D. P. Arovas, Schwinger Bosons Approaches to Quantum Antiferromagnetism, arXiv:0809.4836, Trieste Summer School 2007, in Highly Frustrated Magnetism, C. Lacroix, P. Mendels, and F. Mila (Eds.)
- Multiferroics (special issue), J. Phys.: Condens. Matter 20, number 43 (2008)
- J. T. Chalker, Geometrically frustrated antiferromagnets: statistical mechanics and dynamics, arXiv:0901.3492, Trieste Summer School 2007, in Highly Frustrated Magnetism, C. Lacroix, P. Mendels, and F. Mila (Eds.)
- K. H. Bennemann, Magnetic nanostructures, J. Phys.: Condens. Matter 22, 243201 (2010) (review concentrating on works from own group)
- J. R. Friedman and M. P. Sarachik, Single-molecule Nanomagnets, arXiv:1001.4194
- V. Yu. Irkhin, Ideas by S. V. Vonsovsky and Modern Model Treatment of Magnetism, arXiv:1006.0108
- A. Dutta, U. Divakaran, D. Sen, B. K. Chakrabarti, T. F. Rosenbaum, and G. Aeppli, Transverse field spin models: From Statistical Physics to Quantum Information, arXiv:1012.0653, Rev. Mod. Phys.
- Geometrically frustrated magnetism (special issue), J. Phys.: Condens. Matter 23, number 16 (2011)
- E. Abrahams and Q. Si, Quantum criticality in the iron pnictides and chalcogenides, J. Phys.: Condens. Matter 23, 223201 (2011) (short topical review)
- M. J. P. Gingras and P. Henelius, Collective Phenomena in the LiHoxY1-xF4 Quantum Ising Magnet: Recent Progress and Open Questions, arXiv:1103.1537, J. Phys.: Condensed Matter (relatively short theoretical and experimental review)
- J. Wen, G. Xu, G. Gu, J. M. Tranquada, and R. J. Birgeneau, Single crystal growth and properties of iron-chalcogenide superconductors, arXiv:1104.0695 (magnetic and superconducting properties)
- T. Thonhauser, Theory of Orbital Magnetization in Solids, arXiv:1105.5251
- C. Castelnovo, R. Moessner, and S. L. Sondhi, Spin Ice, Fractionalization and Topological Order, arXiv:1112.3793
- Domain wall dynamics in nanostructures (special issue), J. Phys.: Condens. Matter 24, issue 2 (2012)
- Virtual Issue: Quantum Molecular Magnets, Editorial: Inorg. Chem. 51, 12055 (2012)
- D. Belitz and T. R. Kirkpatrick, A compilation of metallic systems that show a quantum ferromagnetic transition, arXiv:1204.0873 (short paper with a list of such systems, suggest that a butterfly-type phase diagram with a tricritical point and two quantum critical end points is generic)
- L. Fritz and M. Vojta, The Physics of Kondo Impurities in Graphene, arXiv:1208.3113, Rep. Prog. Phys.
- P. Dai, J. Hu, and E. Dagotto, Magnetism and its microscopic origin in iron-based high-temperature superconductors, arXiv:1209.0381, Nature Phys. 8, 709 (2012)
- E. Dagotto, The Unexpected Properties of Alkali Metal Iron Selenide Superconductors, arXiv:1210.6501, Rev. Mod. Phys.
- C. Nisoli, R. Moessner, and P. Schiffer, Artificial Spin Ice: Designing and imaging magnetic frustration, Rev. Mod. Phys. 85, 1473 (2013) (giant spins of judiciously arranged single-domain particles; changed compared to original arXiv version)
- M. P. Sarachik, Magnetic Avalanches in Molecular Magnets, arXiv:1302.5100 (bulk, magnetic deflagration)
- W.-C. Lee, W. Lv, and H. Z. Arham, Elementary Excitations due to Orbital Degrees of Freedom in Iron Based Superconductors, arXiv:1303.6295 (review focusing on orbital, as opposed to spin-nematic, scenario of orthorhombic distortion)
- P. Subedi, B. Wen, Y. Yeshurun, M. P. Sarachik, A. J. Millis, and A. D. Kent, Quantum Fluctuations and Long-Range Order in Molecular Magnets, arXiv:1305.4646
- R. M. Fernandes, A. V. Chubukov, and J. Schmalian, What drives nematic order in iron-based superconductors?, Nature Physics 10, 97 (2014)
- Z. Nussinov and J. van den Brink, Compass models: Theory and physical motivations, Rev. Mod. Phys. 87, 1 (2015)
- P. Dai, Antiferromagnetic order and spin dynamics in iron-based superconductors, Rev. Mod. Phys. 87, 855 (2015) (review of neutron-scattering results)
- J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87, 1213 (2015)
- M. Brando, D. Belitz, F. M. Grosche, and T. R. Kirkpatrick, Metallic quantum ferromagnets, Rev. Mod. Phys. 88, 025006 (2016) (and their quantum phase transitions)
- M. Oshikawa, Experimental observations of the universal cascade of bound states in quantum Ising chain in a magnetic field and E8 symmetry, J. Club Condens. Matter. Phys., DOI: 10.36471/JCCM_September_2020_04 (review of theory and new experimental results on excitation mass spectrum, evidence for effective E8 field theory, appendix showing calculation of the mass spectrum)
-
L. Šmejkal, J. Sinova, and T. Jungwirth, Emerging Research Landscape of Altermagnetism, Phys. Rev. X 12, 040501 (2022) (introduction to altermagnets with discussion of symmetry and results from DFT; subclass of antiferromagnets for which the magnetic point group is dichromatic but does not contain PT and so the bands are spin split at general points); I. Mazin and The PRX Editors, Editorial: Altermagnetism—A New Punch Line of Fundamental Magnetism, Phys. Rev. X 12, 040002 (2022)
-
L. Šmejkal, J. Sinova, and T. Jungwirth, Beyond Conventional Ferromagnetism and Antiferromagnetism: A Phase with Nonrelativistic Spin and Crystal Rotation Symmetry, Phys. Rev. X 12, 031042 (2022); I. Mazin, Altermagnetism Then and Now, Physics 17, 4 (2023)
-
K. T. K. Chung, Mapping the Phase Diagram of a Frustrated Magnet: Degeneracies, Flat Bands, and Canting Cycles on the Pyrochlore Lattice, arXiv:2411.03429 (symmetry analysis of possible phases of classical spins on the pyrochlore lattice, elegant visualizations of multidimensional phase diagrams)
Transport, mostly in mesoscopic and nanoscopic systems, disorder and localization
- J. Rammer and H. Smith, Quantum field-theoretical methods in transport theory of metals, Rev. Mod. Phys. 58, 323 (1986)
- D. C. Mattis and M. L. Glasser, The uses of quantum field theory in diffusion-limited reactions, Rev. Mod. Phys. 70, 979 (1998)
- M. A. Ratner, Introducing molecular electronics, Materials Today 5, 20 (2002); K. S. Kwok and J. C. Ellenbogen, Moletronics: future electronics, Materials Today 5, 28 (2002)
- D. Porath, G. Cuniberti, and R. Di Felice, Charge Transport in DNA-Based Devices, cond-mat/0403640, Topics in Current Chemistry 237, edited by G. Schuster, (Springer, Berlin, 2004), p. 183 (discusses experimental and theoretical situation)
- J. König, J. Martinek, J. Barnás, and G. Schön, Quantum Dots Attached to Ferromagnetic Leads: Exchange Field, Spin Precession, and Kondo Effect, cond-mat/0404509
- Y. Xue and M. A. Ratner, Molecular Electronics: From Physics to Computing, cond-mat/0508477, in Nanotechnology: Science and Computation, edited by J. Chen, N. Jonoska, and G. Rozenberg (Springer, Berlin, 2006)
- Ya. M. Blanter, Recent Advances in Studies of Current Noise, cond-mat/0511478
- M. Pustilnik, Kondo effect in nanostructures, cond-mat/0512671
- A. P. Jauho, Modelling of inelastic effects in molecular electronics, J. Phys.: Conf. Ser. 35, 313 (2006)
- S. Sanvito and A. Reily Rocha, Molecular-Spintronics: the art of driving spin through molecules, cond-mat/0605239, J. Comput. Theor. Nanosci. 3, 624 (2006) P
- G. Stefanucci, S. Kurth, E. K. U. Gross, and A. Rubio, Time dependent transport phenomena, cond-mat/060733 (density-functional theory plus Keldysh formalism)
- F. Evers and K. Burke, Pride, Prejudice, and Penury of ab initio transport calculations for single molecules, cond-mat/0610413, in: CRC Handbook on Molecular and Nanoelectronics, edited by S. Lyshevski
- A. M. Bratkovsky, Current rectification, switching, polarons, and defects in molecular electronic devices, cond-mat/0611163, in: Polarons in Advanced Materials, edited by A. S. Alexandrov (Canopus/Springer, Bristol, 2007)
- M. Grobis, I. G. Rau, R. M. Potok, and D. Goldhaber-Gordon, Kondo Effect in Mesoscopic Quantum Dots, cond-mat/0611480, in: Handbook of Magnetism and Advanced Magnetic Materials, Vol. 5 (Wiley)
- M. Galperin, M. A. Ratner, and A. Nitzan, Molecular transport junctions: vibrational effects, J. Phys.: Condens. Matter 19, 103201 (2007)
- M. Koentopp, C. Chang, K. Burke, and R. Car, Density functional calculations of nanoscale conductance, J. Phys.: Condens. Matter 20, 083203 (2008), cond-mat/0703591, (how LDA/GGA fail for weak tunneling through molecules and how to use time-dependent current DFT instead)
- Charge transport in nanoscale junctions (special issue), J. Phys.: Condens. Matter 20, number 37 (2008)
- D. R. Ward, G. D. Scott, Z. K. Keane, N. J. Halas, and D. Natelson, Electronic and optical properties of electromigrated molecular junctions, arXiv:0802.3902
- S. Datta, Nanoelectronic Devices: A Unified View, arXiv:0809.4460, Oxford Handbook on Nanoscience and Nanotechnology: Frontiers and Advances
-
K. Behnia, The Nernst effect and the boundaries of the Fermi liquid picture, J. Phys.: Condens. Matter 21, 113101 (2009)
- L. E. F. Foa Torres and G. Cuniberti, AC transport in carbon-based devices: challenges and perspectives, arXiv:0906.1664, C. R. Physique
- S. J. van der Molen and P. Liljeroth, Charge transport through molecular switches, J. Phys.: Condens. Matter 22, 133001 (2010) (discuss mostly experimental research)
- S. Andergassen, V. Meden, H. Schoeller, J. Splettstoesser, and M. R. Wegewijs, Charge transport through single molecules, quantum dots, and quantum wires, Nanotechn. 21, 272001 (2010) P
- N. M. R. Peres, Colloquium: The transport properties of graphene: An introduction, Rev. Mod. Phys. 82, 2673 (2010)
- G. D. Scott and D. Natelson, Kondo Resonances in Molecular Devices, arXiv:1003.1938
- W. Shinwari, J. Deen, E. Starikov, and G. Cuniberti, Electrical Conductance in Biological Molecules, arXiv:1003.4027
- B. Kramer, A. MacKinnon, T. Ohtsuki, and K. Slevin, Finite Size Scaling Analysis of the Anderson Transition, arXiv:1004.0285
- P. Wölfle and D. Vollhardt, Self-Consistent Theory of Anderson Localization: General Formalism and Applications, arXiv:1004.3238 (discuss weak and strong localization)
- E. R. Mucciolo and C. H. Lewenkopf, Disorder and Electronic Transport in Graphene, arXiv:1006.0255
- A. D. Mirlin, F. Evers, I. V. Gornyi, and P. M. Ostrovsky, Anderson Transitions: Criticality, Symmetries, and Topologies, arXiv:1007.0967
- D. Vuillaume, Molecular Nanoelectronics, arXiv:1009.0527, IEEE Proc.
- M. Dzero, J. Schmalian, and P. G. Wolynes, Glassiness in Uniformly Frustrated Systems, arXiv:1011.2261
- S. Karthauser, Control of molecule-based transport for future molecular devices, J. Phys.: Condens. Matter 23, 013001 (2011) (conceptually based on Landauer formula)
- S. Florens, A. Freyn, N. Roch, W. Wernsdorfer, F. Balestro, P. Roura-Bas, and A. A. Aligia, Universal transport signatures in two-electron molecular quantum dots: gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions, J. Phys.: Condens. Matter 23, 243202 (2011)
- Yu. V. Pershin and M. Di Ventra, Memory effects in complex materials and nanoscale systems, Adv. Phys. 60, 145 (2011)
- M. Shiraishi and T. Ikoma, Molecular Spintronics, arXiv:1102.4151 (short review, surprisingly excluding magnetic molecules)
- S. Florens, A. Freyn, N. Roch, W. Wernsdorfer, F. Balestro, P. Roura-Bas, and A. A. Aligia, Universal transport signatures in two-electron molecular quantum dots: gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions, arXiv:1103.4849
- T. Kernreiter, M. Governale, A. R. Hamilton, and U. Zülicke, Charge transport by modulating spin-orbit gauge fields for quasi-onedimensional holes, arXiv:1104.4520
- A. L. Kuzemsky, Electronic Transport in Metallic Systems and Generalized Kinetic Equations, arXiv:1109.5532
- B. K. Nikolic, K. K. Saha, T. Markussen, and K. S. Thygesen, First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes, arXiv:1111.0106 (review on transport calculations based on static DFT and NEGF)
- M. P. Das and F. Green, Nonequilibrium mesoscopic transport: a genealogy, J. Phys.: Condens. Matter 24, 183201 (2012) (short historical review)
- G. Parisi, Field theory and the physics of disordered systems, arXiv:1201.5813 (proceedings paper pointing out the difficulties in treating disordered systems and a possible diagrammatic solution)
- N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84, 1045 (2012)
- G. Allan, C. Delerue, C. Krzeminski, and M. Lannoo, Nanoelectronics, arXiv:1207.1829, also in Nanostructured Materials, Electronic Materials: Science & Technology 8, 161 (2004) (short review, note original publication year 2004)
- Molecular switches at surfaces (special section), J. Phys.: Condens. Matter 24, 390201 (2012) (experimental and theoretical papers, conformational and electronic switching)
- N. A. Zimbovskaya, Inelastic electron transport through molecular junctions, arXiv:1301.5569, in Handbook of Nanophysics (Büttiker model for inelastic transport, described as being less complicated and time consuming than NEGF)
- J.-S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green's function method for quantum thermal transport, arXiv:1303.7317
- F. Haupt, M. Leijnse, H. L. Calvo, L. Classen, J. Splettstoesser, and M. R. Wegewijs, Heat, molecular vibrations, and adiabatic driving in non-equilibrium transport through interacting quantum dots, arXiv:1306.4343
- E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, and L. P. Kouwenhoven, Quantum transport in carbon nanotubes, Rev. Mod. Phys. 87, 703 (2015)
- B. N. Narozhny and A. Levchenko, Coulomb drag, Rev. Mod. Phys. 88, 025003 (2016)
-
F. Evers, R. Korytár, S. Tewari, and J. M. van Ruitenbeek, Advances and challenges in single-molecule electron transport, Rev. Mod. Phys. 92, 035001 (2020)
-
B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen, R. Steinigeweg, and M. Žnidarič, Finite-temperature transport in one-dimensional quantum lattice models, Rev. Mod. Phys. 93, 025003 (2021) (spin and fermionic models)
Superconductivity (including relevant normal-state properties)
General
- H. Hosono and Z.-A. Ren (editors), Iron-Based Superconductors (focus issue), New J. Phys. 11, 025003 et seq. (2009)
- P. Phillips, T.-P. Choy, and R. G. Leigh, Mottness in High-Temperature Copper-Oxide Superconductors, arXiv:0905.4637, Rep. Prog. Phys. 72, 036501 (2009); P. Phillips, Mottness: Identifying the Propagating Charge Modes in doped Mott Insulators, arXiv:1001.5270, Rev. Mod. Phys. (2010)
- F. Steglich, J. Arndt, S. Friedemann, C. Krellner, Y. Tokiwa, T. Westerkamp, M. Brando, P. Gegenwart, C. Geibel, S. Wirth, and O. Stockert, Superconductivity versus quantum criticality: what can we learn from heavy fermions?, J. Phys.: Condens. Matter 22, 164202 (2010)
- J. A. Wilson, A perspective on the Fe-based superconductors, J. Phys.: Condens. Matter 22, 203201 (2010)
- M. D. Lumsden and A. D. Christianson, Magnetism in Fe-based superconductors, J. Phys.: Condens. Matter 22, 203203 (2010)
- M. R. Norman, Fermi-surface reconstruction and the origin of high-temperature superconductivity, Physics 3, 86 (2010) (...in the underdoped regime)
- I. Mazin, Iron superconductivity weathers another storm, Physics 4, 26 (2011) (namely the discovery of superconductivity in K0.8Fe2Se2)
- J. A. Mydosh and P. M. Oppeneer, Colloquium: Hidden order, superconductivity, and magnetism: The unsolved case of URu2Si2, Rev. Mod. Phys. 83, 1301 (2011)
- H.-H. Wen and S. Li, Materials and Novel Superconductivity in Iron Pnictide Superconductors, Ann. Rev. Condens. Mat. Phys. 2, 121 (2011)
- D. N. Basov and A. V. Chubukov, Manifesto for a higher Tc - lessons from pnictides and cuprates, arXiv:1104.1949
- G. R. Stewart, Superconductivity in Iron Compounds, arXiv:1106.1618 (iron pnictides and chalcogenides)
- M. R. Norman, Cuprates - An Overview, arXiv:1108.3140 (brief, mainly theoretical)
- A. V. Chubukov, Pairing mechanism in Fe-based superconductors, arXiv:1110.0052, Annual Rev. Cond. Matter Phys. 3, 57 (2012)
- J. Hu and C. Xu, Nematic orders in Iron-based superconductors, arXiv:1112.2713
- D. J. Scalapino, A Common Thread: The pairing interaction for the unconventional superconductors, Rev. Mod. Phys. 84, 1383 (2012), (spin-fluctuation-mediated pairing)
- H. Oh, J. Moon, D. Shin, C.-Y. Moon, and H. J. Choi, Brief review on iron-based superconductors: are there clues for unconventional superconductivity?, arXiv:1201.0237, Progr. Supercond. 13, 65 (2011)
- O. Stockert, S. Kirchner, F. Steglich, and Q. Si, Superconductivity in Ce- and U-based "122" heavy-fermion compounds, arXiv:1202.4114
- H.-Y. Choi, Comments on the d-wave pairing mechanism for cuprate high Tc superconductors: Higher is different?, arXiv:1203.4652 (what is the pairing glue? how can we find out experimentally?)
- S. Kivelson, Incipient CDW Order in the Pseudo-Gap Phase of the Cuprates, JCCM_OCTOBER2012_01, commentary for Journal Club for Condensed Matter Physics
- E. Fradkin and S. A. Kivelson, High-temperature superconductivity: Ineluctable complexity, News and Views, Nature Physics 8, 864 (2012) (discussion of significance of observation of CDW correlations in YBCO, comparision to stripes in LSCO and LBCO); J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. v. Zimmermann, E. M. Forgan, and S. M. Hayden, Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67, Nature Physics 8, 871 (2012)
- M. R. Norman, Unconventional Superconductivity, arXiv:1302.3176, in Novel Superfluids, vol. 2, edited by K. H. Bennemann and J. B. Ketterson (Oxford)
- T. Shibauchi, A. Carrington, and Y. Matsuda, Quantum critical point lying beneath the superconducting dome in iron-pnictides, arXiv:1304.6387, Ann. Rev. Condens. Matter Phys.
- A. P. Mackenzie, T. Scaffidi, C. W. Hicks, and Y. Maeno, Even odder after twenty-three years: the superconducting order parameter puzzle of Sr2RuO4, npj Quantum Materials 2, 40 (2017)
- M. Smidman, M. B. Salamon, H. Q. Yuan, and D. F. Agterberg, Superconductivity and spin–orbit coupling in non-centrosymmetric materials: a review, Rep. Prog. Phys. 80, 036501 (2017) (contains discussion of pair density wave)
-
L. P. Gor'kov and V. Z. Kresin, Colloquium: High pressure and road to room temperature superconductivity, Rev. Mod. Phys. 90, 011001 (2018) (H3S)
-
A. Kapitulnik, S. A. Kivelson, and B. Spivak, Colloquium: Anomalous metals: Failed superconductors, Rev. Mod. Phys. 91, 011002 (2019) (in two dimensional materials with disorder, occuring between localized and superconducting phases)
-
A. H. MacDonald, Trend: Bilayer Graphene’s Wicked, Twisted Road, Physics 12, 12 (2019)
-
N. P. Armitage, Superconductivity mystery turns 25, Nature 576, 386 (2019) (Sr2RuO4, short News & Views)
- B. Sacépé, M. Feigel’man, and T. M. Klapwijk, Quantum breakdown of superconductivity in low-dimensional materials, Nature Phys. 16, 734 (2020) (disorder and Josephson-junction arrays)
- P. Coleman and T. Hazra, UTe2 : A new Topological Superconductor?, Journal Club for Condensed Matter Physics DOI:10.36471/JCCM June 2022 01 (short review on pairing states in UTe2, in magnetic-field-temperature space; also note cited papers)
- Y. Maeno, A. Ikeda, and G. Mattoni, Thirty years of puzzling superconductivity in Sr2RuO4, Nature Phys. 20, 1712 (2024)
Experiment
- D. R. Harshman and A. P. Mills, Jr., Concerning the nature of high-Tc superconductivity: Survey of experimental properties and implications for interlayer coupling, Phys. Rev. B 45, 10684 (1992) (contains tables of materials parameters for cuprates)
- M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Magnetic, transport, and optical properties of monolayer copper oxides, Rev. Mod. Phys. 70, 897 (1998) (discuss, among many other things, the doping dependence of the antiferromagnetic correlation length)
- J. C. Campuzano, M. R. Norman, and M. Randeria, Photoemission in the High Tc Superconductors, cond-mat/0209476, in Physics of Superconductors, Vol. II, ed. K. H. Bennemann and J. B. Ketterson (Springer, Berlin, 2004), p. 167 (includes a general introduction to photoemission)
- A. A. Kordyuk and S. V. Borisenko, ARPES on HTSC: simplicity vs. complexity, cond-mat/0510218
- J. M. Tranquada, Charge stripes in cuprate superconductors: The middle way, cond-mat/0510792; Neutron Scattering Studies of Antiferromagnetic Correlations in Cuprates, cond-mat/0512115; Stripes and Superconductivity in Cuprates, arXiv:1111.4268; Spins, Stripes, and Superconductivity in Hole-Doped Cuprates, arXiv:1305.4118
- J. Fink, S. Borisenko, A. Kordyuk, A. Koitzsch, J. Geck, V. Zabalotnyy, M. Knupfer, B. Büchner, and H. Berger, Dressing of the charge carriers in high-Tc superconductors, cond-mat/0512307 (ARPES)
- R. K. Kremer, J. S. Kim, and A. Simon, Carbon Based Superconductors, cond-mat/0701702 (carbides etc.)
- J. E. Sonier, M. Ilton, V. Pacradouni, C. V. Kaiser, S. A. Sabok-Sayr, Y. Ando, S. Komiya, W. N. Hardy, D. A. Bonn, R. Liang, and W. A. Atkinson, Inhomogeneous Magnetic-Field Response in YBa2Cu3Oy and La2-xSrxCuO4 Persisting Above the Bulk Superconducting Transition Tc, arXiv:0801.3481 (attributed to superconducting domains)
- Latest developments in Fe-oxypnictide superconductors, Supercond. Sci. Technol. 20-21, virtual collection
- M. R. Norman, High-temperature superconductivity in the iron pnictides, Physics 1, 21 (2008)
- C. Pfleiderer, Superconducting phases of f-electron compounds, arXiv:0905.2625, Rev. Mod. Phys.
- K. Ishida, Y. Nakai, and H. Hosono, To What Extent Iron-Pnictide New Superconductors Have Been Clarified: A Progress Report, arXiv:0906.2045, J. Phys. Soc. Jpn. 78, 062001 (2009) P
- J. A. Wilson, A perspective on pnictide superconductors, arXiv:0912.4201
- Y. Mizuguchi and Y. Takano, A review of Fe-chalcogenide superconductors: the simplest Fe-based superconductor, arXiv:1003.2696, J. Phys. Soc. Jpn.
- D. R. Garcia and A. Lanzara, Through a Lattice Darkly - Shedding Light on Electron-Phonon Coupling in the High Tc Cuprates, arXiv:1005.0970 (ARPES, role of electron-phonon coupling)
- D. C. Johnston, The Puzzle of High Temperature Superconductivity in Layered Iron Pnictides and Chalcogenides, arXiv:1005.4392
- J. Paglione and R. L. Greene, High-temperature superconductivity in iron-based materials, arXiv:1006.4618
- D. S. Inosov, J. T. Park, A. Charnukha, Y. Li, A. V. Boris, B. Keimer, and V. Hinkov, A crossover from weak to strong pairing in unconventional superconductors, arXiv:1012.4041 (overview over ratio of the gap to the transition temperature for many superconductors)
- D. Aoki and J. Flouquet, Ferromagnetism and Superconductivity in Uranium Compounds, arXiv:1108.4807
- S. E. Sebastian, G. G. Lonzarich, and N. Harrison, Towards resolution of the Fermi surface in underdoped high-Tc superconductors, arXiv:1112.1373
- N. Kimura and I. Bonalde, Non-Centrosymmetric Heavy-Fermion Superconductors, arXiv:1201.1648, Lecture Notes in Physics 847
- L. Bretheau, C. Girit, L. Tosi, M. Goffman, P. Joyez, H. Pothier, D. Esteve, and C. Urbina, Superconducting Quantum Point Contacts, arXiv:1201.4739 (Josephson effect etc.)
- S. E. Sebastian, Quantum Oscillations in Iron Pnictide Superconductors, arXiv:1208.5862 (evolution of Fermi surfaces with doping, comparison to cuprates)
- M. Hashimoto, I. M. Vishik, R.-H. He, T. P. Devereaux, and Z.-X. Shen, Energy gaps in high-transition-temperature cuprate superconductors, Nature Phys. 10, 483 (2014) (focus on ARPES)
- P. Dai, Antiferromagnetic order and spin dynamics in iron-based superconductors, Rev. Mod. Phys. 87, 855 (2015)
- Q. Si, Towards a Unified Description of the Electronic Orders in Iron-Based Superconductors: Insights from FeSe, Journal Club for Condensed Matter Physics July 2016, 2
Theory
-
M. Sigrist and K. Ueda, Phenomenological theory of unconventional superconductivity, Rev. Mod. Phys. 63, 239 (1991)
- W. Brenig, Aspects of electron correlations in the cuprate superconductors, Phys. Rep. 251, 153 (1995)
- P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The Physics Behind High-Temperature Superconducting Cuprates: The "Plain Vanilla" Version Of RVB, cond-mat/0311467; P. W. Anderson, Present status of the theory of high Tc cuprates, cond-mat/0510053
- C. M. Varma, Notes on RVB-Vanilla by Anderson et al., cond-mat/0312385 (critical discussion of preceding paper)
- J. Dukelsky, S. Pittel, and G. Sierra, Exactly solvable Richardson-Gaudin models for many-body quantum systems, Rev. Mod. Phys. 76, 643 (2004)
- M. R. Norman, D. Pines, and C. Kallin, The pseudogap: friend or foe of high Tc?, to be published in Adv. in Physics, cond-mat/0507031 (summary of a summer 2004 Aspen workshop)
- S. A. Kivelson and E. Fradkin, How optimal inhomogeneity produces high temperature superconductivity, cond-mat/0507459
- F. Vidal, J. A. Veira, J. Maza, J. Mosqueira, and C. Carballeira, On the interplay between Tc-inhomogeneities at long length scales and thermal fluctuations around the average superconducting transition in cuprates, cond-mat/0510467
- A. Mourachkine, Room-Temperature Superconductivity, cond-mat/0606187, book (Cambridge International Science Pub., Cambridge, 2004)
- T. H. Geballe, The never ending search for high temperature superconductivity, cond-mat/0608368
- D. J. Scalapino, Numerical Studies of the 2D Hubbard Model, cond-mat/0610710 (also note the addendum, which presents a broader overview over the field of cuprates)
- G. Baskaran, Superconductivity in optimally doped Cuprates: BZA Program works well & Superexchange is the Glue, cond-mat/0611548 (review of successes of RVB picture)
- P. Phillips, Mottness, cond-mat/0702348, Ann. Phys. 321, 1634 (2006)
- J. Spalek, t-J model then and now: A personal perspective from the pioneering times, arXiv:0706.4236
- P. A. Lee, From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics, arXiv:0708.2115
- S. Chakravarty, High temperature superconductivity: from complexity to simplicity, arXiv:0802.1216, longer version of Science 319, 735 (2008) (brief discussion of new trends in underdoped cuprates: hole and electron pockets in normal state)
- S. A. Kivelson and H. Yao, Fe-based superconductors: unity or diversity?, arXiv:0811.3973, corrected version of Nature Materials 7, 927 (2008) (short comparison of oxypnictide and cuprate physics)
- K. Le Hur and T. M. Rice, Superconductivity close to the Mott state: From condensed-matter systems to superfluidity in optical lattices, arXiv:0812.1581
- J. Zaanen, Condensed-matter physics: The pnictide code, Nature 457, 546 (2009)
- I. I. Mazin and J. Schmalian, Pairing Symmetry and Pairing State in Ferropnictides: Theoretical Overview, arXiv:0901.4790
- T. Senthil and P. A. Lee, A synthesis of the phenomenology of the underdoped cuprates, arXiv:0903.0870
- J. C. Phillips, Prediction of High Transition Temperatures in Ceramic Superconductors, arXiv:0903.1306 (contains an entertaining review of the history of high-temperature superconductivity outside of the main stream, predictions based on chemical trends, using Bayesian probability theory)
- V. Barzykin and D. Pines, Universal Behavior and the Two-component Character of Magnetically Underdoped Cuprate Superconductors, arXiv:0903.1835, Adv. Phys. 58, 1 (2009)
- S. Sachdev, Where is the quantum critical point in the cuprate superconductors?, arXiv:0907.0008, phys. stat. solidi, workshop on quantum criticality and novel phases, Dresden P; Quantum criticality and the phase diagram of the cuprates, arXiv:0910.0846 (similar shorter paper); Quantum phase transitions of antiferromagnets and the cuprate superconductors, arXiv:1002.3823, Les Houches (2009)
- M. Eschrig, C. Iniotakis, and Y. Tanaka, Theoretical aspects of Andreev spectroscopy and tunneling spectroscopy in non-centrosymmetric superconductors: a topical review, arXiv:1001.2486
- S. Chakravarty, Key issues in theories of high temperature superconductors, arXiv:1006.4180 (cuprates, focus on interpreration of magnetic-oscillation experiments)
- P. W. Anderson, Personal history of my engagement with cuprate superconductivity, 1986-2010, arXiv:1011.2736
- P. Phillips, Fractionalize This, arXiv:1012.1861, Nature Phys. 6, 931 (2010) (composite vs. fractionalized excitations in cuprates)
- J. Zaanen, A modern, but way too short history of the theory of superconductivity at a high temperature, arXiv:1012.5461 (reviews various important but contradictory approaches)
- A. Martín-Rodero and A. L. Yeyati, Josephson and Andreev transport through quantum dots, Adv. Phys. 60, 899 (2011) P
- A. S. Alexandrov, High Temperature Superconductivity: the explanation, arXiv:1102.2082, Physica Scripta
- Z.-Y. Weng, Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity, arXiv:1110.0546
- E. Babaev, J. Carlstrom, J. Garaud, M. Silaev, and J. M. Speight, Type-1.5 superconductivity in multiband systems: magnetic response, broken symmetries and microscopic theory. A brief overview, arXiv:1110.2744
- O. Narikiyo, A Diagrammer's Note on Superconducting Fluctuation Transport for Beginners: I. Conductivity and Thermopower, arXiv:1112.1513; A Diagrammer's Note on Superconducting Fluctuation Transport for Beginners: II. Hall and Nernst Effects with Perturbational Treatment of Magnetic Field, arXiv:1203.0127
- M. Vojta, Stripes and electronic quasiparticles in the pseudogap state of cuprate superconductors, arXiv:1202.1913
- S. Sachdev, M. A. Metlitski, and M. Punk, Antiferromagnetism in metals: from the cuprate superconductors to the heavy fermion materials, arXiv:1202.4760
- S. Maiti and A. V. Chubukov, Superconductivity from repulsive interaction, arXiv:1305.4609 (extensive)
- E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Theory of intertwined orders in high temperature superconductors, Rev. Mod. Phys. 87, 457 (2015)
-
J. Linder and A. V. Balatsky, Odd-frequency superconductivity, Rev. Mod. Phys. 91, 045005 (2019) (odd pairing under permutation of time coordinates)
-
C. M. Varma, Colloquium: Linear in temperature resistivity and associated mysteries including high temperature superconductivity, Rev. Mod. Phys. 92, 031001 (2020)
Topological insulators and superconductors, semimetals, spin liquids, etc.
- S. Ryu, A. Schnyder, A. Furusaki, and A. Ludwig, Topological insulators and superconductors: ten-fold way and dimensional hierarchy, New J. Phys. 12, 065010 (2010) (extensive review of the ten generic Hamiltonian symmetry classes and the possibility of non-trivial topological [surface] states)
- M. Z. Hasan and C. L. Kane, Topological Insulators, arXiv:1002.3895, Rev. Mod. Phys. 82, 3045 (2010) (overview, not very technical)
- M. Stone, C.-K. Chiu, and A. Roy, Symmetries, Dimensions, and Topological Insulators: the mechanism behind the face of the Bott clock, arXiv:1005.3213
- E. Prodan, Disordered Topological Insulators: A Non-Commutative Geometry Perspective, arXiv:1010.0595
- M. Z. Hasan and J. E. Moore, Three-Dimensional Topological Insulators, arXiv:1011.5462 (from free electrons to strongly correlated systems); M. Z. Hasan, D. Hsieh, Y. Xia, L. A. Wray, S.-Y. Xu, and C. L. Kane, A new experimental approach for the exploration of topological quantum phenomena: Topological Insulators and Superconductors, arXiv:1105.0396 (focus on ARPES)
- X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011)
- Y. Tanaka, M. Sato, and N. Nagaosa, Symmetry and Topology in Superconductors - Odd-frequency pairing and edge states -, arXiv:1105.4700, J. Phys. Soc. Jpn. 81, 011013 (2012)
- G. A. Fiete, V. Chua, X. Hu, M. Kargarian, R. Lundgren, A. Ruegg, J. Wen, and V. Zyuzin, Topological Insulators and Quantum Spin Liquids, arXiv:1106.0013
- G. P. Alexander, B. Gin-ge Chen, E. A. Matsumoto, and R. D. Kamien, Disclination Loops, Hedgehogs, and All That, arXiv:1107.1169
- D. Culcer, Transport in three-dimensional topological insulators: theory and experiment, arXiv:1108.3076, Physica E (transport in surface states, theoretical and experimental review)
- Y. Barlas, K. Yang, and A. H. MacDonald, Quantum Hall Effects in Graphene-Based Two-Dimensional Electron Systems, arXiv:1110.1069
- G. E. Volovik, Topology of quantum vacuum, arXiv:1111.4627, Como summer school (analogies between the vacuum of the standard model and topological insulators and superconductors, emergence of gravity and gauge fields)
- T. Kitagawa, Topological phenomena in quantum walks; elementary introduction to the physics of topological phases, arXiv:1112.1882
- C. W. J. Beenakker, Search for Majorana fermions in superconductors, arXiv:1112.1950, Ann. Rev. Condensed Matter Phys. P
- Y. Okuda and R. Nomura, Surface Andreev bound states of superfluid 3He and Majorana fermions, J. Phys.: Condens. Matter 24, 343201 (2012)
- J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, arXiv:1202.1293 (topological superconductivity due to proximity effect)
- M. Leijnse and K. Flensberg, Introduction to topological superconductivity and Majorana fermions, arXiv:1206.1736 (pedagogical review, focus on 1D)
- G. Tkachov and E. M. Hankiewicz, Spin-helical transport in normal and superconducting topological insulators, arXiv:1208.1466 (2D and 3D AII topological insulators)
- L. Müchler, F. Casper, B. Yan, S. Chadov, and C. Felser, Topological insulators and thermoelectric materials, arXiv:1209.6097
- H. Zhang and S.-C. Zhang, Topological insulators from the Perspective of first-principles calculations, arXiv:1209.6446 (class AII)
- X.-G. Wen, Topological order: from long-range entangled quantum matter to an unification of light and electrons, arXiv:1210.1281 (topological order as opposed to local symmetry breaking, light and electrons as emergent quasiparticles of a topologically ordered state) P
- J. C. Budich and B. Trauzettel, From the adiabatic theorem of quantum mechanics to topological states of matter, arXiv:1210.6672 (review on ten-fold-way classification) P
- W. Feng and Y. Yao, Three-dimensional topological insulators: A review on host materials, arXiv:1212.0602
- T. Grover, Y. Zhang, and A. Vishwanath, Entanglement entropy as a portal to the physics of quantum spin liquids, New J. Phys. 15, 025002 (2013)
- M. Hohenadler and F. F. Assaad, Correlation effects in two-dimensional topological insulators, J. Phys.: Condens. Matter 25, 143201 (2013), (Haldane, Kane-Mele, Kane-Mele-Hubbard models)
- A. M. Turner and A. Vishwanath, Beyond Band Insulators: Topology of Semi-metals and Interacting Phases, arXiv:1301.0330 (1. topological states that are gapless in the bulk: mainly discuss Weyl semimetals and their topological protection by an invariant defined on a lower-dimensional manifold, list candidate materials, also mention nodal superconductors; 2. strongly interacting topological states)
- T. D. Stanescu and S. Tewari, Majorana Fermions in Semiconductor Nanowires: Fundamentals, Modeling, and Experiment, arXiv:1302.5433
- S. A. Parameswaran, R. Roy, and S. L. Sondhi, Fractional Quantum Hall Physics in Topological Flat Bands, arXiv:1302.6606
- Y. Ando, Topological Insulator Materials, arXiv:1304.5693
- O. Vafek and A. Vishwanath, Dirac Fermions in Solids - from High Tc cuprates and Graphene to Topological Insulators and Weyl Semimetals, arXiv:1306.2272
-
J. C. Budich and B. Trauzettel, From the adiabatic theorem of quantum mechanics to topological states of matter, phys. status solidi RRL 7, 109 (2013) (clear review of tenfold-way classification of gapped topological systems)
- Y. Yoshimura, K. Kobayashi, T. Ohtsuki, and K.-I. Imura, Engineering Dirac electrons emergent on the surface of a topological insulator, Sci. Technol. Adv. Mater. 16, 014403 (2015)
- A. P. Schnyder and P. M. R. Brydon, Topological surface states in nodal superconductors, J. Phys.: Condens. Matter 27, 243201 (2015)
- J. Maciejko and G. A. Fiete, Fractionalized topological insulators, Nature Phys. 11, 385 (2015) P
- J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, W. Wang, R. J. Cava, N. P. Ong, Signature of the chiral anomaly in a Dirac semimetal: a current plume steered by a magnetic field, arXiv:1503.08179 (write-up of invited talk, mainly experimental perspective)
- C. W. J. Beenakker, Random-matrix theory of Majorana fermions and topological superconductors, Rev. Mod. Phys. 87, 1037 (2015) (starts with an introduction to noninteracting topological systems)
- A. Bansil, H. Lin, and T. Das, Colloquium: Topological band theory, Rev. Mod. Phys. 88, 021004 (2016) (based on DFT, close to specific materials)
- Topological matter (focus issue) Nature Phys. 12 (7), 615 (2016) (mainly focuses on non-electronic systems)
- N. Goldman, J. C. Budich and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nature Phys. 12, 639 (2016)
- E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys. 88, 035001 (2016) (symmetry-protected fermionic phases, relation to Atiyah-Singer index theorem and &theta term, focus on 2D and 3D topological insulators)
- C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88, 035005 (2016) (extensive, partially pedagogical introduction; mainly on effectively noninteracting models, covers gapped and nodal systems and also gapless states at surfaces and topological defects)
- A. Vishwanath, A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet
(Journal Club for Condensed Matter Physics) JCCM_December_2016_03 comments on recent experiments, also briefly reviews history) -
Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid states, Rev. Mod. Phys. 89, 025003 (2017)
-
B. Yan and C. Felser, Topological Materials: Weyl Semimetals, Annu. Rev. Condens. Matter Phys. 8, 337 (2017)
-
N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three -dimensional solids, Rev. Mod. Phys. 90, 015001 (2018)
-
X.-G. Wen, Colloquium: Zoo of quantum-topological phases of matter, Rev. Mod. Phys. 89, 041004 (2017) (focus on many-body entanglement)
-
F. Guinea, Electronic bands of twisted graphene layers, Journal Club for Condensed Matter Physics, JCCM November 2018 03
- C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T. Senthil, Quantum spin liquids, Science 367, eaay0668 (2020)
- S. M. Frolov, M. J. Manfra, and J. D. Sau, Topological superconductivity in hybrid devices, Nature Phys. 16, 718 (2020) (superconductors and semiconductors with strong spin-orbit coupling; evidence for Majorana modes)
-
E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93, 015005 (2021)
-
B. Q. Lv, T. Qian, and H. Ding, Experimental perspective on three-dimensional topological semimetals, Rev. Mod. Phys. 93, 025002 (2021)
- A. U. B. Wolter and C. Hess, Spin liquid evidence at the edge and in bulk, Nature Phys. 18, 378 (2022) (RuCl3)
- J.-X. Yin, B. Lian, and M. Z. Hasan, Topological kagome magnets and superconductors, Nature 612, 647 (2022)
Other superfluids, Bose-Einstein condensates, and ultracold gases
- A. Gezerlis and J. Carlson, Terrestrial and Astrophysical Superfluidity: Cold Atoms and Neutron Matter, arXiv:1109.4946 (applied to neutron-star crusts)
- K. Levin and R. G. Hulet, The Fermi Gases and Superfluids: Short Review of Experiment and Theory for Condensed Matter Physicists, arXiv:1202.2146
- E. Varoquaux, Anderson's considerations on the flow of superfluid helium: Some offshoots, Rev. Mod. Phys. 87, 803 (2015)
Condensed matter, other topics and general
- V. V. Brazhkin, High-Pressure Synthesized Materials: a Chest of Treasure and Hints, cond-mat/0605626
- M. I. Katsnelson, Graphene: carbon in two dimensions, cond-mat/0612534, slightly longer version in: Materials Today 10, 20 (2007)
- A. J. Masters, Virial expansions, J. Phys.: Condens. Matter 20, 283102 (2008) (applied to isotropic fluids and liquid crystals)
- A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009)
- G. Malenkov, Liquid water and ices: understanding the structure and physical properties, J. Phys.: Condens. Matter 21, 283101 (2009)
- Graphene (special section), J. Phys.: Condens. Matter 21, issue 34 (2009)
- J. Moore, Solid-state physics: An insulator's metallic side, Nature 460, 1090 (2009) and papers discussed therein (short "News and Views" with concise introduction to topological insulators)
- A. K. Geim, Graphene: Status and Prospects, arXiv:0906.3799
- A. R. Oganov and V. L. Solozhenko, Boron: a Hunt for Superhard Polymorphs, arXiv:0911.3193 (short review of the history of elementary boron up to the present)
- L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, Resonant Inelastic X-ray Scattering Studies of Elementary Excitations, arXiv:1009.3630 (experimental and theoretical review on RIXS)
- J. E. Drut, T. A. Lähde, and E. Tölö, Graphene: from materials science to particle physics, arXiv:1011.0643 (discuss, among other things, the nearby excitonic instability)
- W. A. de Heer, The Development of Epitaxial Graphene For 21st Century Electronics, arXiv:1012.1644 (... with a focus on work done by the Georgia Tech group; contains a very interesting history of graphene before Geim and Novoselov)
- R. Resta, The Insulating State of Matter: A Geometrical Theory, arXiv:1012.5776
- F. Molitor, J. Guttinger, C. Stampfer, S. Droscher, A. Jacobsen, T. Ihn, and K. Ensslin, Electronic properties of graphene nanostructures, J. Phys.: Condens. Matter 23, 243201 (2011)
- B. Uchoa, J. P. Reed, Y. Gan, Y. I. Joe, D. Casa, E. Fradkin, and P. Abbamonte, The electron many-body problem in graphene, arXiv:1109.1577
- H. Essen and M. C. N. Fiolhais, Meissner effect, diamagnetism, and classical physics - a review, arXiv:1109.1968 (review of arguments against the Bohr-von Leeuwen theorem and against Meissner's assertion that the Meissner-Ochsenfeld effect cannot be understood classically)
- N. Nagaosa and Y. Tokura, Emergent electromagnetism in solids, arXiv:1109.4720
- D. R. Cooper et al., Experimental review of graphene, arXiv:1110.6557
- R. Lifshitz, Symmetry Breaking and Order in the Age of Quasicrystals, arXiv:1111.3004
- T. Bartels-Rausch et al., Ice structures, patterns, and processes: A view across the icefields, Rev. Mod. Phys. 84, 885 (2012) (broad review of water ice, including phase diagram and structures, lattice defects, glassy ice, sea ice, ice in the Earth's atmosphere, in the solar system, and in interstellar space)
- V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro Neto, Electron-Electron Interactions in Graphene: Current Status and Perspectives, Rev. Mod. Phys. 84, 1067 (2012)
- K. Hyeon-Deuk and O. V. Prezhdo, Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination, J. Phys.: Condens. Matter 24, 363201 (2012)
- R. Comin and A. Damascelli, ARPES: A probe of electronic correlations, arXiv:1303.1438, in Strongly Correlated Systems: Experimental Techniques, Springer Series in Solid-State Sciences (2013)
- A. G. Green, An Introduction to Gauge Gravity Duality and Its Application in Condensed Matter, arXiv:1304.5908 (introductory review)
- V. Meunier, A. G. Souza Filho, E. B. Barros, and M. S. Dresselhaus, Physical properties of low-dimensional sp2-based carbon nanostructures, Rev. Mod. Phys. 88, 025005 (2016) (graphene, nanotubes, also with edges)
-
Z. Lin et al., Flatbands and Emergent Ferromagnetic Ordering in Fe3Sn2 Kagome Lattices, Phys. Rev. Lett. 121, 096401 (2018) (ARPES, STM, compared to DFT, with Tersoff-Hamann approximation for STM modeling)
Molecular physics and chemistry
- W. R. Browne and B. L. Feringa, Light Switching of Molecules on Surfaces, Annu. Rev. Phys. Chem. 60, 407 (2009)
Field theory
- Z. Nussinov, C. D. Batista, and E. Fradkin, Intermediate Symmetries In Electronic Systems: Dimensional Reduction, Order Out Of Disorder, Dualities, And Fractionalization, cond-mat/0602569 (also contains introduction to local gauge symmetry)
- B. Schroer, String theory deconstructed (a detailed critique of the content of ST from an advanced QFT viewpoint), hep-th/0611132, dedicated to Philip Anderson on the occasion of his 83rd birthday
- S. A. Hartnoll, Lectures on holographic methods for condensed matter physics, arXiv:0903.3246 (starting with an introduction to the anti-de-Sitter space/conformal field theory (AdS/CFT) correspondence; compare following reference)
- J. McGreevy, Holographic duality with a view toward many-body physics, arXiv:0909.0518 (lectures introducing the AdS/CFT correspondence; compare previous reference)
- N. Turok, Particle physics: Beyond Feynman's diagrams, Nature 469, 165 (2011) (short News & Views article on recent trends)
-
A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, Circuit quantum electrodynamics, Rev. Mod. Phys. 93, 025005 (2021)
Quantum mechanics and quantum information
- D. Aharonov, Quantum Computation, quant-ph/9812037, Annual Reviews of Computational Physics, vol. VI (World Scientific, 1998) (extensive review, includes clear discussions of the underlying concepts in theoretical computer science and of quantum algorithms)
- J. Tao, X. Gao, G. Vignale, and I. V. Tokatly, Linear Continuum Mechanics for Quantum Many-Body Systems, Phys. Rev. Lett. 103, 086401 (2009); S. Pittalis, G. Vignale, and I. V. Tokatly, Quantum continuum mechanics in a strong magnetic field, arXiv:1109.3644
- S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Circuit QED and engineering charge based superconducting qubits, arXiv:0912.3902, Phys. Scr. T 137, 014012 (2009)
- A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Introduction to quantum noise, measurement and amplification, Rev. Mod. Phys. 82, 1155 (2010), arXiv version with additional appendices: arXiv:0810.4729 (extensive, partly pedagogical review)
- J.-S. Caux and J. Mossel, Remarks on the notion of quantum integrability, arXiv:1012.3587 (very useful review and discussion of various formulations of integrability, including failing ones)
- M.-H. Yung, J. D. Whitfield, S. Boixo, D. G. Tempel, A. Aspuru-Guzik, Introduction to Quantum Algorithms for Physics and Chemistry, arXiv:1203.1331
- C. Kloeffel and D. Loss, Prospects for Spin-Based Quantum Computing, arXiv:1204.5917
- N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014)
- X.-s. Ma, J. Kofler, and A. Zeilinger, Delayed-choice gedanken experiments and their realizations, Rev. Mod. Phys. 88, 015005 (2016) (includes historical review)
-
F. Fröwis, P. Sekatski, W. Dür, N. Gisin, and N. Sangouard, Macroscopic quantum states: Measures, fragility, and implementations, Rev. Mod. Phys. 90, 025004 (2018) (defining macroscopic quantumness)
-
E. Chitambar and G. Gour, Quantum resource theories, Rev. Mod. Phys. 91, 025001 (2019)
-
R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, Quantum steering, Rev. Mod. Phys. 92, 015001 (2020) (from Schrödinger's original article to recent work)
-
S. Parameswaran, Taking the measure of quantum dynamics, Journal Club for Condensed Matter Physics, March 30, 2021 (lucid summary on evolution of random unitary circuits with measurements)
-
C. Budroni, A. Cabello, O. Gühne, M. Kleinmann, and J.-Å. Larsson, Kochen-Specker contextuality, Rev. Mod. Phys. 94, 045007 (2022)
Statistical physics
- S. R. Finch, Several Constants Arising in Statistical Mechanics, math.CO/9810155 !
- B. M. McCoy, The 1999 Heineman Prize Address, Integrable models in statistical mechanics: The hidden field with unsolved problems, math-ph/9904003
- T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, M. P. A. Fisher, 'Deconfined' quantum critical points, cond-mat/0311326; T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, M. P. A. Fisher, Deconfined criticality critically defined, cond-mat/0404718
- R. J. Baxter, The challenge of the chiral Potts model, cond-mat/0510683
- K. J. Wiese, Why one needs a functional renormalization group to survive in a disordered world, cond-mat/0511529, Pramana 64, 817 (2005) (dimensional-reduction theorem and its failure, relation to replica-symmetry breaking)
- R. Kenna, The XY Model and the Berezinskii-Kosterlitz-Thouless Phase Transition, cond-mat/0512356 (review on recent progress, subtleties due to logarithmic corrections)
- V. N. Plechko, Fermions and Correlations in the Two-Dimensional Ising Model, hep-th/0512263 (mapping onto Majorana fermions etc.)
- G. E. Volovik, Quantum phase transitions from topology in momentum space, cond-mat/0601372 (Classification of QPT's according to codimension of set of zeroes of fermionic spectrum, many insightful remarks)
- T. Vojta, Rare region effects at classical, quantum, and non-equilibrium phase transitions, cond-mat/0602312 (Griffiths singularities etc.)
- R. Kenna, Homotopy in statistical physics, cond-mat/0602459, Cond. Matt. Phys. (includes an introduction to the relevant mathematics)
- M. Gell-Mann and J. Hartle, Quasiclassical Coarse Graining and Thermodynamic Entropy, quant-ph/0609190
- Chemical Kinetics beyond the Textbook: Flucutations, Many-Particle Effects and Anomalous Dynamics, J. Phys.: Condens. Matter 19 (6) (special issue with many articles highlighting different aspects)
- S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical phenomena in complex networks, arXiv:0705.0010
- R. A. Blythe and M. R. Evans, Nonequilibrium Steady States of Matrix Product Form: A Solver's Guide, arXiv:0706.1678
- K. Huang, Protein Folding as a Physical Stochastic Process, arXiv:0707.2388
- L. M. Martyushev, Do Nonequilibrium Processes Have Features in Common?, arXiv:0709.0152 (short note)
- C. Vega, E. Sanz, J. L. F. Abascal, and E. G. Noya, Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins, J. Phys.: Condens. Matter 20, 153101 (2008)
- R. Frigg, A Field Guide to Recent Work on the Foundations of Statistical Mechanics, arXiv:0804.0399
- D. Mukamel, Statistical Mechanics of systems with long range interactions, arXiv:0811.3120
- A. L. Kuzemsky, Bogoliubov's vision: quasiaverages and broken symmetry to quantum protectorate and emergence, Int. J. Mod. Phys. B 24, 835 (2010)
- S. Ramaswamy, The Mechanics and Statistics of Active Matter, arXiv:1004.1933, Ann. Rev. Condens. Matter Phys. (2010)
- Z. Burda, J. Duda, J. M. Luck, and B. Waclaw, The various facets of random walk entropy, arXiv:1004.3667 (random walks on graphs)
- T. Vojta, Quantum Griffiths effects and smeared phase transitions in metals: theory and experiment, arXiv:1005.2707
- R. J. Baxter, Some comments on developments in exact solutions in statistical mechanics since 1944, arXiv:1010.0710
- L. P. Kadanoff, Relating Theories via Renormalization, arXiv:1102.3705 (historical overview)
- N. Singh, How and why does statistical mechanics work, arXiv:1103.4003 (concise critical review; ergodicity, chaos, statistial independence)
- B. Vanderheyden and A. D. Jackson, Random matrix models for phase diagrams, arXiv:1105.1291 (illustrated for QCD and high-Tc materials)
- T. Chou, K. Mallick, and R. K. P. Zia, Non-equilibrium statistical mechanics: From a paradigmatic model to biological transport, arXiv:1110.1783, Rep. Prog. Phys. (long review on Markov processes and the Pauli master equation, contains detailed analysis of the totally asymmetric exclusion process including Bethe-ansatz approach, also discusses biomolecular applications)
- R. E. Spinney and I. J. Ford, Fluctuation relations: a pedagogical overview, arXiv:1201.6381
- C. Xu, Unconventional Quantum Critical Points, arXiv:1202.6065 (topological transitions and direct second-order transitions between competing orders)
- H.-P. Breuer, Foundations and Measures of Quantum Non-Markovianity, arXiv:1206.5346
- N. Gray, D. Minic, and M. Pleimling, On non-equilibrium physics and string theory, arXiv:1301.6368
- Z. Nussinov and J. van den Brink, Compass and Kitaev models - Theory and Physical Motivations, arXiv:1303.5922
- E. Efrati, Z. Wang, A. Kolan, and L. P. Kadanoff, Real-space renormalization in statistical mechanics , Rev. Mod. Phys. 86, 647 (2014)
- C. Jarzynski, Diverse phenomena, common themes, Nature Phys. 11, 105 (2015) and references therein, published in the same issue, on nonequilibrium statistical physics; P. Hänggi and P. Talkner, The other QFT, Nature Phys. 11, 108 (2015) (review on fluctuation theorems for nonequilibrium systems); J. Eisert, M. Friesdorf, and C. Gogolin, Quantum many-body systems out of equilibrium, Nature Phys. 11, 124 (2015) (review on self-thermalization of closed systems)
- L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Macroscopic fluctuation theory, Rev. Mod. Phys. 87, 593 (2015) (review of this proposed theory of stationary nonequilibrium states)
- H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Colloquium: Non-Markovian dynamics in open quantum systems, Rev. Mod. Phys. 88, 021002 (2016) (master equation)
-
I. de Vega and D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Mod. Phys. 89, 015001 (2017) (detailed review of theoretical methods)
-
R. Moessner and S. L. Sondhi, Equilibration and order in quantum Floquet matter, Nature Phys. 13, 424 (2017)
-
H. Weimer, A. Kshetrimayum, and R. Orús, Simulation methods for open quantum many-body systems, Rev. Mod. Phys. 93, 015008 (2021) (broad overview of numerical methods)
Other fields, general and interdisciplinary physics
- P. Carruthers and F. Zachariasen, Quantum collision theory with phase-space distributions, Rev. Mod. Phys. 55, 245 (1983) (Wigner-function approach)
- A. M. J. Schakel, Time-Dependent Ginzburg-Landau Theory and Duality, cond-mat/9904092 (discussing BCS and BEC limits and duality)
- B. Mashhoon, F. Gronwald, and H. I. M. Lichtenegger, Gravitomagnetism and the Clock Effect, gr-qc/9912027 (gravitoelectromagnetic field, approximate derivation from GTR)
- A. Unzicker, What can Physics learn from Continuum Mechanics?, gr-qc/0011064 (topological defects, continuum mechanics, spacetime, and Einstein's teleparallel theory)
- G. E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003), http://ltl.tkk.fi/personnel/THEORY/volovik/book.pdf (book, common concepts in cosmology and condensed-matter theory); G. E. Volovik, Emergent physics on vacuum energy and cosmological constant, cond-mat/0507454 (ideas common to cosmology and condensed-matter theory), see also below (2010)
- C. M. Bender, Making Sense of Non-Hermitian Hamiltonians, hep-th/0703096, Rep. Prog. Phys. (extensive review with lots of interesting details) !
- B. Duplantier, Brownian Motion, "Diverse and Undulating", arXiv:0705.1951, expanded version of article in Einstein, 1905-2005, Poincaré Seminar 2005, edited by T. Damour, O. Darrigol, B. Duplantier, and V. Rivasseau, p. 201 (Birkhäuser, Basel, 2006) (extended historical review, also discussing mathematical aspects)
- D. Chowdhury, Resource Letter: Bio-molecular Nano-machines: where Physics, Chemistry, Biology and Technology meet, arXiv:0807.2731 (extensive review)
- D. V. Shirkov, 60 years of Broken Symmetries in Quantum Physics (From the Bogoliubov Theory of Superfluidity to the Standard Model), arXiv:0903.3194
- D. Sherrington, Physics and Complexity, arXiv:0903.3572, Phil. Mag. A (macroscopic complexity arising from simple microscopic properties)
- S. Fortunato, Community detection in graphs, arXiv:0906.0612
- H. J. Haubold, A. M. Mathai, and R. K. Saxena, Mittag-Leffler Functions and Their Applications, arXiv:0909.0230
- G. E. Volovik, The Superfluid Universe, arXiv:1004.0597 (the quantum vacuum, cosmology, and liquid Helium-3, based on considerations of thermodynamics, topology and symmetry) P
- F. Wilczek, BCS as Foundation and Inspiration: The Transmutation of Symmetry, arXiv:1008.1741 (developments in general physics inspired by BCS theory)
- N. Goldenfeld and C. Woese, Life is physics: evolution as a collective phenomenon far from equilibrium, arXiv:1011.4125
- D. Schumayer and D. A. W. Hutchinson, Colloquium: Physics of the Riemann hypothesis, Rev. Mod. Phys. 83, 307 (2011) (review on the Riemann zeta function from the perspective of physics)
- N. Auerbach and V. Zelevinsky, Super-Radiant Dynamics, Doorways, and Resonances in Nuclei and Other Open Mesoscopic Systems, arXiv:1104.5462
- D. Blume, Few-body physics with ultracold atomic and molecular systems in traps, arXiv:1111.0941
- R. Chiao, Superluminal phase and group velocities: A tutorial on Sommerfeld's phase, group, and front velocities for wave motion in a medium, with applications to the "instantaneous superluminality" of electrons, arXiv:1111.2402
- D. J. Rowe, M. J. Carvalho, and J. Repka, Dual pairing of symmetry and dynamical groups in physics, Rev. Mod. Phys. 84, 711 (2012) (as applied to quantum many-body theory)
- Physics in one dimension (special section), J. Phys.: Condens. Matter 25, 010301 (2013)
- R. E. Allen, The London-Anderson-Englert-Brout-Higgs-Guralnik-Hagen-Kibble-Weinberg mechanism and Higgs boson reveal the unity and future excitement of physics, arXiv:1306.4061 (history of the the named mechanism and implications for future research)
- M. Cariglia, Hidden symmetries of dynamics in classical and quantum physics, Rev. Mod. Phys. 86, 1283 (2014) (rather mathematical presentation with many examples, including tops and the Runge-Lenz vector)
- S. R. Elliott and M. Franz, Colloquium: Majorana fermions in nuclear, particle, and solid-state physics, Rev. Mod. Phys. 87, 137 (2015) (theoretical and experimental overview)
Mathematics
- S. Torquato and F. H. Stillinger, Jammed Hard-Particle Packings: From Kepler to Bernal and Beyond, arXiv:1008.2982, Rev. Mod. Phys. (2010)
History of physics and of science in general
- J. Schmalian, Failed theories of superconductivity, arXiv:1008.0447
Research Papers
Methods
Many-body theory
- W. Kohn and J. M. Luttinger, Quantum Theory of Electrical Transport Phenomena, Phys. Rev. 108, 590 (1957) (Boltzmann equation with collision integral derived from master equation)
- B. Velický, S. Kirkpatrick, and H. Ehrenreich, Single-Site Approximations in the Electronic Theory of Simple Binary Alloys, Phys. Rev. 175, 747 (1968) (detailed, partly pedagogical discussion of the CPA)
- A. H. MacDonald, S. M. Girvin, and D. Yoshioka, t/U expansion for the Hubbard model, Phys. Rev. B 37, 9753 (1988) (unitary transformation that removes terms that change the number of doubly occupied sites to any order) P; A. M. Oles, Comment, Phys. Rev. B 41, 2562 (1990); A. H. MacDonald, S. M. Girvin, and D. Yoshioka, Reply, Phys. Rev. B 41, 2565 (1990)
- D. N. Aristov, Indirect RKKY interaction in any dimensionality, Phys. Rev. B 55, 8064 (1997)
- D. Belitz and T. R. Kirkpatrick, Theory of many-fermion systems, Phys. Rev. B 56, 6513 (1997) (continuum many-fermion theory including potential disorder and interactions, uses bosonization, the replica trick, and saddle-point expansion, long paper)
- Y. B. Ivanov, J. Knoll, and D. N. Voskresensky, Self-Consistent Approximations to Non-Equilibrium Many-Body Theory, cond-mat/9807351 (generalization of Kadanoff-Baym approach with non-equilibrium Green functions)
- E. Lange, Renormalized vs. unrenormalized perturbation-theoretical approaches to the Mott transition, cond-mat/9810208, Mod. Phys. Lett. B 12, 915 (1998) (why unrenormalized perturbation theory often works better)
- A. Hübsch, M. Vojta, and K. W. Becker, Construction of size-consistent effective Hamiltonians for systems with arbitrary Hilbert space, J. Phys.: Condens. Matter 11, 8523 (1999), cond-mat/9909317
- D. Foerster, A planar diagram approach to the correlation problem, cond-mat/9912350 (large-N functional integral method for the Hubbard model based on an idea from QCD, nicely written, relation to FLEX)
- R. Renan, M. H. Pacheco, and C. A. S. Almeida, Treating some solid state problems with the Dirac equation, J. Phys. A: Math. Gen. 33, L509 (2000) (effective mass treatment of semiconductor heterostructures, how to use Dirac equation to derive it correctly)
- C. D. Batista and G. Ortiz, Generalized Jordan-Wigner Transformations, Phys. Rev. Lett. 86, 1082 (2001)
- R. Frésard and T. Kopp, Slave Bosons in Radial Gauge: the Correct Functional Integral Representation and Inclusion of Non-Local Interactions, Nucl. Phys. B 594, 769 (2001), cond-mat/0011296 (how to gauge away all phase fluctuations of slave bosons by making the Lagrange-multiplier fields dynamic); R. Frésard, H. Ouerdane, and T. Kopp, Slave bosons in radial gauge: A bridge between path integral and Hamiltonian language, Nucl. Phys. B 785, 286 (2007) (also illustrating this path-integral/Hamiltonian correspondence for simple model systems); Barnes slave-boson approach to the two-site single-impurity Anderson model with non-local interaction, EPL 82, 31001 (2008)
- N. Dupuis, A new approach to strongly correlated fermion systems: the spin-particle-hole coherent-state path integral, cond-mat/0105062
- Y. Kakehashi, Many-body coherent potential approximation, dynamical coherent potential approximation, and dynamical mean-field theory, Phys. Rev. B 66, 104428 (2002) (shows that many-body CPA, dynamical CPA, and DMFT are equivalent, gives results for disordered Hubbard model)
- V. Gurarie and J. T. Chalker, Some Generic Aspects of Bosonic Excitations in Disordered Systems, Phys. Rev. Lett. 89, 136801 (2002)
- S. Sharma and C. Ambrosch-Draxl, Linear and Second-order Optical Response from First Principles, cond-mat/0305016 (in the independent particle approximation)
- M. Potthoff, Self-energy-functional approach: Analytical results and the Mott-Hubbard transition, cond-mat/0306278
- E. Langmann, Exactly solvable models for 2D interacting fermions, J. Phys. A: Math. Gen. 37, 407 (2004) cond-mat/0206045
- M. Potthoff, Non-perturbative construction of the Luttinger-Ward functional, cond-mat/0406671
- M. S. Laad and L. Craco, Cluster coherent potential approximation for the electronic structure of disordered alloys, J. Phys.: Condens. Matter 17, 4765 (2005) (generalization of CPA to include non-local correlations)
- F. Verstraete and J. I. Cirac, Mapping local Hamiltonians of fermions to local Hamiltonians of spins, cond-mat/0508353
- A. Rüegg, M. Indergand, S. Pilgram, and M. Sigrist, Slave-boson theory of the Mott transition in the two-band Hubbard model, cond-mat/0508691
- K. R. Patton and M. R. Geller, Infrared catastrophe and tunneling into strongly correlated electron systems: Beyond the x-ray edge limit, cond-mat/0509617
- V. Cvetkovic and J. Zaanen, Vortex duality: watching the dual side with order propagators, cond-mat/0511586
- U. Birkenheuer, P. Fulde, and H. Stoll, A simplified method for the computation of correlation effects on the band structure of semiconductors, cond-mat/0511626
- G. Vidal, Entanglement renormalization, cond-mat/0512165 (improved real-space RG procedure that includes an additional transformation reducing the entanglement between blocks)
- M. Berciu, Green's function of a dressed particle, cond-mat/0602195 (obtains an approximate full Green function by summing over all diagrams but averaging over the momenta of internal propagators, i.e., neglecting momentum conservation; shown to give good results for the Holstein model); G. L. Goodvin, M. Berciu, and G. A. Sawatzky, The Green's Function of the Holstein Polaron, cond-mat/0609597
- A. Toschi, A. A. Katanin, and K. Held, Dynamical vertex approximation - a step beyond dynamical mean field theory, cond-mat/0603100
- D. A. Rowlands, Investigation of the nonlocal coherent-potential approximation, cond-mat/0603370, J. Phys.: Condens. Matter 18, 3179 (2006)
- P. Gosselin, A. Bérard, and H. Mohrbach, Semiclassical Diagonalization of Quantum Hamiltonian and Equations of Motion with Berry Phase Corrections, hep-th/0603192
- P. Werner and A. J. Millis, Strong Coupling Continuous Time Impurity Solver: General Formulation and Application to Kondo Lattice and Two-Orbital Models, cond-mat/0607136
- E. Langmann and M. Wallin, Mean Field Magnetic Phase Diagrams for the Two Dimensional t-t'-U Hubbard Model, J. Stat. Phys. 127, 825 (2007) (also of methodological interest: mean-field approximation at fixed chemical potential, i.e., minimizing the grand-canonical potential, forbidden ranges of particle number indicate mixed phases [the study of which requires additional treatment of boundaries]; application is in agreement with more advanced methods; finds incompressible antiferromagnetic state [particle number constant as function of chemical potential] only at zero doping)
- S. Ostlund, The strong coupling Kondo lattice model as a Fermi gas, cond-mat/0703768 (exact mapping)
- M. Greiter and D. Schuricht, Many-spinon states and the secret significance of Young tableaux, arXiv:0705.1467
- M. B. Hastings, Quantum Belief Propagation, arXiv:0706.4094
- F. Mancini, A class of solvable models in Condensed Matter Physics, arXiv:0707.3839, Condens. Matter Phys. 9, 393 (2006) (model with general multi-particle density interactions, but without kinetic energy)
- B. Sutherland, The Structure of Integrable One-Dimensional Systems, arXiv:0708.0334 (relation of classical notion of integrable systems to the Bethe ansatz for the corresponding quantum system)
- M. Balzer, W. Hanke, and M. Potthoff, Mott transition in one dimension: Benchmarking dynamical cluster approaches, arXiv:0709.4620 (comparison with various other methods)
- V. A. Apinyan and T. K. Kopec, Effective pairing interaction in the two-dimensional Hubbard model within a spin rotationally invariant approach, Phys. Rev. B 78, 184511 (2008)
- J. Zaanen, F. Krüger, J.-H. She, D. Sadri, and S. I. Mukhin, Pacifying the Fermi-liquid: battling the devious fermion signs, arXiv:0802.2455 (fermionic path integral, includes review)
- J. Brinckmann and P. Wölfle, Diagrammatic approximations for the 2d quantum antiferromagnet: exact projection of auxiliary fermions, arXiv:0803.3312 (projection to implement local constraint on auxiliary-fermion number, exact projection compared to projection of average)
- J. P. Coe, K. Capelle, and I. D'Amico, Reverse engineering in many-body quantum physics: What many-body system corresponds to an effective single-particle equation?, arXiv:0809.0586
- A. Hackl and S. Kehrein, Unitary perturbation theory approach to real-time evolution problems, arXiv:0809.3524
- H. Mukaida and Y. Sakamoto, Exactness of the replica method in perturbation, arXiv:0809.4071
- A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein, and A. Georges, Dual fermion approach to the two-dimensional Hubbard model: Antiferromagnetic fluctuations and Fermi arcs, arXiv:0810.3819
- D. Belitz and T. R. Kirkpatrick, Electronic Transport at Low Temperatures: Diagrammatic Approach, arXiv:0812.0024 (conserving ladder approximation for the Kubo formula is consistent with result from Boltzmann equation)
- Z. Nussinov and G. Ortiz, Bond Algebras and Exact Solvability of Hamiltonians: Spin S=1/2 Multilayer Systems and Other Curiosities, arXiv:0812.4309 (how to construct models with exactly known spectra)
- S. N. Datta and A. Panda, All-temperature magnon theory of ferromagnetism, J. Phys.: Condens. Matter 21, 336003 (2009)
- Z.-C. Gu and X.-G. Wen, Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order, Phys. Rev. B 80, 155131 (2009); see also Viewpoint: S. Sachdev, Tensor networks - a new tool for old problems, Physics 2, 90 (2009)
- S. G. Jakobs, M. Pletyukhov, and H. Schoeller, Properties of multi-particle Green and vertex functions within Keldysh formalism, arXiv:0902.2350
- A. Benlagra, K.-S. Kim, and C. Péepin, Luttinger-Ward functional approach in the Eliashberg framework: A systematic derivation of scaling for thermodynamics near a quantum critical point, arXiv:0902.3630
- M. Dunn, W. Blake Laing, D. Toth, and D. K. Watson, A Test of a New Interacting N-Body Wave Function, arXiv:0903.0875
- A. Croy and U. Saalmann, A partial fraction decomposition of the Fermi function, arXiv:0903.4824 (which converges much more rapidly than the Matsubara sum)
- K. B. Efetov, C. Pepin, and H. Meier, Exact bosonization for an interacting Fermi gas in arbitrary dimensions, arXiv:0907.3243 (said to avoid the sign problem)
- M. Berciu and A. M. Cook, Efficient computation of lattice Green's functions for models with nearest-neighbour hopping, EPL 92 40003 (2010) (algebraic, starting from equation of motion for Green function in real space [on lattice])
- P. Werner and A. J. Millis, Dynamical Screening in Correlated Electron Materials, arXiv:1001.1377 (screening of the Hubbard-U interaction)
- J. Eckel, F. Heidrich-Meisner, S. G. Jakobs, M. Thorwart, M. Pletyukhov, and R. Egger, Comparative study of theoretical methods for nonequilibrium quantum transport, arXiv:1001.3773 (compare FRG, time-dependent DMRG, and iterative summation of real-time path integrals)
- J. Bünemann, A slave-boson mean-field theory for general multi-band Hubbard models, arXiv:1002.3228
- F. Fröwis, V. Nebendahl, and W. Dür, Tensor operators - constructions and applications for long-range interaction systems, arXiv:1003.1047
- P. Kopietz, L. Bartosch, L. Costa, A. Isidori, and A. Ferraz, Ward identities for the Anderson impurity model: derivation via functional methods and the exact renormalization group, arXiv:1003.1867
- J. E. Moussa, Approximate diagonalization method for many-fermion Hamiltonians, arXiv:1003.2596
- V. Galitski, Fermionization Transform for Certain Higher-Dimensional Quantum Spin Models, arXiv:1003.3874
- Y.-F. Yang, N. J. Curro, Z. Fisk, D. Pines, and J. D. Thompson, A predictive standard model for heavy electron systems, arXiv:1005.5184
- J. Jedrak, J. Kaczmarczyk, and J. Spalek, Statistically-consistent Gutzwiller approach and its equivalence with the mean-field slave-boson method for correlated systems, arXiv:1008.0021
- C. Jung, A. Lieder, S. Brener, H. Hafermann, B. Baxevanis, A. Chudnovskiy, A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Dual-Fermion approach to Non-equilibrium strongly correlated problems, arXiv:1011.3264 (dual perturbation theory on the Keldysh time contour)
- T. Tay and O. I. Motrunich, Failure of Gutzwiller-type wave function to capture gauge fluctuations: Case study in the Exciton Bose Liquid context, arXiv:1012.3783 (solution using a Gutzwiller-projected wave function is compared to a full slave-particle approach)
- K. Edwards and A. C. Hewson, A new renormalization group approach for systems with strong electron correlation, J. Phys.: Condens. Matter 23, 045601 (2011) (RG as function of magnetic field, starting at high field, which suppresses spin fluctuations, and reducing the field to zero)
- J. H. Wilson and V. Galitski, Breakdown of the Coherent State Path Integral: Two Simple Examples, Phys. Rev. Lett. 106, 110401 (2011)
- S. M. Giampaolo, G. Gualdi, A. Monras, and F. Illuminati, Characterizing and Quantifying Frustration in Quantum Many-Body Systems, Phys. Rev. Lett. 107, 260602 (2011)
- M. Balzer and M. Potthoff, Non-equilibrium cluster-perturbation theory, arXiv:1102.3344 (on Keldysh contour)
- R. van Leeuwen and G. Stefanucci, Wick Theorem for General Initial States, arXiv:1102.4814
- P. Anders, E. Gull, L. Pollet, M. Troyer, and P. Werner, Dynamical mean-field theory for bosons, arXiv:1103.0017
- A. Toschi, G. Rohringer, A. A. Katanin, and K. Held, Ab initio calculations with the dynamical vertex approximation, arXiv:1104.2188
- H. Kleinert, Hubbard-Stratonovich Transformation: Successes, Failure, and Cure, arXiv:1104.5161 (how to avoid the problem of the HS transformation that one has to select one specific decoupling channel)
- M. Weinstein, A. Auerbach, and V. R. Chandra, Reducing Memory Cost of Exact Diagonalization using Singular Value Decomposition, arXiv:1105.0007
- R. Hübener and T. Barthel, Approaching condensed matter ground states from below, arXiv:1106.4966 (method giving rigorous lower bound for ground-state energy)
- E. von Oelsen, G. Seibold, and J. Bünemann, Time-Dependent Gutzwiller Theory for Multiband Hubbard Models, arXiv:1107.1354; The time-dependent Gutzwiller theory for multi-band Hubbard models, arXiv:1107.1631
- V. Alba, M. Haque, and A. M. Laeuchli, Boundary-locality and perturbative structure of entanglement spectra in gapped systems, arXiv:1107.1726
- V. V. Cheianov, I. L. Aleiner, and V. I. Fal'ko, Tunable Strongly Correlated Band Insulator, arXiv:1107.4750 (... a new concept)
- S. Chandrasekharan and U.-J. Wiese, Partition Functions of Strongly Correlated Electron Systems as "Fermionants", arXiv:1108.2461 (a new approach to the partition function of interacting systems)
- J. Zaanen and A. J. Beekman, The emergence of gauge invariance: the stay-at-home gauge versus local-global duality, arXiv:1108.2791 (starts with a review of relevant concepts)
- B. Swingle and T. Senthil, A geometric proof of the equality between entanglement and edge spectra, arXiv:1109.1283
- A. Ferraz and E. A. Kochetov, Effective action for strongly correlated electron systems, arXiv:1109.5103 (path integral)
- Z. Nussinov, G. Ortiz, and E. Cobanera, Effective and exact holographies from symmetries and dualities, arXiv:1110.2179 (very long paper)
- A. Dutta, C. Trefzger, and K. Sengupta, A projection operator approach to the Bose-Hubbard model, arXiv:1111.5085 (for equilibrium and non-equilibrium cases)
- M. Berciu, Few-particle Green's functions for strongly correlated systems on infinite lattices, arXiv:1112.1928
- J. Rodriguez-Laguna, P. Migdal, M. Ibánez Berganza, M. Lewenstein, and G. Sierra, Qubism: self-similar visualization of many-body wavefunctions, arXiv:1112.3560 !
- C. Honerkamp, Effective interactions in multi-band systems from constrained summations, arXiv:1112.5143 (constrained RPA and beyond)
- D. Belitz and T. R. Kirkpatrick, Effective Soft-Mode Theory for Clean Fermions, arXiv:1112.5916
- M. Balzer, N. Gdaniec, and M. Potthoff, Krylov-space approach to the equilibrium and nonequilibrium single-particle Green's function, J. Phys.: Condens. Matter 24, 035603 (2012)
- T. R. Kirkpatrick and D. Belitz, Theory of a Fermi-Liquid to Non-Fermi-Liquid Quantum Phase Transition in Dimensions d>1, Phys. Rev. Lett. 108, 086404 (2012) (transition toward a Luttinger-liquid-like phase in higher dimensions; density of states at the Fermi energy is considered as order parameter)
- K. Byczuk, J. Kunes, W. Hofstetter, and D. Vollhardt, Quantification of Correlations in Quantum Many-Particle Systems, Phys. Rev. Lett. 108, 087004 (2012) (measure of correlations based on density operator)
- A. Akbari, M. J. Hashemi, R. M. Nieminen, R. van Leeuwen, and A. Rubio, Challenges in Truncating the Hierarchy of Time-Dependent Reduced Density Matrices Equations: Open Problems, arXiv:1204.4395 (comprehensive paper on Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy of one-, two-, three-, etc. body reduced density matrices, in particular discuss truncated at third order)
- G. Knizia and G. K.-L. Chan, Density matrix embedding: A simple alternative to dynamical mean-field theory, arXiv:1204.5783
- S. N. Dinh, D. A. Bagrets, and A. D. Mirlin, Nonequilibrium functional bosonization of quantum wire networks, arXiv:1205.3464
- P. Jacquod, R. S. Whitney, J. Meair, and M. Büttiker, Onsager Relations in Coupled Electric, Thermoelectric and Spin Transport: The Ten-Fold Way, arXiv:1207.1629 (Onsager relations between uniform linear-response coefficients, for all 10 classes; also contains a nice discussion of physical examples for all Altland-Zirnbauer "ten-fold way" classes)
- S. A. Maier and C. Honerkamp, Renormalization group flow for fermions into antiferromagnetically ordered phases: Method and mean-field models, arXiv:1207.2314
- J. S. M. Anderson, M. Nakata, R. Igarashi, K. Fujisawa, and M. Yamashita, The second-order reduced density matrix method and the two-dimensional Hubbard model, arXiv:1207.4847
- M. L. Leek, Mathematical Details in the application of Non-equilibrium Green's Functions (NEGF) and Quantum Kinetic Equations (QKE) to Thermal Transport, arXiv:1207.6204 (very long thesis, including disussion of how Landauer theory, kinetic theory, and Kubo linear-response theory are derived in the general NEGF formalism)
- B. Sriram Shastry, Extremely Correlated Fermi Liquids: The Formalism, arXiv:1207.6826
- P. Wang, The excitation operator approach to non-Markovian dynamics of quantum impurity models in the Kondo regime, arXiv:1209.3881 (dynamics of Kondo spin coupled to a single non-Markovian reservoir)
- C. Aron, C. Weber, and G. Kotliar, Impurity model for non-equilibrium steady states, arXiv:1210.4926 (non-equilibrium DMFT for Hubbard model with lateral electric field)
- E. M. Stoudenmire and S. R. White, Real-Space Parallel Density Matrix Renormalization Group, arXiv:1301.3494
- J. Büunemann, M. Capone, J. Lorenzana, and G. Seibold, Linear-Response Dynamics from the Time-Dependent Gutzwiller Approximation, arXiv:1303.1665
- B. Verstichel, W. Poelmans, S. De Baerdmacker, S. Wouters, and D. Van Neck, v2DM study of the 2D Hubbard model: Benchmark results with three-index conditions and extended cluster constraints, arXiv:1307.1002
- M. Kinza and C. Honerkamp, Two-particle-correlations in DMFT(fRG), arXiv:1307.1298
- S. A. Maier, C. Honerkamp, and Q.-H. Wang, Interplay between Point-Group Symmetries and the Choice of the Bloch Basis in Multiband Models, arXiv:1310.0278 (how to best construct Bloch states and transformation matrices for orbitally nontrivial models, also address the non-trivial transformations of interaction terms)
- G. Evenbly and G. Vidal, Real-Space Decoupling Transformation for Quantum Many-Body Systems, Phys. Rev. Lett. 112, 220502 (2014) (RG)
- A. J. Ferris, Fourier Transform for Fermionic Systems and the Spectral Tensor Network, Phys. Rev. Lett. 113, 010401 (2014)
- A. P. Itin and M. I. Katsnelson, Effective Hamiltonians for Rapidly Driven Many-Body Lattice Systems: Induced Exchange Interactions and Density-Dependent Hoppings, Phys. Rev. Lett. 115, 075301 (2015) (effective time-independent Hamiltonians obtained by canonical transformations; applied to 1D fermionic and bosonic Hubbard models)
- M. Bukov, M. Kolodrubetz, and A. Polkovnikov, Schrieffer-Wolff Transformation for Periodically Driven Systems: Strongly Correlated Systems with Artificial Gauge Fields, Phys. Rev. Lett. 116, 125301 (2016) (use Floquet theory)
- C. Krumnow, L. Veis, Ö. Legeza, and J. Eisert, Fermionic Orbital Optimization in Tensor Network States, Phys. Rev. Lett. 117, 210402 (2016)
- M. Ochi, R. Arita, and S. Tsuneyuki, Correlated Band Structure of a Transition Metal Oxide ZnO Obtained from a Many-Body Wave Function Theory, Phys. Rev. Lett. 118, 026402 (2017) (application of novel biorthogonal transcorrelated method)
-
N. Lanatà, Y. Yao, X. Deng, V. Dobrosavljević, and G. Kotliar, Slave Boson Theory of Orbital Differentiation with Crystal Field Effects: Application to UO2, Phys. Rev. Lett. 118, 126401 (2017)
-
O. Gunnarsson, G. Rohringer, T. Schäfer, G. Sangiovanni, and A. Toschi, Breakdown of Traditional Many-Body Theories for Correlated Electrons, Phys. Rev. Lett. 119, 056402 (2017) (progress in understanding how and why they break down for strong interactions)
-
Z. Bi and T. Senthil, Adventure in Topological Phase Transitions in 3+1-D: Non-Abelian Deconfined Quantum Criticalities and a Possible Duality, Phys. Rev. X 9, 021034 (2019) ("unnecessary quantum critical points")
-
Y.-H. Wu, L. Wang, and H.-H. Tu, Tensor Network Representations of Parton Wave Functions, Phys. Rev. Lett. 124, 246401 (2020)
-
J. Fei, C.-N. Yeh, and E. Gull, Nevanlinna Analytical Continuation, Phys. Rev. Lett. 126, 056402 (2021) (strongly improved analytic continuation in frequency)
-
A. J. Kim, N. V. Prokof'ev, B. V. Svistunov, and E. Kozik, Homotopic Action: A Pathway to Convergent Diagrammatic Theories, Phys. Rev. Lett. 126, 257001 (2021)
-
F. B. Kugler, S.-S. B. Lee, and J. von Delft, Multipoint Correlation Functions: Spectral Representation and Numerical Evaluation, Phys. Rev. X 11, 041006 (2021) (connects approaches based on functional integral and on operators); S.-S. B. Lee, F. B. Kugler, and J. von Delft, Computing Local Multipoint Correlators Using the Numerical Renormalization Group, Phys. Rev. X 11, 041007 (2021) (application thereof to impurity problems)
-
N. Bashan and A. Auerbach, Degeneracy-Projected Polarization Formulas for Hall-Type Conductivities, Phys. Rev. Lett. 128, 036601 (2022) (Hall, Nerst, thermal Hall effect; on-shell formulas)
-
T. Micklitz, A. Morningstar, A. Altland, and D. A. Huse, Emergence of Fermi's Golden Rule, Phys. Rev. Lett. 129, 140402 (2022) (time-dependent perturbation theory for discrete, not continuum, final states)
See also: Statistical physics
Semiclassical theory and hydrodynamics
- M.-C. Chang and Q. Niu, Berry curvature, orbital moment, and effective quantum theory of electrons in electromagnetic fields, J. Phys.: Condens. Matter 20, 193202 (2008) (how to construct semiclassical theories for transport of electrons in crystals)
- A. Polkovnikov, Representation of quantum dynamics of interacting systems through classical trajectories, arXiv:0905.3384 (long paper, related to Wigner-Weyl formulation of quantum mechanics)
- R. L. Frank, M. Lewin, E. H. Lieb, and R. Seiringer, Energy Cost to Make a Hole in the Fermi Sea, Phys. Rev. Lett. 106, 150402 (2011) (non-interacting Fermi gas, give a rigorous lower bound of energy cost based on semiclassical theory)
- P. A. Andreev, Quantum kinetics derivation as generalization of the quantum hydrodynamics method, arXiv:1212.0099
- O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Emergent Hydrodynamics in Integrable Quantum Systems Out of Equilibrium, Phys. Rev. X 6, 041065 (2016); B. Bertini, M. Collura, J. De Nardis, and M. Fagotti, Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents, Phys. Rev. Lett. 117, 207201 (2016) (hydrodynamical description of one-dimensional integrable systems)
-
T. Stedman and L. M. Woods, Transport theory within a generalized Boltzmann equation for multiband wave packets, Phys. Rev. Research 2, 033086 (2020) (novel semiclassical theory with explicit wave packets)
Field theory
- M. Bachmann, H. Kleinert, and A. Pelster, Recursive graphical construction of Feynman diagrams in quantum electrodynamics, Phys. Rev. D 61, 085017 (2000); H. Kleinert, A. Pelster, B. Kastening, and M. Bachmann, Recursive graphical construction of Feynman diagrams and their multiplicities in phi4 and phi2A theory, Phys. Rev. E 62, 1537 (2000)
- A. Pelster, H. Kleinert, and M. Bachmann, Functional Closure of Schwinger-Dyson Equations in Quantum Electrodynamics, Part 1: Generation of Connected and One-Particle Irreducible Feynman Diagrams, hep-th/0109014
- D. A. Ivanov and M. A. Skvortsov, Dyson-Maleev representation of nonlinear sigma-models, arXiv:0801.2180
- V. Cvetkovic, Z. Nussinov, and J. Zaanen, Ballistic properties of crystalline defects, arXiv:0905.2996
- H. D. Zeh, Quantum discreteness is an illusion, arXiv:0809.2904 (quantum mechanics derived from QFT and what we learn and unlearn from it)
- A. Karch and S. L. Sondhi, Non-linear, Finite Frequency Quantum Critical Transport from AdS/CFT, arXiv:1008.4134
- C. P. Hofmann, A. Raya, and S. S. Madrigal, Confinement in Maxwell-Chern-Simons Planar Quantum Electrodynamics and the 1/N approximation, arXiv:1010.3466
- R. Cheng and Q. Niu, Equivalence of O(3) nonlinear sigma model and the CP1 model: A path integral approach, arXiv:1010.4590 (proof of the equivalence stated in the title)
- G. Chen, A. Essin, and M. Hermele, Majorana spin liquids and projective realization of SU(2) spin symmetry, arXiv:1112.0586
-
A. Coates and F. M. Ramazanoğlu, Intrinsic Pathology of Self-Interacting Vector Fields, Phys. Rev. Lett. 129, 151103 (2022) (time evolution can run into singularity)
Random matrix theory
- P. J. Forrester and E. M. Rains, Inter-relationships between orthogonal, unitary and symplectic matrix ensembles, arXiv:solv-int/9907008 (containing a review on random matrix ensembles, including non-standard ones)
- I. E. Smolyarenko and B. D. Simons, Parametric statistics of individual energy levels in random Hamiltonians, Phys. Rev. E 67, 025202(R) (2003)
- A. T. Görlich and A. Jarosz, Addition of Free Unitary Random Matrices, math-ph/0408019
- M. M. Duras, Simulations of fluctuations of quantum statistical systems of electrons, cond-mat/0506062 (definition and basic properties of random-matrix ensembles); Quantum fluctuations of systems of interacting electrons in two spatial dimensions, cond-mat/0510409
- G. M. Cicuta and H. Orland, Real symmetric random matrices and replicas, cond-mat/0607517 (contains a detailed introduction/review on random matrices and the replica formalism)
- E. Gudowska-Nowak, R. J. Janik, J. Jurkiewicz, M. A. Nowak, and W. Wieczorek, Random walkers versus random crowds: diffusion of large matrices, cond-mat/0612438 (study dynamics of independent random walk of all matrix components)
- U. Magnea, Random matrices beyond the Cartan classification, arXiv:0707.0418 (focusing on non-hermitian matrices)
- T. Rogers and I. P. Castillo, Cavity approach to the spectral density of non-Hermitian sparse matrices, arXiv:0810.0991
- K. E. Bassler, P. J. Forrester, and N. E. Frankel, Eigenvalue Separation in Some Random Matrix Models, arXiv:0810.1554 (mainly for shifted Gaussian distribution of components)
- X. Barillier-Pertuisel, O. Bohigas, and H. A. Weidenmüller, Random-Matrix Approach to RPA equations. I, arXiv:0807.3155 (concerning non-hermitian random matrices appearing in the context of the RPA)
- B. Vanderheyden and A. D. Jackson, Random matrix model for antiferromagnetism and superconductivity on a two-dimensional lattice, arXiv:0811.3571
- F. Franchini and V. E. Kravtsov, Horizon in Random Matrix Theory, Hawking Radiation and Flow of Cold Atoms, arXiv:0905.3533 (non-trivial equivalence of low-energy behavior of a certain RM ensemble and a field theory in curved space-time)
- E. Kanzieper, Replica Approach in Random Matrix Theory, arXiv:0909.3198, Oxford Handbook of Random Matrix Theory
- Z. Burda, R. A. Janik, and B. Waclaw, Spectrum of the Product of Independent Random Gaussian Matrices, arXiv:0912.3422
- A. Amir, Y. Oreg, and Y. Imry, Localization, anomalous diffusion and slow relaxations: a random distance matrix approach, arXiv:1002.2123 (matrix elements depend exponentially on the separations between randomly distributed points in real space)
- N. Saito, Y. Iba, and K. Hukushima, Multicanonical sampling of rare events in random matrices, arXiv:1002.4499
- E. Kanzieper and N. Singh, Non-Hermitean Wishart random matrices (I), arXiv:1006.3096
- T. Aspelmeier and A. Zippelius, The integrated density of states of the random graph Laplacian, arXiv:1008.1087
- B. A. Khoruzhenko, H.-J. Sommers, and K. Zyczkowski, Truncations of Random Orthogonal Matrices, arXiv:1008.2075
- T. S. Grigera, V. Martin-Mayor, G. Parisi, P. Urbani, and P. Verrocchio, On the high-density expansion for Euclidean Random Matrices, arXiv:1011.2798
- Y. N. Joglekar and W. A. Karr, Eigenvalue and level-spacing statistics of random, self-adjoint, non-Hermitian matrices, arXiv:1012.1202
- C. Nadal and S. N. Majumdar, A simple derivation of the Tracy-Widom distribution of the maximal eigenvalue of a Gaussian unitary random matrix, arXiv:1102.0738
- A. Goetschy and S. E. Skipetrov, Non-Hermitian Euclidean random matrix theory, arXiv:1102.1850 (on matrices of the form HTH+, H random, T given)
- G. Livan and P. Vivo, Moments of Wishart-Laguerre and Jacobi ensembles of random matrices: application to the quantum transport problem in chaotic cavities, arXiv:1103.2638
- Z. Burda, A. Jarosz, G. Livan, M. A. Nowak, and A. Swiech, Eigenvalues and Singular Values of Products of Rectangular Gaussian Random Matrices, arXiv:1103.3964 (long paper)
- G. Akemann and P. Vivo, Compact smallest eigenvalue expressions in Wishart-Laguerre ensembles with or without fixed-trace, arXiv:1103.5617
- F. Mezzadri and N. J. Simm, Moments of the transmission eigenvalues, proper delay times and random matrix theory I, arXiv:1103.6203 (for several ensembles, also non-Gaussian ones)
- G. Akemann, Non-Hermitian extensions of Wishart random matrix ensembles, arXiv:1104.5203
- M. Masuku and J. P. Rodrigues, How universal is the Wigner distribution?, arXiv:1107.3681
- G. Shchedrin and V. Zelevinsky, Resonance width distribution for open quantum systems, arXiv:1112.4919 (non-hermitian Hamiltonian)
- I. Neri and F. L. Metz, Spectra of Sparse Non-Hermitian Random Matrices: An Analytical Solution, Phys. Rev. Lett. 109, 030602 (2012)
- S. Kumar, Random matrix ensembles: Wang-Landau algorithm for spectral densities, arXiv:1301.5179
- A. Lakshminarayan, On the number of real eigenvalues of products of random matrices and an application to quantum entanglement, arXiv:1301.7601 (products of matrices from GinOE)
- D. A. Ivanov and A. G. Abanov, Fisher-Hartwig expansion for Toeplitz determinants and the spectrum of a single-particle reduced density matrix for one-dimensional free fermions, arXiv:1306.5017
- U. Mordovina and C. Emary, Full counting statistics of random transition-rate matrices, arXiv:1310.4070
- F. D. Cunden and P. Vivo, Universal Covariance Formula for Linear Statistics on Random Matrices, Phys. Rev. Lett. 113, 070202 (2014)
-
P. Kos, M. Ljubotina, and T. Prosen, Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory, Phys. Rev. X 8, 021062 (2018)
-
W. Buijsman, V. Cheianov, and V. Gritsev, Random Matrix Ensemble for the Level Statistics of Many-Body Localization, Phys. Rev. Lett. 122, 180601 (2019) (continuous exponent β, extending the Wigner-Dyson ensembles)
-
A.-G. Penner, F. von Oppen, G. Zaránd, and M. R. Zirnbauer, Hilbert Space Geometry of Random Matrix Eigenstates, Phys. Rev. Lett. 126, 200604 (2021) (properties of quantum geometric tensor, describing the metric of the dependence of eigenstates on multiple parameters; GUE)
-
J. Li, T. Prosen, and A. Chan, Spectral Statistics of Non-Hermitian Matrices and Dissipative Quantum Chaos, Phys. Rev. Lett. 127, 170602 (2021) (discussion of spectral statistics and introduction of a new measure to characterize it for complex spectra, not discussion of models for open systems, the non-Hermitian matrices are most easily interpreted as effective Hamiltonians, though) P
-
G. Cipolloni and J. Kudler-Flam, Entanglement Entropy of Non-Hermitian Eigenstates and the Ginibre Ensemble, Phys. Rev. Lett. 130, 010401 (2023) (using biorthogonal formulation of quantum mechanics; also application to the non-Hermitian Sachdev-Ye-Kitaev model)
Density functional theory and its descendents
- N. A. Lima, M. F. Silva, L. N. Oliveira, and K. Capelle, Density-Functionals Not Based on the Electron Gas: Local-Density Approximation for a Luttinger Liquid, Phys. Rev. Lett. 90, 146402 (2003)
- J. Schirmer and A. Dreuw, Critique of the foundations of time-dependent density-functional theory, Phys. Rev. A 75, 022513 (2007) (claims that the Runge-Gross TDDFT is invalid); N. T. Maitra, K. Burke, and R. van Leeuwen, Comment on "Critique of the foundations of time-dependent density functional theory", arXiv:0710.0018
- C. A. Ullrich and I. V. Tokatly, Non-adiabatic electron dynamics in time-dependent density-functional theory, cond-mat/0602324 (comparison of two different approximations employed in TDDFT)
- C. A. Ullrich, Time-dependent density-functional theory beyond the adiabatic approximation: insights from a two-electron model system, cond-mat/0610341
- M. Di Ventra and R. D'Agosta, Stochastic Time-Dependent Current-Density-Functional Theory, Phys. Rev. Lett. 98, 226403 (2007)
- F. C. Alcaraz and K. Capelle, Density-functional formulations for quantum chains, cond-mat/0702080 (applied to quantum spin chains)
- Q.-M. Hu, K. Reuter, and M. Scheffler, Towards an exact treatment of exchange and correlation in materials: Application to the "CO adsorption puzzle" and other systems, cond-mat/0703354 (correction of exchange-correlation potential using quantum chemistry for clusters)
- K. M. Ho, J. Schmalian, and C. Z. Wang, Gutzwiller density functional theory for correlated electron systems, arXiv:0707.3459 (DFT for highly correlated systems)
- D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, Turbo charging time-dependent density-functional theory with Lanczos chains, arXiv:0801.1393 (superoperator formulation of TDDFT, claims to obtain the entire spectrum with numerical effort comparable to finding the ground state in static DFT)
- S. Sharma, J. K. Dewhurst, N. N. Lathiotakis, and E. K. U. Gross, Reduced Density Matrix Functional for Many-Electron Systems, arXiv:0801.3787
- S. Schenk, M. Dzierzawa, P. Schwab, and U. Eckern, Successes and failures of Bethe Ansatz Density Functional Theory, arXiv:0802.2490 (compares DFT/LDA with exact Bethe ansatz for one-dimensional systems)
- G. Vignale, On the "Causality Paradox" of Time-Dependent Density Functional Theory, arXiv:0803.2727 (resolves the paradox)
- R. D'Agosta and M. Di Ventra, Stochastic time-dependent current-density functional theory: a functional theory of open quantum systems, arXiv:0805.3734
- D. Vieira and K. Capelle, Comparison of three different self-interaction corrections for an exactly solvable model system, arXiv:0807.2816 (overall, prefering Perdew-Zunger SIC)
- P. Mori-Sanchez, A. J. Cohen, and W. Yang, The discontinuous nature of the exchange-correlation functional - critical for strongly correlated systems, arXiv:0809.5108
- I. Dabo, M. Cococcioni, and N. Marzari, Non-Koopmans Corrections in Density-functional Theory: Self-interaction Revisited, arXiv:0901.2637
- Z. Liu and K. Burke, Adiabatic Connection for Strictly-Correlated Electrons, arXiv:0907.2736 (DFT using a strongly correlated but immobile instead of a non-interacting electron gas as the reference; see also the following entry)
- P. Gori-Giorgi, M. Seidl, and G. Vignale, Density functional theory for strongly interacting electrons, arXiv:0908.0669, Phys. Rev. Lett. (similar motivation to previous entry)
- Y.-K. Yu, Derivation of the Density Functional via Effective Action, arXiv:0910.0670 (long paper)
- D. R. Bowler and T. Miyazaki, Calculations on millions of atoms with DFT: Linear scaling shows its potential, arXiv:0911.3584
- H. Eschrig, T>0 ensemble-state density functional theory via Legendre transform, Phys. Rev. B 82, 205120 (2010), see also Viewpoint: E. Prodan, Raising the temperature on density-functional theory, Physics 3, 99 (2010)
- X. Gao, J. Tao, G. Vignale, and I. V. Tokatly, Continuum Mechanics for Quantum Many-Body Systems: The Linear Response Regime, arXiv:1001.0616 (a closed equation for the current density, relies on the assumption of linear response)
- E. Luppi, H. Hübener, and V. Véniard, Second-Order Nonlinear Optics from First Principles, arXiv:1001.2472 (using TDDFT)
- V. U. Nazarov, G. Vignale, and Y.-C. Chang, On the relation between the scalar and tensor exchange-correlation kernels of the time-dependent density-functional theory, arXiv:1001.2795 (important for the connection between TDDFT and TDCDFT)
- A. Cangi, D. Lee, P. Elliott, and K. Burke, Leading Corrections to the Local Density Approximation, arXiv:1002.1351 (based on semiclassical approach, lead to substantial improvements over the LDA)
- H. Eschrig, T>0 ensemble state density functional theory revisited, arXiv:1002.4267
- K. Karlsson, F. Aryasetiawan, and O. Jepsen, Method for calculating the electronic structure of correlated materials from a truly first-principles LDA+U scheme, arXiv:1004.1321 (idea is to calculate U selfconsistently)
- D. Karlsson, A. Privitera, and C. Verdozzi, Time Dependent Density Functional Theory meets Dynamical Mean Field Theory: Real-Time Dynamics for the 3D Hubbard Model, arXiv:1004.2264
- J. Schirmer, Modifying the variational principle in the action integral functional derivation of time-dependent density functional theory, arXiv:1010.4223
- I. V. Tokatly, Time-dependent current density functional theory on a lattice, arXiv:1011.2715
- M. Ruggenthaler, F. Mackenroth, and D. Bauer, Time-dependent Kohn-Sham approach to quantum electrodynamics, arXiv:1011.4162
- M. Gatti, Design of effective kernels for spectroscopy and molecular transport: time-dependent current-density-functional theory, arXiv:1012.4502
- S. Pittalis, C. R. Proetto, A. Floris, A. Sanna, C. Bersier, K. Burke, and E. K. U. Gross, Exact Conditions in Finite-Temperature Density-Functional Theory, Phys. Rev. Lett. 107, 163001 (2011)
- E. M. Stoudenmire, L. O. Wagner, S. R. White, and K. Burke, Exact density functional theory with the density matrix renormalization group, arXiv:1107.2394
- P. E. Bloechl, C. F. J. Walther, and T. Pruschke, Is reduced-density-matrix functional theory a suitable vehicle to import explicit correlations into density-functional calculations?, arXiv:1107.4780
- J. D. Ramsden and R. W. Godby, Exact Density-Functional Potentials for Time-Dependent Quasiparticles, Phys. Rev. Lett. 109, 036402 (2012)
- F. Malet and P. Gori-Giorgi, Strong Correlation in Kohn-Sham Density Functional Theory, Phys. Rev. Lett. 109, 246402 (2012) (based on the strong-coupling limit of the exchange-correlation functional)
- J. Schirmer, Runge-Gross action-integral functional re-examined, arXiv:1203.5052 (states that TDDFT cannot be based on an action principle and presents a straightforward argument for this)
- I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, Consistent LDA'+DMFT - an unambiguous way to avoid double counting problem: NiO test, arXiv:1204.2361
- G. Buttazzo, L. De Pascale, and P. Gori-Giorgi, Optimal-transport formulation of electronic density-functional theory, arXiv:1205.4514 (link between DFT in the strong-interaction limit and the optimal-transport problem established in math and economics)
- P. Schmitteckert, M. Dzierzawa, and P. Schwab, Exact time-dependent density functional theory for impurity models, arXiv:1205.4854 (based on DMRG, nonequilibrium situation of impurity coupled to one-dimensional leads under a bias voltage, long-range exchange-correlation functional is switched on instantaneously with the voltage, leading to difficulties in pratical application of TDDFT)
- F. Malet and P. Gori-Giorgi, Strong correlation in Kohn-Sham density functional theory, arXiv:1207.2775
- R. D'Agosta and M. Di Ventra, Some remarks on the foundations of stochastic time-dependent current-density functional theory for open quantum systems, arXiv:1209.5529
- E. I. Tellgren, S. Kvaal, E. Sagvolden, U. Ekström, A. M. Teale, and T. Helgaker, The choice of basic variables in current-density functional theory, arXiv:1210.2291
- V. U. Nazarov, G. Vignale, and Y.-C. Chang, Non-adiabatic time-dependent density functional theory of the impurity resistivity of metals, arXiv:1302.1660 (resistivity of metals with impurities from viscosity of electron liquid)
- P. Schmitteckert, The dark side of DFT based transport calculations, arXiv:1302.3170 (for a six-site ring: standard DFG approach gives zero conductance even using the exact exchange-correlation functional)
- A. Cangi, E. K. U. Gross, and K. Burke, Potential functionals versus density functionals, arXiv:1307.4235
- I. Leonov, V. I. Anisimov, and D. Vollhardt, First-Principles Calculation of Atomic Forces and Structural Distortions in Strongly Correlated Materials, Phys. Rev. Lett. 112, 146401 (2014) (DFT+DMFT, linear response)
- F. G. Eich, M. Di Ventra, and G. Vignale, Density Functional Theory of Thermoelectric Phenomena, Phys. Rev. Lett. 112, 196401 (2014) (employing a local temperature density coupled to the energy-density operator) P
- M. Mendoza, S. Succi, and H. J. Herrmann, Kinetic Formulation of the Kohn-Sham Equations for ab initio Electronic Structure Calculations, Phys. Rev. Lett. 113, 096402 (2014) (Boltzmann-type reformulation of Kohn-Sham equations)
- C. Pellegrini, J. Flick, I. V. Tokatly, H. Appel, and A. Rubio, Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory, Phys. Rev. Lett. 115, 093001 (2015)
- C. Verdi and F. Giustino, Fröhlich Electron-Phonon Vertex from First Principles, Phys. Rev. Lett. 115, 176401 (2015)
- J. Erhard, P. Bleiziffer, and A. Görling, Power Series Approximation for the Correlation Kernel Leading to Kohn-Sham Methods Combining Accuracy, Computational Efficiency, and General Applicability, Phys. Rev. Lett. 117, 143002 (2016) (see viewpoint)
-
W. H. Sio, C. Verdi, S. Poncé, and F. Giustino, Ab initio theory of polarons: Formalism and applications, Phys. Rev. B 99, 235139 (2019); Polarons from First Principles, without Supercells, Phys. Rev. Lett. 122, 246403 (2019) (hybrid DFT + model approach, see viewpoint)
-
V. U. Nazarov, Many-Body Quantum Dynamics by the Reduced Density Matrix Based on Time-Dependent Density-Functional Theory, Phys. Rev. Lett. 123, 095302 (2019)
-
A. Sanna, C. Pellegrini, and E. K. U. Gross, Combining Eliashberg Theory with Density Functional Theory for the Accurate Prediction of Superconducting Transition Temperatures and Gap Functions, Phys. Rev. Lett. 125, 057001 (2020)
-
D. Jacob, G. Stefanucci, and S. Kurth, Mott Metal-Insulator Transition from Steady-State Density Functional Theory, Phys. Rev. Lett. 125, 216401 (2020) (spectral function operationally defined through an STM setup, Mott-Hubbard transition captured by method)
-
T. Müller, S. Sharma, E. K. U. Gross, and J. K. Dewhurst, Extending Solid-State Calculations to Ultra-Long-Range Length Scales, Phys. Rev. Lett. 125, 256402 (2020)
-
J. Sun, C.-W. Lee, A. Kononov, A. Schleife, and C. A. Ullrich, Real-Time Exciton Dynamics with Time-Dependent Density-Functional Theory, Phys. Rev. Lett. 127, 077401 (2021)
-
E. Perfetto, Y. Pavlyukh, and G. Stefanucci, Real-Time GW: Toward an Ab Initio Description of the Ultrafast Carrier and Exciton Dynamics in Two-Dimensional Materials, Phys. Rev. Lett. 128, 016801 (2022)
-
T. Gould, D. P. Kooi, P. Gori-Giorgi, and S. Pittalis, Electronic Excited States in Extreme Limits via Ensemble Density Functionals, Phys. Rev. Lett. 130, 106401 (2023) (ensemble DFT method that can describe excited states, gets high-density limit right, at low density show that standard DFT can be used, applied to H2)
-
J. P. F. LeBlanc, K. Chen, K. Haule, N. V. Prokof'ev, and I. S. Tupitsyn, Dynamic Response of an Electron Gas: Towards the Exact Exchange-Correlation Kernel, Phys. Rev. Lett. 129, 246401 (2022) (important for TDDFT)
Methods for quantum mechanics and atomic and molecular physics
- R. Schnalle and J. Schnack, Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries, arXiv:1003.1909 (the progress is in making use of both real-space and spin-space symmetries); J. Schnack and J. Ummethum, Advanced quantum methods for the largest magnetic molecules, arXiv:1212.0414
- V. Galitski, Quantum-to-Classical Correspondence and Hubbard-Stratonovich Dynamical Systems, a Lie-Algebraic Approach, arXiv:1012.2873
- W. A. Harrison, Matching Conditions in Effective-Mass Theory, arXiv:1108.1224 (how not to match wavefunctions between regions with different effective mass)
- S. Ganeshan, E. Barnes, and S. Das Sarma, Exact Classification of Landau-Majorana-Stückelberg-Zener Resonances by Floquet Determinants, Phys. Rev. Lett. 111, 130405 (2013) (periodically driven two-level system)
Monte Carlo simulations
- R. H. Swendsen and J.-S. Wang, Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett. 58, 86 (1987) (introducing cluster updates for the Potts model)
- A. M. Ferrenberg and R. H. Swendsen, New Monte Carlo technique for studying phase transitions, Phys. Rev. Lett. 61, 2635 (1988) (how to obtain information on the entire scaling regime close to a second order phase transition from a single simulation, for classical models)
- U. Wolff, Collective Monte Carlo Updating for Spin Systems, Phys. Rev. Lett. 62, 361 (1989) (including XY and Heisenberg models); Collective Monte Carlo updating in a high precision study of the x-y model, Nucl. Phys. B 322, 759 (1989)
- B. A. Berg and T. Neuhaus, Multicanonical ensemble: A new approach to simulate first-order phase transitions , Phys. Rev. Lett. 68, 9 (1992) (the seminal paper on multicanonical simulations, has a few typos)
- J. F. Corney and P. D. Drummond, Gaussian Quantum Monte Carlo Methods for Fermions and Bosons, Phys. Rev. Lett. 93, 260401 (2004), quant-ph/0404052; P. D. Drummond and J. F. Corney, Quantum phase-space simulations of fermions and bosons, Computer Phys. Commun. 169, 412 (2005), cond-mat/0506040 (QMC for fermions apparently avoiding the sign problem)
- M. Troyer and U.-J. Wiese, Computational Complexity and Fundamental Limitations to Fermionic Quantum Monte Carlo Simulations, Phys. Rev. Lett. 94, 170201 (2005) (shows that the sign problem is NP hard)
- A. W. Sandvik, Ground state projection of quantum spin systems in the valence bond basis, cond-mat/0509558 (QMC in a basis of valence bonds)
- B. Kyung, G. Kotliar, and A.-M. S. Tremblay, Quantum Monte Carlo Study of Strongly Correlated Electrons: Cellular Dynamical Mean-Field Theory, cond-mat/0601271 (a dynamical cluster/Monte Carlo hybrid method)
- W. Nadler and U. H. E. Hansmann, On Dynamics and Optimal Number of Replicas in Parallel Tempering Simulations, arXiv:0709.3289
- Y. Meurice, How to control nonlinear effects in Binder cumulants, arXiv:0712.1190
- E. Bittner, A. Nussbaumer, and W. Janke, Make life simple: unleash the full power of the parallel tempering algorithm, arXiv:0809.0571
- U. Wolff, Simulating the All-Order Strong Coupling Expansion I: Ising Model Demo, arXiv:0808.3934
- E. Farhi, J. Goldstone, D. Gosset, and H. B. Meyer, A Quantum Monte Carlo Method at Fixed Energy, arXiv:0912.4271
- M. Weigel and W. Janke, Error estimation and reduction with cross correlations, arXiv:1002.4517
- E. Gull, D. R. Reichman, and A. J. Millis, Bold Line Diagrammatic Monte Carlo Method: General formulation and application to expansion around the Non-Crossing Approximation, arXiv:1004.0724
- B. M. Rubenstein, J. E. Gubernatis, and J. D. Doll, Comparative Monte Carlo Efficiency by Monte Carlo Analysis, arXiv:1004.0931 (for finding the first subdominant eigenvalue of a [e.g., transition-rate] matrix)
- J. Machta, Population Annealing: An Effective Monte Carlo Method for Rough Free Energy Landscapes, arXiv:1006.0252
- J. P. Nilmeier, G. E. Crooks, D. D. L. Minh, and J. D. Chodera, Nonequilibrium candidate Monte Carlo: A new tool for efficient equilibrium simulation, arXiv:1105.2278
- H. Shinaoka, Extended loop algorithm for pyrochlore Heisenberg spin models with spin-ice type degeneracy: application to spin-glass transition in antiferromagnets coupled to local lattice distortions, arXiv:1107.5103
- E. Bittner and W. Janke, Parallel-tempering cluster algorithm for computer simulations of critical phenomena, arXiv:1107.5640; W. Janke and E. Bittner, Replica-Exchange Cluster Algorithm, arXiv:1108.0354
- N. Parragh, A. Toschi, K. Held, and G. Sangiovanni, Conserved quantities of SU(2)-invariant interactions for correlated fermions and the advantages for quantum Monte Carlo simulations, arXiv:1209.0915
- D. Frenkel, Simulations: the dark side, arXiv:1211.4440, International School of Physics "Enrico Fermi" Course CLXXXIV (possible pitfalls in Monte Carlo and molecular dynamics simulations)
- I. Mandre and J. Kalda, Efficient method of finding scaling exponents from finite-size Monte-Carlo simulations, arXiv:1303.0294
- N. S. Blunt, T. W. Rogers, J. S. Spencer, and W. M. C. Foulkes, Density matrix quantum Monte Carlo, arXiv:1303.5007
- W. Witczak-Krempa, E. S. Sørensen, and S. Sachdev, The dynamics of quantum criticality revealed by quantum Monte Carlo and holography, Nature Phys. doi:10.1038/nphys2913 (2014) (focus on dynamics and continuation of imaginary-time results to real time, using new ideas from gauge/gravity duality)
- L. Wang, Y.-H. Liu, M. Iazzi, M. Troyer, and G. Harcos, Split Orthogonal Group: A Guiding Principle for Sign-Problem-Free Fermionic Simulations, Phys. Rev. Lett. 115, 250601 (2015)
- G. Cohen, E. Gull, D. R. Reichman, and A. J. Millis, Taming the Dynamical Sign Problem in Real-Time Evolution of Quantum Many-Body Problems, Phys. Rev. Lett. 115, 266802 (2015) (by reusing previously obtained information)
- Z. C. Wei, C. Wu, Y. Li, S. Zhang, and T. Xiang, Majorana Positivity and the Fermion Sign Problem of Quantum Monte Carlo Simulations, Phys. Rev. Lett. 116, 250601 (2016) (unified understanding of all lattice-fermion models free of the sign problem)
- F. Alet, K. Damle, and S. Pujari, Sign-Problem-Free Monte Carlo Simulation of Certain Frustrated Quantum Magnets, Phys. Rev. Lett. 117, 197203 (2016) (employing cluster eigenstates)
- Z.-X. Li, Y.-F. Jiang, and H. Yao, Majorana-Time-Reversal Symmetries: A Fundamental Principle for Sign-Problem-Free Quantum Monte Carlo Simulations, Phys. Rev. Lett. 117, 267002 (2016) (could be applied to interacting topological superconductors)
-
D. Lentrodt and J. Evers, Ab Initio Few-Mode Theory for Quantum Potential Scattering Problems, Phys. Rev. X 10, 011008 (2020) (includes decomposition of space into a system with few effective modes and a bath with the help of projection operators; bosonic/photonic model)
-
C. Lenihan, A. J. Kim, F. Šimkovic, IV, and E. Kozik, Evaluating Second-Order Phase Transitions with Diagrammatic Monte Carlo: Néel Transition in the Doped Three-Dimensional Hubbard Model, Phys. Rev. Lett. 129, 107202 (2022)
Other analytical methods
- P. B. Allen, T. Berlijn, D. A. Casavant, and J. M. Soler, Recovering hidden Bloch character: Unfolding Electrons, Phonons, and Slabs, arXiv:1212.5702 (unfolding)
-
R. Rossi, T. Ohgoe, K. Van Houcke, and F. Werner, Resummation of Diagrammatic Series with Zero Convergence Radius for Strongly Correlated Fermions, Phys. Rev. Lett. 121, 130405 (2018) (Borel summation)
Other numerical methods
- M. Capone, L. dé Medici, and A. Georges, Solving Dynamical Mean-Field Theory at very low temperature using Lanczos Exact Diagonalization, cond-mat/0512484
- J. Lou and A. W. Sandvik, Variational ground states of 2D antiferromagnets in the valence bond basis, cond-mat/0605034
- A. I. Toth, C. P. Moca, O. Legeza, and G. Zarand, Density matrix numerical renormalization group for non-Abelian symmetries, arXiv:0802.4332
- T. Barthel, U. Schollwöck, and S. R. White, Spectral functions in one-dimensional quantum systems at T>0, arXiv:0901.2342 (employing time-dependent DMRG and time-series prediction)
- S. Cauley, M. Luisier, V. Balakrishnan, G. Klimeck, and C.-K. Koh, Distributed NEGF Algorithms for the Simulation of Nanoelectronic Devices with Scattering, arXiv:1103.5782 (mainly interesting in efficient implementation)
- R. Ng, P. Deuar, and E. Sorensen, Simulation of the Dynamics of Many-Body Quantum Spin Systems Using Phase-Space Techniques, arXiv:1307.3786
- Z. Landau, U. Vazirani, and T. Vidick, A polynomial time algorithm for the ground state of one-dimensional gapped local Hamiltonians, Nature Phys. 11, 566 (2015) (show that the algorithm always finds the true ground state)
-
I. Glasser, N. Pancotti, M. August, I. D. Rodriguez, and J. I. Cirac, Neural-Network Quantum States, String-Bond States, and Chiral Topological States, Phys. Rev. X 8, 011006 (2018) (bridging tensor-product states and neural networks)
-
E. Chertkov and B. K. Clark, Computational Inverse Method for Constructing Spaces of Quantum Models from Wave Functions, Phys. Rev. X 8, 031029 (2018) (inverse method for constructing Hamiltonians with given eigenstates and, in particular, ground states; only allow Hamiltonians from a target space, not all possible ones, so that the method may fail; contains several examples and makes contact to important known models)
-
S. Rychkov, Conformal bootstrap and the λ-point specific heat experimental anomaly, DOI: 10.36471/JCCM_January_2020_02 (journal club article, contains short intro to bookstrap method applied to calculating critical exponents)
-
M. P. Zaletel and F. Pollmann, Isometric Tensor Network States in Two Dimensions, Phys. Rev. Lett. 124, 037201 (2020) (idea to improve efficiency of tensor network calculations, demonstrated for 2D transverse-field Ising model)
Quantum phase transitions
- F. Fazileh, R. J. Gooding, W. A. Atkinson, and D. C. Johnston, The role of strong electronic correlations in the metal-to-insulator transition in disordered LiAlyTi2-yO4, Phys. Rev. Lett. 96, 046410 (2006)
- K.-S. Kim, Role of disorder in the Mott-Hubbard transition, cond-mat/0601326
- S. Sachdev and X. Yin, Deconfined criticality and supersymmetry, arXiv:0808.0191 (exhibit parallels between deconfined criticality in antiferromagnets and supersymmetric gauge theories)
- T. Vojta, C. Kotabage, and J. A. Hoyos, Infinite-randomness quantum critical points induced by dissipation, Phys. Rev. B 79, 024401 (2009) (quantum phase transition in a spin chain with disorder and dissipation, find universality in the sense that details of the disorder do not matter for the low-energy effective theory); see also: G. Rafael, The universal behavior of a disordered system, Physics 2, 1 (2009) (Viewpoint)
- S. Kirchner, Spin Path Integrals, Berry phase, and the Quantum Phase Transition in the sub-Ohmic Spin-boson Model, arXiv:1007.4558 (contains an extended pedagogical introduction)
- J.-H. She, J. Zaanen, A. R. Bishop, and A. V. Balatsky, Stability of Quantum Critical Points in the Presence of Competing Orders, arXiv:1009.1888 (long paper, for example discussion how competing orders drive a transition to first order)
- P. Wölfle and E. Abrahams, Quasiparticles beyond the Fermi liquid and heavy fermion criticality, arXiv:1102.3391
- S. Rachel, N. Laflorencie, H. F. Song, and K. Le Hur, Detecting Quantum Critical Points using Bipartite Fluctuations, arXiv:1110.0743
- S. V. Syzranov and J. Schmalian, Conductivity close to antiferromagnetic criticality, arXiv:1207.3444 (temperature and frequency dependence of conductivity in the vicinity of an antiferromagnetic quantum critical point, diagrammatic method, might be applicable to the pnictides)
- C. Karrasch and D. Schuricht, Dynamical phase transitions after quenches in non-integrable models, arXiv:1302.3893
- H. Pfau, S. Hartmann, U. Stockert, P. Sun, S. Lausberg, M. Brando, S. Friedemann, C. Krellner, C. Geibel, S. Wirth, S. Kirchner, E. Abrahams, Q. Si, and F. Steglich, Thermal and Electrical Transport across a Magnetic Quantum Critical Point, arXiv:1307.1066
- R. Vosk and E. Altman, Dynamical quantum phase transitions in random spin chains, arXiv:1307.3256
- Y. Huh, P. Strack, and S. Sachdev, Vector boson excitations near deconfined quantum critical points, arXiv:1307.6860
- T. Furukawa, K. Miyagawa, H. Taniguchi, R. Kato, and K. Kanoda, Quantum criticality of Mott transition in organic materials, Nature Phys. (2015), doi:10.1038/nphys3235 (experiment, universal scaling in three different organic crystals)
Highly correlated systems
- P. B. Wiegmann, Exact solution of the s-d exchange model (Kondo problem), J. Phys. C 14, 1463 (1981) (a relatively detailed paper using the Bethe ansatz)
- W. Metzner, Linked-cluster expansion around the atomic limit of the Hubbard model, Phys. Rev. B 43, 8549 (1990)
- M. Freedman, C. Nayak, K. Shtengel, K. Walker, and Z. Wang, A class of P,T-invariant topological phases of interacting electrons, Annals of Physics 310, 428 (2004) (contains review on relation between quantum field theory and topology)
- M. Garst, P. Wölfle, L. Borda, J. von Delft, and L. I. Glazman, Energy-resolved inelastic electron scattering off a magnetic impurity, Phys. Rev. B 72, 205125 (2005)
- A. H. Castro Neto, P. Pujol, and E. Fradkin, Ice: a strongly correlated proton system, cond-mat/0511092
- S. Furukawa, G. Misguich, and M. Oshikawa, Systematic Derivation of Order Parameters through Reduced Density Matrices, Phys. Rev. Lett. 96, 047211 (2006)
- T. D. Stanescu, P. W. Phillips, and T.-P. Choy, Much Ado about Zeros: The Luttinger Surface and Mottness, cond-mat/0602280 (provide a straightforward proof that the single-particle Green function at the Fermi energy has a surface of zeroes at the non-interaction Fermi surface for a Mott insulator and draw interesting conclusions)
- D. Roosen, M. R. Wegewijs, and W. Hofstetter, Non-equilibrium dynamics of anisotropic large spins in the Kondo regime: Time-dependent numerical renormalization group analysis, arXiv:0705.3654 (one reservoir, not transport, time-dependent NRG)
- S. Glocke, A. Klümper, and J. Sirker, The Half-Filled One-Dimensional Extended Hubbard Model: Phase diagram and Thermodynamics, arXiv:0707.1015 (DMRG)
- G. Bergmann and L. Zhang, A Compact Approximate Solution to the Kondo Problem, arXiv:0707.1363
- K. A. Matveev, A. Furusaki, and L. I. Glazman, Bosonization of strongly interacting electrons, arXiv:0708.0212 (in one dimension)
- T. Barthel and U. Schollwöck, Dephasing and the steady state in quantum many-particle systems, arXiv:0711.4896
- T.-P. Choy, R. G. Leigh, P. Phillips, and P. D. Powell, Exact Integration of the High Energy Scale in Doped Mott Insulators, Phys. Rev. B 77, 014512 (2008)
- P. Strack, R. Gersch, and W. Metzner, Renormalization group flow for fermionic superfluids at zero temperature, arXiv:0804.3994
- F. Mancini and F. P. Mancini, One-dimensional extended Hubbard model in the atomic limit, arXiv:0804.4419 ("extended" here means with non-local interactions; extensive work containing many exact results obtained in the Hubbard-operator approach, also contains review of previous work and other approaches)
- D. Baeriswyl, D. Eichenberger, and M. Menteshashvili, Variational ground states of the two-dimensional Hubbard model, arXiv:0907.1593 (also compared to results from other approaches)
- G. S. Uhrig, Interaction Quenches of Fermi Gases, arXiv:0909.1553 (the jump in the momentum distribution vanishes smoothly and stays at the same place after interactions are switched on)
- F. G. Eich, S. Kurth, C. R. Proetto, S. Sharma, and E. K. U. Gross, Non-collinear spin-spiral phase for the uniform electron gas within Reduced-Density-Matrix-Functional Theory, arXiv:0910.0534 (going beyond Overhauser's seminal work, which was at the Hartree-Fock level)
- J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, Single-atom-resolved fluorescence imaging of an atomic Mott insulator, Nature 467, 68 (2010)
- J. Figgins and D. K. Morr, Differential Conductance and Quantum Interference in Kondo Systems, arXiv:1001.4530
- R. Wortis and W. A. Atkinson, Origin of the Zero Bias Anomaly in the Anderson-Hubbard Model, arXiv:1004.3309 (namely the hybridization between the lower Hubbard orbital at one site and the upper Hubbard orbital at a neighboring site)
- D. F. Mross and T. Senthil, Charge Friedel oscillations in a Mott insulator, arXiv:1007.2413 (due to a ghost Fermi surface of emergent neutral fermions)
- A. Taraphder, S. Koley, N. S. Vidhyadhiraja, and M. S. Laad, Does Charge Density Wave Order Arise From A Preformed Excitonic Liquid in 2H-TaSe2, arXiv:1008.0942 (claim: yes) P
- H. Yao and S. A. Kivelson, Weak Mott Insulators, arXiv:1008.1065 (a new class of interaction-induced insulators)
- S. Okamoto, D. Sénéchal, M. Civelli, and A.-M. S. Tremblay, Dynamical Nematicity from Mott physics, arXiv:1008.5118 (why very little structural anisotropy can lead to large transport anisotropy)
- M. Berciu and H. Fehske, Momentum average approximation for models with boson-modulated hopping: Role of closed loops in the dynamical generation of a finite quasiparticle mass, arXiv:1010.4250
- A. Robertson, V. M. Galitski, and G. Refael, Dynamic Stimulation of Quantum Coherence in Lattice Bosons, arXiv:1011.2208 (periodic driving, or more generally a non-equilibrium situation, at finite temperature can lead to a phase diagram like found at zero temperature)
- A. V. Andreev, S. A. Kivelson, and B. Spivak, Hydrodynamic description of transport in strongly correlated electron systems, arXiv:1011.3068
- L. de' Medici, Hund's coupling and its key role in tuning multiorbital correlations, Phys. Rev. B 83, 205112 (2011) (Hund coupling can reduce the effect of strong electronic correlations and can also partially decouple the bands, paving the way for orbital-selective Mott transitions)
- P. W. Anderson, The ground state of the Bose-Hubbard model is a supersolid, arXiv:1102.4797 (... but cannot be a perfect Mott insulator)
- S. M. Giampaolo, G. Gualdi, A. Monras, F. Illuminati, Theory of classical and quantum frustration in quantum many-body systems, arXiv:1103.0022 (introduce a general measure of frustration in quantum systems; their definition of frustration in quantum spin systems is non-standard, though) P
- G. Rohringer, A. Toschi, A. A. Katanin, and K. Held, Phase diagram and criticality of the three dimensional Hubbard model, arXiv:1104.1919 (dynamical vertex approximation)
- C. Aron, G. Kotliar, and C. Weber, Dimensional Crossover Driven by Electric Field, arXiv:1105.5387 (at strong field, the non-equilibrium Hubbard model behaves like a lower-dimensional Hubbard model in equilibrium)
- L. de' Medici, J. Mravlje, and A. Georges, Janus-faced influence of the Hund's rule coupling in strongly correlated materials, arXiv:1106.0815 (Hund's rule coupling in multi-band systems)
- A. Amaricci, C. Weber, M. Capone, and G. Kotliar, Non-equilibrium dynamics of the driven Hubbard model, arXiv:1106.3483 (approach to stationary state in a constant and uniform electric field)
- M. Eckstein and P. Werner, Damping of Bloch oscillations in the Hubbard model, arXiv:1107.3830 (Hubbard model in uniform electric field, non-equilibrium DMFT for not too large interaction)
- E. Assmann, S. Chiesa, G. G. Batrouni, H. G. Evertz, and R. T. Scalettar, Superconductivity and charge order of confined Fermi systems, arXiv:1108.6303 (2D attractive Hubbard model, interplay of superconductivity and CDW; QMC)
- U. Schneider, L. Hackermüller, J. P. Ronzheimer, S. Will, S. Braun, T. Best, I. Bloch, E. Demler, S. Mandt, D. Rasch, and A. Rosch, Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms, Nature Physics (2012), doi:10.1038/nphys2205
- S. Kettemann, E. R. Mucciolo, I. Varga, and K. Slevin, Kondo-Anderson transitions, Phys. Rev. B 85, 115112 (2012) (diluted impurities in a disordered Fermi liquid close to the metal-insulator transition)
- J. Schlappa, K. Wohlfeld, K. J. Zhou, M. Mourigal, M. W. Haverkort, V. N. Strocov, L. Hozoi, C. Monney, S. Nishimoto, S. Singh, A. Revcolevschi, J.-S. Caux, L. Patthey, H. M. Rønnow, J. van den Brink, and T. Schmitt, Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3, Nature doi:10.1038/nature10974 (2012) (RIXS experiment and theory), see also News and Views
- R. Comin, G. Levy, B. Ludbrook, Z.-H. Zhu, C. N. Veenstra, J. A. Rosen, Y. Singh, P. Gegenwart, D. Stricker, J. N. Hancock, D. van der Marel, I. S. Elfimov, and A. Damascelli, Na2IrO3 as a Novel Relativistic Mott Insulator with a 340-meV Gap, Phys. Rev. Lett. 109, 266406 (2012) (an iridate)
- V. Zlatic and J. K. Freericks, Strongly Enhanced Thermal Transport in a Lightly Doped Mott Insulator at Low Temperature, Phys. Rev. Lett. 109, 266601 (2012)
- E. Abrahams and P. Wölfle, Critical quasiparticle theory: Scaling, thermodynamic and transport properties, arXiv:1201.0573
- M. Hohenadler, S. Wessel, M. Daghofer, and F. F. Assaad, Interaction-range effects for fermions in one dimension, arXiv:1201.3626
- N. Karchev, Quantum critical behavior in three-dimensional one-band Hubbard model at half filling, arXiv:1202.4627 (bosonization/fermionization)
- C. Aron, Dielectric Breakdown of a Mott Insulator, arXiv:1203.3540 (Mott insulator driven out of equilibrium by an electric field)
- W. Witczak-Krempa, P. Ghaemi, T. Senthil, and Y. B. Kim, Universal transport near a quantum critical Mott transition in two dimensions, arXiv:1206.3309
- L. Merker, A. Weichselbaum, and T. A. Costi, Full density matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model, arXiv:1207.2631
- K. B. Dave, P. W. Phillips, and C. L. Kane, Absence of Luttinger's Theorem, arXiv:1207.4201 (... in strongly correlated electron systems)
- A. V. Chubukov and D. L. Maslov, First-Matsubara-frequency rule in a Fermi liquid. Part I: Fermionic self-energy, arXiv:1208.3483; D. L. Maslov and A. V. Chubukov, First-Matsubara-frequency rule in a Fermi liquid. Part II: Optical conductivity and comparison to experiment, arXiv:1208.3485
- K.-U. Giering and M. Salmhofer, Self-energy flows in the two-dimensional repulsive Hubbard model, arXiv:1208.6131 (fRG)
- J.-M. Carter and H.-Y. Kee, Microscopic theory of magnetism in Sr3Ir2O7, arXiv:1211.7067
- P. Chandra, P. Coleman, and R. Flint, Hastatic order in the heavy-fermion compound URu2Si2, Nature 493, 621 (2013) (propose that symmetry under the square of time reversal is spontaneously broken in this compound)
- M. Höppner, S. Seiro, A. Chikina, A. Fedorov, M. Güttler, S. Danzenbächer, A. Generalov, K. Kummer, S. Patil, S. L. Molodtsov, Y. Kucherenko, C. Geibel, V. N. Strocov, M. Shi, M. Radovic, T. Schmitt, C. Laubschat, and D. V. Vyalikh, Interplay of Dirac fermions and heavy quasiparticles in solids, Nature Commun. 4, 1646 (2013) (EuRh2Si2)
- P. W. Phillips, B. W. Langley, and J. A. Hutasoit, Un-Fermi Liquids: Unparticles in Strongly Correlated Electron Matter, arXiv:1305.0006 (exploring the unparticle concept introduced by Georgi; an unparticle field is a scale-invariant matter field, use QFT-AdS mapping, application to cuprates)
- S. Bulut, W. A. Atkinson, and A. P. Kampf, Spatially Modulated Electronic Nematicity in the Three-Band Model of Cuprate Superconductors, arXiv:1305.3301
- B. Bauer and C. Nayak, Area laws in a many-body localized state and its implications for topological order, arXiv:1306.5753 (Anderson localization in interacting systems); B. Swingle, A simple model of many-body localization, arXiv:1307.0507
- F. Hofmann, M. Eckstein, and M. Potthoff, Non-equilibrium self-energy-functional theory, arXiv:1306.6340
- S. P. Chockalingam, C. J. Arguello, E. P. Rosenthal, L. Zhao, C. Gutiérrez, J. H. Kang, W. C. Chung, R. M. Fernandes, S. Jia, A. J. Millis, R. J. Cava, and A. N. Pasupathy, Visualizing the Charge Density Wave Transition in 2H-NbSe2 in Real Space, arXiv:1307.2282 (STM and theory; modulation first seen in vicinity of surface defects at high temperatures, in fact look similar to Friedel oscillations)
- H. Watanabe and A. Vishwanath, Criterion for stability of Goldstone Modes and Fermi Liquid behavior in a metal with broken symmetry, arXiv:1404.3728 (criterion for when Goldstone modes have a contact interaction with electronic quasiparticles as opposed to a gradient interaction, i.e., for when Adler's theorem fails; contact interaction leads to non-Fermi-liquid behavior), also comment in Journal Club: J. Schmalian, On Non-Fermi liquid phases due to Goldstone boson exchange, JCCM_SEP_2014_03
- H. C. Xu, Y. Zhang, M. Xu, R. Peng, X. P. Shen, V. N. Strocov, M. Shi, M. Kobayashi, T. Schmitt, B. P. Xie, and D. L. Feng, Direct Observation of the Bandwidth Control Mott Transition in the NiS2-xSex Multiband System, Phys. Rev. Lett. 112, 087603 (2014) (X-ray ARPES, evolution of quasiparticle weight and incoherent spectrum with Se concentration)
- K. Limtragool and P. W. Phillips, Divergent Thermopower without a Quantum Phase Transition, Phys. Rev. Lett. 113, 086405 (2014)
- J. A. Kjäll, J. H. Bardarson, and F. Pollmann, Many-Body Localization in a Disordered Quantum Ising Chain, Phys. Rev. Lett. 113, 107204 (2014)
- M. Serbyn, M. Knap, S. Gopalakrishnan, Z. Papic, N. Y. Yao, C. R. Laumann, D. A. Abanin, M. D. Lukin, and E. A. Demler, Interferometric Probes of Many-Body Localization, Phys. Rev. Lett. 113, 147204 (2014) (theoretical proposal for disordered spin systems using ESR)
- V. Bisogni, K. Wohlfeld, S. Nishimoto, C. Monney, J. Trinckauf, K. Zhou, R. Kraus, K. Koepernik, C. Sekar, V. Strocov, B. Büchner, T. Schmitt, J. van den Brink, and J. Geck, Orbital Control of Effective Dimensionality: From Spin-Orbital Fractionalization to Confinement in the Anisotropic Ladder System CaCu2O3, Phys. Rev. Lett. 114, 096402 (2015)
- E. Kozik, M. Ferrero, and A. Georges, Nonexistence of the Luttinger-Ward Functional and Misleading Convergence of Skeleton Diagrammatic Series for Hubbard-Like Models, Phys. Rev. Lett. 114, 156402 (2015)
- M. Friesdorf, A. H. Werner, W. Brown, V. B. Scholz, and J. Eisert, Many-Body Localization Implies that Eigenvectors are Matrix-Product States, Phys. Rev. Lett. 114, 170505 (2015) (link dynamical and entanglement properties; clear discussion)
- Y. You, X.-X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, and T. F. Heinz, Observation of biexcitons in monolayer WSe2, Nature Phys. 11, 477 (2015) (two-electron-two-hole "molecular" state)
- S. Bera, H. Schomerus, F. Heidrich-Meisner, and J. H. Bardarson, Many-Body Localization Characterized from a One-Particle Perspective, Phys. Rev. Lett. 115, 046603 (2015)
- S. R. White, D. J. Scalapino, and S. A. Kivelson, One Hole in the Two-Leg t-J Ladder and Adiabatic Continuity to the Noninteracting Limit, Phys. Rev. Lett. 115, 056401 (2015) (DMRG; results can be understood based on quasiparticle picture)
- M. Naka, H. Seo, and Y. Motome, Theory of Valence Transition in BiNiO3, Phys. Rev. Lett. 116, 056402 (2016) (theoretical work explaining huge negative thermal expansion coefficient in terms of charge transfer between Bi and Ni)
- H. Yamase, A. Eberlein, and W. Metzner, Coexistence of Incommensurate Magnetism and Superconductivity in the Two-Dimensional Hubbard Model, Phys. Rev. Lett. 116, 096402 (2016)
- M. Zhu, J. Peng, T. Zou, K. Prokes, S. D. Mahanti, T. Hong, Z. Q. Mao, G. Q. Liu, and X. Ke, Colossal Magnetoresistance in a Mott Insulator via Magnetic Field-Driven Insulator-Metal Transition , Phys. Rev. Lett. 116, 216401 (2016) (Ti-doped Ca3Ru2O7, transition is coupled to lattice change)
- Y. Ding et al., Pressure-Induced Confined Metal from the Mott Insulator Sr3Ir2O7, Phys. Rev. Lett. 116, 216402 (2016) (becomes a 2D metal at high pressure)
- N. Y. Yao, C. R. Laumann, J. I. Cirac, M. D. Lukin, and J. E. Moore, Quasi-Many-Body Localization in Translation-Invariant Systems, Phys. Rev. Lett. 117, 240601 (2016)
-
A. Altland and T. Micklitz, Field Theory Approach to Many-Body Localization, Phys. Rev. Lett. 118, 127202 (2017)
- S. Gazit, M. Randeria, and A. Vishwanath, Emergent Dirac fermions and broken symmetries in confined and deconfined phases of Z2 gauge theories, Nature Phys. 13, 484 (2017)
-
A. Smith, J. Knolle, D. L. Kovrizhin, and R. Moessner, Disorder-Free Localization, Phys. Rev. Lett. 118, 266601 (2017) (simple but slightly unusual spin-fermion chain; extensive number of conserved quantities; simple and not disordered initial states are superpositions of many sectors with these quantities being disordered)
-
N. D. Patel, A. Mukherjee, N. Kaushal, A. Moreo, and E. Dagotto, Non-Fermi Liquid Behavior and Continuously Tunable Resistivity Exponents in the Anderson-Hubbard Model at Finite Temperature, Phys. Rev. Lett. 119, 086601 (2017) (mean-field Monte Carlo method, developed by this group, applied to model with strong and varying local interaction and disorder)
-
R. M. Nandkishore and S. L. Sondhi, Many-Body Localization with Long-Range Interactions, Phys. Rev. X 7, 041021 (2017)
-
A. Auerbach, Hall Number of Strongly Correlated Metals, Phys. Rev. Lett. 121, 066601 (2018) (exact series formula)
-
Y. Hu, J. W. F. Venderbos, and C. L. Kane, Fractional Excitonic Insulator, Phys. Rev. Lett. 121, 126601 (2018) (in the absence of magnetic field; for 1/3 state propose (px+ipy)3 excitonic pairing); also Journal Club: A. Vishwanath, Fractional Quantum Hall from Overlap of Electron-Hole Bands, JCCM_February_2019_02
- R. Verresen, R. Moessner, and F. Pollmann, Avoided quasiparticle decay from strong quantum interactions, Nature Physics 15, 750 (2019) (illustrated by an exactly solvable model and, using numerics, by the antiferromagnetic Heisenberg model on the triangular lattice)
-
F. B. Kugler, M. Zingl, H. U. R. Strand, S.-S. B. Lee, J. von Delft, and A. Georges, Strongly Correlated Materials from a Numerical Renormalization Group Perspective: How the Fermi-Liquid State of Sr2RuO4 Emerges, Phys. Rev. Lett. 124, 016401 (2020)
-
A. J. Kim, F. Simkovic, IV, and E. Kozik, Spin and Charge Correlations across the Metal-to-Insulator Crossover in the Half-Filled 2D Hubbard Model, Phys. Rev. Lett. 124, 117602 (2020)
-
C. Murthy and C. Nayak, Almost Perfect Metals in One Dimension, Phys. Rev. Lett. 124, 136801 (2020) (RG)
-
Y. Michishita and R. Peters, Equivalence of Effective Non-Hermitian Hamiltonians in the Context of Open Quantum Systems and Strongly Correlated Electron Systems, Phys. Rev. Lett. 124, 196401 (2020) (emergence of effective non-hermitian Hamiltonians from strong correlations in closed systems, compared to the same Hamiltonians emerging for open systems)
-
M. Qin, C.-M. Chung, H. Shi, E. Vitali, C. Hubig, U. Schollwöck, S. R. White, and S. Zhang, Absence of Superconductivity in the Pure Two-Dimensional Hubbard Model, Phys. Rev. X 10, 031016 (2020) (DMRG and advanced QMC; the ground state of the doped Hubbard model is not superconducting for intermediate to strong repulsive interaction, parameters expected to be reasonable for cuprates); see also A. V. Chubukov, Superconductivity in the 2D Hubbard model: yes, no, or maybe?, Journal Club for Condensed Matter Physics 10.36471/JCCM_February_2021_01
-
Z. Han, S. A. Kivelson, and H. Yao, Strong Coupling Limit of the Holstein-Hubbard Model, Phys. Rev. Lett. 125, 167001 (2020) (generic for arbitrary dimensionality, illustrated for 2D models; Lang-Firsov-type transformation and strong-coupling perturbation theory)
-
T. Shi, E. Demler, and J. I. Cirac, Variational Approach for Many-Body Systems at Finite Temperature, Phys. Rev. Lett. 125, 180602 (2020) (density-matrix approach, application to 2D Holstein model, predict phase separation)
-
D. V. Else, R. Thorngren, and T. Senthil, Non-Fermi Liquids as Ersatz Fermi Liquids: General Constraints on Compressible Metals, Phys. Rev. X 11, 021005 (2021) (very general results for correlated systems with translation symmetry and tunable fractitional filling, generalization of Luttinger's theorem) P
-
I. V. Protopopov, R. Samanta, A. D. Mirlin, and D. B. Gutman, Anomalous Hydrodynamics in a One-Dimensional Electronic Fluid, Phys. Rev. Lett. 126, 256801 (2021)
-
H. Liu, E. Huffman, S. Chandrasekharan, and R. K. Kaul, Quantum Criticality of Antiferromagnetism and Superconductivity with Relativity, Phys. Rev. Lett. 128, 117202 (2022) (designed interacting Hamiltonian with spin-charge-flip symmetry, which gets spontaneously broken)
-
J. Šuntajs, J. Bonča, T. Prosen, and L. Vidmar, Quantum chaos challenges many-body localization, Phys. Rev. E 102, 062144 (2020) (many-body localization may not exist or rather only as a transient phenomenon); D. Sels and A. Polkovnikov, Whither many-body localization?, journal club DOI: 10.36471/JCCM_January_2023_01
Exact results on many-particle systems
- J. de Woul and E. Langmann, Fermions in two dimensions, bosonization, and exactly solvable models, arXiv:1207.6783
- T. S. Cubitt, D. Perez-Garcia, and M. M. Wolf, Undecidability of the spectral gap, Nature 528, 207 (2015) (2D Hamiltonians with constructed short-range interactions, mapping to halting problem for Turing machines); see also longer version arXiv:1502.04573
Magnetism
Diluted magnetic semiconductors - experiments on the (Ga,In,Mn)As system
- E. J. Singley, R. Kawakami, D. D. Awschalom, and D. N. Basov, Infrared Probe of Itinerant Ferromagnetism in Ga1-xMnxAs, Phys. Rev. B 89, 097203 (2002)
- E. J. Singley, K. S. Burch, R. Kawakami, J. Stephens, D. D. Awschalom, and D. N. Basov, Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga1-xMnxAs, Phys. Rev. B 68, 165204 (2003) P
- K. S. Burch, J. Stephens, R. K. Kawakami, D. D. Awschalom, and D. N. Basov, Ellipsometric study of the electronic structure of Ga1-xMnxAs and low-temperature GaAs, Phys. Rev. B 70, 205208 (2004) (E1 critical point blue-shifts with Mn concentration, fundamental gap not resolved)
- K. Hamaya, T. Koike, T. Taniyama, T. Fujii, Y. Kitamoto, and Y. Yamazaki, Dynamic relaxation of magnetic clusters in a ferromagnetic (Ga,Mn)As epilayer, cond-mat/0511392 (the Curie temperature may actually be a blocking temperature of clusters with high hole concentration)
- X. Liu and J. K. Furdyna, Ferromagnetic resonance in Ga1-xMnxAs dilute magnetic semiconductors, J. Phys.: Condens. Matter 18, R245 (2006)
- B. J. Kirby, J. A. Borchers, J. J. Rhyne, K. V. O'Donovan, S. G. E. te Velthuis, S. Roy, C. Sanchez-Hanke, T. Wojtowicz, X. Liu, W. L. Lim, M. Dobrowolska, and J. K. Furdyna, Magnetic and chemical non-uniformity in Ga1-xMnxAs as probed by neutron and x-ray reflectometry, Phys. Rev. B 74, 245304 (2006)
- D. Chiba, M. Yamanouchi, F. Matsukura, T. Dietl, and H. Ohno, Domain-wall resistance in ferromagnetic (Ga,Mn)As, cond-mat/0601464
- M. Yamanouchi, D. Chiba, F. Matsukura, T. Dietl, and H. Ohno, Velocity of domain-wall motion induced by electrical current in a ferromagnetic semiconductor (Ga,Mn)As, cond-mat/0601515
- K. Hamaya, T. Watanabe, T. Taniyama, A. Oiwa, Y. Kitamoto, and Y. Yamazaki, Magnetic anisotropy switching caused by highly hole-concentrated phase in (Ga,Mn)As, cond-mat/0601603
- C. Gould, K. Pappert, C. Rüster, R. Giraud, T. Borzenko, G. M. Schott, K. Brunner, G. Schmidt, and L. W. Molenkamp, Current Assisted Magnetization Switching in (Ga,Mn)As Nanodevices, cond-mat/0602135
- H. K. Choi et al., Evidence of metallic clustering in annealed Ga1-xMnxAs from atypical scaling behavior of the anomalous Hall coefficient, cond-mat/0603468 (support for metallic inclusions for material annealed at too high temperatures)
- S. H. Chun, Y. S. Kim, H. K. Choi, I. T. Jeong, W. O. Lee, K. S. Suh, Y. S. Oh, K. H. Kim, Z. G. Khim, J. C. Woo, and Y. D. Park, Interplay between carrier and impurity concentrations in annealed Ga1-xMnxAs intrinsic anomalous Hall Effect, cond-mat/0603808 (crossover between intrinsic and extrensic AHE)
- K. S. Burch, D. B. Shrekenhamer, E. J. Singley, J. Stephens, B. L. Sheu, R. K. Kawakami, P. Schiffer, N. Samarth, D. D. Awschalom, and D. N. Basov, Impurity Band Conduction in a High Temperature Ferromagnetic Semiconductor, cond-mat/0603851 (optical conductivity, analysis of shift of peak maximum with impurity concentration and of weight of the Drude peak) P
- N. P. Stern, R.C. Myers, M. Poggio, A. C. Gossard, and D. D. Awschalom, Confinement engineering of s-d exchange interactions in GaMnAs quantum wells, cond-mat/0604576
- S. Russo, T. M. Klapwijk, W. Schoch, and W. Limmer, Correlation effects in the density of states of annealed GaMnAs, cond-mat/0605753 (tunneling in NbTiN/GaMnAs [Mn concentration 4.4%] structure, exhibits a correlation gap of initially 278 meV, which shrinks to 50 meV with annealing) P
- R. C. Myers, B. L. Sheu, A. W. Jackson, A. C. Gossard, P. Schiffer, N. Samarth, and D. D. Awschalom, Antisite effect on ferromagnetism in (Ga,Mn)As, cond-mat/0606488
- G. Xiang, M. Zhu, B. L. Sheu, P. Schiffer, and N. Samarth, Non-collinear Spin Valve Effect in Ferromagnetic Semiconductor Trilayers, cond-mat/0607580
- D. Kitchen, A. Richardella, J.-M. Tang, M. E. Flatté, and A. Yazdani, Atom-by-Atom Substitution of Mn in GaAs and Visualization of their Hole-Mediated Interactions, cond-mat/0607765 (experiment and theory)
- S. Lee, A. Trionfi, T. Schallenberg, H. Munekata, and D. Natelson, Quantum coherence in ferromagnetic semiconductors: time-dependent universal conductance fluctuations and magnetofingerprint, cond-mat/0608036 P
- K. Pappert, M. J. Schmidt, S. Hümpfner, C. Rüster, G. M. Schott, K. Brunner, C. Gould, G. Schmidt, and L. W. Molenkamp, Magnetization-Switched Metal-Insulator Transition in a (Ga,Mn)As Tunnel Device, cond-mat/0608683
- V. Holy, Z. Matej, O. Pacherova, V. Novak, M. Cukr, K. Olejnik, and T. Jungwirth, Mn incorporation in as-grown and annealed (Ga,Mn)As layers studied by x-ray diffraction and standing-wave fluorescence, cond-mat/0609163 (substitutional Mn is rather immobile)
- T. Figielski, T. Wosinski, A. Morawski, A. Makosa, J. Wrobel, and J. Sadowski, Magneto-resistive memory in ferromagnetic (Ga,Mn)As nanostructures, cond-mat/0610535
- A. W. Rushforth, A. D. Giddings, K. W. Edmonds, R. P. Campion, C. T. Foxon and B. L. Gallagher, AMR and magnetometry studies of ultra thin GaMnAs films, cond-mat/0610692, physica status solidi (c)
- K. Pappert, S. Hümpfner, J. Wenisch, K. Brunner, C. Gould, G. Schmidt, and L. W. Molenkamp, Transport Characterization of the Magnetic Anisotropy of (Ga,Mn)As, cond-mat/0611156
- J.M. Kivioja, M. Prunnila, S. Novikov, P. Kuivalainen, and J. Ahopelto, Energy Transport between Hole Gas and Crystal Lattice in Diluted Magnetic Semiconductor, cond-mat/0611704
- S. Ohya, K. Ohno, and M. Tanaka, Magneto-optical and magnetotransport properties of heavily Mn-doped GaMnAs, cond-mat/0612055 (10 nm thin films with up to 21.3% Mn, claimed to be homogeneous)
- S. Hümpfner, M. Sawicki, K. Pappert, J. Wenisch, K. Brunner, C. Gould, G. Schmidt, T. Dietl, and L. W. Molenkamp, Lithographic engineering of anisotropies in (Ga,Mn)As, cond-mat/0612439
- V. V. Rylkov, A. S. Lagutin, B. A. Aronzon, V. V. Podolskii, V. P. Lesnikov, M. Goiran, J. Galibert, B. Raquet, and J. Leotin, Peculiarities of the transport properties of InMnAs layers, produced by the laser deposition, in strong magnetic fields, cond-mat/0612641
- G. S. Chang, E. Z. Kurmaev, L. D. Finkelstein, H. K. Choi, W. O. Lee, Y. D. Park, T. M. Pedersen, and A. Moewes, Post-annealing effect on the electronic structure of Mn atoms in Ga1-xMnxAs probed by resonant inelastic x-ray scattering, J. Phys.: Condens. Matter 19, 076215 (2007) (interstitial Mn diffuses to surface and is passivated by oxydation)
- L. P. Rokhinson, Y. Lyanda-Geller, Z. Ge, S. Shen, X. Liu, M. Dobrowolska, and J. K. Furdyna, Weak localization in Ga1-xMnxAs: evidence of impurity band transport, Phys. Rev. B 76, 161201(R) (2007) (5% and 6.5% Mn); N. V. Agrinskaya and V. I. Kozub, Comment, arXiv:0912.0642 (suggest that low-temperature features are due to a superconducting transition in the indium leads)
- K. Pappert, S. Hümpfner, C. Gould, J. Wenisch, K. Brunner, G. Schmidt, and L. W. Molenkamp, Exploiting Locally Imposed Anisotropies in (Ga,Mn)As: a Non-volatile Memory Device, cond-mat/0701478; J. Wenisch, C. Gould, L. Ebel, J. Storz, K. Pappert, M. J. Schmidt, C. Kumpf, G. Schmidt, K. Brunner, and L. W. Molenkamp, Control of magnetic anisotropy in (Ga,Mn)As by lithography-induced strain relaxation, cond-mat/0701479
- A. W. Rushforth, K. Vyborny, C. S. King, K. W. Edmonds, R. P. Campion, C. T. Foxon, J. Wunderlich, A. C. Irvine, P. Vasek, V. Novák, K. Olejník, T. Jungwirth, and B. L. Gallagher, The Origin and Control of the Sources of Anisotropic Magnetoresistance in (Ga,Mn)As Devices, cond-mat/0702357
- J. Wang, I. Cotoros, K. M. Dani, D. S. Chemla, X. Liu, and J. K. Furdyna, Ultrafast Enhancement of Ferromagnetism via Photoexcited Holes in GaMnAs, cond-mat/0702439
- L. Thevenard, L. Largeau, O. Mauguin, A. Lemaitre, K. Khazen, and J. von Bardeleben, Evolution of the magnetic anisotropy with carrier density in hydrogenated (Ga,Mn)As, cond-mat/0702548
- D. Neumaier, K. Wagner, S. Geissler, U. Wurstbauer, J. Sadowski, W. Wegscheider, and D. Weiss, Weak localization in ferromagnetic (Ga,Mn)As nanostructures, cond-mat/0703053
- V. Novak, K. Olejnik, M. Cukr, L. Smrcka, Z. Remes, and J. Oswald, Substrate temperature changes during MBE growth of GaMnAs, arXiv:0704.2485
- J. Honolka, S. Masmanidis, H. X. Tang, D. D. Awschalom, and M. L. Roukes, Magnetotransport properties of strained (Ga0.95, Mn0.05)As epilayers close to the metal-insulator transition: Description using Aronov-Altshuler three-dimensional scaling theory, arXiv:0705.0121 (experiment and theory, finding good agreement)
- J. Qi, Y. Xu, N. Tolk, X. Liu, J. K. Furdyna, and I. E. Perakis, Coherent Magnetization Precession in GaMnAs induced by Ultrafast Optical Excitation, arXiv:0706.4270 (local heating by laser pulse leads to reorientation of easy axis)
- T. Slupinski, J. Caban, and K. Moskalik, Hole Transport in Impurity Band and Valence Bands Studied in Moderately Doped GaAs:Mn Single Crystals, arXiv:0707.0968 (up to 0.3% Mn)
- J. Wunderlich, A. C. Irvine, J. Zemen, V. Holy, A. W. Rushforth, E. De Ranieri, U. Rana, K. Vyborny, J. Sinova, C. T. Foxon, R. P. Campion, D. A. Williams, B. L. Gallagher, and T. Jungwirth, Magnetocrystalline anisotropy controlled local magnetic configurations in (Ga,Mn)As spin-transfer-torque microdevices, arXiv:0707.3329 (includes theory)
- R. Farshchi, P. D. Ashby, D. J. Hwang, C. P. Grigoropoulos, R.V. Chopdekar, Y. Suzuki, and O. D. Dubon, Hydrogen patterning of Ga1-xMnxAs for planar spintronics, arXiv:0708.0389
- M. Zhu, X. Li, G. Xiang, and N. Samarth, Random telegraph noise from magnetic nanoclusters in the ferromagnetic semiconductor (Ga,Mn)As, arXiv:0708.1895
- B. J. Kirby, J. A. Borchers, X. Liu, Y. J. Cho, M. Dobrowolska, and J. K. Furdyna, Definitive Evidence of Interlayer Coupling Between (Ga,Mn)As, arXiv:0708.2289 (show that magnetic coupling in (Al,Be,Ga)As/(Ga,Mn)As/GaAs/(Ga,Mn)As depends on spacer thickness)
- G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp, Suppression of electron spin relaxation in Mn-doped GaAs, arXiv:0710.0246
- A. Kudelski, A. Lemaitre, A. Miard, P. Voisin, T. C. M. Graham, R. J. Warburton, and O. Krebs, Optically probing the fine structure of a single Mn atom in an InAs quantum dot, arXiv:0710.5389
- D. Neumaier, M. Schlapps, U. Wurstbauer, J. Sadowski, M. Reinwald, W. Wegscheider, and D. Weiss, Electron-electron interaction in 2D and 1D ferromagnetic (Ga,Mn)As, arXiv:0711.3278 (also with theoretical interpretation)
- Y. Pu, D. Chiba, F. Matsukura, H. Ohno, and J. Shi, Mott Relation for Anomalous Hall and Nernst Effects in Ga1-xMnxAs Ferromagnetic Semiconductors, Phys. Rev. Lett. 101, 117208 (2008) (measure large Seebeck coefficient among other quantities) P
- A. A. Freeman, K. W. Edmonds, G. van der Laan, R. P. Campion, N. R. S. Farley, A. W. Rushforth, T. K. Johal, C. T. Foxon, B. L. Gallagher, A. Rogalev, and F. Wilhelm, Valence band orbital polarization in III-V ferromagnetic semiconductors, arXiv:0801.0673
- Y. Takeda, M. Kobayashi, T. Okane, T. Ohkochi, J. Okamoto, Y. Saitoh, K. Kobayashi, H. Yamagami, A. Fujimori, A. Tanaka, J. Okabayashi, M. Oshima, S. Ohya, P. N. Hai, and M. Tanaka, Nature of magnetic coupling between Mn ions in as-grown Ga1-xMnxAs studied by x-ray magnetic circular dichroism, arXiv:0801.1155 (ferromagnetic correlations seen above TC, role of interstitials)
- M. Overby, A. Chernyshov, L. P. Rokhinson, X. Liu, and J. K. Furdyna, GaMnAs-based hybrid multiferroic memory device, arXiv:0801.4191
- A. Sugawara, H. Kasai, A. Tonomura, P. D. Brown, R. P. Campion, K.W. Edmonds, B. L. Gallagher, J. Zemen, and T. Jungwirth, Domain walls in (Ga,Mn)As diluted magnetic semiconductor, arXiv:0802.1574 (experiment and theory)
- E. Rozkotova, P. Nemec, P. Horodyska, D. Sprinzl, F. Trojanek, P. Maly, V. Novak, K. Olejnik, M. Cukr, and T. Jungwirth, Light-induced magnetization precession in GaMnAs, arXiv:0802.2043 (experiment and theory)
- K. W. Edmonds, G. van der Laan, N. R. S. Farley, E. Arenholz, R. P. Campion, C. T. Foxon, and B. L. Gallagher, Strain dependence of the Mn anisotropy in ferromagnetic semiconductors observed by x-ray magnetic circular dichroism, arXiv:0802.2061
- I. Stolichnov, S. W. E. Riester, H. J. Trodahl, N. Setter, A. W. Rushforth, K. W. Edmonds, R. P. Campion, C. T. Foxon, B. L. Gallagher, and T. Jungwirth, Nonvolatile ferroelectric control of ferromagnetism in (Ga,Mn)As, arXiv:0802.2074 (ferromagnetic/ferroelectric bilayer)
- K. Olejnik, M. H. S. Owen, V. Novak, J. Masek, A. C. Irvine, J. Wunderlich, and T. Jungwirth, Enhanced annealing, high Curie temperature and low-voltage gating in (Ga,Mn)As: A surface oxide control study, arXiv:0802.2080
- W. Limmer, J. Daeubler, L. Dreher, M. Glunk, W. Schoch, S. Schwaiger, and R. Sauer, Advanced resistivity model for arbitrary magnetization orientation applied to a series of compressive- to tensile-strained (Ga,Mn)As layers, arXiv:0802.2635 (experiment and model)
- E. De Ranieri, A. W. Rushforth, K. Vyborny, U. Rana, E. Ahmed, R. P. Campion, C. T. Foxon, B. L. Gallagher, A. C. Irvine, J. Wunderlich, and T. Jungwirth, Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As, arXiv:0802.3344
- C. Gould, S. Mark, K. Pappert, G. Dengel, J. Wenisch, R. P. Campion, A. W. Rushforth, D. Chiba, Z. Li, X. Liu, W. Van Roy, H. Ohno, J. K. Furdyna, B. Gallagher, K. Brunner, G. Schmidt, and L. W. Molenkamp, An extensive comparison of anisotropies in MBE grown (Ga,Mn)As material, arXiv:0802.4206 (comparison of samples grown by the leading groups)
- E. Rozkotova, P. Nemec, D. Sprinzl, P. Horodyska, F. Trojanek, P. Maly, V. Novak, K. Olejnik, M. Cukr, and T. Jungwirth, Laser-induced Precession of Magnetization in GaMnAs, arXiv:0803.0320
- A. D. Giddings, O. N. Makarovsky, M. N. Khalid, S. Yasin, K. W. Edmonds, R. P. Campion, J. Wunderlich, T. Jungwirth, D. A. Williams, B. L. Gallagher, and C. T. Foxon, Huge tunnelling anisotropic magnetoresistance in (Ga,Mn)As nanoconstrictions, arXiv:0803.3416
- J.-M. Jancu, J.-Ch. Girard, M. Nestoklon, A. Lemaitre, F. Glas, and Z. Z. Wang, STM images of sub-surface Mn atoms in GaAs: evidence of hybridization of surface and impurity states, arXiv:0803.3975 (emphasizing that surface states are crucial for the understanding of STM images of sub-surface dopants)
- V. Novák, K. Olejník, J. Wunderlich, M. Cukr, K. Vyborny, A. W. Rushforth, R. P. Campion, B. L. Gallagher, Jairo Sinova, and T. Jungwirth, Singularity in temperature derivative of resistivity in (Ga,Mn)As at the Curie point, arXiv:0804.1578 (experiment and theory, case of high Tc, i.e., resistivity likely not dominated by disorder) P
- M. A. Scarpulla, R. Farshchi, P. R. Stone, R. V. Chopdekar, K. M. Yu, Y. Suzuki, and O. D. Dubon, Electrical transport and ferromagnetism in Ga1-xMnxAs synthesized by ion implantation and pulsed-laser melting, arXiv:0804.1612
- N. A. Goncharuk, J. Kucera, K. Olejnik, V. Novak, L. Smrcka, Z. Matej, L. Nichtova, and V. Holy, Study of Mn K-edge XANES in (Ga,Mn)As diluted magnetic semiconductors, arXiv:0805.0957 (experiment and ab-initio theory: signatures of substitutional and intersitial Mn are distinct, concentration of Mn institials is found to decrease but not vanish upon annealing)
- A. Wirthmann, X. Hui, N. Mecking, Y. S. Gui, T. Chakraborty, M. Reinwald, C. Schüller, W. Wegscheider, and C.-M. Hu, Broadband electrical detection of spin excitations in (Ga,Mn)As using a photovoltage technique, arXiv:0806.0785
- P. R. Stone, K. Alberi, S. K. Z. Tardif, J. W. Beeman, K. M. Yu, W. Walukiewicz, and O. D. Dubon, Metal-insulator transition by isovalent anion substitution in Ga1-xMnxAs: Implications to ferromagnetism, arXiv:0807.3722 (substitution of P and N for As in the percent range drives the system insulating and reduces the Curie temperature by about 50%)
- M. Wang, R. P. Campion, A. W. Rushforth, K. W. Edmonds, C. T. Foxon, and B. L. Gallagher, Achieving High Curie Temperature in (Ga,Mn)As, arXiv:0808.1464, Appl. Phys. Lett. 93, 132103 (2008)
- D. Neumaier, M. Turek, U. Wurstbauer, A. Vogl, M. Utz, W. Wegscheider, and D. Weiss, All electrical measurement of the density of states in (Ga,Mn)As, arXiv:0902.2675 (measured density of states is in agreement with models having no disorder [for 3D case] or merged impurity and valence bands [for 1D and 2D])
- M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, Magnetic anisotropy in (Ga,Mn)As: Influence of epitaxial strain and hole concentration, arXiv:0904.1565
- R. Gonzalez-Arrabal, Y. Gonzalez, L. Gonzalez, M. Garcia-Hernandez, F. Munnik, and M. S. Martin-Gonzalez, Room temperature ferromagnetic-like behavior in Mn-implanted and post-annealed InAs layers deposited by Molecular Beam Epitaxy, arXiv:0904.2132 (attributed to oxygen-deficient MnO2 (!) segregation)
- M. Schlapps, T. Lermer, S. Geissler, D. Neumaier, J. Sadowski, D. Schuh, W. Wegscheider, and D. Weiss, Transport through (Ga,Mn)As nanoislands: Coulomb-blockade and temperature dependence of the conductance, arXiv:0904.3225
- C. Sun, J. Kono, Y. Cho, A. K. Wojcik, A. Belyanin, and H. Munekata, Magneto-optical Kerr Spectroscopy of GaMnAs: Interband or Impurity Transitions?, arXiv:0907.1546 (results can be explained within the kinetic-exchange picture using a Luttinger-Kohn Hamiltonian)
- G. Acbas, M.-H. Kim, M. Cukr, V. Novak, M. A. Scarpulla, O. D. Dubon, T. Jungwirth, J. Sinova, and J. Cerne, Electronic structure of ferromagnetic semiconductor Ga1-xMnxAs probed by sub-gap magneto-optical spectroscopy, arXiv:0907.0207 (supports the valence-band picture)
- M. Cubukcu, H. J. von Bardeleben, Kh. Khazen, J. L. Cantin, O. Mauguin, L. Largeau, and A. Lemaitre, Phosphorous alloying: controlling the magnetic anisotropy in ferromagnetic (Ga,Mn)(As,P) Layers, arXiv:0908.0063
- M. Glunk, J. Daeubler, W. Schoch, R. Sauer, and W. Limmer, Scaling relation of the anomalous Hall effect in (Ga,Mn)As, arXiv:0908.2935
- O. Krebs, E. Benjamin, and A. Lemaître, Magnetic anisotropy of singly Mn-doped InAs/GaAs quantum dots, arXiv:0909.0877 (surprising splitting, but well explained by theoretical model)
- M. Sawicki, D. Chiba, A. Korbecka, Y. Nishitani, J. A. Majewski, F. Matsukura, T. Dietl, and H. Ohno, Experimental probing of the interplay between ferromagnetism and localization in (Ga,Mn)As, arXiv:0909.3694, Nature Physics (published online 2009, doi:10.1038/nphys1455) (Tc decreases monotonically when the hole concentration is reduced by a gate voltage for a Mn concentration of about 7%, no sign of an impurity band) P
- A. Richardella, P. Roushan, S. Mack, B. Zhou, D. A. Huse, D. D. Awschalom, and A. Yazdani, Visualizing Critical Correlations near the Metal-Insulator Transition in Ga1-xMnxAs, Science 327, 665 (2010) (STM; importantly, see interaction-induced [Altshuler-Aronov] suppression of LDOS at the Fermi energy but no dip in the LDOS due to a merged impurity band, not even at 1.5% Mn; on the other hand, the LDOS looks fractal, very impurity-band-like at the Fermi energy); see also Perspective: G. A. Fiete and A. de Lozanne, Seeing Quantum Fractals, Science 327, 652 (2010), and Dietl and Sztenkiel, cited below
- C. Celebi, J. K. Garleff, A. Yu. Silov, A. M. Yakunin, P. M. Koenraad, W. Van Roy, J.-M. Tang, and M. E. Flatté, Surface Induced Asymmetry of Acceptor Wave Functions, Phys. Rev. Lett. 104, 086404 (2010) (STM experiments, also compared to tight-binding calculations)
- S. R. Dunsiger, J. P. Carlo, T. Goko, G. Nieuwenhuys, T. Prokscha, A. Suter, E. Morenzoni, D. Chiba, Y. Nishitani, T. Tanikawa, F. Matsukura, H. Ohno, J. Ohe, S. Maekawa, and Y. J. Uemura, Spatially homogeneous ferromagnetism of (Ga, Mn)As, Nature Mat. 9, 299 (2010)
- E. H. C. P. Sinnecker, G. M. Penello, T. G. Rappoport, M. M. Sant'Anna, D. E. R. Souza, M. P. Pires, J. K. Furdyna, and X. Liu , Ion-beam modification of the magnetic properties of Ga1-xMnxAs epilayers, Phys. Rev. B 81, 245203 (2010) (layers of 200 nm thickness with nominally 5% Mn doping, ion irradiation to introduce defects, magnetism are found to be rather robust under irradiation, authors conclude that holes reside in an impurity band; note changes of title and author list compared to first preprint version, arXiv:0811.3158) P
- L. Horak, Z. Soban, and V. Holy, Study of Mn interstitials in (Ga,Mn)As using high-resolution x-ray diffraction, J. Phys.: Condens. Matter 22, 296009 (2010)
- D. Chiba, A. Werpachowska, M. Endo, Y. Nishitani, F. Matsukura, T. Dietl, and H. Ohno, Anomalous Hall Effect in Field-Effect Structures of (Ga,Mn)As, Phys. Rev. Lett. 104, 106601 (2010)
- T. Jungwirth, P. Horodyska, N. Tesarova, P. Nemec, J. Subrt, P. Maly, P. Kuzel, C. Kadlec, J. Masek, I. Nemec, V. Novak, K. Olejnik, Z. Soban, P. Vasek, P. Svoboda, and J. Sinova, Systematic Study of Mn-Doping Trends in Optical Properties of (Ga,Mn)As, Phys. Rev. Lett. 105, 227201 (2010) (mid-infrared peak found to blue-shift with increasing Mn concentration for weakly compensated samples, supporting a valence-band picture)
- K. Olejnik, P. Wadley, J. A Haigh, K. W. Edmonds, R. P. Campion, A. W. Rushforth, B. L. Gallagher, C. T. Foxon, T. Jungwirth, J. Wunderlich, S. S. Dhesi, S. Cavill, G. van der Laan, and E. Arenholz, Exchange bias of a ferromagnetic semiconductor by a ferromagnetic metal, arXiv:1001.2449
- K. Y. Wang, K. W. Edmonds, A. C. Irvine, J. Wunderlich, A. W. Rushforth, R. P. Campion, D. A. Williams, C. T. Foxon, and B. L. Gallagher, Small Domain Wall Resistance in Perpendicular (Ga,Mn)As, arXiv:1001.2631
- Y. Nishitani, D. Chiba, M. Endo, M. Sawicki, F. Matsukura, T. Dietl, and H. Ohno, Curie temperature versus hole concentration in field-effect structures of Ga1-xMnxAs, arXiv:1001.3909 (support for Zener model with non-uniform carrier concentration)
- L. Dreher, D. Donhauser, J. Daeubler, M. Glunk, C. Rapp, W. Schoch, R. Sauer, and W. Limmer, Strain, magnetic anisotropy, and anisotropic magnetoresistance in (Ga,Mn)As on high-index substrates: application to (113)A-oriented layers, arXiv:1002.2179
- J. Bak-Misiuk, K. Lawniczak-Jablonska, E. Dynowska, P. Romanowski, J. Z. Domagala, J. Libera, A. Wolska, M. T. Klepka, P. Dluzewski, J. Sadowski, A. Barcz, D. Wasik, A. Twardowski, and W. Caliebe, New evidence for structural and magnetic properties of GaAs:(Mn,Ga)As granular layers, arXiv:1004.3942
- P. Wadley, A. A. Freeman, K. W. Edmonds, G. van der Laan, J. S. Chauhan, R. P. Campion, A. W. Rushforth, B. L. Gallagher, C. T. Foxon, F. Wilhelm, A. G. Smekhova, and A. Rogalev, Element-resolved orbital polarization in (III,Mn)As ferromagnetic semiconductors from K edge x-ray magnetic circular dichroism, arXiv:1005.4577 (strongly supports a transfer of the dominant hole magnetic moments from Mn to As with increasing Mn doping)
- Sh. U. Yuldashev, Kh. T. Igamberdiev, S. Lee, Y. H. Kwon, T. W. Kang, Y. Kim, H. Im, and A. G. Shashkov, Specific heat study of Ga1-xMnxAs, arXiv:1006.1023 (consistent with second-order phase transition, Mn concentration 2.6% and lower)
- L. Herrera Diez, M. Konuma, E. Placidi, F. Arciprete, A. W. Rushforth, R. P. Campion, B. L. Gallagher, J. Honolka, and K. Kern, Manipulation of electrical and ferromagnetic properties of photo-sensitized (Ga,Mn)As, arXiv:1006.3174 (fluorescein adsorbed on (Ga,Mn)As found to permit control of Curie temperature and coercive field with visible light)
- C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, J. P. Heremans, and R. C. Myers, Observation of the Spin-Seebeck Effect in a Ferromagnetic Semiconductor, arXiv:1007.1364
- S. Piano, R. Grein, C. J. Mellor, R. Campion, K. Vyborny, M. Eschrig, and B. L. Gallagher, Spin polarization of (Ga,Mn)As measured by Andreev Spectroscopy: The role of spin-active scattering, arXiv:1008.1788 (experiment and theoretical interpretation, finding 56% spin polarization of tunneling carriers at the Fermi energy)
- I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, V. F. Sapega, D. R. Yakovlev, and M. Bayer, Optical orientation of Mn2+ions in GaAs, arXiv:1010.1463 (due to conduction-band electrons)
- M. Kopecky, J. Kub, F. Maca, J. Masek, O. Pacherova, B. L. Gallagher, R. P. Campion, V. Novak, and T. Jungwirth, Detection of stacking faults breaking the [110]/[1-10] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P), arXiv:1012.4690 (stacking faults observed in the (111) and (11-1) planes of the (001) film, this breaks the fourfold in-plane symmetry)
- O. Yastrubchak, J. Zuk, H. Krzyzanowska, J. Z. Domagala, T. Andrearczyk, J. Sadowski, and T. Wosinski, Photoreflectance Study of the Fundamental Optical Properties of (Ga,Mn)As Epitaxial Films, arXiv:1012.4760 (the impurity and valence bands have merged for 6% Mn)
- S. Mark, P. Dürrenfeld, K. Pappert, L. Ebel, K. Brunner, C. Gould, and L. W. Molenkamp, Fully Electrical Read-Write Device Out of a Ferromagnetic Semiconductor, Phys. Rev. Lett. 106, 057204 (2011)
- S. Ohya, K. Takata, and M. Tanaka, Nearly non-magnetic valence band of the ferromagnetic semiconductor GaMnAs, Nature Physics (advance online publication 2011) (resonant tunneling spectroscopy, claim a nearly pristine valence band and a separate impurity band for up to 15% Mn); see Dietl and Sztenkiel, cited below
- J. Adell, I. Ulfat, L. Ilver, J. Sadowski, K. Karlsson, and J. Kanski, Thermal diffusion of Mn through GaAs overlayers on (Ga, Mn)As, J. Phys.: Condens. Matter 23, 085003 (2011) (8 ML of GaAs prevent outdiffusion of Mn)
- I. Stolichnov, S. W. E. Riester, E. Mikheev, N. Setter, A. W. Rushforth, K. W. Edmonds, R. P. Campion, C. T. Foxon, B. L. Gallagher, T. Jungwirth, and H. J. Trodahl, Enhanced Curie temperature and nonvolatile switching of ferromagnetism in ultrathin (Ga,Mn)As channels, Phys. Rev. B 83, 115203 (2011)
- B. C. Chapler, R. C. Myers, S. Mack, A. Frenzel, B. C. Pursley, K. S. Burch, E. J. Singley, A. M. Dattelbaum, N. Samarth, D. D. Awschalom, and D. N. Basov, An infrared probe of the insulator-to-metal transition in GaMnAs and GaBeAs, Phys. Rev. B 84, 081203(R) (2011) (in GaMnAs with up to 16% Mn, features attributed to impurities persist in the metallic state whereas in GaBeAs they do not, suggest impurity-band conduction in GaMnAs)
- J. Fujii, M. Sperl, S. Ueda, K. Kobayashi, Y. Yamashita, M. Kobata, P. Torelli, F. Borgatti, M. Utz, C. S. Fadley, A. X. Gray, G. Monaco, C. H. Back, G. van der Laan, and G. Panaccione, Identification of Different Electron Screening Behavior Between the Bulk and Surface of (Ga,Mn)As, Phys. Rev. Lett. 107, 187203 (2011) (photoemission with hard x-rays; 1% and 13% Mn; reported "localized" 3d5+h character at Fermi energy of 13% sample does not mean the same as in the context of the MIT since highly doped material is metallic); M. Moreno and K. H. Ploog, Comment, arXiv:1204.2987
- P. Nemec, E. Rozkotova, N. Tesarova, F. Trojanek, K. Olejnik, J. Zemen, V. Novak, M. Cukr, P. Maly, and T. Jungwirth, Non-thermal laser induced precession of magnetization in ferromagnetic semiconductor (Ga,Mn)As, arXiv:1101.1049 (pump-probe experiments and theory)
- Y. Hashimoto, H. Amano, Y. Iye, and S. Katsumoto, Magnetization dependent current rectification in (Ga,Mn)As magnetic tunnel junctions, arXiv:1104.3619
- L. Horak, J. Matejova, X. Marti, V. Holy, V. Novak, Z. Soban, S. Mangold, and F. Jimenez-Villacorta, Diffusion of Mn interstitials in (Ga,Mn)As epitaxial layers, arXiv:1105.0849 (x-ray spectroscopy and simulation of diffusion; electric field of charged defects is important)
- Sh. U. Yuldashev, Kh. T. Igamberdiev, Y. H. Kwon, Sanghoon Lee, X. Liu, J. K. Furdyna, A. G. Shashkov, and T. W. Kang, Crossover critical behavior of Ga1-xMnxAs, arXiv:1108.1028 (suggest that the typical range of the effective Mn-Mn exchange interaction is large compared to 5 Å)
- M. Gryglas-Borysiewicz, A. Kwiatkowski, M. Baj, D. Wasik, J. Przybytek, and J. Sadowski, Hydrostatic pressure study of paramagnetic-ferromagnetic phase transition in (Ga,Mn)As, arXiv:1108.3960
- S. Piano, A. W. Rushforth, K. W. Edmonds, R. P. Campion, G. Adesso, and B. L. Gallagher, Analysing surface structures on (Ga,Mn)As by Atomic Force Microscopy, arXiv:1111.3685 (ripples along [1,-1,0] direction)
- M. Bombeck, A. S. Salasyuk, B. A. Glavin, A. V. Scherbakov, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, Selective spin wave excitation in ferromagnetic (Ga,Mn)As layers by picosecond strain pulses, arXiv:1112.3394
- M. Dobrowolska, K. Tivakornsasithorn. X. Liu, J. K. Furdyna, M. Berciu, K. M. Yu, and W. Walukiewicz, Controlling the Curie temperature in (Ga,Mn)As through location of the Fermi level within the impurity band, Nature Materials doi:10.1038/nmat3250 (2012) (doping up to about 5%, channeling, Tc, transport, and MCD, favor an impurity-band model, do not address its width); K. W. Edmonds, B. L. Gallagher, M. Wang, A. W. Rushforth, O. Makarovsky, A. Patane, R. P. Campion, C. T. Foxon, V. Novak, and T. Jungwirth, Correspondence on Dobrowolska et al., arXiv:1211.3860 (Tc is maximized at low compensation, inconsistent with an impurity-band picture); M. Dobrowolska, X. Liu, J. K. Furdyna, M. Berciu, K. M. Yu, and W. Walukiewicz, Response, 1211.4051 (thin films are indeed distinct from bulk DMS)
- N. Tesarova, P. Nemec, E. Rozkotova, J. Subrt, H. Reichlova, D. Butkovicova, F. Trojanek, P. Maly, V. Novak, and T. Jungwirth, Direct measurement of the three dimensional magnetization vector trajectory in GaMnAs by a magneto-optical pump-and-probe method, arXiv:1201.1213
- M. W. Gutowski, W. Stefanowicz, O. Proselkov, J. Sadowski, M. Sawicki, and R. Zuberek, Interval identification of FMR parameters for spin reorientation transition in (Ga,Mn)As, arXiv:1201.2836 (experiments analyzed with the help of a novel prescription, which does not become fully clear)
- O. Proselkov, D. Sztenkiel, W. Stefanowicz, M. Aleszkiewicz, J. Sadowski, T. Dietl, and M. Sawicki, Thickness dependence of magnetic properties of (Ga,Mn)As, arXiv:1205.4824 (discussed in terms of depth-dependent defect and carrier concentrations)
- P. Nemec, V. Novak, N. Tesarova, E. Rozkotova, H. Reichlova, D. Butkovicova, F. Trojanek, K. Olejnik, P. Maly, R. P. Campion, B. L. Gallagher, J. Sinova, and T. Jungwirth, Establishing micromagnetic parameters of ferromagnetic semiconductor (Ga,Mn)As, arXiv:1207.0310, with changes published as The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As, Nature Commun. 4, 1422 (2013) (systematic study for Mn doping up to 13%, high-quality samples)
- B. C. Chapler, S. Mack, L. Ju, T. W. Elson, B. W. Boudouris, E. Namdas, J. D. Yuen, A. J. Heeger, N. Samarth, M. Di Ventra, R. A. Segalman, D. D. Awschalom, F. Wang, and D. N. Basov, Infrared conductivity of hole accumulation and depletion layers in (Ga,Mn)As- and (Ga,Be)As-based electric field-effect devices, arXiv:1207.0895 (for Mn doping of only 1.5% support an important role of a Mn-induced impurity band, whereas for even lower Be doping find metallic conduction in the valence band)
- J. Kanski, I. Ulfat, L. Ilver, M. Leandersson, J. Sadowski, K. Karlsson, and P. Pal, Mn induced modifications of Ga 3d photoemission from (Ga,Mn)As: evidence for long range effects, arXiv:1207.1570 (substitutional Mn affects core levels of Ga in the vicinity)
- I. Muneta, H. Terada, S. Ohya, and M. Tanaka, Anomalous Fermi level behavior in GaMnAs at the onset of ferromagnetism, arXiv:1208.0575 (resonant tunneling spectroscopy for vertical stacks with GaMnAs double wells; one quantum well of various doping up to 3.2% and various thickness up to 16 nm, one fixed at 6% and 20 nm; suggest Fermi energy in impurity band, argument seems to be based on position of VB-derived QW states in thin well relative to Fermi energy in thick well)
- S. Ohya, I. Muneta, Y. Xin, K. Takata, and M. Tanaka, Valence-band structure of ferromagnetic semiconductor (InGaMn)As, arXiv:1208.2928 (find that valence band changes weakly with Mn doping and that the Fermi energy is in the [clean] gap, even for sample without Ga, supporting a view of physics dominated by an impurity band)
- S. Zhou, Y. Wang, Z. Jiang, E. Weschke, and M. Helm, Ferromagnetic InMnAs on InAs Prepared by Ion Implantation and Pulsed Laser Annealing, arXiv:1209.5865, Appl. Phys. Expr. 5, 093007 (2012)
- M. Wang, K. W. Edmonds, B. L. Gallagher, A. W. Rushforth, O. Makarovsky, A. Patanè, R. P. Campion, C. T. Foxon, V. Novak, and T. Jungwirth, High Curie temperatures at low compensation in the ferromagnetic semiconductor (Ga,Mn)As, Phys. Rev. B 87, 121301(R) (2013) (highest Curie temperature for smallest compensation, contradicting picture of an isolated impurity band)
- J. Sadowski, J. Z. Domagala, R. Mathieu, A. Kovacs, and P. Dluzewski, Formation of two-dimensionally confined superparamagnetic (Mn,Ga)As nanocrystals in high-temperature annealed (Ga,Mn)As/GaAs superlattices, J. Phys.: Condens. Matter 25, 196005 (2013)
- J. Fujii et al., Identifying the Electronic Character and Role of the Mn States in the Valence Band of (Ga,Mn)As, Phys. Rev. Lett. 111, 097201 (2013) (hard x-ray spectroscopy for 1% to 13% Mn concentration; find merged valence and impurity bands for heavy doping but states of dominant Mn-d character at the Fermi energy and Fermi energy about 50 meV above the mobility edge, see Fig. 4, suggesting insulating samples [sample quality?]; additional Mn-derived states are at about 5 eV below the Fermi energy)
- I. Di Marco, P. Thunström, M. I. Katsnelson, J. Sadowski, K. Karlsson, S. Lebègue, J. Kanski, and O. Eriksson, Electron correlations in MnxGa1-xAs as seen by resonant electron spectroscopy and dynamical mean field theory, Nature Commun. 4, 2645 (2013) (photoemission experiments and LDA+DMFT calculations, showing strong correlations, no splitt-off impurity band, but doped holes predominantly located in the vicinity of Mn ions)
- M. Kobayashi, I. Muneta, Y. Takeda, Y. Harada, A. Fujimori, J. Krempasky, T. Schmitt, S. Ohya, M. Tanaka, M. Oshima, and V. N. Strocov, Unveiling the impurity band inducing ferromagnetism in magnetic semiconductor (Ga,Mn)As, arXiv:1302.0063 (2.5% Mn doping; resonant soft x-ray ARPES; Fermi energy is in gap, for judiciously chosen photon energy stated to be sensitive to intrinsic Mn observe a flat band below the Fermi energy, interpreted as an impurity band, support bound-magnetic-polaron picture of Kaminski and Das Sarma)
- O. Yastrubchak, J. Sadowski, H. Krzyzanowska, L. Gluba, J. Zuk, J. Z. Domagala, T. Andrearczyk, and T. Wosinski, Electronic- and band-structure evolution in low-doped (Ga,Mn)As, arXiv:1305.4056 (various spectroscopic methods and SQUID magnetometry; Mn doping up to 1.2%; for very weakly doped, n-type material find evidence for merging of Mn impurity band with valence band, for more strongly doped, p-type material support Fermi energy in valence-type band); O. Yastrubchak, T. Andrearczyk, J. Z. Domagala, J. Sadowski, L. Gluba, J. Zuk, and T Wosinski, Effect of low-temperature annealing on the electronic- and band-structure of (Ga,Mn)As epitaxial layers, arXiv:1305.4175
- M. Kobayashi, H. Niwa, Y. Takeda, A. Fujimori, Y. Senba, H. Ohashi, A. Tanaka, S. Ohya, P. N. Hai, M. Tanaka, Y. Harada, and M. Oshima, Electronic excitations of magnetic impurity state in diluted magnetic semiconductor (Ga,Mn)As, arXiv:1306.1474
- M. Kobayashi, H. Niwa, Y. Takeda, A. Fujimori, Y. Senba, H. Ohashi, A. Tanaka, S. Ohya, P. N. Hai, M. Tanaka, Y. Harada, and M. Oshima, Electronic Excitations of a Magnetic Impurity State in the Diluted Magnetic Semiconductor (Ga,Mn)As, Phys. Rev. Lett. 112, 107203 (2014) (RIXS)
- L. Chen, F. Matsukura, and H. Ohno, Electric-Field Modulation of Damping Constant in a Ferromagnetic Semiconductor (Ga,Mn)As, Phys. Rev. Lett. 115, 057204 (2015)
For transport through magnetic systems see also Mesoscopic and nanoscopic transport
Diluted magnetic semiconductors - experiments on oxides, including d0 systems
- P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson, and G. A. Gehring, Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO, Nature Materials 2, 673 (2003) (grown by laser ablation, also contains ab-initio calculations)
- M. S. R. Rao, S. Dhar, S. J. Welz, S. B. Ogale, D. C. Kundaliya, S. R. Shinde, S. E. Lofland, C. J. Metting, R. Erni, N. D. Browning, and T. Venkatesan, A New Ferromagnetic Insulator with Giant Magnetic Moment - Co:HfO2, cond-mat/0405378 (a vacancy-driven mechanism for magnetic ordering is suggested)
- T. C. Kaspar, S. M. Heald, C. M.Wang, J. D. Bryan, T. Droubay, V. Shutthanandan, S. Thevuthasan, D. E. McCready, A. J. Kellock, D. R. Gamelin, and S. A. Chambers, Negligible magnetism in excellent structural quality CrxTi1-xO2 anatase: Contrast with high-TC ferromagnetism in structurally defective CrxTi1-xO2,, Phys. Rev. Lett. 95, 217203 (2005) (defects are important for ferromagnetism)
- S. R. Shinde, S. B. Ogale, A. S. Ogale, S. J. Welz, A. Lussier, Darshan C. Kundaliya, H. Zheng, S. Dhar, M. S. R. Rao, R. Ramesh, Y. U. Idzerda, N. D. Browning, and T. Venkatesan, Percolative Ferromagnetism in Anatase Co:TiO2, cond-mat/0505265
- S. Duhalde, M. F. Vignolo, C. Chiliotte, C. E. Rodríguez Torres, L. A. Errico, A. F. Cabrera, M. Rentería, F.H. Sánchez, and M. Weissmann, Appearance of room temperature ferromagnetism in Cu-doped TiO2-delta films, cond-mat/0505602
- K. R. Kittilstved, W. K. Liu, and D. R. Gamelin, Charge Transfer Excited State Contributions to Polarity Dependent Ferromagnetism in ZnO Diluted Magnetic Semiconductors, cond-mat/0510644 (analysis of impurity levels in ZnO:Mn and ZnO:Co, roughly agrees with Dietl for Co, but not for Mn, analysis confusing but probably correct, conclusions for ferromagnetism open for discussion)
- G. Herranz, M. Basletic, M. Bibes, R. Ranchal, A. Hamzic, E. Tafra, K. Bouzehouane, E. Jacquet, J.-P. Contour, A. Barthelemy, and A. Fert, Full oxide heterostructure combining a high-Tc diluted ferromagnet with a high-mobility conductor, cond-mat/0512533, Phys. Rev. B
- M. Naeem, S. K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby, and S. Ismat Shah, Effect of Reducing Atmosphere on the Magnetism of Zn1-xCoxO Nanoparticles, cond-mat/0512597, Nanotechnology 17, 2675 (2006) (oxygen vacancies necessary for room-temperature ferromagnetism)
- S. Thota, T. Dutta, and J. Kumar, On the sol-gel synthesis and thermal, structural, and magnetic studies of transition metal (Ni, Co, Mn) containing ZnO powders, J. Phys.: Condens. Matter 18, 2473 (2006) (find ferromagnetism only in Ni-doped ZnO, not in Co- or Mn-doped)
- S. D. Yoon, Y. Chen, A. Yang, T. L. Goodrich, X. Zuo, D. A. Arena, K. Ziemer, C. Vittoria, and V. G. Harris, Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2-δ films, J. Phys.: Condens. Matter 18, L355 (2006) (ferromagnetism in absence of magnetic ions) P
- L. Sangaletti, M. C. Mozzati, P. Galinetto, C. B. Azzoni, A. Speghini, M. Bettinelli, and G. Calestani, Ferromagnetism on a paramagnetic host background: the case of rutile TM:TiO2 single crystals (TM = Cr, Mn, Fe, Co, Ni, Cu), J. Phys.: Condens. Matter 18, 7643 (2006)
- S. X. Zhang, S. B. Ogale, L. F. Fu, S. Dhar, D. C. Kundaliya, W. Ramadan, N. D. Browning, and T. Venkatesan, Consequences of niobium doping for the ferromagnetism and microstructure of anatase Co:TiO2 films, Appl. Phys. Lett. 88, 012513 (2006), cond-mat/0601528
- S.-S. Yan, J. P. Liu, L. M. Mei, Y. F. Tian, H. Q. Song, Y. X. Chen, and G. L. Liu, Spin-dependent variable range hopping and magnetoresistance in Ti1-xCoxO2 and Zn1-xCoxO magnetic semiconductor films, J. Phys.: Condens. Matter 18, 10469 (2006) (nanocrystaline and amorphous material prepared by sputtering, also contains model theory)
- G. S. Chang, E. Z. Kurmaev, D. W. Boukhvalov, L. D. Finkelstein, D. H. Kim, T.-W. Noh, A. Moewes, and T. A. Callcott, Clustering of impurity atoms in Co-doped anatase TiO2 thin films probed with soft x-ray fluorescence, J. Phys.: Condens. Matter 18, 4243 (2006)
- A. Fouchet, W. Prellier, and B. Mercey, Influence of the microstructure on the magnetism of Co-doped ZnO thin films, cond-mat/0604468, J. Appl. Phys. (2006) (pulsed laser deposition, resistivity and magnetization measurements)
- D. Rubi, A. Calleja, J. Arbiol, X. G. Capdevila, M. Segarra, L. Aragones, and J. Fontcuberta, Structural and magnetic properties of ZnO:TM (TM: Co,Mn) nanopowders, cond-mat/0608014 (stress importance of defects)
- O. D. Jayakumar, I. K. Gopalakrishnan, K. Shasikala, and S. K. Kulshreshtha, Magnetic properties of Hydrogenated Li and Co doped ZnO nanoparticles, cond-mat/0610145
- O. D. Jayakumar, I. K. Gopalakrishnan, C. Sudakar, R. M. Kadam, and S. K. Kulshreshtha, Significant enhancement of room temperature ferromagnetism in surfactant coated polycrystalline Mn doped ZnO particles, cond-mat/0610170
- H. Pan, J. B. Yi, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Carbon-doped ZnO: A New Class of Room Temperature Dilute Magnetic Semiconductor, cond-mat/0610870 (n-type and intrinsic; shows anomalous Hall effect)
- S. Zhou, K. Potzger, G. Zhang, F. Eichhorn, W. Skorupa, M. Helm, and J. Fassbender, Crystalline Ni nanoparticles as the origin of ferromagnetism in Ni implanted ZnO crystals, cond-mat/0611770
- A. Barla, G. Schmerber, E. Beaurepaire, A. Dinia, H. Bieber, S. Colis, F. Scheurer, J.-P. Kappler, P. Imperia, F. Nolting, F. Wilhelm, A. Rogalev, D. Muller, and J. J. Grob, Paramagnetism of the Co sublattice in ferromagnetic Zn1-xCoxO films, cond-mat/0612181
- S. Zhou, K. Potzger, H. Reuther, K. Kuepper, W. Skorupa, M. Helm, and J. Fassbender, Absence of ferromagnetism in V-implanted ZnO single crystals, cond-mat/0612356, J. Appl. Phys.
- S. Zhou, K. Potzger, H. Reuther, G. Talut, F. Eichhorn, J. von Borany, W. Skorupa, M. Helm, and J. Fassbender, Crystallographically oriented magnetic ZnFe2O4 nanoparticles synthesized by Fe implantation into ZnO, cond-mat/0612444, J. Phys. D: Appl. Phys.
- C. Sudakar, P. Kharel, G. Lawes, R. Suryanarayanan, R. Naik, and V. M. Naik, Raman spectroscopic studies of oxygen defects in Co-doped ZnO films exhibiting room-temperature ferromagnetism, J. Phys.: Condens. Matter 19, 026212 (2007)
- J. Zhang, X. Z. Li, J. Shi, Y. F. Lu, and D. J. Sellmyer, Structure and magnetic properties of Mn-doped ZnO thin films, J. Phys.: Condens. Matter 19, 036210 (2007) (grown by PLD, characterized by x-ray diffraction etc., conclude that ferromagnetism is intrinsic)
- R. P. Borges, R. C. da Silva, S. Magalhaes, M. M. Cruz, and M. Godinho, Magnetism in Ar-implanted ZnO, J. Phys.: Condens. Matter 19, 476207 (2007), see also minor erratum
- S. Riyadi, Muafif, A. A. Nugroho, A. Rusydi, and M. O. Tjia, Mn-dopant-induced effects in Zn1-xMnxO compounds, J. Phys.: Condens. Matter 19, 476214 (2007)
- K. Potzger, S. Zhou, H. Reuther, K. Kuepper, G. Talut, M. Helm, and J. Fassbender, J. D. Denlinger, Suppression of secondary phase formation in Fe implanted ZnO single crystals, Appl. Phys. Lett. 91, 062107 (2007)
- V. Sridharan, S. Banerjee, M. Sardar, S. Dhara, N. Gayathri, and V. S. Sastry, Bulk ferromagnetism and large changes in photoluminescence intensity by magnetic field in beta-Ga2O3, cond-mat/0701232 (ferromagnetism is attributed to dilute oxygen vacancies)
- K. Ueno, T. Fukumura, H. Toyosaki, M. Nakano, and M. Kawasaki, Anomalous Hall effect in anatase Ti1-xCoxO2 at low temperature regime, cond-mat/0701395
- D. Rubi, J. Fontcuberta, A. Calleja, Ll. Aragones, X.G. Capdevila, and M. Segarra, Reversible Ferromagnetic Switching in ZnO:(Co,Mn) Powders, cond-mat/0701473 (clearly showing the importance of defects for ferromagnetism)
- P. Sati, C. Deparis, C. Morhain, S. Schafer, and A. Stepanov, Antiferromagnetic interactions in single crystalline Zn1-xCoxO thin films, cond-mat/0702402; P. Sati, R. Hayn, R. Kuzian, S. Regnier, S. Schafer, A. Stepanov, C. Morhain, C. Deparis, M. Laugt, M. Goiran, and Z. Golacki, Magnetic Anisotropy of Co2+ as Signature of Intrinsic Ferromagnetism in ZnO:Co, cond-mat/0702410
- S. Banerjee, M. Mandal, N. Gayathri, and M. Sardar, Ferromagnetic Curie point above room temperature in bulk ZnO, cond-mat/0702486 (another example of "d0" ferromagnetism) P
- C. E. Rodríguez Torres, F. Golmar, A. F. Cabrera, L. A. Errico, A. M. Mudarra Navarro, M. Rentería, F. H. Sánchez, and S. Duhalde, Magnetic and structural study of Cu-doped TiO2 thin films, cond-mat/0702515 (...is ferromagnetic)
- D. Karmakar, S. K. Mandal, R. M. Kadam, P. L. Paulose, A. K. Rajarajan, T. K. Nath, A. K. Das, I. Dasgupta, and G. P. Das, Ferromagnetism in Fe-doped ZnO Nanocrystals: Experimental and Theoretical investigations, cond-mat/0702525 (experiment and LSDA calculations, suggesting importance of vacancies)
- S. D. Yoon, V. G. Harris, C. Vittoria, and A. Widom, Electronic Transport in the Oxygen Deficient Ferromagnetic Semiconducting TiO2-delta, arXiv:0704.2211 (magnetically active Ti2+ and Ti3+ ions also play a role in transport, carrier density explained by exchange-split valence band and thermal activation)
- A. K Rumaiz, B. Ali, A. Ceylan, M. Boggs, T. Beebe, and S. Ismat Shah, Experimental studies on vacancy induced ferromagnetism in undoped TiO2, arXiv:0704.2621 (suggest Stoner splitting of Ti d-band, which resides close to Fermi energy due to presence of oxygen vacancies)
- S. Banerjee, K. Rajendran, N. Gayathri, M. Sardar, S. Senthilkumar, and V. Sengodan, Quenching of ferromagnetism in bulk ZnO upon Mn doping, arXiv:0704.3541
- D.-Y. Cho, J.-M. Lee, S.-J. Oh, H. Jang, J.-Y. Kim, J.-H. Park, and A. Tanaka, Influence of oxygen vacancy on the electronic structure of HfO2 film, arXiv:0707.2127 (vacancies induce partial occupation of Hf d-shell, but no long-range order)
- T. Dietl, T. Andrearczyk, A. Lipinska, M. Kiecana, M. Tay, and Y. Wu, Origin of ferromagnetism in (Zn,Co)O from magnetization and spin-dependent magnetoresistance, arXiv:0708.2476 (experiment and theory, importance of uncompensated spins at surfaces of clusters)
- T. Matsumura, D. Okuyama, S. Niioka, H. Ishida, T. Satoh, Y. Murakami, H. Toyosaki, Y. Yamada, T. Fukumura, and M. Kawasaki, X-ray Anomalous Scattering of Diluted Magnetic Oxide Semiconductors: Possible Evidence of Lattice Deformation for High Temperature Ferromagnetism, arXiv:0708.3876
- C.-F. Yu, T.-J. Lin, S.-J. Sun, and H. Chou, Origin of Ferromagnetism in nitrogen embedded ZnO:N thin films, arXiv:0708.4053 (discussion in terms of BMP model)
- S. Ghoshal and P. S. Anil Kumar, Suppression of the magnetic moment upon Co doping in ZnO thin film with an intrinsic magnetic moment, J. Phys.: Condens. Matter 20, 192201 (2008)
- Y.-Q. Song, H.-W. Zhang, Q.-Y. Wen, L. Peng, and J. Q. Xiao, Direct evidence of oxygen vacancy mediated ferromagnetism of Co doped CeO2 thin films on Al2O3(0001) substrates, J. Phys.: Condens. Matter 20, 255210 (2008)
- M. Naeem, S. K. Hasanain, S. S. Afgan, and A. Rumaiz, Competing effects of Cu ionic charge and oxygen vacancies on the ferromagnetism of (Zn,Co)O nanoparticles, J. Phys.: Condens. Matter 20, 255223 (2008)
- G.-H. Ji, Z.-B. Gu, M.-H. Lu, D. Wu, S.-T. Zhang, Y.-Y. Zhu, S.-N. Zhu, and Y.-F. Chen, Ferromagnetism in Mn and Sb co-doped ZnO films, J. Phys.: Condens. Matter 20, 425207 (2008)
- F. Zhao, H. M. Qiu, L. Q. Pan, H. Zhu, Y. P. Zhang, Z. G. Guo, J. H. Yin, X. D. Zhao, and J. Q. Xiao, Ferromagnetism analysis of Mn-doped CuO thin films, J. Phys.: Condens. Matter 20, 425208 (2008)
- N. Akdogan, A. Nefedov, K. Westerholt, H. Zabel, H. W. Becker, C. Somsen, R. Khaibullin, and L. Tagirov, Intrinsic room temperature ferromagnetism in Co-implanted ZnO, arXiv:0805.0361
- N. Akdogan, A. Nefedov, H. Zabel, K. Westerholt, H.-W. Becker, C. Somsen, S. Goek, A. Bashir, R. Khaibullin, and L. Tagirov, High temperature ferromagnetism in Co-implanted TiO2 rutile, arXiv:0807.1555 (observe two phases, one ferro- and one superparamagnetic [from clusters])
- N. Akdogan, H. Zabel, A. Nefedov, K. Westerholt, H.-W. Becker, S. Goek, R. Khaibullin, and L. Tagirov, Dose dependence of ferromagnetism in Co-implanted ZnO, arXiv:0807.4711
- S. Zhou, Q. Xu, K. Potzger, G. Talut, R. Grötzschel, J. Fassbender, M. Vinnichenko, J. Grenzer, M. Helm, H. Hochmuth, M. Lorenz, M. Grundmann, and H. Schmidt, Room temperature ferromagnetism in carbon-implanted ZnO, arXiv:0811.3487
- G. S. Chang, E. Z. Kurmaev, D. W. Boukhvalov, L. D. Finkelstein, A. Moewes, H. Bieber, S. Colis, and A. Dinia, Co and Al co-doping for ferromagnetism in ZnO:Co diluted magnetic semiconductors, J. Phys.: Condens. Matter 21 056002 (2009) (experiment and ab-initio calculations)
- M. M. Cruz, R. C. da Silva, N. Franco, and M. Godinho, Ferromagnetism induced in rutile single crystals by argon and nitrogen implantation, J. Phys.: Condens. Matter 21, 206002 (2009) (implanted TiO2)
- Z. H. Zhang, X. Wang, J. B. Xu, S. Muller, C. Ronning, and Q. Li, Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures, Nature Nanotechnology (2009)
- S. Zhou, E. Cizmar, K. Potzger, M. Krause, G. Talut, M. Helm, J. Fassbender, S. A. Zvyagin, J. Wosnitza, and H. Schmidt, Origin of magnetic moments in defective TiO2 single crystals, Phys. Rev. B 79, 113201 (2009) (oxygen-ion irradiation leads to formation of defects providing spins that can order ferromagnetically)
- T. Kataoka, M. Kobayashi, Y. Sakamoto, G. S. Song, A. Fujimori, F.-H. Chang, H.-J. Lin, D. J. Huang, C. T. Chen, T. Ohkochi, Y. Takeda, T. Okane, Y. Saitoh, H. Yamagami, A. Tanaka, S. K. Mandal, T. K. Nath, D. Karmakar, and I. Dasgupta, Electronic structure and magnetism of the diluted magnetic semiconductor Fe-doped ZnO nano-particles, arXiv:0904.1838 (10% Fe, various x-ray techniques, interpretation of ferromagnetic signal in terms of ferrimagnetism: unequal numbers of Fe3+ ions in different lattice positions with antiferromagnetic coupling)
- S. Zhou, K. Potzger, Q. Xu, G. Talut, M. Lorenz, W. Skorupa, M. Helm, J. Fassbender, M. Grundmann, and H. Schmidt, Ferromagnetic transition metal implanted ZnO: a diluted magnetic semiconductor?, arXiv:0907.3536
- V. Fernandes, P. Schio, A. J. A. de Oliveira, W. A. Ortiz, P. Fichtner, L. Amaral, I. L. Graff, J. Varalda, N. Mattoso, W. H. Schreiner, and D. H. Mosca, Ferromagnetism induced by oxygen and cerium vacancies above the percolation limit in CeO2, J. Phys.: Condens. Matter 22, 216004 (2010)
- M. Kobayashi, Y. Ishida, J. I. Hwang, Y. Osafune, A. Fujimori, Y. Takeda, T. Okane, Y. Saitoh, K. Kobayashi, H. Saeki, T. Kawai, and H. Tabata, Indication of antiferromagnetic interaction between paramagnetic Co ions in the diluted magnetic semiconductor Zn1-xCoxO, arXiv:1001.0712
- X. G. Xu, H. L. Yang, Y. Wu, D. L. Zhang, S. Z. Wu, J. Miao, and Y. Jiang, Intrinsic Room Temperature Ferromagnetism in Boron-doped ZnO, arXiv:1003.4423 (experiments and DFT calculations, magnetic moments are attributed to oxygen ions neighboring B-VZn pairs)
- J. M. D. Coey, P. Stamenov, R. D. Gunning, M. Venkatesan, and K. Paul, Ferromagnetism in defect-ridden oxides and related materials, arXiv:1003.5558 (experiment and theory, spin-split defect band)
- N. Akdogan, B. Rameev, S. Guler, O. Ozturk, B. Aktas, H. Zabel, R. Khaibullin, and L. Tagirov, Six-fold in-plane magnetic anisotropy in Co-implanted ZnO (0001), arXiv:1004.4291 (conclude that Co is substituted for Zn and shows long-range order)
- S. K. Srivastava, P. Lejay, B. Barbara, S. Pailhes, and G. Bouzerar, Magnetism without magnetic impurities in SnO2, arXiv:1004.5001
- M. H. N. Assadi, Y. B. Zhang, M. Ionescu, P. Photongkam, and S. Li, Intrinsic Ferromagnetism in Eu doped ZnO, arXiv:1006.3856 (experiments compared to DFT calculations, Eu-ion-implanted ZnO, support defect-based ferromagnetism)
- M. Kapilashrami, J. Xu, K. V. Rao, L. Belova, E. Carlegrim, and M. Fahlman, Experimental evidence for ferromagnetism at room temperature in MgO thin films, J. Phys.: Condens. Matter 22, 345004 (2010) (attributed to defects, effect strongly depends on growth conditions)
- R. Escudero and R. Escamilla, Ferromagnetic Behavior of High Purity ZnO nanoparticles, arXiv:1009.5641 (attributed to oxygen vacancies)
- S. Chattopadhyay, S. K. Neogi, A. Sarkar, M. D. Mukadam, S. M. Yusuf, A. Banerjee, and S. Bandyopadhyay, Defects induced ferromagnetism in Mn doped ZnO, arXiv:1010.0547 (room-temperature ferromagnetism; as a function of milling time, i.e., of disorder, both the resistivity and the saturation magnetization increase)
- M. Khalid, P. Esquinazi, D. Spemann, W. Anwand, and G. Brauer, Hydrogen mediated ferromagnetism in ZnO single crystals, arXiv:1104.1899 (the hydrogen leads to ferromagnetism at room temperature)
- C. E. Rodríguez Torres, F. Golmar, M. Ziese, P. Esquinazi, and S. P. Heluani, Evidence of defect-induced ferromagnetism in ZnFe2O4 thin films, arXiv:1106.3128
- M. Godlewski, E. Guziewicz, M. I. Lukasiewicz, I. A. Kowalik, M. Sawicki, B. S. Witkowski, R. Jakiela, W. Lisowski, J. W. Sobczak, and M. Krawczyk, Role of interface in ferromagnetism of (Zn,Co)O films, arXiv:1107.5188; phys. stat. solidi (b) 248, 1596 (2011) (claim that ferromagnetic response at room temperature is due to cobalt accumulated at the ZnO/substrate interface)
- T. Kataoka, Y. Yamazaki, V. R. Singh, Y. Sakamoto, A. Fujimori, Y. Takeda, T. Ohkochi, S.-I. Fujimori, T. Okane, Y. Saitoh, H. Yamagami, A. Tanaka, M. Kapilashrami, L. Belova, and K. V. Rao, Ferromagnetism in ZnO co-doped with Mn and N studied by soft x-ray magnetic circular dichroism, arXiv:1201.0006, Appl. Phys. Lett. 99, 132508 (2011)
- P. Srivastava, S. Ghosh, B. Joshi, P. Satyarthi, P. Kumar, D. Kanjilal, D. Bürger, S. Zhou, H. Schmidt, A. Rogalev, and F. Wilhelm, Probing origin of room temperature ferromagnetism in Ni ion implanted ZnO films with x-ray absorption spectroscopy, J. Appl. Phys. 111, 013715 (2012)
- M. Naeem and S. K. Hasanain, Role of donor defects in stabilizing room temperature ferromagnetism in (Mn, Co) co-doped ZnO nanoparticles, J. Phys.: Condens. Matter 24, 245305 (2012)
- M. Sawicki, E. Guziewicz, M. I. Lukasiewicz, O. Proselkov, I. A. Kowalik, W. Lisowski, P. Dluzewski, A. Wittlin, M. Jaworski, A. Wolska, W. Paszkowicz, R. Jakiela, B. S. Witkowski, L. Wachnicki, M. T. Klepka, F. J. Luque, D. Arvanitis, J. W. Sobczak, M. Krawczyk, A. Jablonski, W. Stefanowicz, D. Sztenkiel, M. Godlewski, and T. Dietl, Homogenous and heterogeneous magnetism in (Zn,Co)O, arXiv:1201.5268 (quasi-homogeneous and modulated samples, spin-glass behavior, ferromagnetic response is attributed to Co precipitates at the film-substrate interface)
- R. Oja, M. Tyunina, L. Yao, T. Pinomaa, T. Kocourek, A. Dejneka, O. Stupakov, A. Jelinek, V. Trepakov, S. van Dijken, and R. M. Nieminen, d0 Ferromagnetic Interface Between Non-magnetic Perovskites, arXiv:1206.0140 (experiment compared to GGA and GGA+U calculations)
- A. Rusydi, S. Dhar, A. Roy Barman, Ariando, D.-C. Qi, M. Motapothula, J. B. Yi, I. Santoso, Y. P. Feng, K. Yang, Y. Dai, N. L. Yakovlev, J. Ding, A. T. S. Wee, G. Neuber, M. B. H. Breese, M. Rübhausen, H. Hilgenkamp, and T. Venkatesan, Cationic vacancy induced room-temperature ferromagnetism in transparent conducting anatase Ti1-xTaxO2 (x~0.05) thin films, arXiv:1207.3156 (ferromagnetism attributed to Ti-vacancy moments interacting through mobile carriers, based on x-ray absorption spectroscopy)
- R. Karmakar, S. K. Neogi, A. Banerjee, and S. Bandyopadhyay, Structural, Morphological, Optical and Magnetic Property of Mn doped Ferromagnetic ZnO thin film, arXiv:1210.4698
- S. Zhou, K. Potzger, G. Talut, J. von Borany, W. Skorupa, M. Helm, and J. Fassbender, Using x-ray diffraction to identify precipitates in transition metal doped semiconductors, arXiv:1301.0100 (why some nanocrystals might be invisible for x-ray diffraction)
- T. Tietze et al., Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study, Sci. Rep. 5, 8871 (2015) (magnetic volume fraction is strongly correlated with the fraction affected by grain boundaries; DFT: grain boundaries show ferromagnetic coupling)
- R. J. Green, T. Z. Regier, B. Leedahl, J. A. McLeod, X. H. Xu, G. S. Chang, E. Z. Kurmaev, and A. Moewes, Adjacent Fe-Vacancy Interactions as the Origin of Room Temperature Ferromagnetism in (In1-xFex)2O3, Phys. Rev. Lett. 115, 167401 (2015) (RIXS)
Diluted magnetic semiconductors - experiments on other compounds, including d0 systems
- N. Theodoropoulou, A. F. Hebard, S. N. G. Chu, M. E. Overberg, C. R. Abernathy, S. J. Pearton, R. G. Wilson, and J. M. Zavada, Magnetic Properties of Fe- and Mn-Implanted SiC, Electrochem. Solid-State Lett. 4 G119 (2001)
- M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M. B. Huang, F. G. Ramos, G. Agnello, and V. P. LaBella, Above room temperature ferromagnetism in Mn-ion implanted Si, Phys. Rev. B 71, 033302 (2005)
- S. Dhar, L. Pérez, O. Brandt, A. Trampert, K. H. Ploog, J. Keller, and B. Beschoten, Gd-doped GaN: A very dilute ferromagnetic semiconductor with a Curie temperature above 300 K, Phys. Rev. B 72, 245203 (2005) P
- M. A. Scarpulla, B. L. Cardozo, W. M. Hlaing Oo, M. D. McCluskey, and O. D. Dubon, Ferromagnetism in Ga1-xMnxP: evidence for inter-Mn exchange mediated by localized holes within a detached impurity band, cond-mat/0501275
- Y. Shuto, M. Tanaka, and S. Sugahara, Magneto-optical properties of a new group-IV ferromagnetic semiconductor Ge1-xFex grown by low-temperature molecular beam epitaxy, cond-mat/0511328 (having maximum Tc of 170K at the maximum Fe concentration of 10%)
- S. Sugahara, K. L. Lee, S. Yada, and M. Tanaka, Precipitation of amorphous ferromagnetic semiconductor phase in epitaxially grown Mn-doped Ge thin films, cond-mat/0511361 (attribute DMS behavior to amorphous (Ge,Mn) clusters in pure Ge matrix)
- S. Sonoda, I. Tanaka, H. Ikeno, T. Yamamoto, F. Oba, T. Araki, Y. Yamamoto, K. Suga, Y. Nanishi, Y. Akasaka, K. Kindo, and H. Hori, Coexistence of Mn2+ and Mn3+ in ferromagnetic GaMnN, J. Phys.: Condens. Matter 18, 4615 (2006), modified version of cond-mat/0511435 under new title (evidence for room-temperature ferromagnetism in (Ga,Mn)N mediated by carriers in a deep Mn-d impurity band)
- S. Y. Han, J. Hite, G. T. Thaler, R. M. Frazier, C. R. Abernathy, S. J. Pearton, H. K. Choi, W. O. Lee, Y. D. Park, J. M. Zavada, and R. Gwilliam, Effect of Gd implantation on the structural and magnetic properties of GaN and AlN, Appl. Phys. Lett. 88, 042102 (2006) P
- S. Dhara, B. Sundaravel, K. G. M. Nair, R. Kesavamoorthy, M. C. Valsakumar, T. V. Chandrasekhar Rao, L. C. Chen, and K. H. Chen, Ferromagnetism in cobalt doped n-GaN, Appl. Phys. Lett. 88, 173110 (2006)
- T. Dubroca, J. Hack, R. E. Hummel, and A. Angerhofer, Quasiferromagnetism in semiconductors, Appl. Phys. Lett. 88, 182504 (2006) P
- P. R. Bandaru, J. Park, J. S. Lee, Y. J. Tang, L.-H. Chen, S. Jin, S. A. Song, and J. R. O'Brien, Enhanced room temperature ferromagnetism in Co- and Mn-ion-implanted silicon, Appl. Phys. Lett. 89, 112502 (2006) P
- R. G. Wilks, E. Z. Kurmaev, L. M. Sandratskii, A. V. Postnikov, L. D. Finkelstein, T. P. Surkova, S. A. Lopez-Rivera, and A. Moewes, An x-ray emission and density functional theory study of the electronic structure of Zn1-xMnxS, J. Phys.: Condens. Matter 18, 10405 (2006) (no ferromagnetism, but giant Zeeman effect, no information on growth, also contains DFT calculations using the supercell approach)
- P. R. Stone, M. A. Scarpulla, R. Farshchi, I. D. Sharp, E. E. Haller, O. D. Dubon, K. M. Yu, J. W. Beeman, E. Arenholz, J. D. Denlinger, and H. Ohldag, Mn L3,2 X-ray absorption and magnetic circular dichroism in ferromagnetic Ga1-xMnxP, cond-mat/0604003 (grown by ion implantation and pulsed-laser melting, shows similar properties as Mn-doped GaAs)
- S. Marcet et al., Magneto-optical spectroscopy of (Ga,Mn)N epilayers, cond-mat/0604025
- C. Jaeger, C. Bihler, T. Vallaitis, S. T. B. Goennenwein, M. Opel, R. Gross, and M. S. Brandt, Spin glass-like behavior of Ge:Mn, cond-mat/0604041
- S. Yoshii, S. Sonoda, T. Yamamoto, T. Kashiwagi, M. Hagiwara, Y. Yamamoto, Y. Akasaka, K. Kindo, and H. Hori, Evidence for Carrier-Induced High-Tc Ferromagnetism in Mn-doped GaN film, cond-mat/0604674 (Mn concentration 8.2%, room-temperature ferromagnetism, electronic localization and suppression of ferromagnetic order below 10 K); H. Hori, Y. Yamamoto, and S. Sonoda, A possible model to high TC ferromagnetism in Gallium Manganese Nitrides based on resonation properties of impurities in semiconductors, cond-mat/0607708 (with some theoretical discussion based on double-exchange model)
- P. R. Stone, M. A. Scarpulla, R. Farshchi, I. D. Sharp, J. W. Beeman, K. M. Yu, E. Arenholz, J. D. Denlinger, E. E. Haller, and O. D. Dubon, Mn L3,2 X-ray Absorption Spectroscopy And Magnetic Circular Dichroism In Ferromagnetic (Ga,Mn)P, cond-mat/0607393, Proceedings of ICPS-28
- R. Farshchi, M. A. Scarpulla, P. R. Stone, K. M. Yu, I. D. Sharp, J. W. Beeman, H. H. Silvestri, L. A. Reichertz, E. E. Haller, and O. D. Dubon, Compositional tuning of ferromagnetism in Ga1-xMnxP, cond-mat/0608133 (material is produced by ion implantation followed by laser melting and is always found to be insulating; the acceptor gap is found to shrink with increasing x)
- S. Sonoda, I. Tanaka, F. Oba, H. Ikeno, H. Hayashi, T. Yamamoto, Y. Yuba, K. Yoshida, M. Aoki, M. Asari, Y. Akasaka, K. Kindo, and H. Hori, Awaking of ferromagnetism in GaMnN through control of Mn valence, cond-mat/0608653 (conclude that Mn2+/3+ mixed valence is crucial for ferromagnetism in (Ga,Mn)N)
- S. Ahlers, D. Bougeard, N. Sircar, G. Abstreiter, A. Trampert, M. Opel, and R. Gross, Magnetic and structural properties of GeMn films: precipitation of intermetallic nanomagnets, cond-mat/0611241, Phys. Rev. B 74 (2006) (5% Mn, find precipitates of ferromagnetic Mn5Ge3, superparamagnetism, study blocking temperature); D. Bougeard, S. Ahlers, A. Trampert, N. Sircar, and G. Abstreiter, Clustering in a precipitate free GeMn magnetic semiconductor, cond-mat/0611245, Phys. Rev. Lett. (2006) (5% Mn, no precipitates, but clusters with higher substitutional Mn concentration, no ferromagnetic long-range order, but superparamagnetism)
- A. Bonanni, M. Kiecana, C. Simbrunner, Tian Li, M. Sawicki, M. Wegscheider. M. Quast, H. Przybylinska, A. Navarro-Quezada, A. Wolos, W. Jantsch, and T. Dietl, Paramagnetic GaN:Fe and ferromagnetic (Ga,Fe)N - relation between structural, electronic, and magnetic properties, cond-mat/0612200, Phys. Rev. B
- S. Zhou, K. Potzger, G. Zhang, A. Muecklich, F. Eichhorn, N. Schell, R. Groetzschel, B. Schmidt, W. Skorupa, M. Helm, J. Fassbender, and D. Geiger, Structural and magnetic properties of Mn-implanted Si, cond-mat/0612612, Phys. Rev. B (Mn is incorporated as MnSi1.7 clusters, not substitutionally)
- S. H. Song, M. H. Jung, and S. H. Lim, Spin glass behaviour of amorphous Ge-Mn alloy thin films, J. Phys.: Condens.Matter 19, 036211 (2007)
- J. M. Zavada, N. Nepal, C. Ugolini, J. Y. Lin, H. X. Jiang, R. Davies, J. Hite, C. R. Abernathy, S. J. Pearton, E. E. Brown, and U. Hömmerich , Optical and magnetic behavior of erbium-doped GaN epilayers grown by metal-organic chemical vapor deposition, Appl. Phys. Lett. 91, 054106 (2007) (very small magnetic moment per Er dopant)
- M. A. Khaderbad, S. Dhar, L. Pérez, K. H. Ploog, A. Melnikov, and A. D. Wieck, Effect of annealing on the magnetic properties of Gd focused ion beam implanted GaN, Appl. Phys. Lett. 91, 072514 (2007)
- W. Pacuski, D. Ferrand, J. Cibert, J. A. Gaj, A. Golnik, P. Kossacki, S. Marcet, E. Sarigiannidou, and H. Mariette, Excitonic giant Zeeman effect in GaN:Mn3+, cond-mat/0703041 (find ferromagnetic hole-local moment exchange interaction)
- J. I. Hwang, Y. Osafune, M. Kobayashi, K. Ebata, Y. Ooki, Y. Ishida, A. Fujimori, Y. Takeda, T. Okane, Y. Saitoh, K. Kobayashi, and A. Tanaka, Depth profile high-energy spectroscopic study of Mn-doped GaN prepared by thermal diffusion, cond-mat/0703429 (found to be similar to MBE-grown samples; weak ferromagnetism for p-type GaN substrate)
- C. Bihler, M. Kraus, M. S. Brandt, S.T.B. Goennenwein, M. Opel, M. A. Scarpulla, R. Farshchi, and O. D. Dubon, Suppression of hole-mediated ferromagnetism in GaMnP by hydrogen, arXiv:0707.2777
- P. R. Stone, J. W. Beeman, K. M. Yu, and O. D. Dubon, Tuning of ferromagnetism through anion substitution in Ga-Mn-pnictide ferromagnetic semiconductors, arXiv:0707.4490 (anion substitution is found to decrease Tc)
- W. Pacuski, P. Kossacki, D. Ferrand, A. Golnik, J. Cibert, M. Wegscheider, A. Navarro-Quezada, A. Bonanni, M. Kiecana, M. Sawicki, and T. Dietl, Observation of strong-coupling effects in a diluted magnetic semiconductor (Ga,Fe)N, arXiv:0708.3296
- G. Mihaly, M. Csontos, S. Bordacs and I. Kezsmarki, T. Wojtowicz, X. Liu, B. Janko, and J. K. Furdyna, Anomalous Hall effect in (In,Mn)Sb dilute magnetic semiconductor, arXiv:0709.0059
- M. S. Seehra, P. Dutta, S. Neeleshwar, Y.-Y. Chen, C. L. Chen, S. W. Chou, C. C. Chen, C.-L. Dong, and C.-L. Chang, Size-Controlled Ex-nihilo Ferromagnetism in Capped CdSe Quantum Dots, Adv. Mat. 20, 1656 (2008) (room-temperature ferromagnetism without magnetic dopants, attributed to effect of capping)
- A. Ney, R. Rajaram, T. Kammermeier, V. Ney, S. Dhar, K. H. Ploog, and S. S. P. Parkin, Metastable magnetism and memory effects in dilute magnetic semiconductors, J. Phys.: Condens. Matter 20, 285222 (2008) (ferromagnetic response is partially metastable and shows memory effects; for MBE-grown Cr:InN and Gd:GaN) P
- A. Geresdi, A. Halbritter, M. Csontos, Sz. Csonka, G. Mihaly, T. Wojtowicz, X. Liu, B. Janko, and J. K. Furdyna, Nanoscale spin-polarization in dilute magnetic semiconductor (In,Mn)Sb, arXiv:0801.1464
- M. Vladimirova, S. Cronenberger, P. Barate, D. Scalbert, F. J. Teran, and A. P. Dmitriev, Two kinds of spin precession modes in diluted magnetic semiconductors, arXiv:0801.4756 (Kerr measurements on II-VI DMS (Cd,Mn)Te showing that some Mn spins decouple from the electron system while others do not)
- S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, and T. Dietl, Origin and control of high-temperature ferromagnetism in semiconductors, arXiv:0804.0322 (ferromagnetism in (Zn,Cr)Te is attributed to Cr-rich inclusions)
- S. D. Ganichev, S. A. Tarasenko, V. V. Bel'kov, P. Olbrich, W. Eder, D. R. Yakovlev, V. Kolkovsky, W. Zaleszczyk, G. Karczewski, T. Wojtowicz, and D. Weiss, Spin currents in diluted magnetic semiconductors, arXiv:0811.4327 (Mn-doped II-VI heterostructures)
- O. Sancho-Juan, A. Cantarero, N. Garro, A. Cros, G. Martinez-Criado, M. Salome, J. Susini, D. Olguin, and S. Dhar, X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC, J. Phys.: Condens. Matter 21, 295801 (2009)
- M. Rovezzi, F. D'Acapito, A. Navarro-Quezada, B. Faina, T. Li, A. Bonanni, F. Filippone, A. A. Bonapasta, and T. Dietl, Local structure of (Ga,Fe)N and (Ga,Fe)N:Si investigated by x-ray absorption fine structure spectroscopy, arXiv:0902.4614 (experiments and DFT)
- A. Lipinska, C. Simserides, K. N. Trohidou, M. Goryca, P. Kossacki, A. Majhofer, and T. Dietl, Ferromagnetic properties of p-(Cd,Mn)Te quantum wells: Interpretation of magneto-optical measurements by Monte Carlo simulations, arXiv:0903.0406 (experiment and theory)
- W. Münzer, A. Neubauer, S. Mühlbauer, C. Franz, T. Adams, F. Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch, and C. Pfleiderer, Skyrmion Lattice in a Doped Semiconductor, arXiv:0903.2587 (small-angle neutron scattering on (Fe,Co)Si, note relationship to MnSi)
- O. Riss, A. Gerber, I. Ya. Korenblit, A. Suslov, M. Passacantando, and L. Ottaviano, Magnetization driven metal - insulator transition in strongly disordered Ge:Mn magnetic semiconductors, arXiv:0903.5423
- D. Wang, X. Y. Zhang, J. Wang, S. Q. Wei, W. S. Yan, and D. W. Boukhvalov, Mn clusterisation in Ga1-xMnxN, arXiv:0905.4158 (x-ray absorption spectroscopy, nanocluster formation, also DFT calculations)
- E. Cuervo-Reyes, E. D. Stalder, C. Mensing, S. Budnyk, and R. Nesper, Unexpected Ferromagnetism in Alkaline-Earth Silicides, arXiv:0909.0434
- V. N. Krivoruchko, V. Yu. Tarenkov, D. V. Varyukhin, A. I. D'yachenko, O. N. Pashkova, and V. A. Ivanov, Unconventional ferromagnetism and transport properties of (In,Mn)Sb dilute magnetic semiconductor, arXiv:0909.2407 (polycrystalline samples, observe hysteresis at room temperature)
- S. Zhou, D. Buerger, M. Helm, and H. Schmidt, Anomalous Hall resistance in Ge:Mn systems with low Mn concentrations, arXiv:0910.1981
- S. Guo, D. P. Young, R. T. Macaluso, D. A. Browne, N. L. Henderson, J. Y. Chan, L. L. Henry, and J. F. DiTusa, Magnetic and thermodynamic properties of cobalt doped iron pyrite: Griffiths Phase in a magnetic semiconductor, arXiv:0912.2960; Kondo effect and absence of quantum interference effects in the charge transport of cobalt doped iron pyrite, arXiv:0912.2980
- Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Development of ferromagnetism in the doped topological insulator Bi2-xMnxTe3, Phys. Rev. B 81, 195203 (2010), see also synopsis (making a topological insulator into a diluted magnetic semiconductor by manganese doping)
- W. Stefanowicz, D. Sztenkiel, B. Faina, A. Grois, M. Rovezzi, T. Devillers, A. Navarro-Quezada, T. Li, R. Jakiela, M. Sawicki, T. Dietl, and A. Bonanni, Structural and paramagnetic properties of dilute Ga1-xMnxN, Phys. Rev. B 81, 235210 (2010) (high quality films with up to 1% Mn grown by MOVD, paramagnetic; title changed compared to preprint)
- S. Zhou, D. Bürger, W. Skorupa, P. Oesterlin, M. Helm, and H. Schmidt, The importance of hole concentration in establishing carrier-mediated ferromagnetism in Mn doped Ge, Appl. Phys. Lett. 96, 202105 (2010)
- R. P. Davies, B. P. Gila, C. R. Abernathy, S. J. Pearton, and C. J. Stanton, Defect-enhanced ferromagnetism in Gd- and Si-coimplanted GaN, Appl. Phys. Lett. 96, 212502 (2010)
- A. Navarro-Quezada, W. Stefanowicz, Tian Li, B. Faina, M. Rovezzi, R. T. Lechner, T. Devillers, F. d'Acapito, G. Bauer, M. Sawicki, T. Dietl, and A. Bonanni, Embedded magnetic phases in (Ga,Fe)N: the key role of growth temperature, arXiv:1001.5418
- C. King, J. Zemen, K. Olejník, L. Horák, J. Haigh, V. Novák, J. Kucera, V. Holy, R. P. Campion, B. L. Gallagher, and T. Jungwirth, Strain control of magnetic anisotropy in (Ga,Mn)As microbars, arXiv:1007.2766 (experiment and theory/simulation, suggesting that the anisotropy is magnetocrystaline in origin)
- Y. H. Zhang, Z. Y. Lin, F. F. Zhang, X. L. Yang, D. Li, Z. T. Chen, G. J. Lian, Y. Z. Qian, X. Z. Jiang, T. Dai, Z. C. Wen, B. S. Han, C. D. Wang, and G. Y. Zhang, Confirmation of room-temperature long range magnetic order in GaN:Mn, arXiv:1011.3937
- B. A. Aronzon, V. V. Rylkov, S. N. Nikolaev, V. V. Tugushev, S. Caprara, V. V. Podolskii, V. P. Lesnikov, A. Lashkul, R. Laiho, R. R. Gareev, N. S. Perov, and A. S. Semisalova, Room temperature ferromagnetism and anomalous Hall effect in Si1-xMnx (x approx 0.35) alloys, arXiv:1012.1172
- T. Jungwirth, V. Novak, X. Marti, M. Cukr, F. Maca, A. B. Shick, J. Masek, P. Horodyska, P. Nemec, V. Holy, J. Zemek, P. Kuzel, I. Nemec, B. L. Gallagher, R. P. Campion, C. T. Foxon, and J. Wunderlich, Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds, Phys. Rev. B 83, 035321 (2011), significantly changed compared to preprint arXiv:1007.0177 (experiment and theory for a new class of antiferromagnetic I-Mn-V compounds, for example LiMnAs; isostructural to LiFeAs); see also Viewpoint: R. J. Cava, Physics 4, 7 (2011)
- L. Li, S. Prucnal, S. D. Yao, K. Potzger, W. Anwand, A. Wagner, and S. Zhou, Rise and fall of defect induced ferromagnetism in SiC single crystals, Appl. Phys. Lett. 98, 222508 (2011), also arXiv:1106.0966 (Ne+ irradiation, magnetic moments attributed to divacancies, note that magnetic moment per divacancy is about 18 Bohr magnetons)
- M. Roever, J. Malindretos, A. Bedoya-Pinto, A. Rizzi, C. Rauch, and F. Tuomisto, Tracking defect-induced ferromagnetism in GaN:Gd, arXiv:1103.4256 (oxygen codoping helps ferromagnetism)
- P. N. Hai, L. D. Anh, and M. Tanaka, Iron-based n-type electron-induced ferromagnetic semiconductor, arXiv:1106.0561 (InAs doped with Fe to provide magnetic moments and codoped with Be at low growth temperature, acting as donors and leading to an n-type DMS)
- M. Sawicki, T. Devillers, S. Ga{\l}\c{e}ski, C. Simserides, S. Dobkowska, B. Faina, A. Grois, A. Navarro-Quezada, K. N. Trohidou, J. A. Majewski, T. Dietl, and A. Bonanni, Origin of low-temperature magnetic ordering in Ga1-xMnxN, arXiv:1202.6233 (low Curie temperatures; also theory assuming Mn3+ charge state and isotropic effective exchange interaction, derive the isotropic exchange coupling from tight-binding model)
- K. Zhao et al., New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the '122' iron-based superconductors, Nature Commun. 4, 1442 (2013) (Ba1-xKx(Zn1-yMny)2 As2)
- S. Stefanowicz, G. Kunert, C. Simserides, J. A. Majewski, W. Stefanowicz, C. Kruse, S. Figge, Tian Li, R. Jakiela, K. N. Trohidou, A. Bonanni, D. Hommel, M. Sawicki, and T. Dietl, Phase diagram and critical behavior of the random ferromagnet Ga1-xMnxN, arXiv:1306.5141
- D. L. Binh, B. J. Ruck, F. Natali, H. Warring, H. J. Trodahl, E.-M. Anton, C. Meyer, L. Ranno, F. Wilhelm, and A. Rogalev, Europium nitride: A novel diluted magnetic semiconductor, arXiv:1306.5477 (substoichiometric with some Eu in magnetic 2+ state, hence diluted)
- L. Duc Anh, P. Nam Hai, and M. Tanaka, Control of ferromagnetism by manipulating the carrier wavefunction in ferromagnetic semiconductor (In,Fe)As quantum wells, arXiv:1309.5283 (n-doped material, surprisingly large exchange coupling)
Non-diluted magnetic semiconductors - experiments
- N. Naresh and R. N. Bhowmik, Synthesis and study of alpha-Fe1.4Ga0.6O3: An advanced Ferromagnetic Semiconductor, arXiv:1104.1982 (ferromagnetic at room temperature, direct-gap semiconductor, gap above 2eV[?])
- S. Ouardi, G. H. Fecher, C. Felser, and J. Kübler, Realization of Spin Gapless Semiconductors: The Heusler Compound Mn2CoAl, Phys. Rev. Lett. 110, 100401 (2013) (gap exists for one spin direction, metallic for the other, ferromagnetic with Curie temperature 720 K)
Diluted magnetic semiconductors - model-based theory
- T. Mizokawa and A. Fujimori, p-d exchange interaction for 3d transition-metal impurities in II-VI semiconductors, Phys. Rev. B 56, 6669 (1997) (calculate exchange interaction of various 3d impurities in ZnS and ZnSe within configuration-interaction scheme)
- T. Jungwirth, W. A. Atkinson, B. H. Lee, and A. H. MacDonald, Interlayer coupling in ferromagnetic semiconductor superlattices, Phys. Rev. B 59, 9818 (1999) (the first paper on DMS from this group)
- M. P. Kennett, M. Berciu, and R. N. Bhatt, Monte Carlo simulations of an impurity-band model for III-V diluted magnetic semiconductors, Phys. Rev. B 66, 045207 (2002)
- J. Fabian, I. Zutic, and S. Das Sarma, Theory of spin-polarized bipolar transport in magnetic p-n junctions, Phys. Rev. B 66, 165301 (2002)
- D. Bodea, M. Crisan, I. Grosu, and I. Tifrea, Non-Fermi liquid behavior of the electrical resistivity at the ferromagnetic quantum critical point, cond-mat/0207712
- S.-R. E. Yang, J. Sinova, T. Jungwirth, Y. P. Shim, and A. H. MacDonald, Non-Drude optical conductivity of (III,Mn)V ferromagnetic semiconductors, Phys. Rev. B 67, 045205 (2003) (supercell calculation employing six-band Kohn-Luttinger Hamiltonian, Coulomb potential of Mn acceptors [with central-cell correction] and antisites, exchange with frozen, aligned Mn spins, Hartree potential, resulting in suppression of Drude peak relative to inter-valence-band peak)
- P. M. Krstajic, F. M. Peeters, V. A. Ivanov, V. Fleurov, and K. Kikoin, Double-exchange mechanisms for Mn-doped III-V ferromagnetic semiconductors, Phys. Rev. B 70, 195215 (2004) (this work really favors Zener kinetic exchange)
- E. H. Hwang and S. Das Sarma, Transport properties of diluted magnetic semiconductors: Dynamical mean-field theory and Boltzmann theory, Phys. Rev. B 72, 035210 (2005)
- G. Bouzerar, T. Ziman, and Josef Kudrnovský, Compensation, interstitial defects, and ferromagnetism in diluted ferromagnetic semiconductors, Phys. Rev. B 72, 125207 (2005) (ab-initio calculations are used to reduce the system in the presence of Mn interstitials or As antisites to an effective Heisenberg model, which is then solved by a new RPA-based approximation)
- S.-S. Feng and Mogus Mochena, Ground-state properties and molecular theory of Curie temperature in the coherent potential approximation of diluted magnetic semiconductors, cond-mat/0509589; Ferromagnetism of Ga1-xMnxAs and Weiss theory of Curie temperature in the coherent potential approximation, cond-mat/0511320 Q
- R. Bouzerar, G. Bouzerar, and T. Ziman, Why RKKY exchange integrals are inappropriate to describe ferromagnetism in diluted magnetic semiconductors, cond-mat/0512540, Phys. Rev. B P
- D. J. Priour, Jr. and S. Das Sarma, Phase Diagram of the Disordered RKKY Model in Dilute Magnetic Semiconductors, Phys. Rev. Lett. 97, 127201 (2006) (for the free-electron RKKY expression, in fact of more general interest than the title suggests) P; R. Bouzerar, G. Bouzerar, and T. Ziman, Comment, cond-mat/0609631
- A. K. Nguyen, R. V. Shchelushkin, and A. Brataas, Intrinsic Domain Wall Resistance in Ferromagnetic Semiconductors, cond-mat/0601436
- F. Popescu, Y. Yildirim, G. Alvarez, A. Moreo, E. Dagotto, Critical Temperatures of a Two-Band Model for Diluted Magnetic Semiconductors, cond-mat/0601593, Phys. Rev. B (the two bands represent the light and heavy holes, the approach is DMFT, Coulomb attraction by acceptors is not included, thereby neglecting the dominant energy of impurity states)
- E. Z. Meilikhov and R. M. Farzetdinova, Quasi-Two Dimensional Diluted Magnetic Semiconductors with Arbitrary Carrier Degeneracy, cond-mat/0602416 (RKKY interaction, close to Dietl's MF/VCA approach)
- G. Bouzerar and T. Ziman, Model for vacancy-induced d0 ferromagnetism in oxide compounds, cond-mat/0603022, Phys. Rev. Lett. (vacancies can induce magnetic moments at neighboring oxygen ions)
- H. Raebiger, M. Ganchenkova, and J. von Boehm, Diffusion and clustering of substitutional Mn in (Ga,Mn)As, see next section
- M. J. Calderón and S. Das Sarma, On the physical origin of ferromagnetism in dilute magnetic oxides, cond-mat/0603182 (discussing RKKY interaction and magnetic polaron percolation) P
- V. A. Stephanovich, Theory of domain structure in ferromagnetic phase of diluted magnetic semiconductors near the phase transition temperature, cond-mat/0603676
- R. G. Melko, R. S. Fishman, and F. A. Reboredo, A single layer of Mn in a GaAs quantum well: a ferromagnet with quantum fluctuations, cond-mat/0604288
- R. Oszwaldowski, J. A. Majewski, and T. Dietl, Influence of band structure effects on domain-wall resistance in diluted ferromagnetic semiconductors, cond-mat/0605230
- K. Kikoin and V. Fleurov, Superexchange in Dilute Magnetic Dielectrics: Application to (Ti,Co)O2, cond-mat/0605242
- J.-M. Tang, J. Levy, and M. E. Flatté, All-electrical control of single ion spins in a semiconductor, quant-ph/0605203 (exploiting the coupling between local spins and electronic spin and orbital angular momenta in the ground state, some similarity to ideas for all-electric control of molecular spins)
- A. K. Nguyen, H. J. Skadsem, and A. Brataas, Giant current-driven domain wall mobility in (Ga,Mn)As, cond-mat/0606498 (strong spin-orbit coupling enhances the domain-wall mobility by four orders of magnitude)
- G. Bouzerar, R. Bouzerar, J. Kudrnovský, and T. Ziman, Comparison between ab-initio and phenomenological modeling of the exchange couplings in diluted magnetic semiconductors: the case of Zn1-xCrxTe, cond-mat/0606523, phys. stat. sol. (LDA is used to map system onto effective Heisenberg model, then the authors' RPA-based theory is applied to study the stability of ferromagnetism)
- F. V. Kyrychenko and C. A. Ullrich, Enhanced carrier scattering rates in dilute magnetic semiconductors with correlated impurities, cond-mat/0607177
- S.-J. Sun and H.-H. Lin, Softening of Spin-Wave Stiffness near the Ferromagnetic Phase Transition in Diluted Magnetic Semiconductors, cond-mat/0607201, Euro. Phys. J. B 49, 403 (2006)
- P. Sankowski, P. Kacman, J. A. Majewski, and T. Dietl, Spin-dependent tunneling in modulated structures of (Ga,Mn)As, cond-mat/0607206 (heterostructures, tight-binding and Landauer theory)
- A. Singh, S. K. Das, A. Sharma, and W. Nolting, Spin dynamics in the diluted ferromagnetic Kondo lattice model, cond-mat/0607633 (Zener model, RPA for interaction of local spins, very strong compensation, acceptors are electrically inert or repel holes, thus of limited relevance for DMS) P
- R. Bouzerar, G. Bouzerar, and T. Ziman, Non-perturbative Jpd model and ferromagnetism in dilute magnets, cond-mat/0607640 (Zener model plus local Coulomb potential of acceptors, RPA-like treatment)
- W. Zhang, T. Dong, and A. O. Govorov, Electronic states in a magnetic quantum-dot molecule: phase transitions and spontaneous symmetry breaking, cond-mat/0608284 (double quantum dot made of DMS, change in symmetry of ground state)
- G. Tang and W. Nolting, Effects of dilution and disorder on magnetism in diluted spin systems, cond-mat/0608418, physica status solidi (b) (Heisenberg model, supercell, Tyablikov decoupling)
- C. Sliwa and T. Dietl, Magnitude and crystalline anisotropy of hole magnetization in (Ga,Mn)As, cond-mat/0609128
- G. Bouzerar, Magnetic spin excitations in diluted ferromagnetic systems: the case of Ga1-xMnxAs, cond-mat/0610465
- A. D. Giddings, T. Jungwirth, and B. L. Gallagher, Interlayer exchange coupling in (Ga,Mn)As based multilayers, cond-mat/0610696, physica status solidi (c) (mean-field theory, addressing the question whether the interlayer coupling can be antiferromagnetic)
- M. J. Calderon and S. Das Sarma, Re-entrant ferromagnetism in a generic class of diluted magnetic semiconductors, cond-mat/0611384 (based on the interplay between RKKY in valence band and impurity band, but results are given for x above 10%)
- N. Bulut, K. Tanikawa, S. Takahashi, and S. Maekawa, Long-range ferromagnetic correlations between Anderson impurities in a semiconductor host, cond-mat/0611641 (QMC simulations for two impurities, simple band structure)
- H. G. Roberts, S. Crampin, and S. J. Bending, Anisotropic magnetoresistance contribution to measured domain wall resistances of in-plane magnetised (Ga,Mn)As, cond-mat/0611780
- G. Tang and W. Nolting, Carrier induced ferromagnetism in diluted local-moment systems, cond-mat/0612611
- Y. Yildirim, G. Alvarez, A. Moreo, and E. Dagotto, Large-Scale Monte Carlo Study of a Realistic Lattice Model for Ga1-xMnxAs, Phys. Rev. Lett. 99, 057207 (2007) (supercomputer-based simulations, tight-binding model reducing to a 6-band KL Hamiltonian at small wave vectors, purely local hole-Mn exchange, disordered Mn positions, but no Coulomb disorder); G. Bouzerar and R. Bouzerar, Comment, arXiv:0712.3368 (claiming that the original paper used an unrealistically small value for the pd-exchange interaction and misrepresented experimental results); S. Barthel, G. Czycholl, and G. Bouzerar, Origins of shortcomings in recent realistic multiband Monte-Carlo studies for GaMnAs, arXiv:1107.4694 (further critique of the Moreo/Dagotto MC results)
- A. G. Petukhov, I. Zutic, and S. C. Erwin, Thermodynamics of Carrier-Mediated Magnetism in Semiconductors, Phys. Rev. Lett. 99, 257202 (2007) (assuming bound donor states with vanishing overlap, no acceptors, and neutral magnetic impurities; temperature-driven change in free-carrier concentration leads to non-monotonic and reentrant magnetization, suggested to apply to EuO:Gd)
- M. J. Schmidt, K. Pappert, C. Gould, G. Schmidt, R. Oppermann, and L. W. Molenkamp, Bound-hole states in a ferromagnetic (Ga,Mn)As environment, Phys. Rev. B 76, 035204 (2007) (note: the arXiv entry has an incorrect reference to the published paper)
- F. Popescu, C. Sen, E. Dagotto, and A. Moreo, Crossover from impurity to valence band in diluted magnetic semiconductors: Role of Coulomb attraction by acceptors, Phys. Rev. B 76, 085206 (2007) (simple band, local Coulomb potential of magnetic acceptors [Eq. (5) is the phenomenological doping dependence], which surprisingly is found to be repulsive for some parameters, no other impurities, GaMnAs at normal dopings found to be clearly in the merged-band regime, unlike GaMnN; mostly uses DMFT, but also MC for classical impurity spins on a 43 supercell)
- T. Jungwirth, J. Sinova, A. H. MacDonald, B. L. Gallagher, V. Novák, K. W. Edmonds, A. W. Rushforth, R. P. Campion, C. T. Foxon, L. Eaves, E. Olejník, J. Mašek, S.-R. Eric Yang, J. Wunderlich, C. Gould, L. W. Molenkamp, T. Dietl, and H. Ohno, Character of states near the Fermi level in (Ga,Mn)As: Impurity to valence band crossover, Phys. Rev. B 76, 125206 (2007) (discuss the evidence for the valence-band picture for Mn doping above 2%)
- R. Oszwaldowski, J. A. Majewski, and T. Dietl, Theory of Spin Transport Across Domain-Walls in (Ga,Mn)As, cond-mat/0701398
- E. Dias Cabral, M. A. Boselli, A. T. da Cunha Lima, A. Ghazali (posthumous), and I. C. da Cunha Lima, On the nature of the spin-polarized hole states in a quasi-two-dimensional GaMnAs ferromagnetic layer, cond-mat/0702053
- J. Fernandez-Rossier and R. Aguado, Mn-doped II-VI quantum dots: artificial molecular magnets, cond-mat/0702139, physica status solidi (c) 3, 3734 (2006)
- B. Lee, X. Cartoixa, N. Trivedi, and R. M. Martin, Disorder Enhanced Spin Polarization in Diluted Magnetic Semiconductors, cond-mat/0702567 (merged, but distinct impurity band, metallic with large effective mass) P
- T. Dietl, Hole states in wide band-gap diluted magnetic semiconductors and oxides, cond-mat/0703278
- R. S. Fishman, F. A. Reboredo, A. Brandt, and J. Moreno, Nature of the Perpendicular-to-Parallel Spin Reorientation in a Mn-doped GaAs Quantum Well: Canting or Phase Separation?, cond-mat/0703436
- F. V. Kyrychenko and C. A. Ullrich, Memory function formalism approach to electrical conductivity and optical response of dilute magnetic semiconductors, arXiv:0704.2061
- J. Kudrnovsky, V. Drchal, G. Bouzerar, and R. Bouzerar, Ordering effects in diluted magnetic semiconductors, arXiv:0707.3079 (mapping of ab-initio results to effective models for dopant positions and magnetism; predict clustering in (Ga,Mn)As, emphasize importance of spatial disorder)
- B. L. Sheu, R. C. Myers, J.-M. Tang, N. Samarth, D. D. Awschalom, P. Schiffer, and M. E. Flatté, Onset of ferromagnetism in low-doped GaMnAs, arXiv:0708.1063
- A. Moreo, Y. Yildirim, and G. Alvarez, Multi-Orbital Lattice Model for (Ga,Mn)As and Other Lightly Magnetically Doped Zinc-Blende-Type Semiconductors, arXiv:0710.0577
- T. Dietl, Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors, arXiv:0712.1293, J. Phys. Soc. Jpn. (review and discussion of observed localization behaviour in II-VI and III-V DMS)
- C. Sliwa and T. Dietl, Electron-hole contribution to the apparent s-d exchange interaction in III-V diluted magnetic semiconductors, Phys. Rev. B 78, 165205 (2008) (highly dilute n-type and p-type DMS)
- L.-F. Arsenault, B. Movaghar, P. Desjardins, and A. Yelon, Transport in the metallic regime of Mn doped III-V Semiconductors, arXiv:0801.1840 (CPA); Transport in the insulating regime of Mn doped III-V Semiconductors, arXiv:0802.1344 (valence-band picture, say that extended states at the mobility edge dominate over variable-range hopping)
- J. Chovan and I. E. Perakis, Femtosecond Control of the Magnetization in Ferromagnetic Semiconductors, arXiv:0801.4641 (Lindblad formalism)
- C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Quantum Anomalous Hall Effect in Hg1-yMnyTe Quantum Wells, arXiv:0802.2711
- B. Gu, N. Bulut, and S. Maekawa, Effects of the crystal structure on the ferromagnetic correlations in ZnO with magnetic impurities, arXiv:0804.3436
- M. D. Kapetanakis and I. E. Perakis, Spin dynamics in (III,Mn)V ferromagnetic semiconductors: the role of correlations, arXiv:0805.1320
- M. Turek, J. Siewert, and J. Fabian, Electronic and optical properties of ferromagnetic GaMnAs in a multi-band tight-binding approach, arXiv:0805.4350
- J.-M. Tang and M. E. Flatté, Magnetic circular dichroism from the impurity band in III-V diluted magnetic semiconductors, arXiv:0806.1753 (based on tight-binding theory developed by the authors, conceptually based on weak-doping/impurity-band limit, calculations are done at about 2% Mn concentration)
- J. Hellsvik, B. Skubic, L. Nordström, B. Sanyal, O. Eriksson, P. Nordblad, and P. Svedlindh, Dynamics of diluted magnetic semiconductors from atomistic spin dynamics simulations: Mn doped GaAs as a case study, arXiv:0809.5187 (effective isotropic Heisenberg Hamiltonian on large supercells with exchange interaction extracted from DFT calculations by J. Kudrnovsky, Landau-Lifshitz-Gilbert equation plus noise to include temperature)
- B. Gu, N. Bulut, T. Ziman, and S. Maekawa, Possible d0 ferromagnetism in MgO doped with nitrogen, arXiv:0812.1836
- C. P. Moca, B. L. Sheu, N. Samarth, P. Schiffer, B. Janko, and G. Zarand, Scaling Analysis of Magnetoresistance and Carrier Localization in Ga1-xMnxAs, Phys. Rev. Lett. 102, 137203 (2009), arXiv:0705.2016 (use scaling theory of localization, concentrate on the average resistivity of cells of the size of the phase correlation length, unlike Timm, Raikh, and von Oppen, who consider the fluctuations) P
- F. V. Kyrychenko and C. A. Ullrich, Transport and optical conductivity in dilute magnetic semiconductors, J. Phys.: Condens. Matter 21, 084202 (2009) (many-particle theory treating disorder and electron-electron interaction on equal footing); Temperature-dependent resistivity of ferromagnetic GaMnAs: Interplay between impurity scattering and many-body effects, arXiv:0906.3526 (memory-function formalism and TDDFT: scattering of carriers off magnetic fluctuations is important for DC transport)
- I. Garate, J. Sinova, T. Jungwirth, and A. H. MacDonald, Theory of weak localization in ferromagnetic (Ga,Mn)As, Phys. Rev. B 79, 155207 (2009) P
- M. Turek, J. Siewert, and J. Fabian, Magnetic circular dichroism in GaxMn1-xAs: Theoretical evidence for and against an impurity band, Phys. Rev. B 80, 161201(R) (2009) (tight-binding models, conclude that both in the presence and absence of an impurity band the magnetic circular dichroism is positive so that it does not represent a conclusive test)
- L.-F. Zhu and B.-G. Liu, Curie temperatures of cubic (Ga, Mn)N diluted magnetic semiconductors from the RKKY spin model, J. Phys.: Condens. Matter 21, 446005 (2009) (RKKY interaction for parabolic band, do not reference work by Prior and Das Sarma)
- J. H. Jiang, Y. Zhou, T. Korn, C. Schüller, and M. W. Wu, Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells, arXiv:0901.0061 (study of many possible spin relaxation mechanisms)
- C.-H. Chang and T. M. Hong, Spin-glass-like behavior caused by Mn-rich Mn(Ga)As nanoclusters in GaAs, arXiv:0901.0967 (carrier-mediated magnetic interaction, taking higher carrier concentration within clusters into account)
- G. A. Gehring, M. R. Ahmed, and A. J. Crombie, Theory of magnetism with temporal disorder applied to magnetically doped ZnO, arXiv:0901.4947
- R. Bouzerar and G. Bouzerar, On the reliability of recent Monte Carlo studies of dilute systems of localized spins interacting with itinerant carriers, arXiv:0902.4722 (clarify why MC simulations for full electronic models and for effective spin-only models often do not agree, discuss shortcomings of recent MC simulations)
- E. Z. Meilikhov and R. M. Farzetdinova, Amplification of the induced ferromagnetism in diluted magnetic semiconductor, arXiv:0903.1726 (for Fe/(Ga,Mn)As bilayers)
- E. Z. Meilikhov and R. M. Farzetdinova, Magnetic properties of nanosized diluted magnetic semiconductors with band splitting, arXiv:0903.1728 (continuum model)
- J. Zemen, J. Kucera, K. Olejnik, and T. Jungwirth, Magneto crystalline anisotropies in (Ga,Mn)As: A systematic theoretical study and comparison with experiment, arXiv:0904.0993
- V. I. Litvinov and V. K. Dugaev, Room-temperature ferromagnetism in dielectric GaN(Gd), arXiv:0905.0500 (magnetic interaction mediated by virtual transitions between Gd d band in gap and valence band; consider rather large Gd doping, Tc smoothly goes to zero for small doping; find giant effective moments apparently due to polarization of t2 d-states of Gd in the gap, unclear where the required large number of unpaired electrons is coming from)
- C. P. Moca, G. Zarand, and M. Berciu, Theory of optical conductivity for dilute GaMnAs, arXiv:0906.0770 P
- K. Vyborny, J. Kucera, J. Sinova, A. W. Rushforth, B. L. Gallagher, and T. Jungwirth, Microscopic mechanism of the non-crystalline anisotropic magnetoresistance in (Ga,Mn)As, arXiv:0906.3151
- S. Mishra and S. Satpathy, Photoinduced magnetism in the ferromagnetic semiconductors, arXiv:0906.5514 (applied to EuS, not diluted)
- E. Nielsen and R. N. Bhatt, Search for Ferromagnetism in doped semiconductors in the absence of transition metal ions, arXiv:0907.3671 (long paper: Hubbard-type model for the impurity band, magnetic order is studied using mean-field theory and exact diagonalization for small systems) P
- M. D. Kapetanakis, I. E. Perakis, K. J. Wickey, C. Piermarocchi, and J. Wang, Femtosecond Coherent Control of Spin with Light in (Ga,Mn)As ferromagnets, arXiv:0908.0707
- A. Werpachowska and T. Dietl, Effect of inversion asymmetry on the intrinsic anomalous Hall effect in ferromagnetic (Ga,Mn)As, arXiv:0910.1907
- H. Bednarski and J. Spalek, Physical origin of ferromagnetic interaction between impurity electrons in diluted magnetic semiconductors: Bound-magnetic-polaron molecule, arXiv:0912.0662 (pair of BMPs)
- A. Werpachowska and T. Dietl, Theory of spin waves in ferromagnetic (Ga,Mn)As, Phys. Rev. B 82, 085204 (2010); A. Werpachowska, Loewdin calculus for multiband Hamiltonians, arXiv:1101.5775 (using Loewdin calculus; the second reference contains details)
- J. Masek, F. Maca, J. Kudrnovsky, O. Makarovsky, L. Eaves, R. P. Campion, K. W. Edmonds, A. W. Rushforth, C. T. Foxon, B. L. Gallagher, V. Novak, Jairo Sinova, and T. Jungwirth, Microscopic Analysis of the Valence Band and Impurity Band Theories of (Ga,Mn)As, Phys. Rev. Lett. 105, 227202 (2010) (find that the impurity band does not persist for reasonable Mn doping, for any impurity-band model; no long-range Coulomb potential of Mn acceptors, is mimicked by adjustment of p-d hybridization or Mn-d-orbital shift; no disorder [CPA], no compensation) P
- R. Bouzerar and G. Bouzerar, Unified picture for diluted magnetic semiconductors, EPL 92, 47006 (2010) (single band, random magnetic acceptors with onsite Coulomb potential and pd exchange interaction, no electron-electron interaction in impurity states; interestingly, Mn in GaAs is predicted to give the highest Tx)
- U. Yu, A.-M. Nili, K. Mikelsons, B. Moritz, J. Moreno, and M. Jarrell, Nonlocal effects on magnetism in the diluted magnetic semiconductor Ga1-xMnxAs, arXiv:1001.1716
- T. O. Strandberg, C. M. Canali, and A. H. MacDonald, Magnetic interactions of substitutional Mn pairs in GaAs, arXiv:1001.2894
- G. Bouzerar and R. Bouzerar, Optical conductivity of Mn doped GaAs, arXiv:1004.4446 (application of the theory introduced in EPL 92, 47006 (2010), cited above) P
- A.-M. Nili, M. A. Majidi, P. Reis, J. Moreno, and M. Jarrell, The effect of spin-orbit interaction and attractive Coulomb potential on the magnetic properties of Ga1-xMnxAs, arXiv:1006.0998 (DMFT, the Coulomb interaction enhances the exchange)
- A.-M. Nili, U. Yu, J. Moreno, D. Browne, and M. Jarrell, A dynamical mean-field approximation study of a tight-binding model for Ga1-xMnxAs, arXiv:1007.4609 (discuss the optical conductivity) P
- N. A. Yazdani and M. P. Kennett, Enhanced ferromagnetism from electron-electron interactions in double exchange type models, arXiv:1007.4843 (for a Zener model, not specifically double exchange, mit additional Hubbard interaction in the band, this is treated in Hartree-Fock approximation, the resulting model by MC simulations)
- A. Chakraborty, R. Bouzerar, and G. Bouzerar, Magnetic spin excitations in Mn doped GaAs: A model study, arXiv:1010.5763, Eur. Phys. J. B 81, 405 (2011)
- E. J. R. de Oliveira, E. Dias Cabral, M. A. Boselli, and I. C. da Cunha Lima, A semiquantitative approach to the impurity-band-related transport properties of GaMnAs nanolayers, arXiv:1011.1006 (metallic vs. hopping conduction in an impurity band)
- R. da Silva Neves, A. Ferreira da Silva, and R. Kishore, Ferromagnetism in Dilute Magnetic Semiconductors, arXiv:1011.3658 (based on Berciu and Bhatt (2001), assumes low carrier concentration)
- T. O. Strandberg, C. M. Canali, and A. H. MacDonald, Chern Number Spins of Mn Acceptor Magnets in GaAs, Phys. Rev. Lett. 106, 017202 (2011)
- M. Stier, S. Henning, and W. Nolting, The ground state phase diagram of the diluted ferromagnetic Kondo-lattice model, J. Phys.: Condens. Matter 23, 276006 (2011)
- C. Sliwa and T. Dietl, Thermodynamic and thermoelectric properties of (Ga,Mn)As and related compounds, Phys. Rev. B 83, 245210 (2011) (analysis of experiments, supports the valence-band picture)
- C. Ertler and W. Pötz, Electrical control of ferromagnetism in Mn-doped semiconductor heterostructures, arXiv:1102.2507
- T. Dietl and D. Sztenkiel, Reconciling results of tunnelling experiments on (Ga,Mn)As, arXiv:1102.3267 (argue that recent tunneling experiments do not support an impurity band); see also comment arXiv:1102.4459
- M. Stier and W. Nolting, Curie temperatures of the concentrated and diluted Kondo-lattice model as a possible candidate to describe magnetic semiconductors and metals, arXiv:1104.4222, Phys. Stat. Solidi b
- K. M. D. Hals and A. Brataas, Magnetization Dissipation in the Ferromagnetic Semiconductor (Ga,Mn)As, arXiv:1105.4148
- C. Ertler and W. Pötz, Bias-induced destruction of ferromagnetism and disorder effects in GaMnAs heterostructures, arXiv:1108.2108 (GaMnAs quantum well)
- K. Shen and M. W. Wu, Hole spin relaxation and coefficients in Landau-Lifshitz-Gilbert equation in ferromagnetic GaMnAs, arXiv:1109.4964
- A. Werpachowska and Z. Wilamowski, The RKKY coupling in diluted magnetic semiconductors, arXiv:1111.1030 (simple bands, but with finite Zeeman splitting as a parameter, no reference to RKKY theory for realistic DMS band structures)
- A. Chakraborty, R. Bouzerar, S. Kettemann, and G. Bouzerar, Nanoscale inhomogeneities: A new path toward high Curie temperature ferromagnetism in diluted materials, arXiv:1111.4355 (show within real-space RPA [self-consistent local RPA] that clustering of magnetic defects can dramatically enhance Tc) P; A. Chakraborty, P. Wenk, S. Kettemann, R. Bouzerar, and G. Bouzerar, Spin-wave excitations in presence of nanoclusters of magnetic impurities, arXiv:1301.4111 (extended numerical study, impurity-spin interaction is modeled by simple exponential)
- M. Birowska, C. Sliwa, J. A. Majewski, and T. Dietl, Origin of Bulk Uniaxial Anisotropy in Zinc-Blende Dilute Magnetic Semiconductors, Phys. Rev. Lett. 108, 237203 (2012) (in-plane anisotropy is attributed to Mn dimers)
- A. Chakraborty, P. Wenk, R. Bouzerar, and G. Bouzerar, Spontaneous magnetization in presence of nanoscale inhomogeneities in diluted magnetic systems, arXiv:1209.2927 (diluted Heisenberg model with exponential separation dependence of the effective exchange interaction, selfconsistent local RPA)
- S. Barthel, G. Czycholl, and G. Bouzerar, Effective Heisenberg exchange integrals of diluted magnetic semiconductors determined within realistic multi-band tight-binding models, arXiv:1211.6874 (assume local pd exchange, Coulomb scattering term found to be crucial, treat other Mn dopands explicitly)
Diluted magnetic semiconductors - ab-initio theory
- B. K. Rao and P. Jena, Giant Magnetic Moments of Nitrogen Stabilized Mn Clusters and Their Relevance to Ferromagnetism in Mn Doped GaN, Phys. Rev. Lett. 89, 185504 (2002)
- P. Mahadevan and A. Zunger, First-principles investigation of the assumptions underlying Model-Hamiltonian approaches to ferromagnetism of 3d impurities in III-V semiconductors, cond-mat/0309509
- H. Weng, X. Yang, J. Dong, H. Mizuseki, M. Kawasaki, and Y. Kawazoe, Electronic structure and optical properties of the Co-doped anatase TiO>2 studied from first principles, Phys. Rev. B 69, 125219 (2004) (minimal supercell with one substitutional Co and zero or one oxygen vacancy, stress importance of oxygen vacancies)
- S. C. Erwin and I. Zutic, Tailoring ferromagnetic chalcopyrites, cond-mat/0401157, Nature Materials 3, 410 (2004)
- P. Mahadevan and A. Zunger, Trends in ferromagnetism, hole localization, and acceptor level depth for Mn substitution in GaN, GaP, GaAs and GaSb, cond-mat/0409296, Appl. Phys. Lett.
- T. Maitra and R. Valentí, Ferromagnetism in Fe-substituted spinel semiconductor ZnGa2O4, cond-mat/0412530, J. Phys.: Condens. Matter 17, 7417 (2005) (starting from band-structure calculations, no disorder)
- Y.-J. Zhao, P. Mahadevan, and A. Zunger, Practical rules for orbital-controlled ferromagnetism of 3d impurities in semiconductors, J. Appl. Phys. 98, 113901 (2005)
- G. M. Dalpian and S.-H. Wei, Electron-induced stabilization of ferromagnetism in Ga1-xGdxN, Phys. Rev. B 72, 115201 (2005) P
- V.I. Anisimov, M.A. Korotin, I.A. Nekrasov, A.S. Mylnikova, A.V. Lukoyanov, J.-L. Wang, and Z. Zeng, The role of transition metal impurities and oxygen vacancies in the formation of ferromagnetism in Co-doped TiO2, J. Phys.: Condens. Matter 18, 1695 (2006), cond-mat/0503625
- P. Mahadevan, J. M. Osorio-Guillen, and A. Zunger, Origin of transition metal clustering tendencies in GaAs based dilute magnetic semiconductors, cond-mat/0504505, Appl. Phys. Lett.
- T. Hynninen, H. Raebiger, A. Ayuela, and J. von Boehm, High Curie temperatures in (Ga,Mn)N from Mn clustering, cond-mat/0508522
- T. Chanier, M. Sargolzaei, I. Opahle, R. Hayn, and K. Koepernik, Nearest neighbor exchange in Co- and Mn-doped ZnO, cond-mat/0511050 (ab-initio study showing that correlations must be included beyond the LSDA to get any agreement with experiment)
- C. H. Patterson, Magnetic defects promote ferromagnetism in Zn1-xCoxO, cond-mat/0512101
- Z. Xie, W.-D. Cheng, D.-S. Wu, Y.-Z. Lan, S.-P. Huang, J.-M. Hu, and J. Shen, Ab initio study of ferromagnetic semiconductor Ge1-xMnxTe, J. Phys.: Condens. Matter 18, 7171 (2006)
- S. Y. Sarkisov and S. Picozzi, Transition-metal doping of semiconducting chalcopyrites: half-metallicity and magnetism, J. Phys.: Condens. Matter 19, 016210 (2006)
- H. Raebiger, M. Ganchenkova, and J. von Boehm, Diffusion and clustering of substitutional Mn in (Ga,Mn)As, cond-mat/0603135 (energy barriers from ab-initio calculations, Monte Carlo simulation of annealing) P
- A. Svane, N. E. Christensen, L. Petit, Z. Szotek, and W. M. Temmerman, Electronic structure of rare-earth impurities in GaAs and GaN, cond-mat/0603288 (find weak exchange interaction between rare earth spins and both CB electrons and VB holes) P
- P. Gopal and N. A. Spaldin, Magnetic interactions in transition metal doped ZnO: An abinitio study, cond-mat/0605543
- N. Tandon, G. P. Das, and A. Kshirsagar, Electronic structure of Diluted Magnetic Semiconductors Ga1-xMnxN and Ga1-xCrxN, cond-mat/0606061 (32-atom supercell)
- L. Petit, T. C. Schulthess, A. Svane, W. M. Temmerman, Z. Szotek, and A. Janotti, Valency Configuration of Transition Metal Impurities in ZnO, cond-mat/0606417, J. Electronic Materials 35, 556 (2006) (SIC-LSDA)
- J. Masek, J. Kudrnovsky, F. Maca, J. Sinova, A. H. MacDonald, R. P. Campion, B. L. Gallagher, and T. Jungwirth, Mn-doped Ga(As,P) and (Al,Ga)As ferromagnetic semiconductors, cond-mat/0609158 (investigation of ternary compounds based on both TB and ab-initio calculations)
- J. Masek, J.Kudrnovsky, F. Maca, B. L. Gallagher, R. P. Campion, D. H. Gregory, and T. Jungwirth, Dilute moment n-type ferromagnetic semiconductor Li(Zn,Mn)As, cond-mat/0609184 (proposal based partly on ab-initio calculations)
- X. Du, Q. Li, H. Su, and J. Yang, Electronic and magnetic properties of V-doped anatase TiO2 from first principles, cond-mat/0612206
- J. L. Xu and M. van Schilfgaarde, Optimally Designed Digitally-Doped Mn:GaAs, cond-mat/0612411 (predicting Tc above room temperature for special superlattice k vectors of delta-doped layers)
- Q. Y. Wu, Z. G. Huang, R. Wu, and L. J. Chen, Cu-doped AlN: a dilute magnetic semiconductor free of magnetic cations from first-principles study, J. Phys.: Condens. Matter 19, 056209 (2007)
- B. Belhadji, L. Bergqvist, R. Zeller, P. H. Dederichs, K. Sato, and H. Katayama-Yoshida, Trends of exchange interactions in dilute magnetic semiconductors, J. Phys.: Condens. Matter 19, 436227 (2007) (detailed discussion of various exchange mechanisms based on CPA and ab-initio calculations)
- M. Weissmann and L. A. Errico, The role of vacancies, impurities and crystal structure in the magnetic properties of TiO2, cond-mat/0702530
- J. Kudrnovsky, G. Bouzerar, and I. Turek, Relation of Curie temperature and conductivity: (Ga,Mn)As alloy as a case study, arXiv:0708.3921
- L. Liu, P. Y. Yu, Z. Ma, and S. S. Mao, Ferromagnetism in GaN:Gd: A Density Functional Theory Study, Phys. Rev. Lett. 100, 127203 (2008) (pd coupling much stronger than sd coupling, coupling to f orbitals always weak)
- C. D. Pemmaraju, R. Hanafin, T. Archer, H. B. Braun, and S. Sanvito, Impurity-Ion pair induced high-temperature ferromagnetism in Co-doped ZnO, arXiv:0801.4945 (approximate SIC scheme)
- N. Sanchez, S. Gallego, and M. C. Munoz, Magnetic states at the Oxygen surfaces of ZnO and Co-doped ZnO, arXiv:0804.3937
- A. Droghetti, C. D. Pemmaraju, and S. Sanvito, Predicting d0 magnetism, arXiv:0807.4184
- K.-W. Lee, V. Pardo, and W. E. Pickett, Anion Vacancy Driven Magnetism in Superconducting alpha-FeSe1-x, arXiv:0808.1733 (note relation to both DMS and Fe-based superconductors)
- L.-J. Shi, L.-F. Zhu, Y.-H. Zhao, and B.-G. Liu, Nitrogen defects and ferromagnetism of Cr-doped AlN diluted magnetic semiconductor from first principles, arXiv:0810.5048 (FLAPW study of 72-ion supercells containing at most two defects, nitrogen vacancies found to carry magnetic moments and suggested to be important for high-temperature ferromagnetims)
- J. Ohe, Y. Tomoda, N. Bulut, R. Arita, K. Nakamura, and S. Maekawa, Combined approach of density functional theory and quantum Monte Carlo method to electron correlation in dilute magnetic semiconductors, arXiv:0812.0430
- H. Ebert and S. Mankovsky, A new scheme to calculate the exchange tensor and its application to diluted magnetic semiconductors, arXiv:0812.1145 (exchange interaction between two local moments)
- Y. Q. Song, H. W. Zhang, Q. H. Yang, Y. L. Liu, Y. X. Li, L. R. Shah, H. Zhu, and J. Q. Xiao, Electronic structure and magnetic properties of Co-doped CeO2: based on first principle calculation, J. Phys.: Condens. Matter 21, 125504 (2009) (oxygen vacancies are important)
- D. Kim, J. Hong, Y. R. Park, and K. J. Kim, The origin of oxygen vacancy induced ferromagnetism in undoped TiO2, J. Phys.: Condens. Matter 21, 195405 (2009)
- A. Stroppa and G. Kresse, Unraveling the Jahn-Teller effect in Mn doped GaN using the Heyd-Scuseria-Ernzerhof hybrid functional, arXiv:0904.2140, Phys. Rev. B (also comment on difference to Mn in GaAs)
- A. L. Schoenhalz, J. T. Arantes, A. Fazzio, and G. M. Dalpian, Surface magnetization in non-doped ZnO nanostructures, arXiv:0904.4147 (magnetism is attributed to extended defects such as surfaces and grain boundaries)
- B. J. Nagare, S. Chacko, and D. G. Kanhere, Ferromagnetism in Carbon doped Zinc Oxide Systems, arXiv:0905.0366 (clusters and solid)
- R. Cherian, P. Mahadevan, and C. Persson, Trends in Ferromagnetism in Mn doped dilute III-V alloys from a density functional perspective, arXiv:0905.1762
- X. Jia, M. Qin, and W. Yang, Magnetism in Cr-doped ZnS: Density-functional theory studies, arXiv:0910.2346
- V. Ferrari, A. M. Llois, and V. Vildosola, Co-doped Ceria: Tendency towards ferromagnetism driven by oxygen vacancies, arXiv:0911.1959 (vacancies are found to be required for cobalt-spin polarization)
- C. Echeverría-Arrondo, J. Pérez-Conde, and A. Ayuela, Antiferromagnetic order in (Ga,Mn)N nanocrystals, arXiv:1003.0599
- N. Gonzalez Szwacki, J. A. Majewski, and T. Dietl, Aggregation and magnetism of Cr, Mn, and Fe cations in GaN, arXiv:1011.5968
- K. W. Lee and C. E. Lee, Intrinsic Impurity-Band Stoner Ferromagnetism in C60Hn, Phys. Rev. Lett. 106, 166402 (2011) (LDA)
- R. Grau-Crespo and U. Schwingenschlogl, The interplay between dopants and oxygen vacancies in the magnetism of V-doped TiO2, J. Phys.: Condens. Matter 23, 334216 (2011)
- F. V. Kyrychenko and C. A. Ullrich, Response properties of III-V dilute magnetic semiconductors: interplay of disorder, dynamical electron-electron interactions and band-structure effects, arXiv:1101.5418 (k.p theory with implicit charge and spin disorder, use TDDFT to describe electron-electron interactions, Fermi energy in the valence band, calculate IR conductivity for (Ga,Mn)As, agreement with experiments)
- O. Volnianska and P. Boguslawski, High spin states of cation vacancies in GaP, GaN, AlN, BN, ZnO and BeO: A first principles study, arXiv:1104.4420 (GGA [Quantum Espresso code], cation vacancies in III-V are found to be triple acceptors, in II-VI double acceptors; discussion of possible charge states)
- S. K. Pandey and R. J. Choudhary, Effect of non-magnetic impurities on the magnetic states of anatase TiO2, arXiv:1106.0794
- M. Moreno and K. H. Ploog, Phase-separated high-temperature-annealed (Ga,Mn)As: A negative charge-transfer-energy material, arXiv:1108.1166
- M. Fhokrul Islam and C. M. Canali, Magnetic properties of Mn impurities on GaAs (110) surfaces, arXiv:1108.3440
- S. Mankovsky, S. Polesya, S. Bornemann, J. Minár, F. Hoffmann, C. H. Back, and H. Ebert, Spin-orbit coupling effect in (Ga,Mn)As films: anisotropic exchange interactions and magnetocrystalline anisotropy, arXiv:1108.5870
- A. N. Andriotis and M. Menon, The synergistic character of the defect-induced magnetism in diluted magnetic semiconductors and related magnetic materials, J. Phys.: Condens. Matter 24, 455801 (2012) (essentially picture of bound magnetic polarons, but based on ab-initio calculations)
- V. Fleurov, K. Kikoin, and A. Zunger, The Nature of the magnetism-promoting hole state in the prototype magnetic semiconductor GaAs: Mn, arXiv:1208.2811 (support an impurity-band mechanism, where the impurity band has merged with the valence band but the states retain strong impurity-band character; motivated by experiments of the Furdyna group)
- A. Janotti, C. Franchini, J. B. Varley, G. Kresse, and C. G. Van de Walle, Dual behavior of excess electrons in rutile TiO2, arXiv:1212.5949 (free electrons coexist in the conduction band with localized small polarons, reconciling transport experiments on the one hand and optical and spin-resonance experiments on the other; polarons are bound to shallow donors)
- K. Z. Milowska and M. Wierzbowska, Hole sp3-character and delocalization in (Ga,Mn)As, arXiv:1302.5282 (DFT with SIC, up to 3% Mn substitution, supercell [for 3% with a single Mn ion!]; support valence-band picture)
- R. Nelson, T. Berlijn, J. Moreno, M. Jarrell, and W. Ku, What is the Valence of Mn in Ga1-xMnxN?, Phys. Rev. Lett. 115, 197203 (2015) (LDA + U, single-Mn supercell; find valence 2+, i.e., d5, but the Mn spin is reduced from 5 to 4 Bohr magnetons; also discuss an effective d4 picture useful for the description of local properties)
Non-diluted magnetic semiconductors - theory
- F. Natali, B. Ruck, J. Trodahl, D. L. Binh, S. Vezian, B. Damilano, Y. Cordier, F. Semond, and C. Meyer, The role of magnetic polarons in ferromagnetic GdN, arXiv:1210.3441
Effects of spin-orbit coupling
- J. E. Hirsch, Overlooked contribution to the Hall effect in ferromagnetic metals, Phys. Rev. B 60, 14787 (1999); E. M. Chudnovsky, Theory of spin Hall effect, arXiv:0709.0725; J. E. Hirsch, Comment on Theory of spin Hall effect, arXiv:0709.1280 (Drude-type theory, two independent but essentially equivalent approaches)
- L. W. Molenkamp, G. Schmidt, and G. E. W. Bauer, Rashba Hamiltonian and electron transport, Phys. Rev. B 64, 121202(R) (2001) (pedagogical discussion of velocity operator/current for Rashba spin-orbit coupling, application to tunneling in Rashba/FM structure) P
- S. D. Ganichev, E. L. Ivchenko, V. V. Bel'kov, S. A. Tarasenko, M. Sollinger, D. Weiss, W. Wegscheider, and W. Prettl, Spin-galvanic effect, Nature 417, 153 (2002)
- C. Wu and S.-C. Zhang, Dynamic Generation of Spin-Orbit Coupling, Phys. Rev. Lett. 93, 036403 (2004)
- C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens, and D. D. Awschalom, Observation of spin Coulomb drag in a two-dimensional electron gas, Nature 437, 1330 (2005)
- D. Xiao, J. Shi, and Q. Niu, Berry Phase Correction to Electron Density of States in Solids, Phys. Rev. Lett. 95, 137204 (2005) (show that Liouville's theorem is violated in a solid in the presence of Berry curvature, if one defines the phase-space volume in the "naive" way) P; C. Duval, Z. Horváth, P. A. Horváthy, L. Martina, and P. C. Stichel, Comment, Phys. Rev. Lett. 96, 099701 (2006); D. Xiao, J. Shi, and Q. Niu, Reply, Phys. Rev. Lett. 96, 099702 (2006)
- C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005)
- N. A. Sinitsyn, Q. Niu, J. Sinova, and K. Nomura, Disorder effects in the AHE induced by Berry curvature, cond-mat/0502426
- J. D. Walls, J. Huang, R. M. Westervelt, and E. J. Heller, Multiple Scattering Theory for Two-dimensional Electron Gases in the Presence of Spin-Orbit Coupling, cond-mat/0507528
- A. V. Shytov, E. G. Mishchenko, and B. I. Halperin, Small-angle impurity scattering and the spin Hall conductivity in 2D systems, cond-mat/0509702 (semiclassical Boltzmann approach, detailed technical discussion)
- P. L. Krotkov and S. Das Sarma, The Intrinsic Spin Hall Conductivity in a Generalized Rashba Model, cond-mat/0510114 (shows that the spin Hall effect does not vanish in the presence of disorder for nonparabolic band structures)
- P. Wölfle and K. A. Muttalib, Anomalous Hall effect in ferromagnetic disordered metals, cond-mat/0510481
- S. Adam, M. Kindermann, S. Rahav, and P. W. Brouwer, Mesoscopic anisotropic magnetoconductance fluctuations in ferromagnets, cond-mat/0512287
- J. Cumings, L. S. Moore, H. T. Chou, K. C. Ku, S. A. Crooker, N. Samarth, and D. Goldhaber-Gordon, A Tunable Anomalous Hall Effect in a Non-Ferromagnetic System, cond-mat/0512730 (experiments showing a surprisingly large AHE in paramagnetic 2DEG, probably due to skew scattering)
- A. L. Efros and E. I. Rashba, Theory of electric dipole spin resonance in a parabolic quantum well, Phys. Rev. B 73, 165325 (2006) (one can manipulate the electron spin by an AC electric field)
- A. Punnoose, Magnetoconductivity in the presence of Bychkov-Rashba spin-orbit interaction, App. Phys. Lett. 88, 252113 (2006)
- J. Shi and Q. Niu, Attractive electron-electron interaction induced by geometric phase in a Bloch band, cond-mat/0601531 (very interesting idea: electrons can attract in the p-wave channel due to a nontrival geometric phase in k-space)
- V. M. Galitski, A. A. Burkov, and S. Das Sarma, Boundary conditions for spin diffusion, cond-mat/0601677
- R. Shindou and L. Balents, Artificial electric field in Fermi Liquids, cond-mat/0603089 (generalize the Sundaram/Niu idea of quasi-magnetic fields in k-space due to Berry curvature to include a quasi-electric field, which stems from the frequency dependence of eigenvectors, i.e., from the interaction)
- E. M. Hankiewicz, G. Vignale, and M. Flatté, Side jump as an intrinsic spin Hall effect, cond-mat/0603144
- H.-A. Engel, E. I. Rashba, and B. I. Halperin, Theory of Spin Hall Effects, cond-mat/0603306, in Handbook of Magnetism and Advanced Magnetic Materials, Vol. 5 (Wiley)
- H.-T. Yang and C. Liu, The description of spin transport and precession in spin-orbit coupling systems and a general equation of continuity, cond-mat/0604320
- P. Kleinert and V. V. Bryksin, Theory of spin-Hall transport of heavy holes in semiconductor quantum wells, cond-mat/0604539 (steady-state spin Hall current is found to vanish in both pure and disordered infinite systems, ac spin Hall current is possible)
- J. Schliemann, Theoretical study of interacting hole gas in p-doped bulk III-V semiconductors, cond-mat/0604585, Phys. Rev. B (spherical approximation for the valence band, Hartree-Fock theory)
- D. Culcer and Q. Niu, Geometrical phase effects on the Wigner distribution of Bloch electrons, cond-mat/0605528 (generalization of previous work on Berry-phase effects in k-space to general mixed states, using a density-matrix approach)
- S. Onoda, N. Sugimoto, and N. Nagaosa, Intrinsic vs. extrinsic anomalous Hall effect in ferromagnets, cond-mat/0605580 (unified theory encompassing both)
- A. Rebei and O. Heinonen, Spin currents in the Rashba model in the presence of non-uniform fields, cond-mat/0605582 (using a SU(2) gauge theory)
- V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, Generating Spin Currents in Semiconductors with the Spin Hall Effect, cond-mat/0605672 (experimental paper, GaAs structures, Kerr microscopy)
- P. Mitra, A. F. Hebard, K. A. Muttalib, and P. Wölfle, Weak localization correction to the anomalous Hall effect in polycrystalline Fe films, cond-mat/0606215 (experiment and theoretical interpretation)
- P. A. Horvarthy, Anomalous Hall Effect in non-commutative mechanics, cond-mat/0606472 (short and clear set of notes on semiclassical dynamics in the presence of a Berry curvature)
- E. Ya. Sherman, A. Najmaie, H. M. van Driel, A. L. Smirl, and J. E. Sipe, Ultrafast extrinsic spin-Hall currents, cond-mat/0606725, Solid State Commun. 139, 439 (2006) (Theory related to Hui Zhao's observation of optically generated spin Hall and inverse spin Hall effects)
- S. Murakami, Quantum Spin Hall Effect and Diamagnetism in Bismuth, cond-mat/0607001 (theoretical prediction)
- N. A. Sinitsyn, A. H. MacDonald, T. Jungwirth, V. K. Dugaev, and J. Sinova, Anomalous Hall effect in 2D Dirac band: link between Kubo-Streda formula and semiclassical Boltzmann equation approach, cond-mat/0608682 (shows equivalence of a suitable semiclassical description and microscopic perturbation theory in a more general model, not limited to relativistic electrons) P
- R. Winkler, U. Zülicke, and J. Bolte, Oscillatory multiband dynamics of free particles: Ubiquity of Zitterbewegung effects, cond-mat/0609005
- H.-A. Engel, E. I. Rashba, and B. I. Halperin, Out-of-plane spin polarization from in-plane electric and magnetic fields, cond-mat/0609078
- S. Y. Liu, N. J. M. Horing, and X. L. Lei, Anomalous Hall effect in Rashba two-dimensional electron systems based on narrow-band semiconductors: side-jump and skew scattering mechanisms, cond-mat/0609412
- P. A. Horvathy, Non-commutative mechanics, in mathematical & in condensed matter physics, cond-mat/0609571 (applied to the spin Hall and related effects, contains a brief history) P
- B. Liu, J. Shi, W. Wang, H. Zhao, D. Li, S. Zhang, Q. Xue, and D. Chen, Experimental Observation of the Inverse Spin Hall Effect at Room Temperature, cond-mat/0610150
- J. Bruening, V. Geyler, and K. Pankrashkin, On the number of bound states for weak perturbations of spin-orbit Hamiltonians, math-ph/0611080 (...which is infinite for certain local weak perturbations)
- U. Zülicke and A. I. Signal, Rashba interferometers: Spin-dependent single and two-electron interference, math-ph/0701065
- M. Hatami, G. E. W. Bauer, Q. Zhang, and P. J. Kelly, Thermal Spin-Transfer Torque, cond-mat/0701163
- N. Hatano, R. Shirasaki, and H. Nakamura, Non-Abelian gauge field theory of the spin-orbit interaction and a perfect spin filter, quant-ph/0701076
- W. Yao, A. H. MacDonald, and Q. Niu, Optical Control of Topological Quantum Transport in Semiconductors, quant-ph/0702346
- M. Pletyukhov and S. Konschuh, Charge and spin density response functions of the clean two-dimensional electron gas with Rashba spin-orbit coupling at finite momenta and frequencies, arXiv:0705.2419 (coupled spin and charge response etc.)
- V. A. Zyuzin, P. G. Silvestrov, and E. G. Mishchenko, Spin-Hall edge spin polarization in a ballistic 2D electron system, arXiv:0705.2424
- N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, Drift and Diffusion of Spins Generated by the Spin Hall Effect, arXiv:0706.4273 (Kerr microscopy)
- E. M. Hankiewicz and G. Vignale, "Phase Diagram" of the Spin Hall Effect, arXiv:0707.2251
- J. Wang, B.-F. Zhu, and R.-B. Liu, Theory of optical effects of pure spin currents in semiconductors, arXiv:0708.0881
- D. Culcer and R. Winkler, Generation of spin currents and spin densities in systems with reduced symmetry, arXiv:0708.4009 (low symmetry makes the spin-current response more complex)
- D. Culcer and R. Winkler, On the nature of steady states of spin distributions in the presence of spin-orbit interactions, arXiv:0710.5260
- K. A. Muttalib and P. Wölfle, Disorder and temperature dependence of the Anomalous Hall Effect in thin ferromagnetic films: Microscopic model, arXiv:0710.5416
- T. S. Nunner, G. Zarand, and F. von Oppen, Anomalous Hall effect in a two dimensional electron gas with magnetic impurities, arXiv:0711.3415
- A. A. Kovalev, K. Vyborny, and J. Sinova, Hybrid skew scattering regime of the anomalous Hall effect in Rashba systems: unifying Keldysh, Boltzmann, and Kubo formalisms, arXiv:0803.1226
- D. Venkateshvaran, W. Kaiser, A. Boger, M. Althammer, M. S. Ramachandra Rao, S. T. B. Goennenwein, M. Opel, and R. Gross, Anomalous Hall Effect in Magnetite: Universal Scaling Relation Between Hall and Longitudinal Conductivity in Low-Conductivity Ferromagnets, arXiv:0805.1120
- N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, Time-resolved Dynamics of the Spin Hall Effect, arXiv:0806.0019
- P. S. Eldridge, W. J. H. Leyland, J. D. Mar, P. G. Lagoudakis, R. Winkler, O. Z. Karimov, M. Henini, D. Taylor, R. T. Phillips, and R. T. Harley, Absence of the Rashba effect in undoped asymmetric quantum wells, arXiv:0807.4845 (somewhat confusing argument)
- Yu. V. Pershin and M. Di Ventra, Frequency doubling and memory effects in the Spin Hall Effect, arXiv:0812.4325
- D. M. Edwards and O. Wessely, The quantum-mechanical basis of an extended Landau-Lifshitz-Gilbert equation for a current-carrying ferromagnetic wire, J. Phys.: Condens. Matter 21, 146002 (2009)
- D. Culcer, Semiclassical spin transport in spin-orbit-coupled systems, arXiv:0904.1999 (contains review)
- M. Trushin, K. Vyborny, P. Moraczewski, J. Schliemann, and T. Jungwirth, Anisotropic magnetoresistance of spin-orbit coupled carriers scattered from polarized magnetic impurities, arXiv:0904.3785
- M. S. Garelli and J. Schliemann, Landauer-Büttiker Study of the Anomalous Hall Effect, arXiv:0907.0110
- D. Culcer, E. M. Hankiewicz, G. Vignale, and R. Winkler, Side-jumps in the spin-Hall effect: construction of the Boltzmann collision integral, arXiv:0910.1596
- Y. Shiomi, Y. Onose, and Y. Tokura, Effect of scattering on intrinsic anomalous Hall effect investigated by Lorenz ratio, Phys. Rev. B 81, 054414 (2010) (in transition metals)
- A. A. Kovalev, J. Sinova, and Y. Tserkovnyak, Anomalous Hall Effect in Disordered Multiband Metals, Phys. Rev. Lett. 105, 036601 (2010)
- E. S. Garlid, Q. O. Hu, M. K. Chan, C. J. Palmstrøm, and P. A. Crowell, Electrical Measurement of the Direct Spin Hall Effect in Fe/InxGa1-xAs Heterostructures, Phys. Rev. Lett. 105, 156602 (2010); see also J. Sinova, Viewpoint: Spin Hall effect goes electrical, Physics 3, 82 (2010)
- C. Gorini, P. Schwab, R. Raimondi, and A. L. Shelankov, Non-Abelian gauge fields in the gradient expansion: generalized Boltzmann and Eilenberger equations, arXiv:1003.5763 (gauge-theoretical, semiclassical description of the spin Hall effect)
- P. Schwab, R. Raimondi, and C. Gorini, Inverse Spin Hall Effect and Anomalous Hall Effect in a Two-Dimensional Electron Gas, arXiv:1003.6018 (2DEG in GaAs, Rashba and Dresselhaus terms, show that the two effects in the title and the spin Hall effect are not trivially related)
- S. Chesi and D. Loss, RKKY interaction in a disordered two-dimensional electron gas with Rashba and Dresselhaus spin-orbit couplings, arXiv:1007.3506
- B. Gu, J.-Y. Gan, N. Bulut, T. Ziman, G.-Y. Guo, N. Nagaosa, and S. Maekawa, Quantum Renormalization of the Spin Hall Effect, arXiv:1007.3821 (spin-orbit interaction is strongly renormalized by correlation effects for Fe impurities in Au)
- J. Wunderlich, B. G. Park, A. C. Irvine, L. P. Zarbo, E. Rozkotova, P. Nemec, V. Novak, J. Sinova, and T. Jungwirth, Spin Hall effect transistor, arXiv:1008.2844 (propose, demonstrate, and model such a device)
- L. K. Werake, B. A. Ruzicka, and H. Zhao, Observation of Intrinsic Inverse Spin Hall Effect, Phys. Rev. Lett. 106, 107205 (2011) (time resolved measurement, the inverse spin Hall response sets in on a time scale much shorter than the scattering time)
- C. W. Sandweg, Y. Kajiwara, A. V. Chumak, A. A. Serga, V. I. Vasyuchka, M. B. Jungfleisch, E. Saitoh, and B. Hillebrands, Spin Pumping by Parametrically Excited Exchange Magnons, Phys. Rev. Lett. 106, 216601 (2011)
- T. Liu and G. Vignale, Electric Control of Spin Currents and Spin-Wave Logic, Phys. Rev. Lett. 106, 247203 (2011)
- X. Liu, X.-J. Liu, and J. Sinova, Spin dynamics in the strong spin-orbit coupling regime, Phys. Rev. B 84, 035318 (2011)
- J. Weischenberg, F. Freimuth, J. Sinova, S. Blügel, and Y. Mokrousov, Ab Initio Theory of the Scattering-Independent Anomalous Hall Effect, Phys. Rev. Lett. 107, 106601 (2011)
- M. Ge, T. F. Qi, O. B. Korneta, D. E. De Long, P. Schlottmann, W. P. Crummett, and G. Cao, Lattice-Driven Magnetoresistivity and Metal-Insulator Transition in Single-Layered Iridates, arXiv:1106.2381
- H. Johannesson, D. F. Mross, and E. Eriksson, Two-Impurity Kondo Model: Spin-Orbit Interactions and Entanglement, arXiv:1108.1817 (RKKY in presence of Rashba and Dresselhaus spin-orbit coupling)
- A. Shitade and N. Nagaosa, A unified theory of anomalous Hall effect in ferromagnetic metals, arXiv:1109.5463
- R. Raimondi, P. Schwab, C. Gorini, and G. Vignale, Spin-orbit interaction in a two-dimensional electron gas: a SU(2) formulation, arXiv:1110.5279 (spin Hall effect)
- L. Isaev, D. F. Agterberg, and I. Vekhter, Kondo effect in the presence of spin-orbit coupling, arXiv:1112.5875
- B. Gu, T. Ziman, and S. Maekawa, Theory of the spin Hall effect, and its inverse, in a ferromagnetic metal near the Curie temperature, Phys. Rev. B 86, 241303(R) (2012)
- K. Olejnik, J. Wunderlich, A. C. Irvine, R. P. Campion, V. P. Amin, J. Sinova, and T. Jungwirth, Spin Hall transistor with electrical spin injection, arXiv:1202.0881 (experiment and modeling)
- T. Kernreiter, M. Governale, and U. Zülicke, Carrier-density-controlled anisotropic spin susceptibility of two-dimensional hole systems, arXiv:1207.4548 (susceptibility of strongly hole-doped semiconductor quantum well)
- E. I. Rashba, Quantum nanostructures in strongly spin-orbit coupled two-dimensional systems, arXiv:1209.0828
- O. P. Sushkov, A. I. Milstein, M. Mori, and S. Maekawa, Does the side jump effect exist?, arXiv:1211.2372 (claim that it is much smaller than previously thought)
- X. Bi, P. He, E. M. Hankiewicz, R. Winkler, G. Vignale, and D. Culcer, Anomalous spin precession and spin Hall effect in semiconductor quantum wells, arXiv:1212.6262
- H. Kurebayashi, Jairo Sinova, D. Fang, A. C. Irvine, J. Wunderlich, V. Novak, R. P. Campion, B. L. Gallagher, E. K. Vehstedt, L. P. Zarbo, K. Vyborny, A. J. Ferguson, and T. Jungwirth, Observation of a Berry phase anti-damping spin-orbit torque, arXiv:1306.1893
- M. Weiler, et al., Experimental test of the spin mixing interface conductivity concept, arXiv:1306.5012 (with useful introduction)
- H. Chen, Q. Niu, and A. H. MacDonald, Anomalous Hall effect arising from noncollinear antiferromagnetism, arXiv:1309.4041 (proposed to be large in Mn3Ir)
- B. M. Norman, C. J. Trowbridge, D. D. Awschalom, and V. Sih, Current-Induced Spin Polarization in Anisotropic Spin-Orbit Fields, Phys. Rev. Lett. 112, 056601 (2014) (experiments on (Ga,In)As, largest effect not for current in directions with largest spin-orbit coupling)
- X. Zhang, Q. Liu, J.-W. Luo, A. J. Freeman, and A. Zunger, Hidden spin polarization in inversion-symmetric bulk crystals, Nature Physics 10, 387 (2014) (clarify that the presence of spin-orbit effects relies on a noncentrosymmetric point group for the atomic sites, not on a noncentrosymmetric space group so that also group-IV semiconductors show such effects), see also News and Views article B. Partoens, Spin-orbit interactions: Hide and seek, Nature Physics 10, 333 (2014)
- J. Zelezny, H. Gao, K. Vyborny, J. Zemen, J. Masek, A. Manchon, J. Wunderlich, J. Sinova, and T. Jungwirth, Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets, Phys. Rev. Lett. 113, 157201 (2014) (specifically, in-plane currents; proposal)
- Z. G. Yu, Spin Hall Effect in Disordered Organic Solids, Phys. Rev. Lett. 115, 026601 (2015) (due to interference between paths involving canted orbitals, distortions are not considered)
- A. Matos-Abiague and J. Fabian, Tunneling Anomalous and Spin Hall Effects, Phys. Rev. Lett. 115, 056602 (2015) (continuum model)
- W. Chen, M. Sigrist, J. Sinova, and D. Manske, Minimal Model of Spin-Transfer Torque and Spin Pumping Caused by the Spin Hall Effect, Phys. Rev. Lett. 115, 217203 (2015) (envelope-function/Landau-Lifshitz approach)
- O. Gomonay, T. Jungwirth, and J. Sinova, High Antiferromagnetic Domain Wall Velocity Induced by Néel Spin-Orbit Torques, Phys. Rev. Lett. 117, 017202 (2016)
-
L. Šmejkal, J. Železný, J. Sinova, and T. Jungwirth, Electric Control of Dirac Quasiparticles by Spin-Orbit Torque in an Antiferromagnet, Phys. Rev. Lett. 118, 106402 (2017)
-
C. Stamm, C. Murer, M. Berritta, J. Feng, M. Gabureac, P. M. Oppeneer, and P. Gambardella, Magneto-Optical Detection of the Spin Hall Effect in Pt and W Thin Films, Phys. Rev. Lett. 119, 087203 (2017)
-
H. Liu, E. Marcellina, A. R. Hamilton, and D. Culcer, Strong Spin-Orbit Contribution to the Hall Coefficient of Two-Dimensional Hole Systems, Phys. Rev. Lett. 121, 087701 (2018) (how quantum-spin dynamics affect classical charge transport; spin-Boltzmann-type equation, first-order Born approximation)
Other materials for spintronics, spintronics devices
- J. Maassen, W. Ji, and H. Guo, Graphene spintronics: the role of ferromagnetic electrodes, arXiv:1009.5254 (ab-initio calculation, spin-injection efficiency from Co and Ni into graphene)
- N. J. Harmon and M. E. Flatté, Distinguishing Spin Relaxation Mechanisms in Organic Semiconductors, Phys. Rev. Lett. 110, 176602 (2013)
- M. Warner, S. Din, I. S. Tupitsyn, et al., Potential for spin-based information processing in a thin-film molecular semiconductor, Nature (2013), doi:10.1038/nature12597 (slow spin relaxation in thin films of H2Pc with up to 10% CuPc)
-
L.-D. Yuan, Z. Wang, J.-W. Luo, E. I. Rashba, and A. Zunger, Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets, Phys. Rev. B 102, 014422 (2020) (spin splitting of bands induced by antiferromagnetic order, symmetry analysis in terms of magnetic space groups)
Magnetic and general properties of cuprates and other Mott antiferromagnets - experiment
- C. V. Parker, P. Aynajian, E. H. da Silva Neto, A. Pushp, S. Ono, J. Wen, Z. Xu, G. Gu, and A. Yazdani, Appearance of fluctuating stripes at the onset of the pseudogap in the high-Tc Superconductor Bi2Sr2CaCu2O8+x, Nature 468, 677 (2010)
- M. Guarise, B. Dalla Piazza, M. Moretti Sala, G. Ghiringhelli, L. Braicovich, H. Berger, J. N. Hancock, D. van der Marel, T. Schmitt, V. N. Strocov, L. J. P. Ament, J. van den Brink, P.-H. Lin, P. Xu, H.M. Rønnow, and M. Grioni, High-energy magnon dispersion demonstrate extended interactions in undoped cuprates, arXiv:1004.2441 (RIXS, experiment and theory)
- I. Raicevic, D. Popovic, C. Panagopoulos, L. Benfatto, M. B. Silva Neto, E. S. Choi, and T. Sasagawa, Evidence for Quantum Skyrmions in a Doped Antiferromagnet, arXiv:1006.1891 (Li-doped La2CuO4)
- H.-B. Yang, J. D. Ramaeu, Z.-H. Pan, G. D. Gu, P. D. Johnson, R. H. Claus, D. G. Hinks, and T. E. Kidd, On the Reconstructed Fermi Surface in the Underdoped Cuprates, arXiv:1008.3121 (ARPES: complete hole pockets, but with vanishing weight at the AFM zone boundary)
- A. T. Boothroyd, P. Babkevich, D. Prabhakaran, and P. G. Freeman, An hour-glass magnetic spectrum in an insulating, hole-doped antiferromagnet, Nature 471, 341 (2011) (La2-xSrxCoO4, note News and Views)
- M. Le Tacon et al., Intense paramagnon excitations in a large family of high-temperature superconductors, Nature Physics 7, 725 (2011) (RIXS, high precision, surprisingly universal)
- M. K. Chan, M. J. Veit, C. J. Dorow, Y. Ge, Y. Li, W. Tabis, Y. Tang, X. Zhao, N. Barisic, and M. Greven, In-Plane Magnetoresistance Obeys Kohler's Rule in the Pseudogap Phase of Cuprate Superconductors, Phys. Rev. Lett. 113, 177005 (2014) (Kohler's rule, δρ/ρ0 = F(H/ρ0) independent of temperature, is satisfied, this implies that a Fermi-liquid plus Boltzmann description with essentially constant scattering rate is applicable, contains brief discussion of Kohler's rule)
-
T. L. Miller, W. Zhang, H. Eisaki, and A. Lanzara, Particle-Hole Asymmetry in the Cuprate Pseudogap Measured with Time-Resolved Spectroscopy, Phys. Rev. Lett. 118, 097001 (2017) (pump-probe ARPES)
-
L. Mangin-Thro, Y. Li, Y. Sidis, and P. Bourges, a-b Anisotropy of the Intra-Unit-Cell Magnetic Order in YBa2Cu3O6.6, Phys. Rev. Lett. 118, 097003 (2017) (neutron scattering)
-
M. Zhu, D. J. Voneshen, S. Raymond, O. J. Lipscombe, C. C. Tam, and S. M. Hayden, Spin fluctuations associated with the collapse of the pseudogap in a cuprate superconductor, Nature Phys. 19, 99 (2023) (inelastic neutron scattering)
Magnetic and general properties of cuprates and other Mott antiferromagnets - theory
- Y. H. Szczech, M. A. Tusch, and D. E. Logan, Collective excitation spectrum of a disordered Hubbard model, J. Phys.: Condens. Matter 9, 9621 (1997) (3D Hubbard model at half filling) P
- F. Carvalho Dias and I. R. Pimentel, Spin correlations and magnetic susceptibilities of lightly doped antiferromagnets, Phys. Rev. B 71, 224412 (2005) (slave-fermion/Schwinger-boson method applied to t-J model)
- S. I. Vedeneev and D. K. Maude, Vortexlike excitations in a nonsuperconducting single-layer compound Bi2+xSr2-xCuO6+delta single crystal in high magnetic fields, Phys. Rev. B 72, 214514 (2005)
- T. Morinari, Half-skyrmion picture of single hole doped high-Tc cuprate, cond-mat/0502437; T. Morinari, Half-skyrmion picture of single hole doped CuO2 plane, cond-mat/0507666; Mechanism of dx2-y2-wave superconductivity based on doped hole induced spin texture in high Tc cuprates, cond-mat/0509632
- C. Bruegger, F. Kaempfer, M. Pepe, and U.-J. Wiese, Magnon-mediated Binding between Holes in an Antiferromagnet, cond-mat/0511367
- G. Sangiovanni, A. Toschi, E. Koch, K. Held, M. Capone, C. Castellani, O. Gunnarsson, S.-K. Mo, J. W. Allen, H.-D. Kim, A. Sekiyama, A. Yamasaki, S. Suga, and P. Metcalf, Static vs. dynamical mean field theory of Mott antiferromagnets, cond-mat/0511442 (theory and experiment)
- A. Luscher, A. Läuchli, W. Zheng, and O. P. Sushkov, Single-hole properties of the t-J model on the honeycomb lattice, cond-mat/0512074
- W.-F. Tsai and S. A. Kivelson, Inhomogeneous Hubbard Models: from Weak to Strong Coupling, cond-mat/0601113
- L. Balents and S. Sachdev, Dual vortex theory of doped Mott insulators, cond-mat/0612220
- M. Greiter and R. Thomale, No evidence for spontaneous orbital currents in finite size studies of three-band models for CuO planes, cond-mat/0701245 (criticize Varma's picture)
- T.-P. Choy, R. G. Leigh, and P. Phillips, Hidden Charge 2e Boson: Experimental Consequences for Doped Mott Insulators, arXiv:0712.2841 (discuss how many peculiar features of the normal state of cuprates result naturally from a low-energy charge-2e bosonic field); R. G. Leigh and P. Phillips, Origin of the Mott Gap, arXiv:0812.0593
- D. Poilblanc, Properties of Holons in the Quantum Dimer Model, Phys. Rev. Lett. 100, 157206 (2008) (amoung other results, finds tendency of holons to bind magnetic vortices, whereby they are transmuted to bosons)
- C.-W. Liu, S. Liu, Y.-J. Kao, A. L. Chernyshev, and A. W. Sandvik, Impurity-induced frustration in correlated oxides, arXiv:0812.1023
- K. Bouadim, G. G. Batrouni, and R. T. Scalettar, Determinant Quantum Monte Carlo Study of the Orbitally Selective Mott Transition, arXiv:0903.3390
- T. Morinari, Half-Skyrmion theory for high-temperature superconductivity, arXiv:0908.3385
- S. Chakraborty, S. Hong, and P. Phillips, Non-conservation of Fermionic Degrees of Freedom at Low-energy in Doped Mott Insulators, arXiv:0909.3096
- S. K. Sarker and T. Lovorn, A Consistent Theory of Underdoped Cuprates: Evolution of the RVB State From Half Filling, arXiv:0910.2204
- M. Khodas and A. M. Tsvelik, Influence of Thermal Fluctuations of Spin Density Wave Order Parameter on the Quasiparticle Spectral Function, arXiv:1001.0590 (a spin-fermion model of electrons coupled to SDW order, motivated by underdoped cuprates, but also potentially relevant for pnictides)
- F. Hassler, A. Rüegg, M. Sigrist, and G. Blatter, Dynamical Unbinding Transition in a Periodically Driven Mott Insulator, arXiv:1002.3085 (Hubbard model in non-equilibrium)
- T. Das, R. S. Markiewicz, and A. Bansil, Optical model-solution to the competition between a pseudogap phase and a Mott-gap phase in high-temperature cuprate superconductors, arXiv:1002.4188
- H. T. Dang, E. Gull, and A. J. Millis, Response of a correlated material to a local electric field: how much does a muon perturb a correlated electron material?, arXiv:1004.5369
- P. Phillips, Mottness Collapse and T-linear Resistivity in Cuprate Superconductors, arXiv:1006.2396
- D. J. Singh and I. I. Mazin, Experimental evidence for nematic order of cuprates in relation to lattice structure, arXiv:1007.0255 (discussion of evidence for nematic order, contains a helpful illustration of what nematic order signifies)
- P. Ye, C.-S. Tian, X.-L. Qi, and Z.-Y. Weng, Unconventional order parameters in doped Mott insulators, arXiv:1007.2507 (predict a novel "Bose insulating phase")
- B. K. Clark, D. A. Abanin, and S. L. Sondhi, Nature of the spin liquid state of the Hubbard model on honeycomb lattice, arXiv:1010.3011 (effective J1-J2 low-energy model, variational calculation) P
- J. Lin and A. J. Millis, Optical and Hall conductivities of a thermally disordered two-dimensional spin-density wave: two-particle response in the pseudogap regime of electron-doped high-Tc superconductors, arXiv:1011.3265
- G. Sordi, K. Haule, and A.-M. S. Tremblay, Mott physics and first-order transition between two metals in the normal state phase diagram of the two-dimensional Hubbard model, arXiv:1102.0463 (cellular DMFT with QMC; phase diagram of doped 2D Hubbard model in U, temperature, and chemical potential, find a novel first-order transition between metallic states which ends at a critical line at finite temperature)
- Li Liu, H. Yao, E. Berg, and S. A. Kivelson, Phases of the infinite U Hubbard model, arXiv:1103.3315 (DMRG for ladders)
- S. A. Hartnoll, D. M. Hofman, M. A. Metlitski, and S. Sachdev, Quantum critical response at the onset of spin density wave order in two-dimensional metals, arXiv:1106.0001 (very long paper motivated by the cuprates)
- T. M. Rice, K.-Y. Yang, and F. C. Zhang, A Phenomenological Theory of the Anomalous Pseudogap Phase in Underdoped Cuprates, arXiv:1109.0632, Rep. Prog. Phys. (long paper on the authors' approach, partially of review character)
- S. Hong and P. Phillips, Towards the Standard Model of Fermi Arcs from a Wilsonian Reduction of the Hubbard Model, arXiv:1110.0440
- G. Sordi, P. Sémon, K. Haule, and A.-M. S. Tremblay, Pseudogap temperature along the Widom line of a first-order transition in doped Mott insulators, arXiv:1110.1392 (a Widom first-order phase transition as the main player in the physics of cuprates in the normal state)
- I. Bakken Sperstad, E. B. Stiansen, and A. Sudbø, Quantum criticality in a dissipative (2+1)-dimensional XY model of circulating currents in high-Tc cuprates, arXiv:1111.0629 (Monte Carlo)
- N. D. Vlasii, C. P. Hofmann, F.-J. Jiang, and U.-J. Wiese, Symmetry Analysis of Holes Localized on a Skyrmion in a Doped Antiferromagnet, arXiv:1205.3677 (long paper, holes coupled to Skyrmions, pre-formed pairs in cuprates)
- T. Morinari, Topological Spin Texture Created by Zhang-Rice Singlets in Cuprate Superconductors, arXiv:1207.2245, J. Phys. Soc. Jpn. 81, 074716 (2012) (single hole relative to half filling generates Zhang-Rice singlet, proposes that the Zhang-Rice singlet dresses with a skyrmion in the antiferromagnetic order)
- W. Rowe, J. Knolle, I. Eremin, and P. J. Hirschfeld, Spin excitations in layered antiferromagnetic metals and superconductors, arXiv:1207.3834 (motivated by cuprates but has some implications for pnictides as well, also coexistence of SDW and superconducting order)
- H. Ebrahimnejad, G. A. Sawatzky, and M. Berciu, The dynamics of a doped hole in a cuprate is not controlled by spin fluctuations, Nature Phys. 10, 951 (2014) (three-band [and five-band] tJ-type model; variational approach; very interesting paper suggesting that the Zhang-Rice-singlet picture misses essential physics)
- Z. Wang, W.-J. Hu, and A. H. Nevidomskyy, Spin Ferroquadrupolar Order in the Nematic Phase of FeSe, Phys. Rev. Lett. 116, 247203 (2016) (spin-only model, variational mean-field approximation)
-
V. Borisov, R. M. Fernandes, and R. Valentí, Evolution from B2g Nematics to B1g Nematics in Heavily Hole-Doped Iron-Based Superconductors, Phys. Rev. Lett. 123, 146402 (2019) (rotated nematic order)
-
X. Y. Xu and T. Grover, Competing Nodal d-Wave Superconductivity and Antiferromagnetism, Phys. Rev. Lett. 126, 217002 (2021) (sign-problem-free QMC for toy model of correct symmetry)
- X. Liu, Y. X. Chong, R. Sharma, and C. S. Davis, Discovery of a Cooper-pair density wave state in a transition-metal dichalcogenide, Science 372, 1447 (2021) (registered with preexisting CDW)
-
S. Gong, W. Zhu, and D. N. Sheng, Robust d-Wave Superconductivity in the Square-Lattice t−J Model, Phys. Rev. Lett. 127, 097003 (2021) (DMRG)
For the theory of superconductivity see Microscopic theory of bulk superconductors
Disordered ferromagnets (not specifically DMS)
- A. Singh and E. Fradkin, Localization and correlation effects in itinerant ferromagnets, Phys. Rev. B 35, 6894 (1987) (employing 1/N expansion)
- A. V. Andreev and A. Kamenev, Itinerant Ferromagnetism in Disordered Metals: A Mean-Field Theory, Phys. Rev. Lett. 81, 3199 (1998) (enhancement of ferromagnetism by potential disorder in two dimensions or less, no fluctuations)
- P. Jacquod and A. D. Stone, Ground-State Magnetization in Disordered Systems: Exchange vs. Off-Diagonal Interaction Fluctuations, cond-mat/0003352, phys. stat. sol. (2000)
- P. Jacquod and A. D. Stone, Ground-state magnetization for interacting fermions in a disordered potential: Kinetic energy, exchange interaction, and off-diagonal fluctuations, Phys. Rev. B 64, 214416 (2001) (contains brief review of Stoner theory in disordered metals)
- Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Current-Induced Magnetization Dynamics in Disordered Itinerant Ferromagnets, cond-mat/0512715 (extended local-density approximation)
- S. G. Magalhaes, F. M. Zimmer, P. R. Krebs, and B. Coqblin, Spin Glass and ferromagnetism in disordered Cerium compounds, cond-mat/0606551 (competition between spin glass, ferromagnetism, and Kondo physics for Kondo lattice model with random interactions, functional integral approach)
- J. A. Sobota, D. Tanaskovic, and V. Dobrosavljevic, RKKY interactions in the regime of strong localization, cond-mat/0609425 (more general idea exhibited for 1D system; no diffusion)
- J. A. Hoyos and T. Vojta, Local defect in a magnet with long-range interactions, cond-mat/0611001 (Ising magnet in paramagnetic phase close to classical or quantum critical point, with long-range stiffness-type [not density-density] interaction and a spherical defect region favoring magnetic order) P
- L. De Sanctis and F. Guerra, Mean field dilute ferromagnet I. High temperature and zero temperature behavior, arXiv:0801.4940 (Ising model on random network, same coupling on all bonds)
- A. Chakraborty and G. Bouzerar, Dynamical properties of a three-dimensional diluted Heisenberg model, Phys. Rev. B 81, 172406 (2010) (site-diluted nearest-neighbor Heisenberg model, self-consistent local RPA for large supercells) P
- R. Misra, A. F. Hebard, K. A. Muttalib, and P. Wölfle, Asymmetric Metal-Insulator Transition in Disordered Ferromagnetic Films, Phys. Rev. Lett. 107, 037201 (2011) (Gd films; experiment and theory)
- L. Demko, S. Bordacs, T. Vojta, D. Nozadze, F. Hrahsheh, C. Svoboda, B. Dora, H. Yamada, M. Kawasaki, Y. Tokura, and I. Kezsmarki, Disorder promotes ferromagnetism: Rounding of the quantum phase transition in Sr1-xCaxRuO3, arXiv:1202.3810 (experiments and theory, FM-PM quantum phase transition is destroyed by the compositional disorder, ferromagnetism is extended by the disorder, correlated disorder is more beneficial for ferromagnetism than random disorder)
- Y. Sang, D. Belitz, and T. R. Kirkpatrick, Disorder Dependence of the Ferromagnetic Quantum Phase Transition, Phys. Rev. Lett. 113, 207201 (2014) (explain how disorder suppresses the first-order ferromagnetic transition in ferromagnets with reduced Curie temperature and turns it into a second order transition, ending in a QCP; contains nice summary of the clean case)
Magnetic and general properties of pnictides, chalcogenides, and related systems - experiment
(including charge-density-wave systems)
- Y. Qiu, W. Bao, Q. Huang, J. W. Lynn, T. Yildirim, J. Simmons, Y. C. Gasparovic, J. Li, M. Green, T. Wu, G. Wu, and X. H. Chen, The absence of the spin-density-wave order in the NdFeAs(O,F) high Tc superconductor system, arXiv:0806.2195 (this compound shows a structural transition at about 150K, but no SDW order except at very small temperatures, unlike other compounds of this class - by now superceded, it does show SDW order)
- M. A. McGuire, A. D. Christianson, A. S. Sefat, B. C. Sales, M. D. Lumsden, R. Jin, E. A. Payzant, D. Mandrus, Y. Luan, V. Keppens, V. Varadarajan, J. W. Brill, R. P. Hermann, M. T. Sougrati, F. Grandjean, and G. J. Long, Phase transitions in LaFeAsO: structural, magnetic, elastic, and transport properties, heat capacity and Mössbauer spectra, arXiv:0806.3878 P
- D. Hsieh, Y. Xia, L. Wray, D. Qian, K. Gomes, A. Yazdani, G. F. Chen, J. L. Luo, N.L. Wang, and M. Z. Hasan, Experimental determination of the microscopic origin of magnetism in parent iron pnictides, arXiv:0812.2289 (ARPES and STM, favoring a SDW state) P
- Y. Xia, D. Qian, L. Wray, D. Hsieh, G. F. Chen, J. L. Luo, N. L. Wang, and M. Z. Hasan, Fermi Surface Topology and Low-Lying Quasiparticle Dynamics of Parent Fe1+xTe/Se Superconductor, Phys. Rev. Lett. 103, 037002 (2009); see also Viewpoint: A. V. Balatsky and D. Parker, Not all iron superconductors are the same, Physics 2, 59 (2009)
- M. Matusiak, T. Plackowski, Z. Bukowski, N. D. Zhigadlo, and J. Karpinski, The thermoelectric power as an evidence of Spin Density Wave order in the SmFeAsO and NdFeAsO, arXiv:0901.2472 P
- N. J. Curro, A. P. Dioguardi, N. Roberts-Warren, A. C. Shockley, and P. Klavin, Low energy spin dynamics in the antiferromagnetic phase of CaFe2As2, arXiv:0902.4492 (NMR, consistent with metallic ordered state)
- S. E. Hahn, Y. Lee, N. Ni, A. Alatas, B. M. Leu, D. Y. Chung, I. S. Todorov, E. E. Alp, M. G. Kanatzidis, P.C. Canfield, A. I. Goldman, R. J. McQueeney, and B. N. Harmon, Influence of Magnetism on Phonons in CaFe2As2, arXiv:0903.0017 (strong effect of magnetic correlations on phonons even in the disordered phase)
- G. Liu, H. Liu, L. Zhao, W. Zhang, X. Jia, J. Meng, X. Dong, G. F. Chen, G. Wang, Y. Zhou, Y. Zhu, X. Wang, Z. Xu, C. Chen, and X. J. Zhou, Electronic Evidence of Unusual Magnetic Ordering in a Parent Compound of FeAs-Based Superconductors, arXiv:0904.0677
- Y. Luo, Y. Li, S. Jiang, J. Dai, G. Cao, and Z. Xu, Phase diagram of CeFeAs1-xPxO: Two magnetic quantum critical points driven by chemical doping, arXiv:0907.2961
- D. S. Inosov, J. T. Park, P. Bourges, D. L. Sun, Y. Sidis, A. Schneidewind, K. Hradil, D. Haug, C. T. Lin, B. Keimer, and V. Hinkov, Normal-State Spin Dynamics and Temperature-Dependent Spin Resonance Energy in an Optimally Doped Iron Arsenide Superconductor, arXiv:0907.3632 (inelastic neutron scattering, exhibiting a nearly antiferromagnetic metal without pseudogap)
- J. J. Ying, T. Wu, Q. J. Zheng, Y. He, G. Wu, Q. J. Li, Y. J. Yan, Y. L. Xie, R. H. Liu, X. F. Wang, and X. H. Chen, Study of Electron Spin Resonance on single crystals EuFe2-xCoxAs2, arXiv:0908.0037
- R. Khasanov, M. Bendele, A. Amato, K. Conder, M. Elender, H. Keller, H.-H. Klauss, H. Luetkens, E. Pomjakushina, and A. Raselli, Pressure Induced Static Magnetic Order in Superconducting FeSe1-x, arXiv:0908.2734 (under pressure, antiferromagnetic long-range order appears above the superconducting transition and might coexist at low temperatures)
- H. Li, W. Tian, J. L. Zarestky, A. Kreyssig, N. Ni, S. L. Bud'ko, P. C. Canfield, A. I. Goldman, R. J. McQueeney, and D. Vaknin, Magnetic and lattice coupling in single-crystal SrFe2As2: A neutron scattering study, arXiv:0908.4253 (coinciding structural and magnetic first-order transitions)
- D. Reznik, K. Lokshin, D. C. Mitchell, D. Parshall, W. Dmowski, D. Lamago, R. Heid, K.-P. Bohnen, A.S. Sefat, M. A. McGuire, B. C. Sales, D. G. Mandrus, A. Asubedi, D. J. Singh, A. Alatas, M. H. Upton, A. H. Said, A. Cunsolo, Yu. Shvydko, and T. Egami, Phonons as a probe of the magnetic state in doped and undoped BaFe2As2, arXiv:0908.4359 (inelastic x-ray scattering compared to DFT, suggesting strong coupling between phonons and high-frequency magnetic fluctuations)
- T. Egami, B. V. Fine, D. J. Singh, D. Parshall, C. de la Cruz, and P. Dai, Spin-Phonon Coupling in Iron Pnictide Superconductors, arXiv:0908.4361 (short paper, Landau theory for the magnetic order controlled by As-Fe separation)
- M. M. Qazilbash, J. J. Hamlin, R. E. Baumbach, L. Zhang, D. J. Singh, M. B. Maple, and D. N. Basov, Electronic correlations in the iron pnictides, arXiv:0909.0312 (infrared and optical spectroscopy)
- M. Yi, D. H. Lu, J. G. Analytis, J.-H. Chu, S.-K. Mo, R.-H. He, M. Hashimoto, R. G. Moore, I. I. Mazin, D. J. Singh, Z. Hussain, I. R. Fisher, and Z.-X. Shen, Unconventional electronic reconstruction in undoped (Ba,Sr)Fe2As2 across the spin density wave transition, arXiv:0909.0831 (ARPES, compared to DFT)
- A. Jesche, C. Krellner, M. de Souza, M. Lang, and C. Geibel, Rare earth magnetism in CeFeAsO: A single crystal study, arXiv:0909.0903 (single crystals, Ce moments do not feel SDW ordering?)
- E. Dengler, J. Deisenhofer, H.-A. Krug von Nidda, S. Khim, J. S. Kim, K. H. Kim, F. Casper, C. Felser, and A. Loidl, Coupling of localized moments and itinerant electrons in EuFe2As2 single crystals studied by Electron Spin Resonance, arXiv:0909.2054
- S. J. Moon, J. H. Shin, D. Parker, W. S. Choi, I. I. Mazin, Y. S. Lee, J. Y. Kim, N. H. Sung, B. K. Cho, S. H. Khim, J. S. Kim, K. H. Kim, and T. W. Noh, Dual Character of Magnetism in Ferropnictides: Insights from Optical Measurements, arXiv:0909.3352 (optical spectroscopy accompanied by DFT: intermediate, not fully local or itinerant antiferromagnetism)
- H. Sugawara, K. Ishida, Y. Nakai, H. Yanagi, T. Kamiya, Y. Kamihara, M. Hirano, and H. Hosono, Two-Dimensional Spin Dynamics in the Itinerant Ferromagnet LaCoPO Revealed by Magnetization and 31P-NMR Measurements, arXiv:0909.5641 (isostructural with 1111 pnictides showing SDW order and superconductivity; LaCoPO is a weak ferromagnetic metal with small ordered moments but large paramagnetic moments above TC)
- R. Mittal, R. Heid, A. Bosak, T. R. Forrest, S. L. Chaplot, D. Lamago, D. Reznik, K. P. Bohnen, Y. Su, N. Kumar, S. K. Dhar, A. Thamizhavel, Ch. Rüegg, M. Krisch, D. F. McMorrow, Th. Brueckel, and L. Pintschovius, Pressure dependence of phonon modes across the tetragonal to collapsed tetragonal phase transition in CaFe2As2, arXiv:0911.1665
- Y. Luo, Q. Tao, Y. Li, X. Lin, L. Li, G. Cao, Z. Xu, H. Kaneko, A. V. Savinkov, Y. Xue, H. Suzuki, C. Fang, and J. Hu, Evidence of Magnetically Driven Structural Phase Transition in Parent Compounds RFeAsO (R = La, Sm, Gd, Tb): study of low-temperature X-ray diffraction, arXiv:0911.2779 (in 1111-compounds the structural and Neel transition temperatures as well as their difference decrease with decreasing c-axis lattice constant with rare-earth substitution) P
- R. M. Fernandes, L. H. VanBebber, S. Bhattacharya, P. Chandra, V. Keppens, D. Mandrus, M. A. McGuire, B. C. Sales, A. S. Sefat, and J. Schmalian, Effects of nematic fluctuations on the elastic properties of iron arsenide superconductors, arXiv:0911.3084; Phys. Rev. Lett. (ultrasound spectroscopy, supports the notion that the structural transition is strongly coupled to magnetic fluctuations; note changed title in new version, original title "Fluctuations-induced softening of the elastic properties of Fe-As based pnictide superconductors")
- K. Matan, S. Ibuka, R. Morinaga, S. Chi, J. W. Lynn, A. D. Christianson, M. D. Lumsden, and T. J. Sato, Doping Dependence of Spin Dynamics in Electron-Doped Ba(Fe1-xCox)2As2, arXiv:0912.4945 (inelastic neutron scattering, also propose a change in the Fermi-surface topology)
- Q. Si, Iron pnictide superconductors: Electrons on the verge, arXiv:0912.4989 (optical spectroscopy suggesting rather strong electronic correlations)
- G. Lang, H.-J. Grafe, D. Paar, F. Hammerath, K. Manthey, G. Behr, J. Werner, and B. Büchner, Nanoscale electronic order in iron pnictides, arXiv:0912.5495 (... in underdoped 1111 samples but not in undoped or optimally doped samples)
- V. P. S. Awana, I. Nowik, A. Pal, K. Yamaura, E. Takayama-Muromachi, and I. Felner, Magnetic phase transitions in SmCoAsO, Phys. Rev. B 81, 212501 (2010) (upon lowering the temperature, the material becomes a ferromagnetic metal, then a SDW metal, and at a low temperature, the Sm moments also order antiferromagnetically); A. Pal, H. Kishan, and V. P. S. Awana, Possible kinetic arrest of the ferromagnetic to anti-ferromagnetic transition in SmCoAsO: The interplay of Sm4f and Co3d spins, arXiv:1008.2593
- P. Richard, K. Nakayama, T. Sato, M. Neupane, Y.-M. Xu, J. H. Bowen, G. F. Chen, J. L. Luo, N. L. Wang, H. Ding, and T. Takahashi, Observation of Dirac Cone Electronic Dispersion in BaFe2As2, Phys. Rev. Lett. 104, 137001 (2010) (ARPES, Dirac cone due to spin-density-wave formation); see also Viewpoint: M. Z. Hasan and B. A. Bernevig, Dirac cone in iron-based superconductors, Physics 3, 27 (2010)
- J. G. Storey, J. W. Loram, J. R. Cooper, Z. Bukowski, and J. Karpinski, The electronic specific heat of Ba1-xKxFe2As2 from 2K to 380K, arXiv:1001.0474
- A. Jesche, C. Krellner, M. de Souza, M. Lang, and C. Geibel, Structural and magnetic transition in CeFeAsO: separated or connected?, arXiv:1001.4349 (difference between strutural and magnetic transition temperatures decreases with increasing sample quality, is concluded to be extrinsic)
- B. Zhou, Y. Zhang, L.-X. Yang, M. Xu, C. He, F. Chen, J.-F. Zhao, H.-W. Ou, J. Wei, B.-P. Xie, T. Wu, G. Wu, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, X. H. Chen, and D. L. Feng, Electronic structure of EuFe2As2, arXiv:1001.4537 (ARPES)
- Q. Tao, Z. Zhu, X. Lin, G. Cao, Z. Xu, G. Chen, J. Luo, and N. Wang, Comparative study on the thermoelectric effect of parent oxypnictides LaTAsO (T = Fe, Ni), arXiv:1002.0417
- T. Dong, Z. G. Chen, R. H. Yuan, B. F. Hu, B. Cheng, and N. L. Wang, Formation of partial energy gap below the structural phase transition and strong electron-phonon coupling effect in ReFeAsO (Re=La, Nd, and Sm), arXiv:1005.0780
- L. X. Yang, B. P. Xie, Y. Zhang, C. He, Q. Q. Ge, X. F. Wang, X. H. Chen, M. Arita, J. Jiang, K. Shimada, M. Taniguchi, I. Vobornik, G. Rossi, J. P. Hu, D. H. Lu, Z. X. Shen, Z. Y. Lu, and D. L. Feng, Surface and bulk electronic structures of LaOFeAs studied by angle resolved photoemission spectroscopy, arXiv:1006.1107 (suggest significant reconstruction of the bands at the SDW transition and that the structural transition is due to short-range magnetic order)
- W. Tian, W. Ratcliff II., M. G. Kim, J.-Q. Yan, P. A. Kienzle, Q. Huang, B. Jensen, K. W. Dennis, R. W. McCallum, T. A. Lograsso, R. J. McQueeney, A. I. Goldman, J. W. Lynn, and A. Kreyssig, Interplay between Fe and Nd magnetism in NdFeAsO single crystals, arXiv:1006.1135 (neutron and x-ray defraction etc., find an additional fourth transition where the interplanar order of Fe moments changes, above the Nd-ordering transition)
- E. Arushanov, C. Hess, G. Behr, S. Levcenko, A. Kondrat, J. Werner, G. Fuchs, S.-L. Drechsler, and B. Büchner, Scaling of normal-state transport properties of 1111 iron-pnictide superconductors, arXiv:1006.2350
- M. Zbiri, R. Mittal, S. Rols, Y. Su, Y. Xiao, H. Schober, S. L. Chaplot, M. R. Johnson, T. Chatterji, Y. Inoue, S. Matsuishi, H. Hosono, and T. Brueckel, Magnetic Lattice Dynamics of the Oxygen-Free FeAs Pnictides: How Sensitive are Phonons to Magnetic Ordering?, arXiv:1007.1711
- T. Yoshida, I. Nishi, A. Fujimori, M. Yi, R. G. Moore, D.-H. Lu, Z.-X. Shen, K. Kihou, P. M. Shirage, H. Kito, C. H. Lee, A. Iyo, H. Eisaki, and H. Harima, Fermi surfaces and quasi-particle band dispersions of the iron pnictides superconductor KFe2As2 observed by angle-resolved photoemission spectroscopy, arXiv:1007.2698
- T. Terashima, N. Kurita, A. Kikkawa, H. S. Suzuki, T. Matsumoto, K. Murata, and S. Uji, Magnetotransport studies of EuFe2As2: the influence of the Eu2+ magnetic moments, arXiv:1008.2029 (scattering off Eu moments found to have little effect on transport)
- L. Ma, J. Zhang, G. F. Chen, and W. Yu, NMR evidence of strong-correlated superconductivity in LiFeAs: tuning toward an SDW ordering, arXiv:1008.5199
- M. Yi, D. H. Lu, J.-H. Chu, J. G. Analytis, A. P. Sorini, A. F. Kemper, S.-K. Mo, R. G. Moore, M. Hashimoto, W. S. Lee, Z. Hussain, T. P. Devereaux, I. R. Fisher, and Z.-X. Shen, Symmetry breaking orbital anisotropy on detwinned Ba(Fe1-xCox)2As2 above the spin density wave transition, arXiv:1011.0050 (related to nematicity)
- L. Harnagea, S. Singh, G. Friemel, N. Leps, D. Bombor, M. Abdel-Hafiez, A. U. B Wolter, C. Hess, R. Klingeler, G. Behr, S. Wurmehl, and B. Büchner, Phase diagram of iron-arsenide superconductors Ca(Fe1-xCox)2As2 (0 ≤ x ≤ 0.2), arXiv:1011.2085 (antiferromagnetic and superconducting phases)
- M. G. Kim, A. Kreyssig, A. Thaler, D. K. Pratt, W. Tian, J. L. Zarestky, M. A. Green, S. L. Bud'ko, P. C. Canfield, R. J. McQueeney, and A. I. Goldman, Antiferromagnetic ordering in the absence of a structural distortion in Ba(Fe1-xMnx)2As2, arXiv:1011.2816 (do not observe a structural distortion in this material although there is stripe-like antiferromagnetic order)
- L. W. Harriger, H. Luo, M. Liu, T. G. Perring, C. Frost, J. Hu, M. R. Norman, and P. Dai, Nematic spin fluid in the tetragonal phase of BaFe2As2, arXiv:1011.3771 (observe a strong anisotropy of the [damped] spin-wave dispersion around the ordering vectors even above the Neél and structural transition temperature, but not relative to the Gamma point, attribute the results to nematicity)
- R. A. Ewings, T. G. Perring, J. Gillett, S. D. Das, S. E. Sebastian, A. E. Taylor, T. Guidi, and A. T. Boothroyd, Itinerant Spin Excitations in SrFe2As2 Measured by Inelastic Neutron Scattering, arXiv:1011.3831 (also comparison to theory: an itinerant multi-band model [Knolle et al.] works better than a local-moment model)
- J. J. Ying, X. F. Wang, T. Wu, Z. J. Xiang, R. H. Liu, Y. J. Yan, A. F. Wang, M. Zhang, G. J. Ye, P. Cheng, J. P. Hu and X. H. Chen, Distinct electronic nematicities between electron and hole underdoped iron pnictides, arXiv:1012.2731 (in-plan anisotropy of resistivity is very different)
- I. Nowik, I. Felner, Z. Ren, G. H. Cao, and Z. A. Xu, Coexistence of ferromagnetism and superconductivity: magnetization and Mossbauer studies of EuFe2(As1-xPx)2, J. Phys.: Condens. Matter 23, 065701 (2011) (isovalent substitution of As by P leads to ferromagnetism coexisting with superconductivity)
- M. G. Kim, R. M. Fernandes, A. Kreyssig, J. W. Kim, A. Thaler, S. L. Bud'ko, P. C. Canfield, R. J. McQueeney, J. Schmalian, and A. I. Goldman, Character of the structural and magnetic phase transitions in the parent and electron-doped BaFe2As2 compounds, Phys. Rev. B 83, 134522 (2011) (structural and antiferromagnetic transitions are found to happen at slightly different temperatures, experiments and theoretical analysis based on Ginzburg-Landau mean-field approach) P
- B. J. Arnold, S. Kasahara, A. I. Coldea, T. Terashima, Y. Matsuda, T. Shibauchi, and A. Carrington, Nesting of electron and hole Fermi surfaces in nonsuperconducting BaFe2P2, Phys. Rev. B 83, 220504(R) (2011) (de Haas-van Alphen)
- M. Matusiak, Z. Bukowski, and J. Karpinski, Doping dependence of the Nernst effect in Eu(Fe1-xCox)2As2 - departure from Dirac fermions physics, arXiv:1102.3198 (the parent compound behaves as expected, though)
- T. Terashima, N. Kurita, M. Tomita, K. Kihou, C.-H. Lee, Y. Tomioka, T. Ito, A. Iyo, H. Eisaki, T. Liang, M. Nakajima, S. Ishida, S. Uchida, H. Harima, and S. Uji, Complete Fermi surface in BaFe2As2 observed via quantum oscillation measurements on detwinned single crystals, arXiv:1103.3329 (find highly three-dimensional Fermi pockets)
- S. Arsenijeviíc, R. Gaál, A. S. Sefat, M. A. McGuire, B. C. Sales, D. Mandrus, and L. Forró, Pressure effects on the transport coefficients of Ba(Fe1-xCox)2As2, arXiv:1103.4501
- D. K. Pratt, M. G. Kim, A. Kreyssig, Y. B. Lee, G. S. Tucker, A. Thaler, W. Tian, J. L. Zarestky, S. L. Bud'ko, P. C. Canfield, B. N. Harmon, A. I. Goldman, and R. J. McQueeney, Incommensurate spin-density wave order in electron-doped BaFe2As2 superconductors, arXiv:1104.0717 (supports the scenario of a nesting-induced SDW)
- M. Wang, X. C. Wang, D. L. Abernathy, L. W. Harriger, H. Q. Luo, Y. Zhao, J. W. Lynn, Q. Q. Liu, C. Q. Jin, C. Fang, J. Hu, and P. Dai, Antiferromagnetic spin excitations in single crystals of nonsuperconducting Li1-xFeAs, arXiv:1104.3653 (neutron scattering: magnetic excitations are predominantly antiferromagnetic and the maximum moves in k-space as a function of energy)
- V. P. S. Awana, A. Pal, B. Gahtori, and H. Kishan, Interplay of Sm4f and Co3d spins in SmCoAsO, arXiv:1105.3546
- V. Grinenko, K. Kikoin, S.-L. Drechsler, G. Fuchs, K. Nenkov, S. Wurmehl, F. Hammerath, G. Lang, H.-J. Grafe, B. Holzapfel, J. van den Brink, B. Büchner, and L. Schultz, As-vacancies, local moments, and Pauli limiting in LaO_0.9F_0.1FeAs_(1-delta) superconductors, arXiv:1105.3602
- N. L. Wang, W. Z. Hu, Z. G. Chen, R. H. Yuan, G. Li, G. F. Chen, and T. Xiang, High energy pseudogap and its evolution with doping in Fe-based superconductors as revealed by optical spectroscopy, arXiv:1105.3939
- V. Brouet, M. Fuglsang Jensen, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fevre, F. Bertran, A. Forget, and D. Colson, Orbitally resolved lifetimes in Ba(Fe0.92Co0.08)2As2 measured by ARPES, arXiv:1105.5604; M. Fuglsang Jensen, V. Brouet, E. Papalazarou, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fevre, F. Bertran, A. Forget, and D. Colson, Angle-resolved photoemission study of the role of nesting and orbital orderings in the antiferromagnetic phase of BaFe2As2, arXiv:1105.5605
- I. R. Fisher, L. Degiorgi, and Z. X. Shen, In-plane electronic anisotropy of underdoped "122" Fe-arsenide superconductors revealed by measurements of detwinned single crystals, arXiv:1106.1675
- M. Nakajima, T. Liang, S. Ishida, Y. Tomioka, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Kakeshita, T. Ito, and S. Uchida, Unprecedented anisotropic metallic state in BaFe2As2 revealed by optical spectroscopy, arXiv:1106.4967
- S. Nandi, Y. Su, Y. Xiao, S. Price, X. F. Wang, X. H. Chen, J. Herrero-Martín, C. Mazzoli, H. C. Walker, L. Paolasini, S. Francoual, D. K. Shukla, J. Strempfer, T. Chatterji, C. M. N. Kumar, R. Mittal, H. M. Rønnow, C. Rüegg, D. F. McMorrow, and Th. Brückel, Strong coupling of Sm and Fe magnetism in SmFeAsO as revealed by magnetic x-ray scattering, arXiv:1107.1778
- H. Gretarsson, A. Lupascu, Jungho Kim, D. Casa, T. Gog, W. Wu, S. R. Julian, Z. J. Xu, J. S. Wen, G. D. Gu, R. H. Yuan, Z. G. Chen, N.-L. Wang, S. Khim, K. H. Kim, M. Ishikado, I. Jarrige, S. Shamoto, J.-H. Chu, I. R. Fisher, and Y.-J. Kim, Revealing the dual nature of magnetism in iron pnictides and iron chalcogenides using x-ray emission spectroscopy, arXiv:1107.2211 (find local iron moments on the order of 1 Bohr magneton in various pnictides but larger moments in chalcogenides)
- S.-H. Baek, H.-J. Grafe, F. Hammerath, M. Fuchs, C. Rudisch, L. Harnagea, S. Aswartham, S. Wurmehl, J. van den Brink, and B. Büchner, 75As NMR-NQR study in superconducting LiFeAs, arXiv:1108.2592 ("the" p-wave paper)
- I. A. Zaliznyak, Z. J. Xu, J. S. Wen, J. M. Tranquada, G. D. Gu, V. Solovyov, V. N. Glazkov, A. I. Zheludev, V. O. Garlea, and M. B. Stone, Continuous magnetic and structural phase transitions in Fe1+yTe, arXiv:1108.5968 (neutron scattering, magnetic susceptibility, and specific heat; three transitions upon lowering the temperature: structural distortion, incommensurate AFM, lock-in of incommensurate AFM ordering vector)
- A. Pandey, R. S. Dhaka, J. Lamsal, Y. Lee, V. K. Anand, A. Kreyssig, T. W. Heitmann, R. J. McQueeney, A. I. Goldman, B. N. Harmon, A. Kaminski, and D. C. Johnston, Ba{1-x}KxMn2As2: An Antiferromagnetic Local-Moment Metal, arXiv:1110.5546 (said to be intermediate between iron pnictides and cuprates)
- E. C. Blomberg, A. Kreyssig, M. A. Tanatar, R. Fernandes, M. G. Kim, A. Thaler, J. Schmalian, S. L. Bud'ko, P. C. Canfield, A. I. Goldman, and R. Prozorov, Effect of tensile stress on the in-plane resistivity anisotropy in BaFe2As2, arXiv:1111.0997 (experiments, also Landau theory)
- C. Dhital, Z. Yamani, Wei Tian, J. Zeretsky, A. S. Sefat, Z. Wang, R. J. Birgeneau, and S. D. Wilson, Effect of Uniaxial Strain on the Structural and Magnetic Phase Transitions in BaFe2As2, Phys. Rev. Lett. 108, 087001 (2012) (neutron scattering; uniaxial pressure leads to detwinning and strong upward shift of structural and magnetic transition temperatures)
- S. Hellmann, T. Rohwer, M. Kalläne, K. Hanff, C. Sohrt, A. Stange, A. Carr, M. M. Murnane, H. C. Kapteyn, L. Kipp, M. Bauer, and K. Rossnagel, Time-domain classification of charge-density-wave insulators, Nature Commun. 3, 1069 (2012) (time- and angle-resolved photemission can elucidate the interaction responsible for insulating behavior)
- H. Z. Arham, C. R. Hunt, W. K. Park, J. Gillett, S. D. Das, S. E. Sebastian, Z. J. Xu, J. S. Wen, Z. W. Lin, Q. Li, G. Gu, A. Thaler, S. Ran, S. L. Bud'ko, P. C. Canfield, D. Y. Chung, M. G. Kanatzidis, and L. H. Greene, Detection of Orbital Fluctuations Above the Structural Transition Temperature in the Iron-Pnictides and Chalcogenides, arXiv:1201.2479 (point contacts and also junctions with insulating barriers, interpretation in terms of orbital fluctuations relies on theoretical work arXiv:1110.5917)
- J. J. Ying, J. C. Liang, X. G. Luo, X. F. Wang, Y. J. Yan, M. Zhang, A. F. Wang, Z. J. Xiang, G. J. Ye, P. Cheng, and X. H. Chen, Transport and magnetic properties of La-doped CaFe2As2, arXiv:1202.3589
- P. Vilmercati, A. Fedorov, F. Bondino, F. Offi, G. Panaccione, P. Lacovig, L. Simonelli, M. A. McGuire, A. S. M. Sefat, D. Mandrus, B. C. Sales, T. Egami, W. Ku, and N. Mannella, Itinerant electrons, local moments, and magnetic correlations in pnictides high temperature, arXiv:1203.1950 (Fe 3s core-level photoemission: relatively large, slowly fluctuating local moments, decreasing with doping)
- A. Martinelli, A. Palenzona, M. Putti, and C. Ferdeghini, Microstructural evolution throughout the structural transition in 1111 oxy-pnictides, arXiv:1204.1167
- S. C. Speller, T. B. Britton, G. M. Hughes, A. Krzton-Maziopa, E. Pomjakushina, K. Conder, A. T. Boothroyd, and C. R. M. Grovenor, Microstructural analysis of phase separation in iron chalcogenide superconductors, arXiv:1204.5472
- V. Brouet, M. Fuglsang Jensen, P.-H. Lin, A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran, C.-H. Lin, W. Ku, D. Colson, and A. Forget, Impact of the 2 Fe unit cell on the electronic structure measured by ARPES in iron pnictides, arXiv:1205.4513
- S. E. Hahn, G. S. Tucker, J.-Q. Yan, A. H. Said, B. M. Leu, R. W. McCallum, E. E. Alp, T. A. Lograsso, R. J. McQueeney, and B. N. Harmon, Magnetism dependent phonon anomaly in LaFeAsO observed via inelastic x-ray scattering, arXiv:1206.1096
- F. Rullier-Albenque, D. Colson, A. Forget, and H. Alloul, Multiorbital effects on the transport and the superconducting fluctuations in LiFeAs, arXiv:1206.2278 (longitudinal and Hall resistivity, magnetoresistance, Fermi-liquid behavior, extract contribution of superconducting fluctuations)
- A. Jesche, T. Förster, J. Spehling, M. Nicklas, M. de Souza, R. Gumeniuk, H. Luetkens, T. Goltz, C. Krellner, M. Lang, J. Sichelschmidt, H.-H. Klauss, and C. Geibel, Ferromagnetism and superconductivity in P-doped CeFeAsO, arXiv:1206.7088 (superconductivity setting in at same temperature as Ce ferromagnetism, within Fe-antiferromagnetic phase)
- K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, Ultrafast transient generation of spin-densitywave order in the normal state of BaFe2As2 driven by coherent lattice vibrations, arXiv:1207.3987, Nature Mat. 11, 497 (2012)
- S. Kumar, L. Harnagea, S. Wurmehl, B. Büchner, and A. K. Sood, Gap-dependent quasiparticle dynamics and coherent acoustic phonons in parent iron pnictide CaFe2As2 across the spin density wave phase transition, arXiv:1208.3742
- M. Fu, D. A. Torchetti, T. Imai, F. L. Ning, J.-Q. Yan, and A. S. Sefat, NMR Search for the Spin Nematic State in LaFeAsO Single Crystal, arXiv:1208.5652
- V. Grinenko, S.-L. Drechsler, M. Abdel-Hafiez, S. Aswartham, A. U. B. Wolter, S. Wurmehl, C. Hess, K. Nenkov, G. Fuchs, D. Efremov, B. Holzapfel, J. van den Brink, and B. Büchner, Disordered magnetism in superconducting KFe2As2 single crystals, arXiv:1210.4590 (magnetization and specific-heat, also theory; cluster spin glass and Griffiths phases, above superconducting Tc)
- Y. K. Kim et al., Existence of Orbital Order and its Fluctuation in Superconducting Ba(Fe1-xCox)2As2 Single Crystals Revealed by X-ray Absorption Spectroscopy, Phys. Rev. Lett. 111, 217001 (2013) (different occupation of dyz and dzx orbitals, signal is larger than expected from an in some sense purely structural anisotropy)
- P.-H. Lin, Y. Texier, A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran, E. Giannini, M. Grioni, and V. Brouet, Nature of the Bad Metallic Behavior of Fe1.06Te Inferred from Its Evolution in the Magnetic State, Phys. Rev. Lett. 111, 217002 (2013) (ARPES, also DFT calculations, paramagnet is bad metal with large pseudgap due to spin fluctuations, antiferromagnet is good metal with spins frozen, nesting plays no role)
- J. H. Soh, G. S. Tucker, D. K. Pratt, D. L. Abernathy, M. B. Stone, S. Ran, S. L. Bud'ko, P. C. Canfield, A. Kreyssig, R. J. McQueeney, and A. I. Goldman, Inelastic Neutron Scattering Study of a Nonmagnetic Collapsed Tetragonal Phase in Nonsuperconducting CaFe2As2: Evidence of the Impact of Spin Fluctuations on Superconductivity in the Iron-Arsenide Compounds, Phys. Rev. Lett. 111, 227002 (2013) (there is no sign of spin fluctuations in this nonsuperconducting compound)
- F. Rullier-Albenque, D. Colson, and A. Forget, Longitudinal magnetoresistance in Co-doped BaFe2As2 and LiFeAs single crystals: Interplay between spin fluctuations and charge transport in iron-pnictides, arXiv:1303.1677
- E. C. Blomberg, M. A. Tanatar, R. M. Fernandes, I. I. Mazin, B. Shen, H.-H. Wen, M. D. Johannes, J. Schmalian, and R. Prozorov, Sign-reversal of the in-plane resistivity anisotropy in iron pnictides, arXiv:1304.3490
- A. Srivastava, A. Pal, S. Singh, C. Shekhar, H. K. Singh, V. P. S. Awana, and O. N. Srivastava, Magnetotransport and thermal properties characterization of 55 K superconductor SmFeAsO0.85F0.15, arXiv:1307.1259
- J. Maletz, V. B. Zabolotnyy, D. V. Evtushinsky, S. Thirupathaiah, A. U. B. Wolter, L. Harnagea, A. N. Yaresko, A. N. Vasiliev, D. A. Chareev, E. D. L. Rienks, B. Büchner, and S. V. Borisenko, Unusual band renormalization in the simplest iron based superconductor, arXiv:1307.1280
- I. Pallecchi, F. Bernardini, F. Caglieris, A. Palenzona, S. Massidda, and M. Putti, Role of Dirac cones in magnetotransport properties of REFeAsO (RE=rare earth) oxypnictides, arXiv:1307.6352 (transport experiments and DFT calculations showing presence of Dirac cones in the SDW states but not in the nonmagnetic state, see p. 2)
- C. A. McElroy, J. J. Hamlin, B. D. White, M. A. McGuire, B. C. Sales, and M. B. Maple, Magneto-Transport Properties of Single Crystalline LaFeAsO, arXiv:1308.1885 (partially semiconductor-like, carriers are suggested to freeze out at low temperatures, explaining increase of resistivity and decrease of Hall coefficient)
- J. G. Analytis, H.-H. Kuo, R. D. McDonald, M. Wartenbe, P. M. C. Rourke, N. E. Hussey, and I. R. Fisher, Transport near a quantum critical point in BaFe2(As1-xPx)2, Nature Physics (2014), doi:10.1038/nphys2869 (superconductivity suppressed by magnetic field)
- E. P. Rosenthal, E. F. Andrade, C. J. Arguello, R. M. Fernandes, L. Y. Xing, X. C. Wang, C. Q. Jin, A. J. Millis, and A. N. Pasupathy, Visualization of electron nematicity and unidirectional antiferroic fluctuations at high temperatures in NaFeAs, Nature Phys. doi:10.1038/nphys2870 (2014) (STS for NaFeAs and also LiFeAs, where no sign of nematicity is seen)
- M. Hiraishi et al., Bipartite magnetic parent phases in the iron oxypnictide superconductor, Nature Phys. doi:10.1038/nphys2906 (2014) (LaFeAsO1-xHx, detect another antiferromagnetic "parent" compount aroung x = 0.5, which could explain two-dome superconducting phase diagram)
- K. Gofryk, B. Saparov, T. Durakiewicz, A. Chikina, S. Danzenbächer, D. V. Vyalikh, M. J. Graf, and A. S. Sefat, Fermi-Surface Reconstruction and Complex Phase Equilibria in CaFe2As2, Phys. Rev. Lett. 112, 186401 (2014) (transport measurements)
- C. Zhang, L. W. Harriger, Z. Yin, W. Lv, M. Wang, G. Tan, Y. Song, D. L. Abernathy, W. Tian, T. Egami, K. Haule, G. Kotliar, and P. Dai, Effect of Pnictogen Height on Spin Waves in Iron Pnictides, Phys. Rev. Lett. 112, 217202 (2014) (inelastic neutron scattering)
- H.-H. Kuo and I. R. Fisher, Effect of Disorder on the Resistivity Anisotropy Near the Electronic Nematic Phase Transition in Pure and Electron-Doped BaFe2As2, Phys. Rev. Lett. 112, 227001 (2014) (resistive anisotropy found to be essentially independent of disorder, suggested to be due to anisotropy of the electronic structure)
- S. Avci et al., Magnetically driven suppression of nematic order in an iron-based superconductor, Nature Commun. 5, 3845/4845 (2014) (neutron-scattering experiments and theory, Ba1-xNaxFe2As2, find fourfold symmetric magnetic phase, also in coexistence with superconductivity, close to destruction of magnetic order by doping; title changed compared to preprint)
- S.-H. Baek, D. V. Efremov, J. M. Ok, J. S. Kim, J. van den Brink, and B. Büchner, Orbital-driven nematicity in FeSe, Nature Mater. doi:10.1038/nmat4138 (2014) (NMR and theory, argue that their results show that nematic order in FeSe is driven by orbital degrees of freedom)
- K. Nakayama, Y. Miyata, G. N. Phan, T. Sato, Y. Tanabe, T. Urata, K. Tanigaki, and T. Takahashi, Reconstruction of Band Structure Induced by Electronic Nematicity in an FeSe Superconductor, Phys. Rev. Lett. 113, 237001 (2014) (ARPES)
- D. D. Khalyavin, S. W. Lovesey, P. Manuel, F. Krüger, S. Rosenkranz, J. M. Allred, O. Chmaissem, and R. Osborn, Symmetry of reentrant tetragonal phase in Ba1-xNaxFe2As2: Magnetic versus orbital ordering mechanism, Phys. Rev. B 90, 174511 (2014) (neutron scattering and theory: detailed symmetry analysis and simulation of resonant x-ray scattering) P
- D. A. Moseley, K. A. Yates, N. Peng, D. Mandrus, A. S. Sefat, W. R. Branford, and L. F. Cohen, Magnetotransport of proton-irradiated BaFe2As2 and BaFe1.985Co0.015As2 single crystals, Phys. Rev. B 91, 054512 (2015) (irradiation is shown to only increase the concentration of scatterers, find linear magnetoresistance but not in agreement with present theory, intriguing)
- J. Okamoto, C. J. Arguello, E. P. Rosenthal, A. N. Pasupathy, and A. J. Millis, Experimental Evidence for a Bragg Glass Density Wave Phase in a Transition-Metal Dichalcogenide, Phys. Rev. Lett. 114, 026802 (2015) (NbSe2, strong pinning of CDW, nevertheless glassy behavior, includes theoretical discussion)
- A. E. Böhmer, T. Arai, F. Hardy, T. Hattori, T. Iye, T. Wolf, H. v. Löhneysen, K. Ishida, and C. Meingast, Origin of the Tetragonal-to-Orthorhombic Phase Transition in FeSe: A Combined Thermodynamic and NMR Study of Nematicity, Phys. Rev. Lett. 114, 027001 (2015) (no spin fluctuations seen above the structural transition, indicating that the origin of nematicity is not magnetic fluctuations)
- C. J. Arguello, E. P. Rosenthal, E. F. Andrade, W. Jin, P. C. Yeh, N. Zaki, S. Jia, R. J. Cava, R. M. Fernandes, A. J. Millis, T. Valla, R. M. Osgood, Jr., and A. N. Pasupathy, Quasiparticle Interference, Quasiparticle Interactions, and the Origin of the Charge Density Wave in 2H-NbSe2, Phys. Rev. Lett. 114, 037001 (2015) (experiment and theory)
- Y.-T. Cui et al., Interface Ferroelectric Transition near the Gap-Opening Temperature in a Single-Unit-Cell FeSe Film Grown on Nb-Doped SrTiO3 Substrate, Phys. Rev. Lett. 114, 037002 (2015)
- M. P. Allan et al., Identifying the 'fingerprint' of antiferromagnetic spin fluctuations in iron pnictide superconductors, Nature Phys. 11, 177 (2015) (STS quasiparticle interference for LiFeAs with theoretical analysis to extract information on electronic self-energy, supports antiferromagnetic spin fluctuations as the pairing glue)
- T. Ritschel, J. Trinckauf, K. Koepernik, B. Büchner, M. v. Zimmermann, H. Berger, Y. I. Joe, P. Abbamonte, and J. Geck, Orbital textures and charge density waves in transition metal dichalcogenides, Nature Phys. (2015), doi:10.1038/nphys3267 (1T-TaS2)
- P. D. Johnson, H.-B. Yang, J. D. Rameau, G. D. Gu, Z.-H. Pan, T. Valla, M. Weinert, and A. V. Fedorov, Spin-Orbit Interactions and the Nematicity Observed in the Fe-Based Superconductors, Phys. Rev. Lett. 114, 167001 (2015) (FeTe0.5Se0.5, ARPES)
- V. Balédent, F. Rullier-Albenque, D. Colson, J. M. Ablett, and J.-P. Rueff, Electronic Properties of BaFe2As2 upon Doping and Pressure: The Prominent Role of the As p Orbitals, Phys. Rev. Lett. 114, 177001 (2015) (x-ray absorption at As K edge; contribution of arsenic p orbitals to electronic structure is strongly affected by doping and pressure)
- Y. M. Dai, H. Miao, L. Y. Xing, X. C. Wang, P. S. Wang, H. Xiao, T. Qian, P. Richard, X. G. Qiu, W. Yu, C. Q. Jin, Z. Wang, P. D. Johnson, C. C. Homes, H. Ding, Fermi surface nesting driven Fermi liquid to non-Fermi liquid crossover with suppressed superconductivity in LiFe1-xCoxAs, arXiv:1505.00455
- B. P. P. Mallett, P. Marsik, M. Yazdi-Rizi, T. Wolf, A. E. Böhmer, F. Hardy, C. Meingast, D. Munzar, and C. Bernhard, Infrared Study of the Spin Reorientation Transition and Its Reversal in the Superconducting State in Underdoped Ba1-xKxFe2As2, Phys. Rev. Lett. 115, 027003 (2015)
- M. D. Watson, T. Yamashita, S. Kasahara, W. Knafo, M. Nardone, J. Béard, F. Hardy, A. McCollam, A. Narayanan, S. F. Blake, T. Wolf, A. A. Haghighirad, C. Meingast, A. J. Schofield, H. v. Löhneysen, Y. Matsuda, A. I. Coldea, and T. Shibauchi, Dichotomy between the Hole and Electron Behavior in Multiband Superconductor FeSe Probed by Ultrahigh Magnetic Fields, Phys. Rev. Lett. 115, 027006 (2015)
- X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forró, J. Shan, and K. F. Mak, Strongly enhanced charge-density-wave order in monolayer NbSe2, Nature Nano. (2015), doi:10.1038/nnano.2015.143
- T. Kobayashi, K. Tanaka, S. Miyasaka, and S. Tajima, Importance of Fermi Surface Topology for In-Plane Resistivity Anisotropy in Hole- and Electron-Doped Ba(Fe1-xTMx)2As2 (TM=Cr, Mn and Co), arXiv:1507.04519, J. Phys. Soc. Jpn.
- C. Mirri, A. Dusza, S. Bastelberger, M. Chinotti, L. Degiorgi, J.-H. Chu, H.-H. Kuo, and I. R. Fisher, Origin of the Resistive Anisotropy in the Electronic Nematic Phase of BaFe2As2 Revealed by Optical Spectroscopy, Phys. Rev. Lett. 115, 107001 (2015)
- P. Wiecki, B. Roy, D. C. Johnston, S. L. Bud'ko, P. C. Canfield, and Y. Furukawa, Competing Magnetic Fluctuations in Iron Pnictide Superconductors: Role of Ferromagnetic Spin Correlations Revealed by NMR, Phys. Rev. Lett. 115, 137001 (2015)
- Y. Feng, J. van Wezel, J. Wang, F. Flicker, D. M. Silevitch, P. B. Littlewood, and T. F. Rosenbaum, Itinerant density wave instabilities at classical and quantum critical points, Nature Phys. 11, 865 (2015) (CDW in NbSe2 and SDW in elementary Cr; x-ray diffraction and modeling; show that the instabilities are primarily itinerant-electron effects)
- D. Mou, A. Sapkota, H.-H. Kung, V. Krapivin, Y. Wu, A. Kreyssig, X. Zhou, A. I. Goldman, G. Blumberg, R. Flint, and A. Kaminski, Discovery of an Unconventional Charge Density Wave at the Surface of K0.9Mo6O17, Phys. Rev. Lett. 116, 196401 (2016) (CDW at the surface at much higher temperature than in the bulk; weak electron-phonon coupling suggests purely electronic mechanism; correlations at surface enhanced by reduced dimensionality?)
- F. Kretzschmar, T. Böhm, U. Karahasanovic, B. Muschler, A. Baum, D. Jost, J. Schmalian, S. Caprara, M. Grilli, C. Di Castro, J. G. Analytis, J.-H. Chu, I. R. Fisher, and R. Hackl, Critical spin fluctuations and the origin of nematic order in Ba(Fe1-xCox)2As2, Nature Phys. 12, 560 (2016) (Raman scattering and theory)
- M. A. Tanatar, A. E. Böhmer, E. I. Timmons, M. Schütt, G. Drachuck, V. Taufour, K. Kothapalli, A. Kreyssig, S. L. Bud'ko, P. C. Canfield, R. M. Fernandes, and R. Prozorov Origin of the Resistivity Anisotropy in the Nematic Phase of FeSe, Phys. Rev. Lett. 117, 127001 (2016)
- E. Civardi, M. Moroni, M. Babij, Z. Bukowski, and P. Carretta, Superconductivity Emerging from an Electronic Phase Separation in the Charge Ordered Phase of RbFe2As2, Phys. Rev. Lett. 117, 217001 (2016) (NMR and NQR; charge order below 140 K, different environments probed below 20 K)
- P. S. Wang, S. S. Sun, Y. Cui, W. H. Song, T. R. Li, R. Yu, H. Lei, and W. Yu, Pressure Induced Stripe-Order Antiferromagnetism and First-Order Phase Transition in FeSe, Phys. Rev. Lett. 117, 237001 (2016)
- A. Martinelli, P. Manfrinetti, A. Provino, A. Genovese, F. Caglieris, G. Lamura, C. Ritter, and M. Putti, Experimental Evidence for Static Charge Density Waves in Iron Oxypnictides, Phys. Rev. Lett. 118, 055701 (2017) (Mn-doped LaFeAsO)
-
Z.-G. Chen, L. Wang, Y. Song, X. Lu, H. Luo, C. Zhang, P. Dai, Z. Yin, K. Haule, and G. Kotliar, Two-Dimensional Massless Dirac Fermions in Antiferromagnetic AFe2As2 (A=Ba,Sr), Phys. Rev. Lett. 119, 096401 (2017) (infrared spectroscopy and DFT+DMFT calculations)
-
S. Choi et al., Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor, Phys. Rev. Lett. 119, 227001 (2017) (Sr2VO3FeAs; spin-polarized current can switch system from C2 to C4 magnetic state; coexistence with superconductivity); see also Physics viewpoint
-
R. P. Day et al., Influence of Spin-Orbit Coupling in Iron-Based Superconductors, Phys. Rev. Lett. 121, 076401 (2018) (spin- and angle-resolved photoemission [ARPES] compared to tight-binding modeling, 111 and 11 compounds)
-
P. Massat et al., Collapse of Critical Nematic Fluctuations in FeSe under Pressure, Phys. Rev. Lett. 121, 077001 (2018) (Raman spectroscopy; nematic fluctuations are suppressed for increasing pressure much before the maximum Tc is reached, suggesting that they are marginal for superconducting pairing)
-
J. Li, B. Lei, D. Zhao, L. P. Nie, D. W. Song, L. X. Zheng, S. J. Li, B. L. Kang, X. G. Luo, T. Wu, and X. H. Chen, Spin-Orbital-Intertwined Nematic State in FeSe, Phys. Rev. X 10, 011034 (2020) (NMR)
-
Cong Li et al., Spectroscopic Evidence for an Additional Symmetry Breaking in the Nematic State of FeSe Superconductor, Phys. Rev. X 10, 031033 (2020) (laser ARPES; either inversion or time-reversal symmetry are also broken)
Magnetic and general properties of pnictides, chalcogenides, and related systems - theory
(including charge-density-wave systems)
- I. I. Mazin, M. D. Johannes, L. Boeri, K. Koepernik, and D. J. Singh, Challenge of unravelling magnetic properties of LaFeAsO, arXiv:0806.1869 (careful discussion of various ab-initio calculations for this undoped system and of the character of its magnetic ordering) P
- J. Lorenzana, G. Seibold, C. Ortix, and M. Grilli, Competing orders in FeAs layers, arXiv:0807.2412
- R. Yu, K. T. Trinh, A. Moreo, M. Daghofer, J. A. Riera, S. Haas, and E. Dagotto, Magnetic and Metallic State at Intermediate Hubbard U Coupling in Multiorbital Models for Undoped Fe Pnictides, arXiv:0812.2894 (mean-field theory for metallic antiferromagnetic state using four-band and two-band models) P
- Y.-Z. Zhang, H. C. Kandpal, I. Opahle, H. O. Jeschke, and R. Valentí, Pressure-induced structure phase transitions in iron-pnictide AFe2As2 superconductors using ab initio molecular-dynamics calculations, arXiv:0812.2920 (also discuss magnetic instability, which is found to be different for different ions "A", to favor stripe ordering, and to vanish for tetragonal symmetry)
- V. Barzykin and L. P. Gor'kov, The role of striction at magnetic and structural transitions in iron-pnictides, arXiv:0812.4277 (magneto-elastic effects)
- I. I. Mazin and M. D. Johannes, A key role for unusual spin dynamics in ferropnictides, Nature Physics 5, 141 (2009) (idea of fluctuating SDW domains, which makes experimental results dependent on the experimental time scale) P; see also W. E. Pickett, Iron-based superconductors: Timing is crucial in the same issue
- J. Dai, J.-X. Zhu, and Q. Si, f-spin physics of rare-earth iron pnictides: Influence of d-electron antiferromagnetic order on the heavy-fermion phase diagram, Phys. Rev. B 80, 020505(R) (2009) (theory: Kondo screening of f-electron spins is suppressed by magnetic ordering of Fe d-electron spins)
- M. M. Korshunov, I. Eremin, D. V. Efremov, D. L. Maslov, and A. V. Chubukov, Non-analytic spin susceptibility of a nested Fermi liquid: the case of Fe-based pnictides, arXiv:0901.0238
- E. Manousakis, J. Ren, S. Meng, and E. Kaxiras, Is the nature of magnetic order in copper-oxides and in iron-pnictides different?, arXiv:0902.3450 (qualitative discussion based on previously reported electronic structure, support a local-moment picture for the pnictides)
- M. S. Laad and L. Craco, Anomalous Magnetic Susceptibility in Iron Pnictides: Paramagnetic Phase, arXiv:0903.3732, Phys. Rev. B P
- K. Kubo and P. Thalmeier, Multiorbital effects on antiferromagnetism in Fe pnictides, arXiv:0903.4064 (two-orbital model, consider spin and orbital ordering)
- R. R. P. Singh, Exchange Constants and Neutron Spectra of Iron Pnictide Materials, arXiv:0903.4408 (on 122 compounds)
- C. Xu and J. Hu, Field theory for magnetic and lattice structure properties of Fe1+yTe1-xSex, arXiv:0903.4477
- M. D. Johannes and I. Mazin, Microscopic origin of magnetism and magnetic interactions in ferropnictides, arXiv:0904.3857 (take a middle route between the strongly correlated and the itinerant picture)
- D. Parker and I. Mazin, Spin density wave coexistence and nodal lines in superconducting pnictides, arXiv:0904.3926
- W. Lv, J. Wu, and P. Phillips, Jahn-Teller Effect Induces Structural Phase Transition and the Resistivity Anomaly in Iron Pnictides, arXiv:0905.1704 P
- G.-B. Liu and B.-G. Liu, Temperature-dependent striped antiferromagnetism of LaFeAsO in a Green's function approach, arXiv:0905.2005
- P. Prelovsek, I. Sega, and T. Tohyama, Analysis of transport properties of iron pnictides: spin-fluctuation scenario, arXiv:0905.4153
- M. J. Calderon, B. Valenzuela, and E. Bascones, Tight binding model for iron pnictides, arXiv:0907.1259
- E. Kaneshita, T. Morinari, and T. Tohyama, Modeling Antiferromagnetic Phase in Iron Pnictides: Weakly Ordered State, arXiv:0909.1081 (calculation of the optical conductivity)
- M. Daghofer, A. Nicholson, A. Moreo, and E. Dagotto, Three-Orbital model for the Pnictides, arXiv:0910.1573
- R. Applegate, J. Oitmaa, and R. R. P. Singh, Spin-waves in the J1a-J1b-J2 orthorombic square-lattice Heisenberg models: Application to the iron pnictide materials, arXiv:0910.1793 (anisotropic Heisenberg model, see also the following reference)
- D.-X. Yao and E. W. Carlson, Magnetic Excitations of Undoped Iron Oxypnictides, arXiv:0910.2528 (anisotropic Heisenberg model, see also the preceding reference)
- S. Zhou and Z. Wang, Electron correlation and spin density wave order in iron pnictides, arXiv:0910.2707
- N. Harrison and S. E. Sebastian, Dirac nodal pockets in the antiferromagnetic parent phase of FeAs superconductors, arXiv:0910.4199 (propose graphene-like Dirac cones in the quasiparticle dispersion in the SDW state of 122-compounds)
- F. Cricchio, O. Granas, and L. Nordstrom, The low spin moment in LaOFeAs is due to a hidden multipole order caused by spin orbital ordering, arXiv:0911.1342
- I. Eremin and A. V. Chubukov, Magnetic degeneracy and hidden metallicity of the spin density wave state in ferropnictides, arXiv:0911.1754
- H. Ishida and A. Liebsch, Fermi-liquid, non-Fermi-liquid, and Mott phases in iron pnictides and cuprates, arXiv:0911.1940 (strong-coupling picture, unified description of pnictides and cuprates)
- B. Schmidt, M. Siahatgar, and P. Thalmeier, Frustrated local moment models for Fe-pnictide magnetism, arXiv:0911.5664
- P. Prelovsek and I. Sega, Anomalous normal-state properties of iron pnictides: phenomenological theory, arXiv:0912.3122
- H. Lee, Y.-Z. Zhang, H. O. Jeschke, and R. Valentí, Possible origin of the reduced magnetic moment in iron pnictides: Frustrated versus unfrustrated bands, arXiv:0912.4024 (DMFT)
- Z. P. Yin and W. E. Pickett, Crystal Symmetry and Magnetic Order in Iron Pnictides: a Tight Binding Wannier Function Analysis, Phys. Rev. B 81, 174534 (2010) (effect of antiferromagnetic order on orbital shape and occupation)
- M. Aichhorn, S. Biermann, T. Miyake, A. Georges, and M. Imada, Theoretical evidence for strong correlations and incoherent metallic state in FeSe, Phys. Rev. B 82, 064504 (2010) (ab-initio study)
- Y.-Z. Zhang, I. Opahle, H. O. Jeschke, and R. Valentí, Itinerant Nature of Magnetism in Iron Pnictides: A first principles study, arXiv:1001.0536
- L. de' Medici, S. R. Hassan, and M. Capone, Genesis of coexisting itinerant and localized electrons in Iron Pnictides, arXiv:1001.1098
- H. Eschrig, A. Lankau, and K. Koepernik, Calculated Cleavage Behavior and Surface States of LaOFeAs, arXiv:1001.1127 (DFT)
- A. M. Tsvelik, Striped pnictides as new strongly correlated systems, arXiv:1001.2528
- L. P. Gor'kov and G. B. Teitel'baum, On spatial non-homogeneity in iron pnictides: formation of the soliton phase, arXiv:1001.4641
- J. Knolle, I. Eremin, A. V. Chubukov, and R. Moessner, Theory of itinerant magnetic excitations in the SDW phase of iron-based superconductors, arXiv:1002.1668 P
- E. Bascones, M. J. Calderon, and B. Valenzuela, Low magnetization and anisotropy in the antiferromagnetic state of undoped iron pnictides, arXiv:1002.2584 (model based on 2 iron ions per unit cell with 5 orbitals each)
- E. Kaneshita and T. Tohyama, Spin and Charge Dynamics Ruled by the Antiferromagnetic Order in Iron Pnictides, arXiv:1002.2701 (imaginary part of spin susceptibility, showing spin-wave dispersion, using Kuroki model) P
- W. Lv, F. Krüger, and P. Phillips, Orbital Ordering and Unfrustrated (pi,0) Magnetism from Degenerate Double Exchange in the Pnictides, arXiv:1002.3165 (based on a spin-fermion model)
- Y. Gao, T. Zhou, C. S. Ting, and W.-P. Su, Spin dynamics in electron-doped pnictide superconductors, arXiv:1003.2609
- M. D. Johannes, I. I. Mazin, and D. S. Parker, Effect of doping and pressure on magnetism and lattice structure of Fe-based superconductors, arXiv:1004.2160 (DFT)
- L. Ke, M. van Schilfgaarde, J. J. Pulikkotil, T. Kotani, and V. P. Antropov, Coexistence of Spin Waves and Stoner Excitations in CaFe2As2, arXiv:1004.2934 (based on DFT, Stoner excitations are dominant at low energies and are sensitive to lattice deformations)
- A. Cano, M. Civelli, I. Eremin, and I. Paul, Interplay of magnetic and structural transitions in Fe-based pnictide superconductors, arXiv:1004.4145 (Ginzburg-Landau theory)
- M. Daghofer, Q. Luo, R. Yu, D. Yao, A. Moreo, and E. Dagotto, Orbital weight redistribution triggered by spin order in the pnictides, arXiv:1004.4803
- J. Knolle, I. Eremin, A. Akbari, and R. Moessner, Quasiparticle interference in the spin-density wave phase of iron-based superconductors, arXiv:1004.5460
- Y.-Z. Zhang, H. Lee, I. Opahle, H. O. Jeschke, and R. Valentí, Importance of Fermi Surface Nesting and Quantum Fluctuations for the Magnetism in Iron Pnictides, arXiv:1005.1170 (DFT and DMFT, support dominantly nesting-driven magnetism); J. Ferber, Y.-Z. Zhang, H. O. Jeschke, and R. Valentí, Analysis of spin density wave conductivity spectra of iron pnictides in the framework of density functional theory, arXiv:1005.1374 (DFT: GGA and GGA+U, optical conductivity, correlation effects are found not to be negligible)
- R. Yu and Q. Si, Mott Transition in Multi-Orbital Models for Iron Pnictides, arXiv:1006.2337
- T. Misawa, K. Nakamura, and M. Imada, Magnetic Properties of Ab initio Model for Iron-Based Superconductors LaFeAsO, arXiv:1006.4812 (variational Monte Carlo simulations for a model with direct Coulomb and exchange interactions)
- N. Raghuvanshi and A. Singh, Spin waves in the (0,pi) and (0,pi,pi) ordered SDW states of the t-t' Hubbard model: Application to doped iron pnictides, arXiv:1007.0812
- Q. Luo, G. Martins, D.-X. Yao, M. Daghofer, R. Yu, A. Moreo, and E. Dagotto, Neutron and ARPES Constraints on the Couplings of the Multiorbital Hubbard Model for the Pnictides, arXiv:1007.1436 (theory, orbital models)
- M. A. Metlitski and S. Sachdev, Instabilities near the onset of spin density wave order in metals, arXiv:1007.1968
- Z. P. Yin, K. Haule, and G. Kotliar, Magnetism and Charge Dynamics in Iron Pnictides, arXiv:1007.2867 (LDA + DMFT for BaFe2As2, suggest that magnetic order is intermediate between metallic SDW and local moments)
- B. Valenzuela, E. Bascones, and M. J. Calderón, Conductivity anisotropy in the antiferromagnetic state of iron pnictides, arXiv:1007.3483 (five-band model, assumption of strong orbital ordering leads to an effect opposite to what is observed)
- A. Akbari, J. Knolle, I. Eremin, and R. Moessner, Quasiparticle interference in iron-based superconductors, arXiv:1008.4930 (T-matrix theory, with application to Fourier-transformed STM)
- F. Yndurain, Electron-phonon interaction in Fe-based superconductors: Coupling of magnetic moments with phonons in LaFeAsO1-xFx, arXiv:1009.4909 (ab-initio calculations with supercell approach to doping [VCA is found to give very similar results, though], large electron-A1g-phonon coupling in AFM phase since this phonon modulates the Fe magnetic moment, which affects all bands)
- M. S. Laad and L. Craco, Theory of Orbital Nematicity in Underdoped Iron Arsenides, arXiv:1010.2940
- K. Kubo and P. Thalmeier, Correlation Effects on Antiferromagnetism in Fe Pnictides, arXiv:1010.4626 (variational Monte Carlo)
- M. Holt, O. P. Sushkov, D. Stanek, and G. S. Uhrig, Iron pnictide parent compounds: Three dimensional generalization of the J1-J2 Heisenberg model on a square lattice and role of the interlayer coupling Jc, arXiv:1010.5551
- J. Kang and Z. Tesanovic, Theory of Valley-Density Wave and Hidden Order in Iron-Pnictides, arXiv:1011.2499 (nearly degenerate density waves, true equilibrium state claimed to prefers SDW coexisting with perpendicular "pocket density wave")
- O. K. Andersen and L. Boeri, On the multi-orbital band structure and itinerant magnetism of iron-based superconductors, Ann. Physik (Berlin) 523, 8 (2011), arXiv:1011.1658 (DFT, mapped to tight-binding Hamiltonian, explain up/downfolding of 2D Brillouin zone)
- T. Schickling, F. Gebhard, and J. Bünemann, Antiferromagnetic Order in Multiband Hubbard Models for Iron Pnictides, Phys. Rev. Lett. 106, 146402 (2011) (variational Gutzwiller approach, find that Hartree-Fock approximation is not sufficient)
- I. Paul, Magnetolastic Quantum Fluctuations and Phase Transitions in the Iron Superconductors, Phys. Rev. Lett. 107, 047004 (2011) (simplest non-local symmetry-allowed coupling between O(3) magnetization field and displacement field, use generic forms for propagators, lowest-order selfenergy corrections due to the coupling; addresses two-step transition and distinction between 1111 and 11 compounds) P
- N. Raghuvanshi and A. Singh, The role of Hund's coupling in the stabilization of the (0, π) ordered spin density wave state within the minimal two-band model for iron pnictides, J. Phys.: Condens. Matter 23, 312201 (2011)
- C.-H. Lin, T. Berlijn, L. Wang, C.-C. Lee, W.-G. Yin, and W. Ku, One-Fe versus Two-Fe Brillouin Zone of Fe-Based Superconductors: Creation of the Electron Pockets by Translational Symmetry Breaking, Phys. Rev. Lett. 107, 257001 (2011) (DFT, study of unfolding)
- A. F. Kemper, M. M. Korshunov, T. P. Devereaux, J. N. Fry, H.-P. Cheng, and P. J. Hirschfeld, Anisotropic quasiparticle lifetimes in Fe-based superconductors, Phys. Rev. B 83, 184516 (2011) (from RPA at zero temperature) P
- W.-H. Ko and P. A. Lee, Magnetism and Mott Transition - A Slave-rotor Study, arXiv:1101.5183 (for a orbitally symmetric two-orbital model)
- Y.-Z. You, F. Yang, S.-P. Kou, and Z.-Y. Weng, Magnetic and superconducting instabilities in a hybrid model of itinerant/localized electrons for iron pnictides, arXiv:1102.3200 (spin-fermion model)
- I. R. Shein and A. L. Ivanovskii, Elastic properties and inter-atomic bonding in new superconductor KFe2Se2 from first principles calculations, arXiv:1102.3248 (ab-initio study of FeSe-based 122 compounds); Structural, electronic properties and Fermi surface of ThCr2Si2-type tetragonal KFe2S2, KFe2Se2, and KFe2Te2 phases as parent systems of new ternary iron-chalcogenide superconductors, arXiv:1102.4173 (ab-initio; find two large, quasi-two-dimensional electron pockets around the X point and a three-dimensional electron pocket around the Z point at (0,0,π), no pocket at Γ)
- J. Knolle, I. Eremin, and R. Moessner, Multiorbital Spin Susceptibility in a Magnetically Ordered State - Orbital versus Excitonic Spin Density Wave Scenario, arXiv:1102.5532 P
- H. Kontani, T. Saito, and S. Onari, Origin of Orthorhombic Transition, Magnetic Transition, and Shear Modulus Softening in Iron Pnictide Superconductors: Analysis based on the Orbital Fluctuation Theory, arXiv:1103.3360 (orbital ordering and fluctuations are essential for SDW formation and s++-wave superconductivity, respectively; Hubbard and exchange interactions are included) P
- E. Krüger and H. P. Strunk, The structural distortion in antiferromagnetic LaFeAsO investigated by a group-theoretical approach, arXiv:1104.0257
- A. H. Nevidomskyy, Interplay of orbital and spin ordering in the iron pnictides, arXiv:1104.1747 (ab-initio calculations and Landau theory)
- S. Maiti, M. M. Korshunov, T. A. Maier, P. J. Hirschfeld, and A. V. Chubukov, Evolution of superconductivity in Fe-based systems with doping, arXiv:1104.1814
- D. Stanek, O. P. Sushkov, and G. S. Uhrig, Self-consistent spin-wave theory for a frustrated Heisenberg model with biquadratic exchange in the columnar phase and its application to iron pnictides, arXiv:1104.1954
- Z. P. Yin, K. Haule, and G. Kotliar, Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides, arXiv:1104.3454 (DFT+DMFT)
- D.-Y. Liu, Y.-M. Quan, D.-M. Chen, L.-J. Zou, and H.-Q. Lin, Orbital density wave induced by electron-lattice coupling in orthorhombic iron pnictides, arXiv:1104.4575
- R. M. Fernandes, E. Abrahams, and J. Schmalian, Anisotropic in-plane resistivity in the nematic phase of the iron pnictides, arXiv:1105.3906 (related to theory of resistivity close to antiferromagnetic QCP)
- W. Lv and P. Phillips, Orbitally and Magnetically Induced Anisotropy in Iron-based Superconductors, arXiv:1105.4630 (five-orbital model, mean-field theory allowing for orbital and magnetic order)
- T. Machida, K. Kogure, T. Kato, H. Takeya, T. Mochiku, S. Ooi, Y. Mizuguchi, Y. Takano, H. Sakata, and K. Hirata, Unidirectional Electronic Order in the Parent State of Iron-Chalcogenide Superconductor Fe1+deltaTe, arXiv:1105.4754
- G.-Q. Liu, Orbital-spin ordering in the striped antiferromagnetic state of iron-based superconductors, arXiv:1105.5412 (LSDA+U)
- N. Raghuvanshi, S. Ghosh, R. Ray, D. Kumar Singh, and A. Singh, Magnetic excitations in iron pnictides, arXiv:1106.4421 (single-band model with intra- and intersite exchange couplings)
- J. Hu, B. Xu, W. Liu, N. Hao, and Y. Wang, An unified minimum effective model of magnetism in iron-based superconductors, arXiv:1106.5169 (isotropic spin-only model with biquadratic interaction)
- M. Tomic, R. Valentí, and H. O. Jeschke, Uniaxial versus hydrostatic pressure-induced phase transitions in CaFe2As2 and BaFe2As2, arXiv:1106.5623
- S. Pandey, H. Kontani, D. S. Hirashima, R. Arita, and H. Aoki, Spin Hall effect in iron-based superconducting materials: An effect of Dirac point, arXiv:1107.0122 (KFe2As2 in particular has a slightly gapped Dirac cone near the point P = (π,0,π), this leads to a large spin Hall effect)
- C.-H. Lin, T. Berlijn, L. Wang, C.-C. Lee, W.-G. Yin, and W. Ku, One-Fe versus Two-Fe Brillouin Zone of Fe-Based Superconductors: Creation of the Electron Pockets via Translational Symmetry Breaking, arXiv:1107.1485
- L. Hao, C.-C. Lee, and T. K. Lee, Impairment of double exchange mechanism in electron transport of iron pnictides, arXiv:1107.1952
- M. J. Calderon, G. Leon, B. Valenzuela, and E. Bascones, Magnetic interactions in iron superconductors revisited, arXiv:1107.2279
- S. Konbu, K. Nakamura, H. Ikeda, and R. Arita, Fermi-Suface Evolution by Transition-metal Substitution in the Iron-based Superconductor LaFeAsO, arXiv:1108.0585 (Co and Ni substitution, DFT supercell)
- L. Craco, M. S. Laad, and S. Leoni, Unconventional Mott Transition in KxFe2-ySe2, arXiv:1109.0116
- T. Schickling, F. Gebhard, J. Bünemann, L. Boeri, O. K. Andersen, and W. Weber, Gutzwiller theory of band magnetism in LaOFeAs, arXiv:1109.0929 (Gutzwiller theory for eight-band model based on DFT)
- Y. X. Yao, J. Schmalian, C. Z. Wang, K. M. Ho, and G. Kotliar, A comparative study of the electronic and magnetic properties of BaFe_2As_2 and BaMn_2As_2 using the Gutzwiller approximation, arXiv:1109.2679 (LDA + Gutzwiller projection)
- T. T. Ong and P. Coleman, Local Quantum Criticality of an Iron-Pnictide Tetrahedron, arXiv:1109.4131
- A. Akbari, I. Eremin, and P. Thalmeier, RKKY interaction in SDW phase of iron-based superconductors, arXiv:1109.4643 (and also in the disordered phase)
- H. Huang, Y. Gao, D. Zhang, and C. S. Ting, Impurity-induced quasiparticle interference in the parent compounds of iron-pnictide superconductors, arXiv:1109.5928
- C. Liu, D.-X. Yao, and A. W. Sandvik, Two-orbital quantum spin model of magnetism in the iron pnictides, arXiv:1110.0761 (despite the title, a pure spin model; variational cluster mean-field approach)
- R. M. Fernandes, A. V. Chubukov, J. Knolle, I. Eremin, and J. Schmalian, Preemptive nematic order, pseudogap, and orbital order in the iron pnictides, arXiv:1110.1893 P
- Y. Inoue, Y. Yamakawa, and H. Kontani, Impurity-Induced Electronic Nematic State in Iron-Pnictide Superconductors, arXiv:1110.2401
- W.-C. Lee and P. W. Phillips, Non-Fermi Liquid due to Orbital Fluctuations in Iron Pnictide Superconductors, arXiv:1110.5917 (soft overdamped collective modes appear close to structural QCP and lead to non-Fermi-liquid behavior)
- J. Ferber, K. Foyevtsova, R. Valentí, and H. O. Jeschke, Effects of correlation in LiFeAs, arXiv:1111.1620 (DFT and DMFT)
- A. Ciechan, M. J. Winiarski, and M. Samsel-Czekala, The Pressure Effects on Electronic Structure of Iron Chalcogenide Superconductors FeSe1-xTex, arXiv:1111.3523
- S. Liang, G. Alvarez, C. Sen, A. Moreo, and E. Dagotto, Transport anisotropy of the pnictides studied via Monte Carlo simulations of the Spin-Fermion model, arXiv:1111.6994
- A. Toschi, R. Arita, P. Hansmann, G. Sangiovanni, and K. Held, Quantum dynamical screening of the local magnetic moment in Fe-based superconductors, arXiv:1112.3002 (LDA+DMFT)
- T. Berlijn, C.-H. Lin, W. Garber, and W. Ku, Do Transition Metal Substitutions Dope Carriers in Iron Based Superconductors?, arXiv:1112.4858 (DFT with VCA, emphasize the importance of disorder)
- T. Schickling, F. Gebhard, J. Bünemann, L. Boeri, O. K. Andersen, and W. Weber, Gutzwiller Theory of Band Magnetism in LaOFeAs, Phys. Rev. Lett. 108, 036406 (2012) (8-band tight-binding model from DFT, added Hubbard U and Hund J)
- T. Kaneko, K. Seki, and Y. Ohta, Excitonic insulator state in the two-orbital Hubbard model: Variational cluster approach, Phys. Rev. B 85, 165135 (2012) (phase diagram)
- J. Hu and N. Hao, S4 Symmetric Microscopic Model for Iron-Based Superconductors, Phys. Rev. X 2, 021009 (2012); see also Viewpoint: D. Podolsky, Untangling the Orbitals in Iron-Based Superconductors, Physics 5, 61 (2012)
- C. Monney, G. Monney, P. Aebi, and H. Beck, Electron-hole instability in 1T-TiSe2, New J. Phys. 14, 075026 (2012) (also including phonon effects) P
- S. Ducatman, N. B. Perkins, and A. Chubukov, Magnetism in Parent Iron Chalcogenides: Quantum Fluctuations Select Plaquette Order, Phys. Rev. Lett. 109, 157206 (2012) (Fe1+yTe, propose unusual magnetic state)
- J. M. Tomczak, M. van Schilfgaarde, and G. Kotliar, Many-Body Effects in Iron Pnictides and Chalcogenides: Nonlocal Versus Dynamic Origin of Effective Masses, Phys. Rev. Lett. 109, 237010 (2012) (DFT, GW approximation)
- M. Daghofer, A. Nicholson, and A. Moreo, Spectral density in a nematic state of models for iron pnictides, arXiv:1202.3656
- J.-H. Chu, H.-H. Kuo, J. G. Analytis, and I. R. Fisher, Divergent nematic susceptibility in an iron arsenide superconductor, arXiv:1203.3239 (how to detect a nematic phase)
- R. M. Fernandes and J. Schmalian, Manifestations of nematic degrees of freedom in the magnetic, elastic, and superconducting properties of the iron pnictides, arXiv:1204.3694
- M. Daghofer and A. Fischer, Breaking of four-fold lattice symmetry in a model for pnictide superconductors, arXiv:1205.5102
- J. Kang and Z. Tesanovic, Dimer Impurity Scattering, "Reconstructed" Nesting and Density-Wave Diagnostics in Iron Pnictides, arXiv:1205.5280
- W.-C. Lee, W. Lv, J. M. Tranquada, and P. W. Phillips, Impact of Dynamic Orbital Correlations on Magnetic Excitations in the Normal State of Iron-Based Superconductors, arXiv:1206.4095 (understanding neutron-scattering experiments from an orbital model)
- K. W. Lo, W.-C. Lee, and P. W. Phillips, Non-Fermi Liquid behavior at the Orbital Ordering Quantum Critical Point in the Two-Orbital Mode, arXiv:1207.4206 (two degenerate orbitals, relevant for the iron pnictides and other compounds)
- N. N. Hao, Y. Wang, and J. Hu, Oriented gap opening in the magnetically ordered state of Iron-pnictides: an impact of intrinsic unit cell doubling on the Fe square lattice by As atoms, arXiv:1207.6798
- L. P. Gor'kov and G. B. Teitel'baum, On the dual role of the d-electrons in iron-pnictides, arXiv:1208.3740 (propose that the SDW is formed due to RKKY interaction between local iron d moments, not due to nesting)
- H. B. Rhee and W. E. Pickett, Contrast of LiFeAs with isostructural, isoelectronic, and non-superconducting MgFeGe, arXiv:1208.4180 (DFT beyond GGA; electron structure of the two materials is very similar, no full answer as to why superconducting properties are different, modified Becke-Johnson exchange potential overall not improving description of LiFeAs)
- J. M. Tomczak, M. van Schilfgaarde, and G. Kotliar, Many-body effects in iron pnictides and chalcogenides - non-local vs dynamic origin of effective masses, arXiv:1209.2213 (DFT with quasi-particle selfconsistent GW approximation)
- J. Lee, P. Strack, and S. Sachdev, Quantum criticality of reconstructing Fermi surfaces, arXiv:1209.4644 (due to SDW formation, fRG)
- R. Yu, Q. Si, P. Goswami, and E. Abrahams, Electron Correlation and Spin Dynamics in Iron Pnictides and Chalcogenides, arXiv:1210.5017 (from a strong-coupling viewpoint, also review of experiments)
- M. Tomic, R. Valenti, and H. O. Jeschke, Uniaxial strain effects on the structural and electronic properties of BaFe2As2 and CaFe2As2, arXiv:1210.5504 (DFT)
- K. Kikoin, S.-L. Drechsler, J. Malek, and J. van den Brink, The dual nature of As-vacancies in LaFeAsO-derived superconductors: magnetic moment formation while preserving superconductivity, arXiv:1210.6535
- N. Lanata, H. U. R. Strand, G. Giovannetti, B. Hellsing, L. de' Medici, and M. Capone, Orbital selectivity in Hund's metals: The iron chalcogenides, Phys. Rev. B 87, 045122 (2013) (interplay of U and Hund coupling J, explain bad-metal behavior)
- S. Liang, A. Moreo, and E. Dagotto, Nematic State of Pnictides Stabilized by Interplay Between Spin, Orbital, and Lattice Degrees of Freedom, Phys. Rev. Lett. 111, 047004 (2013) (Monte Carlo)
- R. M. Fernandes, A. E. Böhmer, C. Meingast, and J. Schmalian, Scaling between Magnetic and Lattice Fluctuations in Iron Pnictide Superconductors, Phys. Rev. Lett. 111, 137001 (2013) (analyzing experimental data, support magnetic origin of structural transition)
- A. O. Sboychakov, A. V. Rozhkov, K. I. Kugel, A. L. Rakhmanov, and F. Nori, Electronic phase separation in iron pnictides, arXiv:1304.2175 (phase separation between commensurate and incommensurate SDW upon doping away from optimum)
- V. Cvetkovic and O. Vafek, Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors, arXiv:1304.3723 (analysis of SDW order and also of superconducting order, singlet-triplet mixing)
- K. W. Song, Y.-C. Liang, H. Lim, and S. Haas, Possible Nematic Order Driven by Magnetic Fluctuations in Iron Pnictides, arXiv:1304.4617 (Hubbard-Stratonovich decoupling of interactions, density-density interaction between X and Y electron pockets is important)
- S. Ghosh and A. Singh, Orbital order induced stabilization of the (pi,0) ordered magnetic state in a minimal two-band model for iron pnictides, arXiv:1306.6727
- A. E. Koshelev, Linear magnetoconductivity in multiband spin-density-wave metals with nonideal nesting, arXiv:1307.7184 (regime of linear magnetoresistance due to strongly curved portions of reconstructed Fermi surfaces [ends of bananas])
- L. de' Medici, G. Giovannetti, and M. Capone, Selective Mott Physics as a Key to Iron Superconductors, Phys. Rev. Lett. 112, 177001 (2014) (collection of experimental data and theory, mainly DFT plus mean-field; supports orbital-selective Mottness in iron pnictides)
- S. Avci, O. Chmaissem, J. M. Allred, S. Rosenkranz, I. Eremin, A. V. Chubukov, D. E. Bugaris, D. Y. Chung, M. G. Kanatzidis, J.-P Castellan, J. A. Schlueter, H. Claus, D. D. Khalyavin, P. Manuel, A. Daoud-Aladine, and R. Osborn, Magnetically driven suppression of nematic order in an iron-based superconductor, Nature Comm. 5, 3845 (2014) (neutron diffraction on doping series of Ba1-xNaxFe2As2, find a C4-symmetric antiferromagnetic phase, close to the vanishing of antiferromagnetic order with increasing doping, that partially coexists with superconductivity; also mean-field theory for the additional transition to the C4-symmetric state, based on simple band model)
- H. Kontani and Y. Yamakawa, Linear Response Theory for Shear Modulus C66 and Raman Quadrupole Susceptibility: Evidence for Nematic Orbital Fluctuations in Fe-based Superconductors, Phys. Rev. Lett. 113, 047001 (2014) (nematicity due to orbital physics)
- M. N. Gastiasoro and B. M. Andersen, Enhancement of Magnetic Stripe Order in Iron-Pnictide Superconductors from the Interaction between Conduction Electrons and Magnetic Impurities, Phys. Rev. Lett. 113, 067002 (2014)
- T. Kaneko and Y. Ohta, Roles of the Hund's rule coupling in the excitonic density-wave states, arXiv:1407.4872 (Hund's rule not surprisingly stabilizes excitonic SDW over CDW, also in the variational cluster approximation, the competing SDW and CDW states are characterized)
- X. Wang, J. Kang, and R. M. Fernandes, Magnetic order without tetragonal symmetry-breaking in iron arsenides: microscopic mechanism and spin-wave spectrum, arXiv:1410.6789 (double-Q, orthomagnetic ordering, motivated by experiment)
- M. N. Gastiasoro, I. Paul, Y. Wang, P. J. Hirschfeld, and B. M. Andersen, Emergent Defect States as a Source of Resistivity Anisotropy in the Nematic Phase of Iron Pnictides, Phys. Rev. Lett. 113, 127001 (2014) (anisotropic scatterers in the nematic phase ["nematogens"] as the main origin of anisotropic transport)
- M. N. Gastiasoro and B. M. Andersen, Competing magnetic double-Q phases and superconductivity-induced re-entrance of C2 magnetic stripe order in iron pnictides, arXiv:1502.05859 (start from five-orbital Ikeda model, mean-field theory, address tetragonal magnetic phase) P
- Q. Zhang, R. M. Fernandes, J. Lamsal, J. Yan, S. Chi, G. S. Tucker, D. K. Pratt, J. W. Lynn, R. W. McCallum, P. C. Canfield, T. A. Lograsso, A. I. Goldman, D. Vaknin, and R. J. McQueeney, Neutron-Scattering Measurements of Spin Excitations in LaFeAsO and Ba(Fe0.953Co0.047)2As2: Evidence for a Sharp Enhancement of Spin Fluctuations by Nematic Order, Phys. Rev. Lett. 114, 057001 (2015) (include theory; supports spin-fluctuation origin of nematicity in these compounds)
- Y. Wang, M. N. Gastiasoro, B. M. Andersen, M. Tomic, H. O. Jeschke, R. Valentí, I. Paul, and P. J. Hirschfeld, Effects of Lifshitz Transition on Charge Transport in Magnetic Phases of Fe-Based Superconductors, Phys. Rev. Lett. 114, 097003 (2015) (explain drop of resistivity below Néeel temperature TN in 122 parent compound in the framework of strong impurity scattering disregarding spin fluctuations; decrease in scattering has to dominate over decrease in carrier concentration below TN, i.e., system is in dirty limit; hard to explain why resistivity in doped samples tends to increase around TN; they also assume vanishing of all "banana" pockets, which is forbidden by topology) P
- H. Usui, K. Suzuki, and K. Kuroki, Origin of the non-monotonic variance of Tc in the 1111 iron based superconductors with isovalent doping, Sci. Rep. 5, 11399 (2015) (study dependence of properties on iron-pnictogen-iron bond angle, use DFT-GGA for band structure, then add standard interaction terms and use FLEX and linearized Eliashberg equation to describe leading superconducting instability)
- J. K. Glasbrenner, I. I. Mazin, H. O. Jeschke, P. J. Hirschfeld, R. M. Fernandes, and R. Valentí, Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides, Nature Phys. 11, 953 (2015) (spin-only Heisenberg model with biquadratic exchange treated at mean-field level; also DFT calculations, agreement with Heisenberg model is not very good, as expected for itinerant systems; DFT finds antiferromagnetic ground states of FeSe, in contradiction to experiment; also calculate the parameters of the Heisenberg model within DFT, find relatively large biquadratic and longer-distance exchange for FeSe, which is thus strongly frustrated, discuss FeSe, also under pressure, compared to FeTe) P
- I. Leonov, S. L. Skornyakov, V. I. Anisimov, and D. Vollhardt, Correlation-Driven Topological Fermi Surface Transition in FeSe, Phys. Rev. Lett. 115, 106402 (2015) (DFT+DMFT, find a Lifshitz transition) P
- F. Wang, S. A. Kivelson, and D.-H. Lee, Nematicity and quantum paramagnetism in FeSe, Nature Phys. 11, 959 (2015) (explained in terms of the Berry phase of skyrmions) P
- R. Yu and Q. Si, Antiferroquadrupolar and Ising-Nematic Orders of a Frustrated Bilinear-Biquadratic Heisenberg Model and Implications for the Magnetism of FeSe, Phys. Rev. Lett. 115, 116401 (2015) (2D spin-only model; employ classical Monte Carlo simulations, zero-temperature mean-field approximation, and, for the quantum model, a semiclassical variational approach due to Läuchli et al.)
- Y.-T. Tam, D.-X. Yao, and W. Ku, Itinerancy-Enhanced Quantum Fluctuation of Magnetic Moments in Iron-Based Superconductors, Phys. Rev. Lett. 115, 117001 (2015) P
- M. H. Christensen, J. Kang, B. M. Andersen, and R. M. Fernandes, Spin-Driven Nematic Instability in Realistic Microscopic Models: Application to Iron-Based Superconductors, arXiv:1510.01389 (beyond RPA) P
- S. Onari, Y. Yamakawa, and H. Kontani, Sign-Reversing Orbital Polarization in the Nematic Phase of FeSe due to the C2 Symmetry Breaking in the Self-Energy, Phys. Rev. Lett. 116, 227001 (2016) (self-consistent vertex-correction theory)
-
D. D. Scherer and B. M. Andersen, Spin-Orbit Coupling and Magnetic Anisotropy in Iron-Based Superconductors, Phys. Rev. Lett. 121, 037205 (2018)
-
M. H. Christensen, B. M. Andersen, and P. Kotetes, Unravelling Incommensurate Magnetism and Its Emergence in Iron-Based Superconductors, Phys. Rev. X 8, 041022 (2018) (Landau theory, rich phase diagram)
Spin-crossover systems and related models
- D. Chernyshov, H.-B. Bürgi, M. Hostettler, and K. W. Törnroos, Landau theory for spin transition and ordering phenomena in Fe(II) compounds, Phys. Rev. B 70, 094116 (2004)
- R. Raghunathan, J.-P. Sutter, L. Ducasse, C. Desplanches, and S. Ramasesha, Microscopic Model for High-spin vs. Low-spin ground state in [Ni2M(CN)8] (M=MoV, WV, NbIV) magnetic clusters, cond-mat/0511594
- T. Tsuchiya, R. M. Wentzcovitch, C. R. S. da Silva, and S. de Gironcoli, Spin Transition in Magnesiowüstite in Earth's Lower Mantle, Phys. Rev. Lett. 96, 198501 (2006) (LDA+U supercell with ordered Fe positions, Hubbard-U is computed) P
- L. Wang and A. W. Sandvik, Low-Energy Dynamics of the Two-Dimensional S=1/2 Heisenberg Antiferromagnet on Percolating Clusters, Phys. Rev. Lett. 97, 117204 (2006)
- Y. Konishi, H. Tokoro, M. Nishino, and S. Miyashita, Magnetic Properties and Metastable States in Spin-Crossover Transition of Co-Fe Prussian Blue Analogues, cond-mat/0610500 (mean-field theory and classical Monte Carlo simulations)
- M. Nishino, K. Boukheddaden, Y. Konishi, and S. Miyashita, Simple Two-Dimensional Model for the Elastic Origin of Cooperativity among Spin States of Spin-Crossover Complexes, Phys. Rev. Lett. 98, 247203 (2007)
- K. Boukheddaden, J. Linares, R. Tanasa, and C. Chong, Theoretical investigations on an axial next nearest neighbour Ising-like model for spin crossover solids: one- and two-step spin transitions, J. Phys.: Condens. Matter 19, 106201 (2007) (1D ANNNI-type model)
- S. M. Patchedjiev, J. P. Whitehead, and K. De'Bell, The role of the exchange and dipolar interactions in the determination of the magnetic ordering of a two-dimensional lattice with random vacancies, J. Phys.: Condens. Matter 19, 196207 (2007)
- A. Gordillo-Guerrero and J. J. Ruiz-Lorenzo, Lack of Self-Averaging in the Three Dimensional Site Diluted Heisenberg Model at the critical point, cond-mat/0703820, J. Stat. Mech. (2007), P06014 (quenched dilution on simple cubic lattice, find agreement with Harris criterion, i.e., same universality class as for the undiluted lattice)
- D. J. Priour Jr. and S. Das Sarma, The critical behavior of three dimensional Heisenberg models on disordered lattices: Possible violation of Harris criterion in diluted magnetic semiconductors, arXiv:0710.5735 (site- and bond-diluted Heisenberg models, critical exponents are found, from classical MC simulations, to depend on disorder, in apparent disagreement with the Harris criterion)
- H. O. Jeschke, L. A. Salguero, B. Rahaman, C. Buchsbaum, V. Pashchenko, M. U. Schmidt, T. Saha-Dasgupta, and R. Valentí, Microscopic modeling of a spin crossover transition, New J. Phys. 9, 448 (2007) (DFT and MD for a model spin-crossover compound based on Fe(II) and triazole ligands, also has a shorter experimental part)
- E. Agliari, A. Barra, and F. Camboni, Criticality in diluted ferromagnet, arXiv:0804.4503 (apparently Ising model on random network)
- S. Shi, G. Schmerber, J. Arabski, J.-B. Beaufrand, D. J. Kim, S. Boukari, M. Bowen, N. T. Kemp, N. Viart, G. Rogez, E. Beaurepaire, H. Aubriet, J. Petersen, C. Becker, and D. Ruch, Study of molecular spin-crossover complex Fe(phen)2(NCS)2 thin films, Appl. Phys. Lett. 95, 043303 (2009) (current-voltage characteristics)
- N. Baadji, M. Piacenza, T. Tugsuz, F. Della Sala, G. Maruccio, and S. Sanvito, Electrostatic spin crossover effect in polar magnetic molecules, Nature Mater. 8, 813 (2009) (DFT calculation, propose spin crossover induced by an applied electric field through the Stark effect)
- K. Szalowski and T. Balcerzak, In search of antiferromagnetic interlayer coupling in diluted magnetic thin films with RKKY interaction, arXiv:0901.2088 (triple layer, the two outer ones with diluted magnetic moments)
- R. Yu, S. Haas, and T. Roscilde, Revealing Novel Quantum Phases in Quantum Antiferromagnets on Random Lattices, arXiv:0905.0693
- L. Wang and A. W. Sandvik, Nature of the low-energy excitations of two-dimensional diluted Heisenberg quantum antiferromagnets, arXiv:0909.5211
- M. Nishino, C. Enachescu, S. Miyashita, K. Boukheddaden, and F. Varret, Intrinsic effects of the boundary condition on the switching process of spin crossover solids, arXiv:0910.4519
- H. Hsu, P. Blaha, M. Cococcioni, and R. M. Wentzcovitch, Spin-State Crossover and Hyperfine Interactions of Ferric Iron in MgSiO3 Perovskite, Phys. Rev. Lett. 106, 118501 (2011) (DFT+U calculations; the material has iron in two sites, one of which undergoes a high-spin-to-low-spin crossover for increasing pressure)
- I. S. Lyubutin, V.V. Struzhkin, A. A. Mironovich, A. G. Gavriliuk, P. G. Naumov, J. F. Lin, S. G. Ovchinnikov, S. Sinogeikin, P. Chow, and Y. Xiao, Quantum critical point and spin fluctuations in the lower-mantle ferropericlase, arXiv:1110.3956 ((Mg,Fe)O spin-crossover quantum-critical point)
- T. Nakada, T. Mori, S. Miyashita, M. Nishino, S. Todo, W. Nicolazzi, and P. A. Rikvold, Critical temperature and correlation length of an elastic interaction model for spin-crossover materials, arXiv:1110.6257 (with effective long-range interaction)
- A. Droghetti, D. Alf´, and S. Sanvito, The ground state of a spin-crossover molecule calculated by diffusion Monte Carlo, arXiv:1204.5336
- A. Droghetti, D. Alfè, and S. Sanvito, Assessment of density functional theory for iron(II) molecules across the spin-crossover transition, arXiv:1206.1293
- H. Raebiger, S. Fukutomi, and H. Yasuhara, Crossover of high and low spin states in transition metal complexes, arXiv:1209.6432
Magnetic molecules, single-molecule magnets
- K. Park, T. Baruah, N. Bernstein, and M. R. Pederson, Second-order transverse magnetic anisotropy induced by disorder in the single-molecule magnet Mn12, Phys. Rev. B 69, 144426 (2004) (DFT paper containing clear discussion of symmetry of Mn12 acetate and resulting magnetic anisotropies)
- K. Park and M. R. Pederson, Effect of extra electrons on the exchange and magnetic anisotropy in the anionic single-molecule magnet Mn12, Phys. Rev. B 70, 054414 (2004) (DFT, total spin generally increases with increasing charge, easy-axis anisotropy decreases, and an in-plane anisotropy appears; the LUMO of neutral Mn12act is not degenerate, but there are further orbitals right above it)
- W. Wernsdorfer, N. E. Chakov, and G. Christou, Determination of the magnetic anisotropy axes of single-molecule magnets, cond-mat/0405565 (magnetometry)
- O. Shafir, A. Keren, S. Maegawa, M. Ueda, A. Amato, and C. Baines, Demonstrating multibit magnetic memory in the Fe8 high-spin molecule by muon spin rotation, Phys. Rev. B 72, 092410 (2005)
- C. H. Booth, M. D. Walter, M. Daniel, W. W. Lukens, and R. A. Andersen, Self-Contained Kondo Effect in Single Molecules, Phys. Rev. Lett. 95, 267202 (2005) (carbon ring systems, i.e., metallocenes)
- J. J. L. Morton, A. M. Tyryshkin, A. Ardavan, K. Porfyrakis, S. A. Lyon, G. Andrew, and D. Briggs, Electron spin relaxation of N@C60 in CS2, cond-mat/0510610, J. Chem. Phys. 124, 014508 (2006)
- V. Iancu, A. Deshpande, and S.-W. Hla, Manipulating Kondo Temperature via Single Molecule Switching, cond-mat/0603187, Nano. Lett.
- P. Messina, M. Mannini, A. Caneschi, D. Gatteschi, L. Sorace, P. Sigalotti, C. Sandrin, P. Pittana, and Y. Manassen, Spin Noise Fluctuations from Paramagnetic Molecular Adsorbates on Surfaces, cond-mat/0605075
- R. Lopez-Ruiz, F. Luis, A. Millan, C. Rillo, D. Zueco, and J. L. Garcia-Palacios, Non-linear response of single-molecule magnets: field-tuned quantum-to-classical crossovers, cond-mat/0606091 (Mn12 clusters, experimental paper)
- F. Simon, H. Kuzmany, B. Nafradi, T. Feher, L. Forro, F. Fulop, A. Janossy, L. Korecz, A. Rockenbauer, F. Hauke, and A. Hirsch, Magnetic fullerenes inside single-wall carbon nanotubes, cond-mat/0606597
- X. Chang-Tan and J.-Q. Liang, EPR spectrum via entangled states for an exchange-coupled dimer of single-molecule magnets, cond-mat/0606602, Euro. Phys. J. B 44, 469 (2005)
- A. Keren, O. Shafir, E. Shimshoni, V. Marvaud, A. Bachschmidt, and J. Long, Experimental Estimates of Dephasing Time in Molecular Magnets, Phys. Rev. Lett. 98, 257204 (2007) (muon spin relaxation, metal-organic complexes)
- Z. Salman, K. H. Chow, R. I. Miller, A. Morello, T. J. Parolin, M. D. Hossain, T. A. Keeler, C. D. P. Levy, W. A. MacFarlane, G. D. Morris, H. Saadaoui, D. Wang, R. Sessoli, G. G. Condorelli, and R. F. Kiefl, Local Magnetic Properties of a Monolayer of Mn12 Single Molecule Magnets, arXiv:0804.4794
- D. A. Garanin, Density Matrix Equation for a Bathed Small System and its Application to Molecular Magnets, arXiv:0805.0391
- M. Trif, F. Troiani, D. Stepanenko, and D. Loss, Spin-Electric Coupling in Molecular Magnets, arXiv:0805.1158 (Cu3, which has antiferromagnetic coupling between three spins forming a triangle)
- G.-H. Kim and E. M. Chudnovsky, Macroscopic quantum effects generated by the acoustic wave in a molecular magnet, arXiv:0812.3590 (model-based theory)
- M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A. M. Talarico, M.-A. Arrio, A. Cornia, D. Gatteschi, and R. Sessoli, Magnetic memory of a single-molecule quantum magnet wired to a gold surface, Nature Materials, doi:10.1038/nmat2374 (2009) (Fe4 derivatives, monolayer)
- D. A. Garanin and E. M. Chudnovsky, Self-Organized Patterns of Macroscopic Quantum Tunneling in Molecular Magnets, Phys. Rev. Lett. 102, 097206 (2009); D. A. Garanin, Fronts of spin tunneling in molecular magnets, arXiv:0904.4685; D. A. Garanin and S. Shoyeb, Quantum deflagration and supersonic fronts of tunneling in molecular magnets, arXiv:1112.5171; D. A. Garanin, Theory of deflagration and fronts of tunneling in molecular magnets, arXiv:1211.4192 (detailed paper); Turbulent fronts of quantum detonation in molecular magnets, arXiv:1305.1405
- S. McHugh, B. Wen, X. Ma, M. P. Sarachik, Y. Myasoedov, E. Zeldov, R. Bagai, and G. Christou, Tuning Magnetic Avalanches in Mn12-ac, arXiv:0902.0531 (experiments, support deflagration picture of Chudnovsky and Garanin)
- J. Wang, Y. Liu, and Y.-C. Li, Magnetic Silicon Fullerene, arXiv:0908.1494 (Eu@Si20 and its dimers and polymers, DFT/GGA, Eu is redicted to carry a large moment)
- L. Udvardi, The exchange coupling between the valence electrons of the fullerene cage and the electrons of the N atoms in N@C60-1,3, arXiv:0909.3939 (calculation using non-ab-initio quantum chemistry methods, finds a ferromagnetic exchange interaction of approximately 1 meV)
- Z. Salman, S. J. Blundell, S. R. Giblin, M. Mannini, L. Margheriti, E. Morenzoni, T. Prokscha, A. Suter, A. Cornia, and R. Sessoli, Proximal magnetometry of monolayers of single molecule magnets on gold using polarized muons, arXiv:0909.4634
- J. Schnack, Effects of frustration on magnetic molecules: a survey from Olivier Kahn till today, arXiv:0912.0411
- C. Schroder, X. Fang, Y. Furukawa, M. Luban, R. Prozorov, F. Borsa, and K. Kumagai, Spin freezing and slow magnetization dynamics in geometrically frustrated magnetic molecules with exchange disorder, J. Phys.: Condens. Matter 22, 216007 (2010)
- X. L. Wang, M. Y. Ni, and Z. Zeng, Growth model investigation of Vanadium-Benzene Polymer, arXiv:1002.4323 (GGA, relaxed positions, find one Bohr magneton per vanadium, see papers by Maslyuk et al. and Mokrousov et al.)
- E. del Barco, S. Hill, C.C. Beedle, D.N. Hendrickson, I. S. Tupitsyn, and P. C. E. Stamp, Tunneling and inversion symmetry in single-molecule magnets: the case of the Mn12 wheel molecule, arXiv:1007.0949 (symmetry and Dzyaloshinski-Moriya interaction)
- J. F. Nossa, M. F. Islam, C. M. Canali, and M. R. Pederson, First-principle studies of the spin-orbit and the Dzyaloshinskii-Moriya interactions in the Cu3 single-molecule magnet, arXiv:1111.3078
- S. Lindner, M. Knupfer, R. Friedrich, T. Hahn, and J. Kortus, Hybrid States and Charge Transfer at a Phthalocyanine Heterojunction: MnPcδ+/F16CoPcδ-, Phys. Rev. Lett. 109, 027601 (2012)
- L. Horváthová, M. Dubecký, L. Mitas, and I. Stich, Spin Multiplicity and Symmetry Breaking in Vanadium-Benzene Complexes, Phys. Rev. Lett. 109, 053001 (2012) (QMC with standard exchange-correlation functionals, predict high-spin ground states, comparison with DFT)
- T. R. Umbach, M. Bernien, C. F. Hermanns, A. Krüger, V. Sessi, I. Fernandez-Torrente, P. Stoll, J. I. Pascual, K. J. Franke, and W. Kuch, Ferromagnetic coupling of mononuclear Fe centers in a self-assembled metal-organic network on Au(111), arXiv:1212.3434 (ferromagnetic coupling on the order of 80 µeV)
- A. Chiesa1, S. Carretta, P. Santini, G. Amoretti, and E. Pavarini, Many-Body Models for Molecular Nanomagnets, Phys. Rev. Lett. 110, 157204 (2013) (how to obtain onsite energies and two-electron interactions in a generalized Hubbard model from DFT; then transform to spin-only model by Schrieffer-Wolff transformation) P
- M. Callsen, V. Caciuc, N. Kiselev, N. Atodiresei, and S. Blügel, Magnetic Hardening Induced by Nonmagnetic Organic Molecules, Phys. Rev. Lett. 111, 106805 (2013) (DFT, nonmagnetic molecule with two stacked aromatic rings on one monolayer of Fe on W(110), molecules develops local moment, Fe-Fe exchange becomes much stronger beneath molecule); see also Physics 6, 96 (2013)
- C. F. Hermanns, M. Bernien, A. Krüger, C. Schmidt, S. T. Waßerroth, G. Ahmadi, B. W. Heinrich, M. Schneider, P. W. Brouwer, K. J. Franke, E. Weschke, and W. Kuch, Magnetic Coupling of Gd3N@C80 Endohedral Fullerenes to a Substrate, Phys. Rev. Lett. 111, 167203 (2013) (XMCD, the three Gd spins align ferromagnetically, the resulting large spin couples either moderately strongly antiferromagnetically or strongly ferromagnetically to the substrate, depending on the geometry)
- C. F. Hermanns, K. Tarafder, M. Bernien, A. Krüger, Y.-M. Chang, P. M. Oppeneer, and W. Kuch, Magnetic coupling of porphyrin molecules through graphene, arXiv:1304.4755 (cobalt moment in Co-octaethylporphyrin is coupled to magnetization of nickel substrate through graphene layer)
- A. Hurley, N. Baadji, and S. Sanvito, Detection of the electrostatic spin crossover effect in magnetic molecules, arXiv:1304.4822 (changing the sign of the exchange interaction between two local moments by the external electric field due to an STM tip)
- Y . Liu and A. Garg, Low-Temperature Phonoemissive Tunneling Rates in Single Molecule Magnets, arXiv:1307.6600
- J. H. Atkinson, R. Inglis, E. del Barco, and E. K. Brechin, Three-Leaf Quantum Interference Clovers in a Trigonal Single-Molecule Magnet, Phys. Rev. Lett. 113, 087201 (2014) (seen in the spin-tunneling rate vs. orientation of the applied magnetic field)
- M. Gruber et al., Exchange bias and room-temperature magnetic order in molecular layers, Nature Mat. (2015), doi:10.1038/nmat4361 (thin MnPc layer on Co)
-
A. Kostanyan, R. Westerström, Y. Zhang, D. Kunhardt, R. Stania, B. Büchner, A. A. Popov, and T. Greber, Switching Molecular Conformation with the Torque on a Single Magnetic Moment, Phys. Rev. Lett. 119, 237202 (2017) (experiments on HoLu2N@C80 and related endohedral fullerenes)
-
L. She, Z. Shen, Z. Xie, L. Wang, Y. Song, X.-S. Wang, Y. Jia, Z. Zhang, and W. Zhang, Magnetic Moment Preservation and Emergent Kondo Resonance of Co-Phthalocyanine on Semimetallic Sb(111), Phys. Rev. Lett. 129, 026802 (2022) (STM combined with DFT; Co spin is well preserved)
For transport through magnetic systems see also Mesoscopic and nanoscopic transport
Other magnetic systems and phenomena
- M. R. Oliver, J. O. Dimmock, A. L. McWhorter, and T. B. Reed, Conductivity Studies in Europium Oxide, Phys. Rev. B 5, 1078 (1972) (including Eu-rich EuO)
- P. C. E. Stamp, Spin fluctuation theory in condensed quantum systems, J. Phys. F: Met. Phys. 15, 1829 (1985) (very interesting remarks, e.g., on difference between Stoner and Hubbard model)
- M. Bartkowiak and K. A. Chao, Magnetic susceptibility of the strongly correlated Hubbard model, Phys. Rev. B 46, 9228 (1992) (application of Hubbard operators)
- N. E. Bonesteel, Theory of anisotropic superexchange in insulating cuprates, Phys. Rev. B 47, 11302 (1993) (Dzyaloshinkski-Moriya interaction)
- I. V. Lerner, Dependence of the Ruderman-Kittel-Kasuya-Yosida interaction on nonmagnetic disorder, Phys. Rev. B 48, 9462 (1993)
- A. Gelfert and W. Nolting, Absence of a Magnetic Phase Transition in Heisenberg, Hubbard, and Kondo-lattice (s-f) Films, cond-mat/9910492, phys. stat. sol. (b) 217, 805 (2000) (generalization of the Mermin-Wagner theorem, contains review of previous work)
- V. Yu. Irkhin and M. I. Katsnelson, Electron spectrum, thermodynamics, and transport in antiferromagnetic metals at low temperatures, Phys. Rev. B 62, 5647 (2000)
- R. P. Cowburn and M. E. Welland, Room Temperature Magnetic Quantum Cellular Automata, Science 287, 1466 (2000) (experiment, using single-domain magnetic nanodots)
- I. Ya. Korenblit, Charge and spin modulation in ferromagnetic semimetals, Phys. Rev. B 64, 100405(R) (2001) (mean-field theory for coupled local moments and carriers, applicable to DMS, reentrant transition to stripe phase)
- J. C. Angles d'Auriac, R. Melin, P. Chandra, and B. Doucot, Spin models on non-Euclidean hyperlattices: Griffiths phases without extrinsic disorder, J. Phys. A: Math. Gen. 34, 675 (2001) (e.g., hyperbolic surfaces, i.e., negative curvature, importance of nonvanishing boundary effects in the large-N limit)
- J. König, M. C. Bønsager, and A. H. MacDonald, Dissipationless Spin Transport in Thin Film Ferromagnets, Phys. Rev. Lett. 87, 187202 (2001) (for an unusual form of spiral order, not a ferromagnet)
- T. Senthil, S. Sachdev, and M. Vojta, Small and large Fermi surfaces in metals with local moments, cond-mat/0209144
- V. Yu. Irkhin and A. V. Zarubin, Density-of-states picture and stability of ferromagnetism in the highly correlated Hubbard model, Phys. Rev. B 70, 035116 (2004) (more Hubbard operators, for a semicircular bare band)
- G. Zaránd, L. Borda, J. von Delft, and N. Andrei, Theory of Inelastic Scattering from Magnetic Impurities, Phys. Rev. Lett. 93, 107204 (2004)
-
I. Milat, F. Assaad, and M. Sigrist, Field induced magnetic ordering transition in Kondo insulators, Eur. Phys. J. B 38, 571 (2004) (mean field and QMC, diverging transverse spin susceptibility because of fine-tuned perfact nesting)
- A. L. Kuzemsky, Theory of Magnetic Polaron, cond-mat/0408404
- Y. Zhang and S. Das Sarma, Exchange instabilities in electron systems: Bloch versus Stoner ferromagnetism, Phys. Rev. B 72, 115317 (2005) (clean 2D and 3D systems)
- I. Paul, C. Pépin, B. N. Narozhny, and D. L. Maslov, Quantum Correction to Conductivity close to Ferromagnetic Quantum Critical Point in Two Dimensions, Phys. Rev. Lett. 95, 017206 (2005)
- V. Bach, E. H. Lieb, and M. V. Travaglia, Ferromagnetism of the Hubbard Model at Strong Coupling in the Hartree-Fock Approximation, cond-mat/0506695, Rev. Math. Phys. 18, 519 (2006) (rigorous statements about the ground state in the HF approximation)
- N. Bray-Ali, J. E. Moore, T. Senthil, and A. Vishwanath, Ordering near the percolation threshold in models of 2D interacting bosons with quenched dilution, cond-mat/0507587 (quantum effects vs. percolation, relevant for 2D spin models with quenched dilution)
- E. Y. Vedmedenko, U. Grimm, and R. Wiesendanger, Interplay between magnetic and spatial order in quasicrystals, cond-mat/0509461
- A. S. Núñez, R. A. Duine, and A. H. MacDonald, Antiferromagnetic Metal Spintronics, cond-mat/0510797
- A. Kolezhuk and S. Sachdev, Magnon decay in gapped quantum spin systems, cond-mat/0511353 (contains discussion of O(3) sigma model and physics beyond it)
- P. Bruno, Berry phase, topology, and diabolicity in quantum nano-magnets, quant-ph/0511186 (short paper containing introduction to diabolical points)
- A. L. Kuzemsky, Statistical Theory of Spin Relaxation and Diffusion in Solids, cond-mat/0512182, J. Low Temp. Phys. 143, N 5/6 (2006) (long paper outlining and using the nonequilibrium statistical operator approach)
- K. P. Schmidt and G. S. Uhrig, Hardcore Magnons in the S=1/2 Heisenberg Model on the Square Lattice, cond-mat/0512244 (new method to treat constraints imposed by bosonization)
- W. M. Witzel and S. Das Sarma, A quantum theory for nuclear spin dynamics induced electron spin decoherence in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid state environment, cond-mat/0512323
- A. Singh, Spin waves in a band ferromagnet: spin-rotationally symmetric study with self-energy and vertex corrections, cond-mat/0512648 (good overview over previous work, diagrammatics)
- L. Chioncel, P. Mavropoulos, M. Lezaic, S. Blügel, E. Arrigoni, M. I. Katsnelson, and A. I. Lichtenstein, Half-metallic ferromagnetism induced by dynamic electron correlations in VAs, Phys. Rev. Lett. 96, 197203 (2006) (zinc-blende VAs is not a ferromagnetic semiconductor but a half-metal due to correlations, ab-initio plus DMFT)
- J. Kienert and W. Nolting, Magnetic phase diagram of the Kondo lattice model with quantum localized spins, Phys. Rev. B 73, 224405 (2006) (discussion of the phase diagram for spins from S=1/2 to classical, momentum-conserving decoupling of the Green function)
- S. K. Srivastava, S. N. Mishra, and G. P. Das, Spin fluctuations of isolated Fe impurities in Pd-based dilute alloys: effect of ferromagnetic host spin polarization, J. Phys.: Condens. Matter 18, 9463 (2006) (experimental, giant moments of Fe)
- R. K. Kaul, G. Zaránd, S. Chandrasekharan, D. Ullmo, and H. U. Baranger, Spectroscopy of the Kondo Problem in a Box, Phys. Rev. Lett. 96, 176802 (2006) (Kondo physics for a spin coupled to electrons in a finite but large dot)
- A. Mitra, S. Takei, Y. B. Kim, and A. J. Millis, Nonequilibrium Quantum Criticality in Open Electronic Systems, Phys. Rev. Lett. 97, 236808 (2006) (theory of quantum critical points in interacting electron system coupled to two leads with voltage bias, specifically ferromagnetic metallic layer driven out of equilibrium by a current in an N/F/N structure, use the Keldysh formalism)
- Y. Y. Wang and M. W. Wu, Control of spin coherence in semiconductor double quantum dots, cond-mat/0601028 (scheme to change the spin relaxation rate over 12 orders of magnitude)
- P. J. Jensen, K. H. Bennemann, D. K. Morr, and H. Dreyssé, Two-dimensional Heisenberg antiferromagnet in a transverse field, cond-mat/0602033 (Green function approach)
- U. K. Roessler, A. N. Bogdanov, and C. Pfleiderer, Spontaneous Skyrmion Ground States in Magnetic Metals, cond-mat/0603103; Supplementary Information for: 'Spontaneous Skyrmion Ground States in Magnetic Metals', cond-mat/0603104
- A. V. Syromyatnikov, Renormalization of the spin-wave spectrum in 3D ferromagnets with dipolar interaction, cond-mat/0603741
- P. Larson and W. R. L. Lambrecht, Electronic structure of Gd pnictides, cond-mat/0604374, Phys. Rev. B (electronic and magnetic properties of the series GdN, GdP, ..., GdBi, from LSDA+U calculations)
- M. Geshi, K. Kusakabe, H. Nagara, and N. Suzuki, New Ferromagnetic Nitrides CaN and SrN and their recipe, cond-mat/0604484 (DFT prediction of half-metallic ferromagnets)
- G. Metalidis and P. Bruno, Study of the topological Hall effect on simple models, cond-mat/0604545 (for 2DEG, the mechanism involves Berry phases in real space and does not rely on spin-orbit coupling)
- I. Paul, C. Pepin, and M. R. Norman, Kondo Breakdown and Hybridization Fluctuations in the Kondo-Heisenberg Lattice, cond-mat/0605152
- X. Wang, G. E. W. Bauer, B. J. van Wees, A. Brataas, and Y. Tserkovnyak, Voltage generation by ferromagnetic resonance, cond-mat/0608022
- I. S. Elfimov, A. Rusydi, S. I. Csiszar, Z. Hu, H. H. Hsieh, H.-J. Lin, C. T. Chen, R. Liang, and G. A. Sawatzky, Nitrogen based magnetic semiconductors, cond-mat/0608313 (proposal: replacement of oxygen by nitrogen in oxides introduces strongly coupled magnetic moments)
- A. Paramekanti and J. B. Marston, SU(N) quantum spin models: A variational wavefunction study, cond-mat/0608691
- U. Krey, On the dynamics of spin systems in the Landau-Lifshitz theory, cond-mat/0610122
- A. Tanaka and H. Tasaki, Metallic ferromagnetism in the Hubbard model: A rigorous example, cond-mat/0611318 (itinerant ferromagnetism in a Hubbard model of arbitrary dimension)
- K. H. Hoglund, A. W. Sandvik, and S. Sachdev, Impurity induced spin texture in quantum critical 2D antiferromagnets, cond-mat/0611418
- Y. J. Uemura et al., Phase separation and suppression of critical dynamics at quantum transitions of itinerant magnets: MnSi and (Sr1-xCax)RuO3, cond-mat/0612437 (muSR experiments)
- S. Schwieger, J. Kienert, K. Lenz, J. Lindner, K. Baberschke, and W. Nolting, Spin wave excitations: The main source of the temperature dependence of Interlayer exchange coupling in nanostructures, cond-mat/0612568 (theory and experiment)
- S. Saremi, RKKY in half-filled bipartite lattices: Graphene as an example, Phys. Rev. B 76, 184430 (2007) (proof that the RKKY interaction on such lattices is antiferromagnetic between spins on different sublattices and ferromagnetic on the same sublattice, also approximate results for honeycomb lattice)
- S. Ryu, O. I. Motrunich, J. Alicea, and M. P. A. Fisher, Algebraic vortex liquid theory of a quantum antiferromagnet on the kagome lattice, cond-mat/0701020 (with easy-plane anisotropy)
- J. Kienert and W. Nolting, Curie temperature of Kondo lattice films with finite itinerant charge carrier density, cond-mat/0701389 (RKKY to double exchange crossover)
- W. A. Harrison, Heisenberg exchange in magnetic monoxides, cond-mat/0701423, Phys. Rev. B (discusses microscopic exchange mechanism in FeO etc., strong direct exchange, compared to superexchange)
- K. H. Hoglund and A. W. Sandvik, Anomalous Curie response of impurities in quantum-critical spin-1/2 Heisenberg antiferromagnets, cond-mat/0701472
- S. Burdin and P. Fulde, Random Kondo Alloys, cond-mat/0701598 (CPA-type approach) P
- L. Zeng, E. Helgren, F. Hellman, R. Islam, D. J. Smith, and J. W. Ager III, Microstructure, magneto-transport and magnetic properties of Gd-doped magnetron-sputtered amorphous carbon, cond-mat/0701675
- Yu. V. Pershin and M. Di Ventra, Spin blockade at semiconductor/ferromagnet junctions, cond-mat/0701678
- I. Fischer, N. Shah, and A. Rosch, Blue Phases in Chiral Ferromagnets, cond-mat/0702287
- M. Ferrero, L. De Leo, P. Lecheminant, and M. Fabrizio, Strong Correlations in a nutshell, cond-mat/0702629, Rev. Mod. Phys. (NRG for two to four Anderson impurities, discussion of results from conformal field theory and DMFT)
- S. Nishimoto and P. Fulde, Magnetic impurity in correlated electrons system, cond-mat/0703074 (1D Hubbard model treated with DMRG) P
- S. Henning, F. Koermann, J. Kienert, S. Schwieger, and W. Nolting, Green function theory versus Quantum Monte Carlo calculations for thin magnetic films, arXiv:0704.1552 (ferromagnetic model with easy-plane anisotropy and magnetic field along the hard axis)
- A. Khitun, D. E. Nikonov, M. Bao, K. Galatsis, and K. L. Wang, Feasibility Study of Logic Circuits with Spin Wave Bus, arXiv:0704.2862
- L. Brey, H. A. Fertig, and S. Das Sarma, Diluted Graphene Antiferromagnet, arXiv:0705.1229 (RKKY interaction in graphene is predominantly ferromagnetic (antiferromagnetic) on the same (different) sublattices)
- E. Nielsen and R. N. Bhatt, Nanoscale ferromagnetism in non-magnetic doped semiconductors, arXiv:0705.2038 (for slightly more than one electron per dopant, essentially due to weaker binding of second electron by dopant, uses exact diagonalization) P
- A. Khitun, M. Bao, J.-Y. Lee, K. L. Wang, D. W. Lee, S. Wang, and I. V. Roshchin, Inductively Coupled Circuits with Spin Wave Bus for Information Processing, arXiv:0705.3864
- S. Sakai, R. Arita, and H. Aoki, Itinerant ferromagnetism in the multiorbital Hubbard model: a dynamical mean-field study, arXiv:0706.3109 (also uses QMC, compares various lattice structures)
- M. Arnold and J. Kroha, Simultaneous ferromagnetic metal-semiconductor transition in electron-doped EuO, arXiv:0708.0416
- C. Castelnovo, R. Moessner, and S. L. Sondhi, Magnetic Monopoles in Spin Ice, arXiv:0710.5515 (prediction of monopoles as emergent quasiparticles)
- A. Morello, Quantum nanomagnets and nuclear spins: an overview, arXiv:0712.0638, Les Houches summer school 2006 (Quantum Magnetism) (tunneling of "large" moment through anisotropy barrier assisted by nuclear spins)
- M. Carubelli, O. V. Billoni, S. Pighin, S. A. Cannas, D. A. Stariolo, and F. A. Tamarit, The Spin Reorientation Transition and Phase Diagram of Ultrathin Ferromagnetic Films, arXiv:0712.2426 (2D Heisenberg model with anisotropy and dipolar interactions, Monte Carlo simulations)
- G.-W. Chern, R. Moessner, and O. Tchernyshyov, Partial order from disorder in a classical pyrochlore antiferromagnet, arXiv:0803.2332
- D. V. Efremov, J. J. Betouras, and A. V. Chubukov, Non-analytic behavior of 2D itinerant ferromagnets, arXiv:0804.2736 (non-analyticities destroy the second-order QCP)
- A. Mitra and A. J. Millis, Current driven quantum criticality in itinerant electron ferromagnets, arXiv:0804.3980 (also compare previous paper) P
- A. Kalz, A. Honecker, S. Fuchs, and T. Pruschke, Phase diagram of the Ising square lattice with competing interactions, arXiv:0805.0983 (Monte Carlo simulations)
- M. Vojta, From itinerant to local-moment antiferromagnetism in Kondo lattices: Adiabatic continuity vs. quantum phase transitions, arXiv:0805.4272
- S. Altieri, M. Finazzi, H. H. Hsieh, M. W. Haverkort, H.-J. Lin, C. T. Chen, S. Frabboni, G. C. Gazzadi, A. Rota, S. Valeri, and L. H. Tjeng, Image charge screening: a new approach to enhance magnetic ordering temperatures, arXiv:0806.1710 (thin antiferromagnetic NiO and MgO films on silver show much higher Neel temperatures than on an insulating substrate)
- K. V. Kavokin, The puzzle of magnetic resonance effect on the magnetic compass of migratory birds, arXiv:0808.2401
- C. Xu and S. Sachdev, Global phase diagrams of frustrated quantum antiferromagnets in two dimensions: doubled Chern-Simons theory, arXiv:0811.1220
- D. Chassé and A.-M. S. Tremblay, Spin-Josephson effect in antiferromagnetic tunnel junctions, arXiv:0811.2999
- N. Sandschneider and W. Nolting, Microscopic model for current-induced switching of magnetization for half-metallic leads, Phys. Rev. B 79, 184423 (2009) (Hubbard model for the active layer, non-equilibrium spectral density approach)
- D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, Dirac Strings and Magnetic Monopoles in Spin Ice Dy2Ti2O7, Science DOI: 10.1126/science.1178868; T. Fennell, P. P. Deen, A. R. Wildes, K. Schmalzl, D. Prabhakaran, A. T. Boothroyd, R. J. Aldus, D. F. McMorrow, S. T. Bramwell, Magnetic Coulomb Phase in the Spin Ice Ho2Ti2O7, Science DOI: 10.1126/science.1177582
- S. T. Bramwell, S. R. Giblin, S. Calder, R. Aldus, D. Prabhakaran, and T. Fennell, Measurement of the charge and current of magnetic monopoles in spin ice, Nature 461, 956 (2009)
- J. Cervenka, M. I. Katsnelson, and C. F. J. Flipse, Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects, Nature Physics (2009), DOI: 10.1038/nphys1399 (note similarity of d0 magnetism in semiconductors)
- A. V. Chubukov and D. L. Maslov, Spin Conservation and Fermi Liquid near a Ferromagnetic Quantum Critical Point, Phys. Rev. Lett. 103, 216401 (2009) (show that the low-energy physics of an itinerant system close to a ferromagnetic QCP is not described by a spin-fermion model, also show that the system has a p-wave spin-nematic instability)
- D. Peters, I. P. McCulloch, and W. Selke, Spin-1 Heisenberg antiferromagnetic chain with exchange and single-ion anisotropies, arXiv:0901.2081
- S. Henning and W. Nolting, The ground state magnetic phase diagram of the ferromagnetic Kondo-lattice model, arXiv:0901.2855 (cubic lattices in 1D, 2D, and 3D with spins 3/2, considering only bipartite orderings, essentially exact phase diagrams as function of band filling and exchange interaction with the local spins)
- M. Kastner and M. Pleimling, Microcanonical phase diagrams of short-range ferromagnets, arXiv:0903.2341 (phase diagrams in energy-magnetization space)
- M. Greiter and R. Thomale, Non-Abelian Statistics in a Quantum Antiferromagnet, arXiv:0903.4547 (2D S=1 antiferromagnet, the spinon and holon excitation show non-abelian statistics)
- A. Sundaresan and C. N. R. Rao, Implications and consequences of ferromagnetism universally exhibited by inorganic nanoparticles, arXiv:0905.0183
- T. R. S. Prasanna, Role of thermal vibrations in phase transitions, arXiv:0908.1873 (it is found that vibrations are generally important in magnetic phase transitions)
- J. Sanchez-Barriga, J. Fink, V. Boni, I. Di Marco, J. Braun, J. Minar, A. Varykhalov, O. Rader, V. Bellini, F. Manghi, H. Ebert, M. I. Katsnelson, A. I. Lichtenstein, O. Eriksson, W. Eberhardt, and H. A. Duerr, About the strength of correlation effects in the electronic structure of iron, arXiv:0910.4360 (correlation effects are stronger than predicted by current theory)
- Y. Magnin, K. Akabli, H. T. Diep, and I. Harada, Monte Carlo Study of the Spin Transport in Magnetic Materials, arXiv:0910.4619 (transport of charged spinfull particles with Heisenberg coupling to each other and to local spins, which also have a Heisenberg coupling; dynamics unclear since Hamiltonian does not contain a kinetic-energy term)
- A. C. Swaving and R. A. Duine, Current-induced torques in continuous antiferromagnetic textures, arXiv:0912.4519
- N. Sandschneider and W. Nolting, A microscopic model of current-induced switching of magnetization, J. Phys.: Condens. Matter 22, 026003 (2010) (essentially a ferromagnetic metal/non-magnetic insulator/thin ferromagnetic metal layer tunnel junction, microscopic description of thin ferromagnetic layer starting from Hubbard model)
- D. Chassé and A.-M. S. Tremblay, Generalized dc and ac Josephson effects in antiferromagnets and in antiferromagnetic d-wave superconductors, Phys. Rev. B 81, 115102 (2010) (interesting generalization of the concept of Josephson effects to other broken symmetries, in particular to antiferromagnets) P
- X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Real-space observation of a two-dimensional skyrmion crystal, Nature 465, 901 (2010) (Fe0.5Co0.5Si)
- L. K. Werake and H. Zhao , Observation of second-harmonic generation induced by pure spin currents, Nature Physics (8 August 2010) doi:10.1038/nphys1742 (in GaAs)
- R. Steinigeweg and R. Schnalle, Projection operator approach to spin diffusion in the anisotropic Heisenberg chain at high temperatures, Phys. Rev. E 82, 040103(R) (2010) (TCL master equation)
- T. Sugano, S. J. Blundell, T. Lancaster, F. L. Pratt, and H. Mori, Magnetic order in the purely organic quasi-one-dimensional ferromagnet 2-benzimidazolyl nitronyl nitroxide, Phys. Rev. B 82, 180401(R) (2010)
- S. A. Yang, Q. Niu, D. A. Pesin, and A. H. MacDonald, Theory of I-V characteristics of magnetic Josephson junctions, Phys. Rev. B 82, 184402 (2010) (no superconducting component but analogy to superconducting Josephson effect)
- S. Kumar and J. van den Brink, Frustration-Induced Insulating Chiral Spin State in Itinerant Triangular-Lattice Magnets, Phys. Rev. Lett. 105, 216405 (2010)
- A. Sharma and W. Nolting, Additional carrier-mediated ferromagnetism in GdN, arXiv:1002.1426 (modified RKKY for realistic band structure)
- D. Belitz and T. R. Kirkpatrick, Quantum Electrodynamics and the Origins of the Exchange, Dipole-Dipole, and Dzyaloshinsky-Moriya Interactions in Itinerant Fermion Systems, arXiv:1002.2008
- J. Wu and M. Berciu, Heat transport in quantum spin chains: the relevance of integrability, arXiv:1003.1559
- V. Yu. Irkhin and A. V. Zarubin, Ferromagnetism in the Highly-Correlated Hubbard Model, arXiv:1005.4795
- Y. Magnin, K. Akabli, and H. T. Diep, Spin Resistivity in Frustrated Antiferromagnets, arXiv:1006.1081
- S. J. Yamamoto and Q. Si, Global Phase Diagram of the Kondo Lattice: From Heavy Fermion Metals to Kondo Insulators, arXiv:1006.4868
- A. Sen, K. Damle, and R. Moessner, Fractional spin textures in the frustrated magnet SrCr9pGa12-9pO19, arXiv:1007.4507
- N. Karchev, Ferromagnetic phases in spin-Fermion systems, arXiv:1008.1148 (extended Kondo-lattice model, two ferromagnetic phases with and without magnetization of the itinerant electrons)
- H. Essen, Classical diamagnetism, arXiv:1008.1182 (a way around the Bohr-van Leeuwen theorem)
- M. O. Lavrentovich and R. K. P. Zia, Energy flux near the junction of two Ising chains at different temperatures, arXiv:1008.5099 (Ising chains, all sites i = 0,1,... coupled to one heat bath, all i = -1,-2,... to another)
- J.-J. Zhu, D.-X. Yao, S.-C. Zhang, and K. Chang, Electrically controllable surface magnetism on the surface of topological insulator, arXiv:1010.4134 (calculate RKKY interaction between two impurity spins, also taking into account the possible gapping of the Dirac dispersion by the presence of the impurity spins) P
- S. Gupta and D. Mukamel, Quasistationarity in a model of classical spins with long-range interactions, arXiv:1011.0738 (explore situations for which the life time of such that scales algebraically with system size)
- C. Tomaras and S. Kehrein, Scaling approach for the time-dependent Kondo model, arXiv:1011.1281 (a ferromagnetic exchange interaction is monotonically switched on)
- Y. Iqbal, F. Becca, and D. Poilblanc, Valence-bond crystal in the extended Kagomé spin-1/2 quantum Heisenberg antiferromagnet: A variational Monte Carlo approach, arXiv:1011.3954 (J1-J2 model)
- F.-J. Jiang and U.-J. Wiese, Very High Precision Determination of Low-Energy Parameters: The 2-d Heisenberg Quantum Antiferromagnet as a Test Case, arXiv:1011.6205
- A. E. Feiguin and G. A. Fiete, Spin-Incoherent Behavior in the Ground State of Strongly Correlated Systems, Phys. Rev. Lett. 106, 146401 (2011) (1D Kondo-t-J model: local spins coupled to t-J chain, the surprise is that this is seen for the ground state)
- P. M. Sarte, H. J. Silverstein, B. T. K. Van Wyk, J. S. Gardner, Y. Qiu, H. D. Zhou, and C. R. Wiebe, Absence of long-range magnetic ordering in the pyrochlore compound Er2Sn2O7, J. Phys.: Condens. Matter 23, 382201 (2011)
- Z. Wang, Y. Sun, M. Wu, V. Tiberkevich, and A. Slavin, Control of Spin Waves in a Thin Film Ferromagnetic Insulator through Interfacial Spin Scattering, Phys. Rev. Lett. 107, 146602 (2011)
- K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents, Quantum Excitations in Quantum Spin Ice, Phys. Rev. X 1, 021002 (2011) (experiment, emergent electrodynamics), see also Viewpoint
- J. Inoue, Analytical expression for the spin-transfer torque in a magnetic junction with a ferromagnetic insulator, Phys. Rev. B 84, 180402(R) (2011) (ferromagnetic metal/non-magnetic metal or insulator/ferromagnetic insulator/non-magnetic metal stack)
- M. Fähnle and C. Illg, Electron theory of fast and ultrafast dissipative magnetization dynamics, J. Phys.: Condens. Matter 23, 493201 (2011)
- S. Powell, Higgs transitions of spin ice, Phys. Rev. B 84, 094437 (2015) (long paper)
- T. S. Nunner and F. von Oppen, Quasilinear spin voltage profiles in spin thermoelectrics, arXiv:1101.3277 (semiclassical transport theory)
- B. Kamble and A. Singh, An effective quantum parameter for strongly correlated metallic ferromagnets, arXiv:1102.2115 (multi-orbital model)
- F. Maca, J. Masek, O. Stelmakhovych, X. Marti, K. Uhlirova, P. Beran, H. Reichlova, P. Wadley, V. Novak, and T. Jungwirth, CuMn-V compounds: a transition from semimetal low-temperature to semiconductor high-temperature antiferromagnets, arXiv:1102.5373 (theory and experiment for non-diluted magnetic semiconductors and semimetals, in particular CuMnAs and CuMnP, also contains short review of related compounds)
- J. Zang, M. Mostovoy, J. H. Han, and N. Nagaosa, Dynamics of Skyrmion Crystals in Metallic Thin Films, arXiv:1102.5384
- I. Franke, P. J. Baker, S. J. Blundell, T. Lancaster, W. Hayes, F. L. Pratt, and G. Cao, Measurement of the internal magnetic field in the correlated iridates Ca4IrO6, Ca5Ir3O12, Sr3Ir2O7 and Sr2IrO4, arXiv:1103.1036
- M. J. Lawler, Emergent gauge dynamics of highly frustrated magnets, arXiv:1104.0721
- A. Mitra and A. J. Millis, Current driven defect unbinding transition in an XY ferromagnet, arXiv:1104.1345
- Y. Singh, S. Manni, and P. Gegenwart, Realization of the Heisenberg-Kitaev model in the honeycomb lattice iridates A2IrO3, arXiv:1106.0429
- A. J. Willans, J. T. Chalker, and R. Moessner, Site dilution in Kitaev's honeycomb model, arXiv:1106.0732
- M. Arlego and W. Brenig, Series Expansion Analysis of a Frustrated Four-Spin-Tube, arXiv:1106.2101
- S. Srinivasan, A. Sarkar, B. Behin-Aein, and S. Datta, All Spin Logic device with inbuilt Non-Reciprocity, arXiv:1106.2789 (how to ensure directional flow of information)
- E. M. Epshtein, Yu. V. Gulyaev, and P. E. Zilberman, Current effect on magnetization oscillations in a ferromagnet-antiferromagnet junction, arXiv:1106.3519
- R. F. Sobreiro and V. J. Vasquez Otoya, The role of gauge symmetry in spintronics, arXiv:1107.0332 (field-theoretical approach applied to non-conserved spin currents)
- T. Adams, S. Mühlbauer, C. Pfleiderer, F. Jonietz, A. Bauer, A. Neubauer, R. Georgii, P. Böni, U. Keiderling, K. Everschor, M. Garst, and A. Rosch, Long-range crystalline nature of the skyrmion lattice in MnSi, arXiv:1107.0993 (neutron scattering)
- D. Loss, F. L. Pedrocchi, and A. J. Leggett, Absence of spontaneous magnetic order of lattice spins coupled to itinerant interacting electrons in one and two dimensions, arXiv:1107.1223 (very general proof, includes the RKKY interaction in 2D [and 1D, solved earlier] as well as interaction via Anderson localized or interacting electrons; spin-orbit coupling generically invalidates the proof) P
- O. E. Peil, A. Georges, and F. Lechermann, Strong correlations enhanced by charge-ordering in highly doped cobaltates, arXiv:1107.4374
- C. Castelnovo, R. Moessner, and S. Sondhi, Debye-Hückel theory for spin ice at low temperature, arXiv:1107.5482
- S. Bhattacharjee, S.-S. Lee, and Y. B. Kim, Spin-Orbital Locking, Emergent Pseudo-Spin, and Magnetic order in Na2IrO3, arXiv:1108.1806
- A. Hamann, D. Lamago, T. Wolf, H. von Lohneysen, and D. Reznik, Magnetic Blue Phase in the Chiral Itinerant Magnet MnSi, arXiv:1108.2923
- G.-W. Chern and C. D. Batista, Spin superstructure and noncoplanar ordering in metallic pyrochlore magnets with degenerate orbitals, arXiv:1108.3066
- T. Qin, Q. Niu, and J. Shi, Energy Magnetization and Thermal Hall Effect, arXiv:1108.3879 (linear response)
- A. Honecker, D. C. Cabra, H.-U. Everts, P. Pujol, and F. Stauffer, Order by disorder and phase transitions in a highly frustrated spin model on the triangular lattice, arXiv:1108.5268
- P. Stasiak, P. A. McClarty, and M. J. P. Gingras, Order-by-Disorder in the XY Pyrochlore Antiferromagnet Revisited, arXiv:1108.6053
- A. Isidori, A. Ruppel, A. Kreisel, P. Kopietz, A. Mai, and R. M. Noack, Quantum criticality of dipolar spin chains, arXiv:1108.6064 (1D quantum Heisenberg model with nearest-neighbor exhange and longrange dipolar interactions, in a transverse field, also derive magnon dispersion)
- L. Seabra, T. Momoi, P. Sindzingre, and N. Shannon, Phase diagram of the classical Heisenberg antiferromagnet on a triangular lattice in applied magnetic field, arXiv:1109.2211 (Monte Carlo simulations)
- S. Iguchi, Y. Kumano, K. Ueda, S. Kumakura, and Y. Tokura, Impact of geometrical frustration on charge transport near the Mott transition in pyrochlore (Y1-xCdx)2Mo2O7, arXiv:1109.3744 (experimental, interplay of strong electronic correlations with geometrical frustration)
- J. Romhanyi, F. Pollmann, and K. Penc, Supersolid phase and magnetization plateaus observed in anisotropic spin-3/2 Heisenberg model on bipartite lattices, arXiv:1109.4078
- O. Petrova and O. Tchernyshyov, Spin waves in a skyrmion crystal, arXiv:1109.4990 (3D MnSi-type systems)
- S. K. Baek, H. Mäkelä, P. Minnhagen, and B. J. Kim, Ising model on a hyperbolic plane with a boundary, arXiv:1109.6227
- L. Savary and L. Balents, Coulombic Quantum Liquids in Spin-1/2 Pyrochlores, arXiv:1110.2185 (develop a novel gauge mean-field theory)
- V. A. Zyuzin and G. A. Fiete, Spatially anisotropic kagome antiferromagnet with Dzyaloshinskii-Moriya interaction, arXiv:1110.6229
- H. Lee, J. Kim, E. R. Mucciolo, G. Bouzerar, and S. Kettemann, RKKY Interaction in Disordered Graphene, arXiv:1110.6272
- K. A. van Hoogdalem and D. Loss, Frequency dependent transport through a spin chain, arXiv:1111.4803 (propose a "spin capacitor")
- M. Mochizuki, Spin-Wave Modes and Their Intense Excitation Effects in Skyrmion Crystals, arXiv:1111.5667, Phys. Rev. Lett. (LLG equations are integrated numerically for driving linearly polarized ac magnetic field, three modes are analyzed in detail) P
- G. Li, P. Höpfner, J. Schäfer, C. Blumenstein, S. Meyer, A. Bostwick, E. Rotenberg, R. Claessen, and W. Hanke, Magnetic-Order Induced Spectral-Weight Redistribution in a Triangular Surface System, arXiv:1112.5062 (ARPES and theory for Sn on reconstructed Si(111) surface)
- N. Shannon, O. Sikora, F. Pollmann, K. Penc, and P. Fulde, Quantum Ice: A Quantum Monte Carlo Study, Phys. Rev. Lett. 108, 067204 (2012) (employ QMC to find ground state of spin ice models, ground state is described by a 3+1 dimensional QED)
- A. Biltmo and P. Henelius, Unreachable glass transition in dilute dipolar magnet, Nature Commun. 3, 857 (2012) (extreme slowing down due to rare ordered clusters, Griffiths phase)
- R. Oja, M. Tyunina, L. Yao, T. Pinomaa, T. Kocourek, A. Dejneka, O. Stupakov, M. Jelinek, V. Trepakov, S. van Dijken, and R. M. Nieminen, d0 Ferromagnetic Interface between Nonmagnetic Perovskites, Phys. Rev. Lett. 109, 127207 (2012)
- E. C. Andrade and M. Vojta, Disorder, Cluster Spin Glass, and Hourglass Spectra in Striped Magnetic Insulators, Phys. Rev. Lett. 109, 147201 (2012)
- C. C. Price and N. B. Perkins, Critical Properties of the Kitaev-Heisenberg Model, Phys. Rev. Lett. 109, 187201 (2012) (applied to iridates)
- L.-J. Chang, S. Onoda, Y. Su, Y.-J. Kao, K.-D. Tsuei, Y. Yasui, K. Kakurai, and M. R. Lees, Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7, Nature Commun. 3, 992 (2012) (neutron scattering; a first-order transition between a spin-ice phase and a ferromagnetic phase is explained in terms of a Higgs mechanism; based on theoretical work by S. Powell) P
- H. M. Revell, L. R. Yaraskavitch, J. D. Mason, K. A. Ross, H. M. L. Noad, H. A. Dabkowska, B. D. Gaulin, P. Henelius, and J. B. Kycia, Evidence of impurity and boundary effects on magnetic monopole dynamics in spin ice, Nature Physics (2012), doi:10.1038/nphys2466 (experiment and Monte Carlo simulations)
- T.-H. Han et al., Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet, Nature 492, 406 (2012) (neutron scattering, herbertsmithite)
- L. D. C. Jaubert, S. Piatecki, M. Haque, and R. Moessner, Itinerant electrons in the Coulomb phase, arXiv:1201.0677 (study the interplay between frustration and itineracy, two and three dimensions, electrons are assumed to move only along loops of parallel Ising spins)
- S. M. Disseler, Chetan Dhital, T. C. Hogan, A. Amato, S. Giblin, Clarina de la Cruz, S. D. Wilson, and M. J. Graf, Magnetic frustration and the onset of magnetic order in the pyrochlore iridate Nd2Ir2O7, arXiv:1201.4606
- T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, and A. Rosch, Emergent electrodynamics of skyrmions in a chiral magnet, arXiv:1202.1176 (MnSi, theory and Hall measurements)
- P. Quémerais, P. McClarty, and R. Moessner, Possible Quantum Diffusion of Polaronic Muons in Dy2Ti2O7 Spin Ice, arXiv:1203.3039
- T. R. Kirkpatrick and D. Belitz, Universal low-temperature tricritical point in metallic ferromagnets and ferrimagnets, arXiv:1203.3826 (universal: also if magnetic moments and mobile electrons are from different bands, Heisenberg/XY/Ising symmetry, ferro- and ferrimagnets)
- S. Pielawa, E. Berg, and S. Sachdev, Frustrated quantum Ising spins simulated by spinless bosons in a tilted lattice: from a quantum liquid to antiferromagnetic order, arXiv:1203.6653
- V. Khemani, R. Moessner, S. A. Parameswaran, and S. L. Sondhi, A Bionic Coulomb Phase on the Pyrochlore Lattice, arXiv:1204.3646 (four-state Potts model on pyrochlore lattice, three emergent gauge fields)
- A. Gendiar, R. Krcmar, S. Andergassen, M. Daniska, and T. Nishino, Weak correlation effects in the Ising model on triangular-tiled hyperbolic lattices, arXiv:1205.3850 (triangular lattices with q triangles meeting at each node on negatively curved surfaces; find mean-field universality class for all q > 6)
- A. Wollny, E. C. Andrade, and M. Vojta, Singular field response and singular screening of vacancies in antiferromagnets, arXiv:1206.2927
- B. Mera, V. R. Vieira, and V. K. Dugaev, Dynamics of magnetic moments coupled to electrons and lattice oscillations, arXiv:1206.7092 (in 3d ferromagnets)
- Z. Xiong and X.-G. Wen, General method for finding families of exact ground states of broad classes of classical Heisenberg models, arXiv:1208.1512 (very general proof for lattices with one spin per unit cell, also for several spins per unit cell under certain conditions)
- A. Schwabe, D. Gütersloh, and M. Potthoff, The Kondo-versus-RKKY quantum box, arXiv:1208.2209 (1D chain, non-interacting electrons, Zener coupling to local spins at finite number of sites)
- J. H. H. Perk, Erroneous solution of three-dimensional (3D) simple orthorhombic Ising lattices, arXiv:1209.0731 (criticizes work by Z. Zhang and N. H. March)
- Y. Li, N. Kanazawa, X. Z. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X. F. Jin, F. Kagawa, and Y. Tokura, Robust formation of skyrmions and topological Hall effect in epitaxial thin films of MnSi, arXiv:1209.4480 (differences compared to bulk MnSi)
- M. F. Lapa and C. L. Henley, Ground States of the Classical Antiferromagnet on the Pyrochlore Lattice, arXiv:1210.6810 (Heisenberg model with nearest and next-nearest neighbor interaction)
- W. Brenig and A. L. Chernyshev, Highly Dispersive Scattering From Defects In Non-Collinear Magnets, arXiv:1212.2972
- G.-W. Chern, A. Rahmani, I. Martin, and C. D. Batista, Quantum Hall ice, arXiv:1212.3617
- S. Boseggia, R. Springell, H. C. Walker, C. Rüegg, H. Okabe, M. Isobe, R. S. Perry, S. P. Collins, and D. F. McMorrow, Robustness of basal-plane antiferromagnetic order and the Jeff=1/2 state in single-layer iridate spin-orbit Mott insulators, arXiv:1212.5912 (Ba2IrO4)
- G.-W. Chern and R. Moessner, Dipolar Order by Disorder in the Classical Heisenberg Antiferromagnet on the Kagome Lattice, Phys. Rev. Lett. 110, 077201 (2013) (Monte Carlo simulations at low temperatures)
- J.-Y. Fortin, Random site dilution properties of frustrated magnets on a hierarchical lattice, J. Phys.: Condens. Matter 25, 296004 (2013)
- S. B. Lee, A. Paramekanti, and Y. B. Kim, RKKY Interactions and the Anomalous Hall Effect in Metallic Rare-Earth Pyrochlores, Phys. Rev. Lett. 111, 196601 (2013) (relevant for the iridate Pr2Ir2O7, RKKY interaction between Pr local moments calculated from one-band model, can lead to complex dipolar/quadrupolar order, which in turn causes Weyl-type reconstruction of the electronic Ir 5d band structure)
- R. Flint and P. A. Lee, Emergent Honeycomb Lattice in LiZn2Mo3O8, Phys. Rev. Lett. 111, 217201 (2013)
- R. Flint and T. Senthil, Chiral RKKY interaction in Pr2Ir2O7, arXiv:1301.0815 (chiral RKKY interaction between Pr moments, due to chiral fluctuations of [itinerant] Ir moments)
- K. Matsuhira, M. Tokunaga, M. Wakeshima, Y. Hinatsu, and S. Takagi, Giant Magnetoresistance Effect in the Metal-Insulator Transition of Pyrochlore Oxide Nd2Ir2O7, arXiv:1301.3969, J. Phys. Soc. Jpn. 82, 023706 (2013) (giant magnetoresistance in the insulating state, also depends on the type of lanthanide ion)
- M. Vojta, Excitation spectra of disordered dimer magnets near quantum criticality, arXiv:1301.4223 (genearalized bond-operator approach)
- I. Kimchi and A. Vishwanath, Kitaev-Heisenberg Models for Iridates on the Triangular, (Hyper) Kagome, FCC and Pyrochlore Lattices, arXiv:1303.3290
- G.-W. Chern, S. Maiti, R. M. Fernandes, and P. Wölfle, Electronic Transport in the Coulomb Phase of the Pyrochlore Spin Ice, Phys. Rev. Lett. 110, 146602 (2013) (residual and finite-temperature resistity, results are compared to experiments on Nd2Ir2O7 and Pr2Ir2O7) P
- I. I. Mazin, S. Manni, K. Foyevtsova, H. O. Jeschke, P. Gegenwart, and R. Valenti, Origin of the insulating state in honeycomb iridates and rhodates, arXiv:1304.2258
- T. Prosen and B. Zunkovic, Macroscopic Diffusive Transport in a Microscopically Integrable Hamiltonian System, arXiv:1304.7452
- T. Kernreiter, RKKY interaction induced by two-dimensional hole gases, arXiv:1305.5274
- G. Cao, T. F. Qi, L. Li, J. Terzic, S. J. Yuan, L. E. DeLong, G. Murthy, and R. K. Kaul, Novel Magnetism of Ir5+(5d4) Ions in the Double Perovskite Sr2YIrO6, Phys. Rev. Lett. 112, 056402 (2014) (unusual magnetic order in spite of strong spin-orbit coupling and frustration)
- H. Watanaebe, T. Shirakawa, and S. Yunoki, Theoretical study of insulating mechanism in multi-orbital Hubbard models with a large spin-orbit coupling: Is Sr2IrO4 a Slater insulator or a Mott insulator?, arXiv:1402.0935 (variational Monte Carlo simulations; conclude that it is a Slater insulator, i.e., due to long-range magnetic order; gap closes at Néel temperature); A. Yamasaki et al., Bulk Nature of Layered Perovskite Iridates beyond the Mott Scenario: An Approach from Bulk Sensitive Photoemission Study, arXiv:1310.7160 (experimental support for Slater picture)
- C. Sürgers, G. Fischer, P. Winkel, and H. v. Löhneysen, Large topological Hall effect in the non-collinear phase of an antiferromagnet, Nature Commun. 5, 3400 (2014) (Mn5Si3)
- C. Franz, F. Freimuth, A. Bauer, R. Ritz, C. Schnarr, C. Duvinage, T. Adams, S. Blügel, A. Rosch, Y. Mokrousov, and C. Pfleiderer, Real-Space and Reciprocal-Space Berry Phases in the Hall Effect of Mn1-xFexSi, Phys. Rev. Lett. 112, 186601 (2014)
- J.-H. Kim, A. Jain, M. Reehuis, G. Khaliullin, D. C. Peets, C. Ulrich, J. T. Park, E. Faulhaber, A. Hoser, H. C. Walker, D. T. Adroja, A. C. Walters, D. S. Inosov, A. Maljuk, and B. Keimer, Competing Exchange Interactions on the Verge of a Metal-Insulator Transition in the Two-Dimensional Spiral Magnet Sr3Fe2O7, Phys. Rev. Lett. 113, 147206 (2014)
- F. Krüger, C. J. Pedder, and A. G. Green, Fluctuation-Driven Magnetic Hard-Axis Ordering in Metallic Ferromagnets, Phys. Rev. Lett. 113, 147001 (2014)
- E. Svanidze, J. K. Wang, T. Besara, L. Liu, Q. Huang, T. Siegrist, B. Frandsen, J. W. Lynn, A. H. Nevidomskyy, M. B. Gamza, M. C. Aronson, Y. J. Uemura, and E. Morosan, Novel Itinerant Antiferromagnet TiAu, arXiv:1409.0811 (magnetization measurements, also μSR and XPS, accompanied by DFT calculations; SDW system, apparently due to nesting of quasi-2D [ab-plane] Fermi-surface sheets; calculated Fermi surface is complicated, various bands intersect Fermi energy)
- C. Lester et al., Field-tunable spin-density-wave phases in Sr3Ru2O7, Nature Mater. (2015) doi:10.1038/nmat4181
- M. Yoshida, H. Kobayashi, I. Yamauchi, M. Takigawa, S. Capponi, D. Poilblanc, F. Mila, K. Kudo, Y. Koike, and N. Kobayashi, Real Space Imaging of Spin Polarons in Zn-Doped SrCu2(BO3)2, Phys. Rev. Lett. 114, 056402 (2015) (11B NMR, theoretical analysis gives local magnetization at the Cu sites)
- B. Javanparast, Z. Hao, M. Enjalran, and M. J. P. Gingras, Fluctuation-Driven Selection at Criticality in a Frustrated Magnetic System: The Case of Multiple-k Partial Order on the Pyrochlore Lattice, Phys. Rev. Lett. 114, 130601 (2015) (orderings on the pyrochlore lattice with periodically arranged disordered, paramagnetic sides; mean-field approximation, QMC, Landau theory)
- S. M. Wu, J. E. Pearson, and A. Bhattacharya, Paramagnetic Spin Seebeck Effect, Phys. Rev. Lett. 114, 186602 (2015) (temperature gradient drives spin current, experimentally distinguished from other effects by dependence on magnetic-field orientation)
- S. H. Chun et al., Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3, Nature Phys. 11, 462 (2015) (x-ray scattering experiments); see also News and Views: P. Gegenwart and S. Trebst, Spin-orbit physics: Kitaev matter, Nature Phys. 11, 444 (2015)
- E. Lefrancois, V. Simonet, R. Ballou, E. Lhotel, A. Hadj-Azzem, S. Kodjikian, P. Lejay, P. Manuel, D. Khalyavin, and L. C. Chapon, Anisotropy-Tuned Magnetic Order in Pyrochlore Iridates, Phys. Rev. Lett. 114, 247202 (2015) (magnetization and neutron scattering experiments; Tb2Ir2O7 probably has all-in-all-out magnetic order)
- M. Schecter, M. S. Rudner, and K. Flensberg, Spin-Lattice Order in One-Dimensional Conductors: Beyond the RKKY Effect, Phys. Rev. Lett. 114, 247205 (2015) (nonperturbative theory)
- K. Ueda, J. Fujioka, B.-J. Yang, J. Shiogai, A. Tsukazaki, S. Nakamura, S. Awaji, N. Nagaosa, and Y. Tokura, Magnetic Field-Induced Insulator-Semimetal Transition in a Pyrochlore Nd2Ir2O7, Phys. Rev. Lett. 115, 056402 (2015)
- Z. Wang, Y. Kamiya, A. H. Nevidomskyy, and C. D. Batista, Three-Dimensional Crystallization of Vortex Strings in Frustrated Quantum Magnets, Phys. Rev. Lett. 115, 107201 (2015) (theory)
- I. Kézsmárki et al., Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8, Nature Mat. (2015), doi:10.1038/nmat4402
- G. Zhang and Z. Song, Topological Characterization of Extended Quantum Ising Models, Phys. Rev. Lett. 115, 177204 (2015) (interesting geometrical mapping)
- L. Zhao, D. H. Torchinsky, H. Chu, V. Ivanov, R. Lifshitz, R. Flint, T. Qi, G. Cao, and D. Hsieh, Evidence of an odd-parity hidden order in a spin-orbit coupled correlated iridate, Nature Phys. (2015), doi:10.1038/nphys3517 (Sr2IrO4)
- C. M. Varma, Quantum Criticality in Quasi-Two-Dimensional Itinerant Antiferromagnets, Phys. Rev. Lett. 115, 186405 (2015) (for example iron pnictides)
- M. Powalski, G. S. Uhrig, and K. P. Schmidt, Roton Minimum as a Fingerprint of Magnon-Higgs Scattering in Ordered Quantum Antiferromagnets, Phys. Rev. Lett. 115, 207202 (2015) (continuous similarity transformation)
- H. Skarsvåg, C. Holmqvist, and A. Brataas, Spin Superfluidity and Long-Range Transport in Thin-Film Ferromagnets, Phys. Rev. Lett. 115, 237201 (2015) (important result: dipole-dipole interaction prevents superfluid spin transport)
- R. Steinigeweg, J. Herbrych, X. Zotos, and W. Brenig, Heat Conductivity of the Heisenberg Spin-1/2 Ladder: From Weak to Strong Breaking of Integrability, Phys. Rev. Lett. 116, 017202 (2016)
- H. Gretarsson, N. H. Sung, M. Höppner, B. J. Kim, B. Keimer, and M. Le Tacon, Two-Magnon Raman Scattering and Pseudospin-Lattice Interactions in Sr2IrO4 and Sr3Ir2O7, Phys. Rev. Lett. 116, 136401 (2016)
- A. Marrazzo and R. Resta, Irrelevance of the Boundary on the Magnetization of Metals, Phys. Rev. Lett. 116, 137201 (2016)
- L. Balents and O. A. Starykh, Quantum Lifshitz Field Theory of a Frustrated Ferromagnet, Phys. Rev. Lett. 116, 177201 (2016) (one-dimensional frustrated systems, field theory)
- S.-Z. Lin, S. Hayami, and C. D. Batista, Magnetic Vortex Induced by Nonmagnetic Impurity in Frustrated Magnets, Phys. Rev. Lett. 116, 187202 (2016)
- T. Liu, G. Vignale, and M. E. Flatté, Nonlocal Drag of Magnons in a Ferromagnetic Bilayer, Phys. Rev. Lett. 116, 237202 (2016) (due to dipolar interactions, semiclassical Boltzmann theory) P
- T. Kikuchi, T. Koretsune, R. Arita, and G. Tatara, Dzyaloshinskii-Moriya Interaction as a Consequence of a Doppler Shift due to Spin-Orbit-Induced Intrinsic Spin Current, Phys. Rev. Lett. 116, 247201 (2016)
- K. Aoyama and H. Kawamura, Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice, Phys. Rev. Lett. 116, 257201 (2016) (classical MC simulations)
- Z. Wang, K. Barros, G.-W. Chern, D. L. Maslov, and C. D. Batista, Resistivity Minimum in Highly Frustrated Itinerant Magnets, Phys. Rev. Lett. 117, 206601 (2016) (two-dimensional Zener model with classical spins, numerical integration of the Langevin dynamics and Kubo formula for resistivity, use a kernel-polynomial method)
-
J. D. Thompson, P. A. McClarty, D. Prabhakaran, I. Cabrera, T. Guidi, and R. Coldea, Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb2Ti2O7 in a Magnetic Field, Phys. Rev. Lett. 119, 057203 (2017) (inelastic neutron scattering, heat capacity, indicating absence of sharp magnons)
- D. Wesenberg, T. Liu, D. Balzar, M. Wu, and B. L. Zink, Long-distance spin transport in a disordered magnetic insulator, Nature Phys. 13, 987 (2017)
-
J. Tsurumi et al., Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors, Nature Phys. 13, 994 (2017)
-
Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563, 94 (2018)
-
H. Liu and G. Khaliullin, Pseudo-Jahn-Teller Effect and Magnetoelastic Coupling in Spin-Orbit Mott Insulators, Phys. Rev. Lett. 122, 057203 (2019) (explaining puzzling experiments on Jeff = 1/2 Sr2IrO4 and Jeff = 0 Ca2RuO4)
-
J. Gaudet, E. M. Smith, J. Dudemaine, J. Beare, C. R. C. Buhariwalla, N. P. Butch, M. B. Stone, A. I. Kolesnikov, G. Xu, D. R. Yahne, K. A. Ross, C. A. Marjerrison, J. D. Garrett, G. M. Luke, A. D. Bianchi, and B. D. Gaulin, Quantum Spin Ice Dynamics in the Dipole-Octupole Pyrochlore Magnet Ce2Zr2O7, Phys. Rev. Lett. 122, 187201 (2019) (neutron scattering)
-
Ø. Johansen, V. Risinggård, A. Sudbø, J. Linder, and A. Brataas, Current Control of Magnetism in Two-Dimensional Fe3GeTe2, Phys. Rev. Lett. 122, 217203 (2019) (monolayer with perpendicular current leading to spin-orbit torque, can be described by effective Hamiltonian, tuning between easy-axis and easy-plane anisotropy)
-
Z. Wang, Y. Su, S.-Z. Lin, and C. D. Batista, Skyrmion Crystal from RKKY Interaction Mediated by 2D Electron Gas, Phys. Rev. Lett. 124, 207201 (2020) (theory)
-
J. Schnack, J. Schulenburg, A. Honecker, and J. Richter, Magnon Crystallization in the Kagome Lattice Antiferromagnet, Phys. Rev. Lett. 125, 117207 (2020) (related to flat magnon band, i.e., localized magnon eigenmodes)
-
F. P. Toldin, Boundary Critical Behavior of the Three-Dimensional Heisenberg Universality Class, Phys. Rev. Lett. 126, 135701 (2021) (boundary effects; Monte Carlo simulations for improved lattice model)
-
O. Hart, S. Gopalakrishnan, and C. Castelnovo, Logarithmic Entanglement Growth from Disorder-Free Localization in the Two-Leg Compass Ladder, Phys. Rev. Lett. 126, 227202 (2021)
-
V. Shyta, J. van den Brink, and F. S. Nogueira, Deconfined Criticality and Bosonization Duality in Easy-Plane Chern-Simons Two-Dimensional Antiferromagnets, Phys. Rev. Lett. 127, 045701 (2021)
-
W.-X. Qiu, J.-Y. Zou, A.-Y. Luo, Z.-H. Cui, Z.-D. Song, J.-H. Gao, Y.-L. Wang, and G. Xu, Efficient Method for Prediction of Metastable or Ground Multipolar Ordered States and Its Application in Monolayer α−RuX3 (X=Cl, I), Phys. Rev. Lett. 127, 147202 (2021) (theory, symmetry analysis of RPA response functions, based on DFT)
-
N. Astrakhantsev, T. Westerhout, A. Tiwari, K. Choo, A. Chen, M. H. Fischer, G. Carleo, and T. Neupert, Broken-Symmetry Ground States of the Heisenberg Model on the Pyrochlore Lattice, Phys. Rev. X 11, 041021 (2021) (numerics indicate that it is not a spin liquid, after all)
-
L. Šmejkal, J. Sinova, and T. Jungwirth, Beyond Conventional Ferromagnetism and Antiferromagnetism: A Phase with Nonrelativistic Spin and Crystal Rotation Symmetry, Phys. Rev. X 12, 031042 (2022) (introducing new concept of altermagnetic order, not due to spin-orbit coupling)
For transport through magnetic systems see also Mesoscopic and nanoscopic transport
For spin liquids see also Other systems with non-trivial topology
Semiconductor physics, except magnetic phenomena
Inorganic semiconductors, except DMS
(including doped diamond)
- G. Lucovsky, On the photoionization of deep impurity centers in semiconductors, Solid State Commun. 3, 299 (1965) (uses a zero-range potential to model deep impurities)
- P. W. Anderson, Model for the Electronic Structure of Amorphous Semiconductors, Phys. Rev. Lett. 34, 953 (1975) ("In ... impurity bands in covalent semiconductors, the localized electrons show Curie-law paramagnetism due to repulsive Coulomb interactions.")
- B. K. Ridley, The photoionisation cross section of deep-level impurities in semiconductors, J. Phys. C: Solid State Phys. 13, 2015 (1980)
- D. Olego and M. Cardona, Raman scattering by coupled LO-phonon-plasmon modes and forbidden TO-phonon Raman scattering in heavily doped p-type GaAs, Phys. Rev. B 24, 7217 (1981) (contains review and bibliography for coupling of phonon and plasmon modes in doped sermiconductors; disorder scattering plays a big role) P
- J. Neugebauer and C. G. Van de Walle, Atomic geometry and electronic structure of native defects in GaN, Phys. Rev. B 50, 8067 (1994)
- K. Milants, J. Verheyden, T. Barancira, W. Deweerd, H. Pattyn, S. Bukshpan, D. L. Williamson, F. Vermeiren, G. Van Tendeloo, C. Vlekken, S. Libbrecht, and C. Van Haesendonck , Size distribution and magnetic behavior of lead inclusions in silicon single crystals, J.Appl. Phys. 81, 2148 (1997)
- N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, Scattering of electrons at threading dislocations in GaN, J. Appl. Phys. 83, 3656 (1998) (mostly theoretical); H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, The role of dislocation scattering in n-type GaN films, Appl. Phys. Lett. 73, 821 (1998) (corresponding experiment)
- M. G. Burt, Fundamentals of envelope function theory for electronic states and photonic modes in nanostructures, J. Phys.: Condens. Matter 11, R53 (1999) (contains review of author's generalization of envelope function method and addresses various misconceptions, also discusses calculation of dipole matrix elements)
- W. R. L. Lambrecht, Electronic structure and optical spectra of the semimetal ScAs and of the indirect-band-gap semiconductors ScN and GdN, Phys. Rev. B 62, 13538 (2000) (DFT)
- C. Persson, R. Ahuja, and B. Johansson, Full band calculation of doping-induced band-gap narrowing in p-type GaAs, Phys. Rev. B 64, 033201 (2001)
- W. J. Moore, J. A. Freitas, Jr., S. K. Lee, S. S. Park, and J. Y. Han, Magneto-optical studies of free-standing hydride-vapor-phase epitaxial GaN, Phys. Rev. B 65, 081201(R) (2002)
- M. A. Reshchikov and H. Morkoc, Luminescence properties of defects in GaN, J. Appl. Phys. 97, 061301 (2005) (long paper reviewing many experiments and relevant new ab-initio calculations, represents significant change in the view of nitrogen vacancies)
- K. Takashina, Y. Ono, A. Fujiwara, Y. Takahashi, and Y. Hirayama, Valley Polarization in (100) Silicon at Zero Magnetic Field, cond-mat/0604118
- R. O. Kuzian, A. M. Daré, P. Sati, and R. Hayn, Crystal field theory of Co2+ in ZnO revisited, cond-mat/0604322
- J. L. Gavartin, D. Munoz Ramo, A. L. Shluger, G. Bersuker, and B. H. Lee, Negative oxygen vacancies in HfO2 as charge traps in high-k stacks, cond-mat/0605593
- Y. Qi and M. E. Flatté, Current-induced spin polarization in nonmagnetic semiconductor junctions, cond-mat/0607354 (... in the absence of spin-orbit coupling)
- R. Hanson, O. Gywat, and D. D. Awschalom, Room-temperature manipulation and decoherence of a single spin in diamond, quant-ph/0608233 (nitrogen-vacancy centers)
- A. J. Zaleski, M. Nyk, and W. Strek, Magnetic studies of GaN nanoceramics, cond-mat/0612389, Appl. Phys. Lett. (effects of deviation from perfect crystal on diamagnetism of GaN)
- N. Manyala, J. F. DiTusa, G. Aeppli, and A. P. Ramirez, Doping a semiconductor to create an unconventional metal, arXiv:0810.2544, Nature 454, 976 (2008) (propose the realization of a non-Fermi liquid by doping a narrow-gap semiconductor)
- H. Zhao, M. Mower, and G. Vignale, Ambipolar spin diffusion and D'yakonov-Perel' spin relaxation in GaAs quantum wells, Phys. Rev. B 79, 115321 (2009)
- S. Das Sarma, E. H. Hwang, and Q. Li, Valley dependent many-body effects in 2D semiconductors, arXiv:0904.2622
- F. Zhao, A. Balocchi, A. Kunold, J. Carrey, H. Carrère, T. Amand, N. Ben Abdallah, J. C. Harmand, and X. Marie, Room temperature Giant Spin-dependent Photoconductivity in dilute nitride semiconductors, arXiv:0907.4321 (due to paramagnetic Ga interstitials in Ga(As,N))
- J. Schliemann, The dielectric function of the semiconductor hole gas, arXiv:1003.4820
- M.-L. Zhang and D. A. Drabold, A new approach to computing transport coefficients: application to conductivity and Hall coefficient of hydrogenated amorphous silicon, arXiv:1006.3800
- D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, Defect states and disorder in charge transport in semiconductor nanowires, arXiv:1106.4492
- D. Futterer, M. Governale, U. Zuelicke, and J. König, Band-mixing-mediated Andreev reflection of semiconductor holes, arXiv:1107.2039 (p-type semiconductor/s-wave superconductor interface, Andreev reflection involving mixing of heavy and light holes)
- V. M. Acosta, C. Santori, A. Faraon, Z. Huang, K.-M. C. Fu, A. Stacey, D. A. Simpson, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and R. G. Beausoleil, Dynamic Stabilization of the Optical Resonances of Single Nitrogen-Vacancy Centers in Diamond, Phys. Rev. Lett. 108, 206401 (2012)
- A. I. Shames, V. Yu. Osipov, H. J. von Bardeleben, and A. Ya Vul', Spin S = 1 centers: a universal type of paramagnetic defects in nanodiamonds of dynamic synthesis, J. Phys.: Condens. Matter 24, 225302 (2012)
- F. Nichele, S. Chesi, S. Hennel, A. Wittmann, C. Gerl, W. Wegscheider, D. Loss, T. Ihn, and K. Ensslin, Characterization of Spin-Orbit Interactions of GaAs Heavy Holes Using a Quantum Point Contact, Phys. Rev. Lett. 113, 046801 (2014) (find a quadratic spin-orbit coupling term, in addition to the cubic Rashba effect)
Organic semiconductors and conductors, hydrid structures
- F. Ortmann, F. Bechstedt, and K. Hannewald, Theory of charge transport in organic crystals: Beyond Holstein's small-polaron model, Phys. Rev. B 79, 235206 (2009) (Holstein Hamiltonian, Lang-Firsov transformation onto polarons and phonons; resulting hopping terms containing phonon operators are replaced by the phonon thermal average, giving an effective polaron Hamiltonian; in current operators such an approximation is not made, they are averaged in standard Kubo expression; no further approximations, in particular of vanishing hopping of polarons ["narrow-band approximation"]; paper contains good review of approaches)
- P. A. Bobbert, Organic semiconductors: What makes the spin relax?, Nature Mat. 9, 288 (2010)
- R. C. Roundy, Z. V. Vardeny, and M. E. Raikh, Organic magnetoresistance near saturation: mesoscopic effects in small devices, arXiv:1210.3443 (OMAR)
- J. Aragó and A. Troisi, Dynamics of the Excitonic Coupling in Organic Crystals, Phys. Rev. Lett. 114, 026402 (2015)
-
H. Memmi, O. Benson, S. Sadofev, and S. Kalusniak, Strong Coupling between Surface Plasmon Polaritons and Molecular Vibrations, Phys. Rev. Lett. 118, 126802 (2017)
-
S. Refaely-Abramson, F. H. da Jornada, S. G. Louie, and J. B. Neaton, Origins of Singlet Fission in Solid Pentacene from an ab initio Green’s Function Approach, Phys. Rev. Lett. 119, 267401 (2017)
-
C. Liu et al., Tunable Semiconductors: Control over Carrier States and Excitations in Layered Hybrid Organic-Inorganic Perovskites, Phys. Rev. Lett. 121, 146401 (2018)
-
J. H. Fetherolf, D. Golež, and T. C. Berkelbach, A Unification of the Holstein Polaron and Dynamic Disorder Pictures of Charge Transport in Organic Crystals, Phys. Rev. X 10, 021062 (2020) (tight-binding model for electrons, with Holstein coupling to one intramolecular vibration mode and Peierls coupling to one intermolecular mode) P
Neural networks, neural circuits, memristive devices
- Y. V. Pershin and M. Di Ventra, Experimental demonstration of associative memory with memristive neural networks, arXiv:0905.2935, Neural Networks 23, 881 (2010)
- M. D. Pickett, G. Medeiros-Ribeiro, and R. S. Williams, A scalable neuristor built with Mott memristors, Nature Materials (2012), doi:10.1038/nmat3510
- M. Sharad, C. Augustine, G. Panagopoulos, and K. Roy, Ultra Low Energy Analog Signal Processing Using Spin Neurons Based on Nano Magnets, arXiv:1206.2466 (spin neurons made up of several nanomagnets interacting through non-magnetic metals); Proposal For Neuromorphic Hardware Using Spin Devices, arXiv:1206.3227
- O. Bichler, W. Zhao, F. Alibart, S. Pleutin, S. Lenfant, D. Vuillaume, and C. Gamrat, Pavlov's dog associative learning demonstrated on synaptic-like organic transistors, arXiv:1302.3261, Neural Computation 25, 549 (2013) (associative memory, design using FETs involving Au nanoparticles in organic matrix, experimental demonstration)
- Y. V. Pershin and M. Di Ventra, Memcapacitive neural networks, arXiv:1307.6921
- M. Sharad, D. Fan, and K. Roy, Spin Neurons: A Possible Path to Energy-Efficient Neuromorphic Computers, arXiv:1309.3303 (macroscopic spin-torque devices)
- M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors, Nature 521, 61 (2015) (CMOS, 12 by 12 crossbar)
- S. Vongehr and X. Meng, The Missing Memristor has Not been Found, Sci. Rep. 5, 11657 (2015) (partially sociological discussion of disputed realization of memristor in 2008)
For nanoscopic systems see also Mesoscopic and nanoscopic transport
Mesoscopic and nanoscopic transport, localization, magnetotransport
Experiments on artificial quantum dots and wires, point contacts, and larger systems
(including carbon nanotubes)
- K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube, Nature 401, 572 (1999)
- K. I. Bolotin, F. Kuemmeth, and D. C. Ralph, Anisotropic magnetoresistance and anisotropic tunneling magnetoresistance in ferromagnetic metal break junctions, cond-mat/0602251
- D. M. Schröer, A. K. Hüttel, K. Eberl, S. Ludwig, M. N. Kiselev, and B. L. Altshuler, Magnetic control of resonant tunneling and Kondo effect in a one-electron double quantum dot, cond-mat/0607044
- D. Rohrlich, O. Zarchin, M. Heiblum, D. Mahalu, and V. Umansky, Controlled Dephasing of a Quantum Dot: From Coherent to Sequential Tunneling, cond-mat/0607495 (experiment and theory)
- K. Hamaya, S. Masubuchi, M. Kawamura, T. Machida, M. Jung, K. Shibata, K. Hirakawa, T. Taniyama, S. Ishida, and Y. Arakawa, Spin transport through a single self-assembled InAs quantum dot with ferromagnetic leads, cond-mat/0611269 (study the tunnel magnetoresistance)
- L. Vila, R. Giraud, L. Thevenard, A. Lemaitre, F. Pierre, J. Dufouleur, D. Mailly, B. Barbara, and G. Faini, Universal Conductance Fluctuations in Epitaxial GaMnAs Ferromagnets: Dephasing by Structural and Spin Disorder, Phys. Rev. Lett. 98, 027204 (2007) (show a large phase coherence length, compare nanowires with anisotropic layers)
- R. L. Willett, M. J. Manfra, L. N. Pfeiffer, and K. W. West, Mesoscopic structures and 2D hole systems in fully field effect controlled heterostructures, cond-mat/0703719
- J. V. Holm, H. I. Jørgensen, K. Grove-Rasmussen, J. Paaske, K. Flensberg, and P. E. Lindelof, Gate-dependent tunneling-induced level shifts in carbon nanotube quantum dots, arXiv:0711.4913 (experiment and theory, observe many Coulomb diamonds, Kondo resonances, do second-order perturbation theory for level shifts)
- D. Neumaier, K. Wagner, U. Wurstbauer, M. Reinwald, W. Wegscheider, and D. Weiss, Phase coherent transport in (Ga,Mn)As, arXiv:0801.3363 (small devices, universal conductance fluctuations, Aharonov-Bohm effect, weak localization)
- S. Kafanov and P. Delsing, Measurement of the shot noise in a single electron transistor, arXiv:0812.0282
- R. Leturcq, C. Stampfer, K. Inderbitzin, L. Durrer, C. Hierold, E. Mariani, M. G. Schultz, F. von Oppen, and K. Ensslin, Franck-Condon blockade in suspended carbon nanotube quantum dots, arXiv:0812.3826, Nature Physics (2009) (experiment and modeling)
- H. I. Jørgensen, K. Grove-Rasmussen, K. Flensberg, and P. E. Lindelof, Critical and excess current through an open quantum dot: Temperature and magnetic field dependence, arXiv:0812.4175
- E. A. Chekhovich, M. N. Makhonin, J. Skiba-Szymanska, A. B. Krysa, V. D. Kulakovskii, V. I. Fal'ko, M. S. Skolnick, and A. I. Tartakovskii, Polarization freezing of 10000 optically-cooled nuclear spins by coupling to a single electron, arXiv:0901.4249, Nature Materials
- C. H. L. Quay, T. L. Hughes, J. A. Sulpizio, L. N. Pfeiffer, K. W. Baldwin, K. W. West, D. Goldhaber-Gordon, and R. de Picciotto, Observation of a One-Dimensional Spin-Orbit Gap in a Quantum Wire, arXiv:0911.4311 (clear signatures of spin currents induced by spin-orbit coupling in the charge conductivity)
- H. A. Nilsson, O. Karlström, M. Larsson, P. Caroff, J. N. Pedersen, L. Samuelson, A. Wacker, L.-E. Wernersson, and H. Q. Xu, Correlation-Induced Conductance Suppression at Level Degeneracy in a Quantum Dot, Phys. Rev. Lett. 104, 186804 (2010) (contains a theory part)
- C. Fricke, F. Hohls, C. Flindt, and R. J. Haug, High cumulants in the counting statistics measured for a quantum dot, arXiv:1003.0517
- S. Amasha, I. G. Rau, M. Grobis, R. M. Potok, H. Shtrikman, and D. Goldhaber-Gordon, Coulomb Blockade in an Open Quantum Dot, arXiv:1009.5348
- S. Kim, Y. Hashimoto, Y. Iye, and S. Katsumoto, Evidence of Spin-Filtering in Quantum Constrictions with Spin-Orbit Interaction, arXiv:1102.4648 (InGaAs quantum well, also model, assumes one contact to have spin-dependent tunneling amplitude) P
- Y. Yamauchi, K. Sekiguchi, K. Chida, T. Arakawa, S. Nakamura, K. Kobayashi, T. Ono, T. Fujii, and R. Sakano, Evolution of the Kondo Effect in a Quantum Dot Probed by Shot Noise, Phys. Rev. Lett. 106, 176601 (2011)
- A. Kumar, A. Singh, S. Samanta, K. Vasundhara, A. K. Debnath, D. K. Aswal, S. K. Gupta, and J. V. Yakhmi, Charge transport in ultrathin iron-phthalocyanine thin films under high electric fields, J. Phys.: Condens. Matter 23, 355801 (2011) (in-plane transport)
- M. R. Delbecq, V. Schmitt, F. D. Parmentier, N. Roch, J. J. Viennot, G. Fève, B. Huard, C. Mora, A. Cottet, and T. Kontos, Coupling a Quantum Dot, Fermionic Leads, and a Microwave Cavity on a Chip, Phys. Rev. Lett. 107, 256804 (2011) (carbon-nanotube cicuit in a superconducting cavity)
- C. Rössler, S. Baer, E. de Wiljes, P.-L. Ardelt, T. Ihn, K. Ensslin, C. Reichl, and W. Wegscheider, Transport Properties of Clean Quantum Point Contacts, arXiv:1106.2982
- B. Küng, C. Rössler, M. Beck, M. Marthaler, D. S. Golubev, Y. Utsumi, T. Ihn, and K. Ensslin, Irreversibility on the Level of Single-Electron Tunneling, arXiv:1107.4240
- N. C. Bishop, R. W. Young, G. A. Ten Eyck, J. R. Wend, E. S. Bielejec, K. Eng, L. A. Tracy, M. P. Lilly, M. S. Carroll, C. Borrás Pinilla, and H. L. Stalford, Triangulating tunneling resonances in a point contact, arXiv:1107.5104 (can determine position of resonant dopand through comparison of experiment with simulations)
- K. Gloos and E. Tuuli, Break-junction experiments on the zero-bias anomaly of non-magnetic and ferromagnetically ordered metals, arXiv:1109.3774
- S. Fahlvik Svensson, A. I. Persson, E. A. Hoffmann, N. Nakpathomkun, H. A. Nilsson, H. Q. Xu, L. Samuelson, and H. Linke, Lineshape of the thermopower of quantum dots, arXiv:1110.0352 (experiment and theory based on Landauer formula for non-interacting electrons)
- T.-M. Liu, A. N. Ngo, B. Hemingway, S. Herbert, M. Melloch, S. E. Ulloa, and A. Kogan, A quantitative study of spin-flip co-tunneling transport in a quantum dot, arXiv:1110.5924 (experiments on lateral GaAs/AlGaAs quantum dot, compared to theory using rate equations in cotunneling approximation, close agreement)
- X. Zhou, B. Schmidt, L. W. Engel, G. Gervais, L. N. Pfeiffer, K. W. West, and S. Das Sarma, Resistivity saturation in a weakly interacting 2D Fermi liquid at intermediate temperatures, arXiv:1111.0011
- N. Ubbelohde, C. Fricke, C. Flindt, F. Hohls, and R. J. Haug, Measurement of finite-frequency current statistics in a single-electron transistor, Nature Commun. 3, 612 (2012) (measurement of two- and three-current correlation functions or corresponding Fano factors)
- K. Shibata, A. Umeno, K. M. Cha, and K. Hirakawa, Photon-Assisted Tunneling through Self-Assembled InAs Quantum Dots in the Terahertz Frequency Range, Phys. Rev. Lett. 109, 077401 (2012)
- E. J. H. Lee, X. Jiang, R. Aguado, G. Katsaros, C. M. Lieber, and S. De Franceschi, Zero-Bias Anomaly in a Nanowire Quantum Dot Coupled to Superconductors, Phys. Rev. Lett. 109, 186802 (2012) (zero-bias conductance peak emerges beyond a certain [small] magnetic field, not due to Majorana states, note that field splitting of Kondo peak is unobservable due to small field)
- B. Küng, C. Rössler, M. Beck, J. Faist, T. Ihn, and K. Ensslin, Quantum dot occupation and electron dwell time in the cotunneling regime, arXiv:1204.4553
- B.-K. Kim, Y.-H. Ahn, J.-J. Kim, M.-S. Choi, M.-H. Bae, K. Kang, J. S. Lim, R. López, and N. Kim, Transport Measurement of Andreev Bound States in a Kondo-Correlated Quantum Dot, Phys. Rev. Lett. 110, 076803 (2013)
- M. Urdampilleta, S. Klyatskaya, J.-P. Cleuziou, M. Ruben, and W. Wernsdorfer, Supramolecular Spin Valves, arXiv:1304.6543 (magnetic TbPc2 molecule side coupled to CNT quantum dot, large magnetoresistance); M. Urdampilleta, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, Landau-Zener tunneling of a single Tb3+ magnetic moment allowing the electronic read-out of a nuclear spin, arXiv:1304.6585 (use to read out the single Tb nuclear spin)
- Y.-Y. Liu, K. D. Petersson, J. Stehlik, J. M. Taylor, and J. R. Petta, Photon Emission from a Cavity-Coupled Double Quantum Dot, Phys. Rev. Lett. 113, 036801 (2014)
- S. Takada, C. Bäuerle, M. Yamamoto, K. Watanabe, S. Hermelin, T. Meunier, A. Alex, A. Weichselbaum, J. von Delft, A. Ludwig, A. D. Wieck, and S. Tarucha, Transmission Phase in the Kondo Regime Revealed in a Two-Path Interferometer, Phys. Rev. Lett. 113, 126601 (2014) (transport through quantum dot in one arm of two-path interferometer)
- A. Pourkabirian, M. V. Gustafsson, G. Johansson, J. Clarke, and P. Delsing, Nonequilibrium Probing of Two-Level Charge Fluctuators Using the Step Response of a Single-Electron Transistor, Phys. Rev. Lett. 113, 256801 (2014)
- T. Arakawa et al., Shot Noise Induced by Nonequilibrium Spin Accumulation, Phys. Rev. Lett. 114, 016601 (2015)
- M. J. Martínez-Pérez, A. Fornieri, and F. Giazotto, Rectification of electronic heat current by a hybrid thermal diode, Nature Nano. (2015), doi:10.1038/nnano.2015.11 (report rectification ratio of 140)
- F. Hartmann, P. Pfeffer, S. Höfling, M. Kamp, and L. Worschech, Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots, Phys. Rev. Lett. 114, 146805 (2015) (voltage fluctuations are rectified to yield a direct current)
- C. Barraud et al., Unidirectional Spin-Dependent Molecule-Ferromagnet Hybridized States Anisotropy in Cobalt Phthalocyanine Based Magnetic Tunnel Junctions, Phys. Rev. Lett. 114, 206603 (2015) (experimental: layer structure, CoPc layer made effectively thin, "nanometer range" by identation)
- G. Cheng, M. Tomczyk, S. Lu, J. P. Veazey, M. Huang, P. Irvin, S. Ryu, H. Lee, C.-B. Eom, C. S. Hellberg, and J. Levy, Electron pairing without superconductivity, Nature 521, 196 (2015) (quantum dot realized in part of a SrTiO3 nanowire; transport measurement showing evidence for pair tunneling, which can be understood assuming an attractive Hubbard interaction on the dot)
- C. Rössler, D. Oehri, O. Zilberberg, G. Blatter, M. Karalic, J. Pijnenburg, A. Hofmann, T. Ihn, K. Ensslin, C. Reichl, and W. Wegscheider, Transport Spectroscopy of a Spin-Coherent Dot-Cavity System, Phys. Rev. Lett. 115, 166603 (2015) (the cavity acts like a tunable second quantum dot)
- D. Imanaka, S. Sharmin, M. Hashisaka, K. Muraki, and T. Fujisawa, Exchange-Induced Spin Blockade in a Two-Electron Double Quantum Dot, Phys. Rev. Lett. 115, 176802 (2015) (experiments compared to an extension of an existing master-equation approach)
- M. Akai-Kasaya, Y. Okuaki, S. Nagano, T. Mitani, and Y. Kuwahara, Coulomb Blockade in a Two-Dimensional Conductive Polymer Monolayer, Phys. Rev. Lett. 115, 196801 (2015)
- J. Gramich, A. Baumgartner, and C. Schönenberger, Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot, Phys. Rev. Lett. 115, 216801 (2015) (superconductor-quantum dot-normal metal structure; claims to be the first observation of elastic/resonant and inelastic Andreev tunneling in quantum dots; coupling of electrons to a bosonic bath, the nature of which is difficult to ascertain, or even to two bosonic baths)
- D. B. Szombati, S. Nadj-Perge, D. Car, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Josephson φ0-junction in nanowire quantum dots, Nature Phys. 12, 568 (2016) (phase difference in ground state different from 0 or π, can be controlled by gate voltage)
- A. Kurzmann, B. Merkel, P. A. Labud, A. Ludwig, A. D. Wieck, A. Lorke, and M. Geller, Optical Blocking of Electron Tunneling into a Single Self-Assembled Quantum Dot, Phys. Rev. Lett. 117, 017401 (2016) (experiments compared to master-equation theory)
- A. J. Keller, J. S. Lim, David Sánchez, Rosa López, S. Amasha, J. A. Katine, H. Shtrikman, and D. Goldhaber-Gordon, Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots, Phys. Rev. Lett. 117, 066602 (2016) (experiment and theory [rate equations]; artificial double quantum dot, in parallel; cotunneling is needed to understand the drag effect)
- T. Khouri, U. Zeitler, C. Reichl, W. Wegscheider, N. E. Hussey, S. Wiedmann, and J. C. Maan, Linear Magnetoresistance in a Quasifree Two-Dimensional Electron Gas in an Ultrahigh Mobility GaAs Quantum Well, Phys. Rev. Lett. 117, 256601 (2016) (very large linear MR over broad field range in n-doped GaAs quantum well; but no sign of unconventional quasiparticles)
-
B. Dutta, J. T. Peltonen, D. S. Antonenko, M. Meschke, M. A. Skvortsov, B. Kubala, J. König, C. B. Winkelmann, H. Courtois, and J. P. Pekola, Thermal Conductance of a Single-Electron Transistor, Phys. Rev. Lett. 119, 077701 (2017) (heat current is stronger than given by the Wiedemann-Franz law)
-
A. Hofmann, V. F. Maisi, T. Krähenmann, C. Reichl, W. Wegscheider, K. Ensslin, and T. Ihn, Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot, Phys. Rev. Lett. 119, 176807 (2017) (tuning the spin-flip tunneling rate)
-
A. Svilans, M. Josefsson, A. M. Burke, S. Fahlvik, C. Thelander, H. Linke, and M. Leijnse, Thermoelectric Characterization of the Kondo Resonance in Nanowire Quantum Dots, Phys. Rev. Lett. 121, 206801 (2018)
- C. Putzke, M. D. Bachmann, P. McGuinness, E. Zhakina, V. Sunko, M. Konczykowski, T. Oka, R. Moessner, A. Stern, M. König, S. Khim, A. P. Mackenzie, and P. J. W. Moll, h/e oscillations in interlayer transport of delafossites, Science 368, 1234 (2020) (magnetoelectric transport in ultraclean materials, also theory; observe normal-state flux quantum, demonstrate coherence over long distances)
Experiments on molecular and single-atom systems, including empty break junctions and isolated impurities
- V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance, Science 280, 5363 (1998)
- J. Li, W.-D. Schneider, R. Berndt, and B. Delley, Kondo Scattering Observed at a Single Magnetic Impurity, Phys. Rev. Lett. 80, 2893 (1998) (single Ce adatoms, STM study)
- S. K. Nielsen, Y. Noat, M. Brandbyge, R. H. M. Smit, K. Hansen, L. Y. Chen, A. I. Yanson, F. Besenbacher, and J. M. van Ruitenbeek, Conductance of single-atom platinum contacts: Voltage-dependence of the conductance histogram, Phys. Rev. B 67, 245411 (2003)
- H. B. Heersche, Z. de Groot, J. A. Folk, H. S. J. van der Zant, C. Romeike, M. R. Wegewijs, L. Zobbi, D. Barreca, E. Tondello, and A. Cornia, Electron Transport through Single Mn12 Molecular Magnets, Phys. Rev. Lett. 96, 206801 (2006) P
- W. H. A. Thijssen, D. Djukic, A. F. Otte, R. H. Bremmer, and J. M. van Ruitenbeek, Vibrationally Induced Two-Level Systems in Single-Molecule Junctions, Phys. Rev. Lett. 97, 226806 (2006)
- M.-H. Jo, J. E. Grose, K. Baheti, M. M. Deshmukh, J. J. Sokol, E. M. Rumberger, D. N. Hendrickson, J. R. Long, H. Park, and D. C. Ralph, Signatures of Molecular Magnetism in Single-Molecule Transport Spectroscopy, cond-mat/0603276, Nano Lett. 6, 2014 (2006) P
- Z. K. Keane, J. W. Ciszek, J. M. Tour, and D. Natelson, Three-terminal devices to examine single molecule conductance switching, cond-mat/0605609 ("three-terminal" here refers to source, drain, and gate electrodes)
- L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, Dependence of Single Molecule Junction Conductance on Molecular Conformation, cond-mat/0607836, Nature
- V. Iancu, A. Deshpande, and S.-W. Hla, Manipulation of Kondo Effect via Two-Dimensional Molecular Self-Assembly, cond-mat/0611180 (STM study)
- M. Kiguchi, R. Stadler, I. S. Kristensen, D. Djukic, and J.M. van Ruitenbeek, Evidence for a single hydrogen molecule connected by an atomic chain, cond-mat/0612681 (experiment and theory, discuss detailed structure of tip-molecule-tip region for H2 with Pt electrodes)
- N. Néel, J. Kröger, L. Limot, T. Frederiksen, M. Brandbyge, and R. Berndt, Controlled Contact to a C60 Molecule, Phys. Rev. Lett. 98, 065502 (2007) (STM study)
- J. J. Parks, A. R. Champagne, G. R. Hutchison, S. Flores-Torres, H. D. Abruna, and D. C. Ralph, Tuning the Kondo Effect with a Mechanically Controllable Break Junction, Phys. Rev. Lett. 99, 026601 (2007) (Kondo effect observed for C60)
- J. J. Henderson, C. M. Ramsey, E. del Barco, A. Mishra, and G. Christou, Fabrication of Nano-Gapped Single-Electron Transistors for Transport Studies of Individual Single-Molecule Magnets, J. Appl. Phys. 101, 09E102 (2007) (demonstrated for tunneling through Mn12, relatively low voltage resolution)
- W. Harneit, C. Boehme, S. Schaefer, K. Huebener, K. Fostiropoulos, and K. Lips, Room Temperature Electrical Detection of Spin Coherence in C60, cond-mat/0702604 (tunneling through thick C60 film)
- F. Miao, D. Ohlberg, D. Stewart, R. S. Williams, and C. N. Lau, Quantum Conductance Oscillations in Metal/Molecule/Metal Switches at Room Temperature, cond-mat/0703259 (molecular monolayer of stearic acid)
- A. Halbritter, P. Makk, Sz. Csonka, and G. Mihaly, Huge negative differential conductance in Au-H2 molecular nanojunctions, arXiv:0706.2083 (junction is in strong-hybridization regime, G shows a smeared-out downward step at certain bias; also contains theory, which applies rate equation in sequential-tunneling approximation to two-level system)
- E. A. Osorio, K. O'Neill, M. Wegewijs, N. Stuhr-Hansen, J. Paaske, T. Bjornholm, and H. S. J. van der Zant, Electronic excitations of a single molecule contacted in a three-terminal configuration, arXiv:0711.2592, Nano lett. 7, 3336 (2007) (experiment and theory, a long molecule with long side chains, observe four charge states and Kondo peaks)
- H. B. Akkerman and B. de Boer, Electrical conduction through single molecules and self-assembled monolayers, J. Phys.: Condens. Matter 20, 013001 (2008) (comparison of different setups)
- O. Tal, M. Krieger, B. Leerink, and J. M. van Ruitenbeek, Electron-vibration interaction in single-molecule junctions: from contact to tunneling regime, arXiv:0801.3031 (H2O)
- C. Li, I. Pobelov, T. Wandlowski, A. Bagrets, A. Arnold, and F. Evers, Charge Transport in Single Au|Alkanedithiol|Au Junctions: Coordination Geometries and Conformational Degrees of Freedom, arXiv:0802.2407, J. Am. Chem. Soc. 130, 318 (2008) (STM experiments and quantum chemistry calculations)
- M. Kiguchi, O. Tal, S. Wohlthat, F. Pauly, M. Krieger, D. Djukic, J. C. Cuevas, and J. M. van Ruitenbeek, Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes, arXiv:0803.0563
- M. S. Hybertsen, L. Venkataraman, J. E. Klare, A. C. Whalley, M. L. Steigerwald, and C. Nuckolls, Amine-Linked Single Molecule Circuits: Systematic Trends Across Molecular Families, arXiv:0803.0582 (experiments and static DFT calculations in the GGA)
- T. Frederiksen, K. J. Franke, A. Arnau, G. Schulze, J. I. Pascual, and N. Lorente, Dynamic Jahn-Teller effect in electron transport through single C60 molecules, arXiv:0804.3415 (STM experiments and theory)
- C. Iacovita, M. V. Rastei, B. W. Heinrich, T. Brumme, J. Kortus, L. Limot, and J. P. Bucher, Visualizing the spin of individual molecules, arXiv:0805.0485 (STM for magnetic molecule on ferromagnetic nanoscopic electrode)
- N. Roch, C. B. Winkelmann, S. Florens, V. Bouchiat, W. Wernsdorfer, and F. Balestro, Kondo effects in a C60 single-molecule transistor, arXiv:0809.2700; N. Roch, S. Florens, V. Bouchiat, W. Wernsdorfer, and F. Balestro, Out-of-equilibrium singlet-triplet Kondo effect in a single C60 quantum dot, arXiv:0809.2706; N. Roch, S. Florens, V. Bouchiat, W. Wernsdorfer, and F. Balestro, Quantum phase transition in a single-molecule quantum dot, arXiv:0809.2906, Nature 453, 633 (2008), supplementary information at arXiv:0809.2922
- O. Tal, M. Kiguchi, W. H. A. Thijssen, D. Djukic, C. Untiedt, R. H. M. Smit, and J. M. van Ruitenbeek, The molecular signature of highly conductive metal-molecule-metal junctions, arXiv:0810.1873
- G. Kirczenow, P. G. Piva, and R. A. Wolkow, Modulation of Electrical Conduction Through Individual Molecules on Silicon by the Electrostatic Fields of Nearby Polar Molecules: Theory and Experiment, arXiv:0812.3459 (STM experiments and ab-initio calculations)
- G. D. Scott, Z. K. Keane, J. W. Ciszek, J. M. Tour, and D. Natelson, Universal scaling of nonequilibrium transport in the Kondo regime of single molecule devices, Phys. Rev. B 79, 165413 (2009) (with C60 and a Cu2+ complex)
- G. Schull, T. Frederiksen, M. Brandbyge, and R. Berndt, Passing Current through Touching Molecules, Phys. Rev. Lett. 103, 206803 (2009) (STM experiments on C60 on metal, also with C60 at tip, includes static DFT calculations)
- H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, Observation of molecular orbital gating, Nature 462, 1039 (2009) (electromigration of Au wire, transport data are interpreted in terms of specific molecular orbitals and the excitation of molecular vibrations, what is new?)
- S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, Mechanically-Controlled Binary Conductance Switching of a Single-Molecule Junction, arXiv:0901.1139 (experiments and static DFG/GGA+Landauer calculations for Au-4,4'-bipyridine-Au junctions)
- M. R. Calvo, J. Fernández-Rossier, J. J. Palacios, D. Jacob, D. Natelson, and C. Untiedt, The Kondo effect in ferromagnetic atomic contacts, arXiv:0906.3135 (experiments on stretched wires of Fe, Co, and Ni, also with LSDA and LSDA+U-based theory)
- C. B. Winkelmann, N. Roch, W. Wernsdorfer, V. Bouchiat, and F. Balestro, Superconductivity in a single C60 transistor, arXiv:0908.3638, Nature Physics 5, 876 (2009) (single C60 in superconducting aluminum break junction, see clear signatures of superconducting gap and also the Kondo effect)
- N. Roch, S. Florens, T. A. Costi, W. Wernsdorfer, and F. Balestro, Observation of the underscreened Kondo effect in a molecular transistor, arXiv:0910.1092 (based on C60)
- G. Schull, T. Frederiksen, M. Brandbyge, and R. Berndt, Passing current through touching molecules, arXiv:0910.1281 (STM experiments using C60 and ab-initio calculations using static DFT)
- A. Eliasen, J. Paaske, K. Flensberg, S. Smerat, M. Leijnse, M. R. Wegewijs, H. I. Jørgensen, M. Monthioux, and J. Nygård, Transport via coupled states in a C60 peapod quantum dot, arXiv:1002.0477 (see signs of coupling to enclosed C60 molecules, with theoretical discussion)
- D. Guérin, S. Lenfant, S. Godey, and D. Vuillaume, Synthesis and electrical properties of fullerene-based molecular junctions on silicon substrate, arXiv:1003.1371, J. Mater. Chem. (2010), DOI: 10.1039/b924255d (self-assembled monolayers of C60 attached to electrodes by alkyl chains)
- Y. F. Wang, J. Kröger, R. Berndt, H. Vázquez, M. Brandbyge, and M. Paulsson, Atomic-Scale Control of Electron Transport through Single Molecules, Phys. Rev. Lett. 104, 176802 (2010) (STM experiments and static DFT calculations [SIESTA, TRANSIESTA], detailed study of various orientations of a flat molecule and of molecule-surface bonds)
- A. D. Jewell, H. L. Tierney, A. E. Baber, E. V. Iski, M. M. Laha, and E. C. H. Sykes, Time-resolved studies of individual molecular rotors, J. Phys.: Condens. Matter 22, 264006 (2010) (STM)
- C. Chen, P. Chu, C. A. Bobisch, D. L. Mills, and W. Ho, Viewing the Interior of a Single Molecule: Vibronically Resolved Photon Imaging at Submolecular Resolution, Phys. Rev. Lett. 105, 217402 (2010) (local excitation by STM, observe resulting luminescence), see also Viewpoint: M. Pivetta, Mapping the luminescence of a single molecule, Physics 3, 97 (2010)
- A. Bernand-Mantel, J. S. Seldenthuis, A. Beukman, H. S. J. van der Zant, V. Meded, R. Chandrasekhar, K. Fink, M. Ruben, and F. Evers, Spin-coupled double-quantum-dot behavior inside a single-molecule transistor, arXiv:1004.4556
- J. J. Parks, A. R. Champagne, T. A. Costi, W. W. Shum, A. N. Pasupathy, E. Neuscamman, S. Flores-Torres, P. S. Cornaglia, A. A. Aligia, C. A. Balseiro, G. K.-L. Chan, H. D. Abruñna, and D. C. Ralph, Mechanical Control of Spin States in Spin-1 Molecules and the Underscreened Kondo Effect, arXiv:1005.0621
- N. Atodiresei, J. Brede, P. Lazic, V. Caciuc, G. Hoffmann, R. Wiesendanger, and S. Blügel, Design of the Local Spin Polarization at the Organic-Ferromagnetic Interface, Phys. Rev. Lett. 105, 066601 (2010) (STM and DFT calculations for various cyclic molecules on iron on W(110)); see also Synopsis, Physics
- A. S. Zyazin, J. W. G. van den Berg, E. A. Osorio, H. S. J. van der Zant, N. P. Konstantinidis, M. Leijnse, M. R. Wegewijs, F. May, W. Hofstetter, C. Danieli, and A. Cornia, Electric Field Controlled Magnetic Anisotropy in a Single Molecule, arXiv:1009.2027, Nano Lett. 10, 3307 (2010) (experiment on Fe4 complex and calculations up to fourth order in the hybridization; anisotropy found to depend strongly on charge state)
- D. Secker, S. Wagner, S. Ballmann, R. Härtle, M. Thoss, and H. B. Weber, Resonant vibrations, peak broadening and noise in single molecule contacts: beyond the resonant tunnelling picture, arXiv:1010.2998 (mechanical break junctions with different molecules)
- C. Toher, R. Temirov, A. Greuling, F. Pump, M. Kaczmarski, M. Rohlfing, G. Cuniberti, and F. S. Tautz, Electrical transport through a mechanically gated molecular wire, arXiv:1011.1400 (STM experiment and DFT calculations)
- Y. Kim, H. Song, F. Strigl, H.-F. Pernau, T. Lee, and E. Scheer, Mechanical control of vibrational states in single-molecule junctions, arXiv:1011.3226 (1,6-hexanedithiol, Au or Pt leads, mechanical break junction)
- Z. Cheng, S. Du, W. Guo, L. Gao, Z. Deng, N. Jiang, H. Guo, H. Tang, and H.-J. Gao, Direct imaging of molecular orbitals of metal phthalocyanines on metal surfaces with an O2-functionalized tip of a scanning tunneling microscope, Nano Research 4, 523 (2011)
- L. Gross, N. Moll, F. Mohn, A. Curioni, G. Meyer, F. Hanke, and M. Persson, High-Resolution Molecular Orbital Imaging Using a p-Wave STM Tip, Phys. Rev. Lett. 107, 086101 (2011) (very-high-resolution STM images showing absolute value square of molecular orbitals, compared to Tersoff-Hamann theory)
- S. Schmaus, A. Bagrets, Y. Nahas, T. K. Yamada, A. Bork, M. Bowen, E. Beaurepaire, F. Evers, and W. Wulfhekel, Magnetoresistance through a single molecule, arXiv:1102.2630, Nature Nano. (H2Pc, STM experiments and DFT+NEGF theory)
- B. Chilian, A. A. Khajetoorians, S. Lounis, A. T. Costa, D. L. Mills, J. Wiebe, and R. Wiesendanger, Anomalously large g-factor of single atoms adsorbed on a metal substrate, arXiv:1108.2443 (Fe on Ag(111), enhanced g-factor can be understood from ab-initio calculations)
- C. M. Guedon, H. Valkenier, T. Markussen, K. S. Thygesen, J. C. Hummelen, and S. J. van der Molen, Observation of Quantum Interference in Molecular Charge Transport, arXiv:1108.4357 (several π-conjugated molecules, at room temperature)
- A. Castellanos-Gomez, S. Bilan, L. A. Zotti, C. R. Arroyo, N. Agrait, J. C. Cuevas, and G. Rubio-Bollinger, Carbon tips as electrodes for single-molecule junctions, arXiv:1109.2089 (STM-based break junctions)
- M. L. Perrin, C. A. Martin, F. Prins, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, H. S. J. van der Zant, and D Dulic, Charge Transport in a Zn-Porphyrin single molecule junction, arXiv:1109.6434 (mechanically controlled break junction, no gate electrode, IV characteristics for molecular spectroscopy); M. L. Perrin, F. Prins, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, T. Briza, R. Kaplanek, V. Kral, J. M. van Ruitenbeek, H. S. J. van der Zant, and D. Dulic, Influence of chemical structure on the stability and the conductance of porphyrin single-molecule junctions, arXiv:1109.6447; D. Dulic, F. Pump, S. Campidelli, P. Lavie, G. Cuniberti, and A. Filoramo, Controlled Stability of Molecular Junctions, arXiv:1109.6450
- W. Chen, J. R. Widawsky, H. Vázquez, S. T. Schneebeli, M. S. Hybertsen, R. Breslow, and L. Venkataraman, Highly Conducting pi-Conjugated Molecular Junctions Covalently Bonded to Gold Electrodes, arXiv:1110.0344 (STM break junction, strong coupling to electrodes, also compared to DFT calculations)
- F. Prins, A. Barreiro, J. W. Ruitenberg, J. S. Seldenthuis, N. Aliaga-Alcalde, L. M. K. Vandersypen, H. S. J. van der Zant, Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes, arXiv:1110.2335 (experimental methods)
- I. Fernández-Torrente, D. Kreikemeyer-Lorenzo, A. Strózecka, K. J. Franke1, and J. I. Pascual, Gating the Charge State of Single Molecules by Local Electric Fields, Phys. Rev. Lett. 108, 036801 (2012) (molecules on surfaces, among other results show how an effective gate voltage can be realized by the lateral [parallel to the surface] tip position)
- T. Miyamachi, M. Gruber, V. Davesne, M. Bowen, S. Boukari, L. Joly, F. Scheurer, G. Rogez, T. K. Yamada, P. Ohresser, E. Beaurepaire, and W. Wulfhekel, Robust spin crossover and memristance across a single molecule, Nat. Commun. 3, 938 (2012) (demonstrate purely electronic high-spin/low-spin switching)
- J. R. Widawsky, P. Darancet, J. B. Neaton, and L. Venkataraman, Simultaneous Determination of Conductance and Thermopower of Single Molecule Junctions, arXiv:1201.1837, Nano Lett. (2012) (STM, Au-molecule-Au, various molecules, mostly aromatic)
- S. Ballmann, R. Härtle, P. B. Coto, M. Mayor, M. Elbing, M. R. Bryce, M. Thoss, and H. B. Weber, Experimental Evidence for Quantum Interference and Vibrationally Induced Decoherence in Single-Molecule Junctions, Phys. Rev. Lett. 109, 056801 (2012) (break-junction experiments and DFT: stronger vibrations at higher temperatures can suppress interference and thereby enhance the current)
- V. A. Sydoruk, D. Xiang, S. A. Vitusevich, M. V. Petrychuk, A. Vladya, Y. Zhang, A. Offenhäusser, V. A. Kochelap, A. E. Belyaev, and D. Mayer, Noise and Transport Characterization of Single Molecular Break Junctions with Individual Molecule, arXiv:1206.3869 (mechanical break junctions, 1,4-benzenediamine)
- J. Schwöbel, Y. Fu, J. Brede, A. Dilullo, G. Hoffmann, S. Klyatskaya, M. Ruben, and R. Wiesendanger, Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets, Nature Commun. 3, 953 (2012) (TbPc2 on Co, spin-polarized STM)
- R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer, and F. Balestro, Electronic read-out of a single nuclear spin using a molecular spin transistor, Nature 488, 357 (2012) (TbPc2, tunneling via the Pc system, exchange coupling to easy-axis Tb angular momentum J = 6, which is coupled to the Tb nuclear spin I = 3/2)
- E. Minamitani, N. Tsukahara, D. Matsunaka, Y. Kim, N. Takagi, and M. Kawai, Symmetry-Driven Novel Kondo Effect in a Molecule, Phys. Rev. Lett. 109, 086602 (2012) (STM, FePc on Au(111), SU(2) or SU(4) Kondo effect depending on position and thus symmetry)
- E. Burzurí, A. S. Zyazin, A. Cornia, and H. S. J. van der Zant, Direct Observation of Magnetic Anisotropy in an Individual Fe4 Single-Molecule Magnet, Phys. Rev. Lett. 109, 147203 (2012)
- Y. Kim, A. Garcia-Lekue, D. Sysoiev, T. Frederiksen, U. Groth, and E. Scheer, Charge Transport in Azobenzene-Based Single-Molecule Junctions, Phys. Rev. Lett. 109, 226801 (2012) (mechanically controlled break junctions without gate, cis-trans isomerism, compared to calculations using static DFT + NEGF)
- J. Fock, M. Leijnse, K. Jennum, A. S. Zyazin, J. Paaske, P. Hedegård, M. B. Nielsen, and H. S. J. van der Zant, Manipulation of organic polyradicals in a single-molecule transistor, Phys. Rev. B 86, 235403 (2012) (three-center molecule, junction produced by electromigration, also theory: valence-bond model for the molecular, no details)
- J. Bauer, J. I. Pascual, and K. J. Franke, Microscopic resolution of the interplay of Kondo screening and superconducting pairing, arXiv:1208.3211 (MnPc on Pb(111), STS experiments, compared to NRG calculations)
- D. Li, P. M. Gannet, and D. Lederman, An investigation into the feasibility of myoglobin-based single-electron transistors, arXiv:1208.4184
- G. Ricœur, S. Lenfant, D. Guérin, and D. Vuillaume, Molecule-Electrode Interface Energetics in Molecular Junction: a Transition Voltage Spectroscopy Study, arXiv:1208.5901, J. Phys. Chem C. (long paper, several self-assembled monolayers, various types of top contacts)
- K. Reaves, K. Kim, K. Iwaya, T. Hitosugi, H. Zhao, K. R. Dunbar, H. G. Katzgraber, and W. Teizer, STM Studies of Isolated Mn12-Ph Single Molecule Magnets, arXiv:1210.5934 (on HOPG, which is imaged with atomic resolution, but the Mn12-Ph shows up as a bright blob in constant-current scans)
- M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system, Nature Nanotechnology (2013), doi:10.1038/nnano.2012.258 (TbPc2 side coupled to carbon nanotube)
- S. Wagner et al., Switching of a coupled spin pair in a single-molecule junction, Nature Nanotechnology (2013), doi:10.1038/nnano.2013.133 (mechanical break junction, switched between singlet and triplet)
- R. Chen, P. J. Wheeler, M. Di Ventra, and D. Natelson, Electron heating in atomic-scale Au break junctions, arXiv:1306.6639
- G. Reecht, F. Scheurer, V. Speisser, Y. J. Dappe, F. Mathevet, and G. Schull, Electroluminescence of a Polythiophene Molecular Wire Suspended between a Metallic Surface and the Tip of a Scanning Tunneling Microscope, Phys. Rev. Lett. 112, 047403 (2014) (luminiscence of a junction involving a single molecule suspended between a metal surface and an STM tip, induced by a bias voltage, emission from localized plasmon)
- B. Weber et al., Spin blockade and exchange in Coulomb-confined silicon double quantum dots, Nature Nanotech. (2014), doi:10.1038/nnano.2014.63 (two P donors in Si forming double quantum dot, by "spin blockade" apparently mean Pauli blockade for equal-spin electrons in one of the dots)
- T. Meier, F. Menges, P. Nirmalraj, H. Hölscher, H. Riel, and B. Gotsmann, Length-Dependent Thermal Transport along Molecular Chains, Phys. Rev. Lett. 113, 060801 (2014)
- S. Müllegger, S. Tebi, A. K. Das, W. Schöfberger, F. Faschinger, and R. Koch, Radio Frequency Scanning Tunneling Spectroscopy for Single-Molecule Spin Resonance, Phys. Rev. Lett. 113, 133001 (2014) (TbPc2)
- D. Rakhmilevitch, R. Korytár, A. Bagrets, F. Evers, and O. Tal, Electron-Vibration Interaction in the Presence of a Switchable Kondo Resonance Realized in a Molecular Junction, Phys. Rev. Lett. 113, 236603 (2014) (transport experiment compared to DFT)
- A. Burtzlaff, A. Weismann, M. Brandbyge, and R. Berndt, Shot Noise as a Probe of Spin-Polarized Transport through Single Atoms, Phys. Rev. Lett. 114, 016602 (2015) (measurements of noise spectra and corresponding Fano factors, compared to DFT/Landauer calculations)
- B. Warner, F. El Hallak, H. Prüser, J. Sharp, M. Persson, A. J. Fisher, and C. F. Hirjibehedin, Tunable magnetoresistance in an asymmetrically coupled single-molecule junction, Nature Nanotech. (2015), doi:10.1038/nnano.2014.326 (very large effect of magnetic field in negativ-differential-conductance regime)
- H. Rascón-Ramos, J. M. Artés, Y. Li, and J. Hihath, Binding configurations and intramolecular strain in single-molecule devices, Nature Mat. (2015), doi:10.1038/nmat4216 (STM experiment with oscillating tip)
- L. Liu et al., Revealing the Atomic Site-Dependent g Factor within a Single Magnetic Molecule via the Extended Kondo Effect, Phys. Rev. Lett. 114, 126601 (2015) (STM experiment on MnPc on Au(111); the Zeeman splitting of the Kondo peak in applied magnetic field depends on the tip position)
- S. Karan, D. Jacob, M. Karolak, C. Hamann, Y. Wang, A. Weismann, A. I. Lichtenstein, and R. Berndt, Shifting the Voltage Drop in Electron Transport Through a Single Molecule, Phys. Rev. Lett. 115, 016802 (2015) (STM experiments compared to DFT calculations; shape of Kondo peak depends on the proximity of the tip from ligated Mn, attributed to change in voltage division and small geometric relaxation)
- T. Yelin, R. Korytár, N. Sukenik, R. Vardimon, B. Kumar, C. Nuckolls, F. Evers, and O. Tal, Conductance saturation in a series of highly transmitting molecular junctions, Nature Mat. (2016), doi:10.1038/nmat4552 (break-junction experiments at large conductance, also DFT and model calculations)
- C. Xu, C.-l. Chiang, Z. Han, and W. Ho, Nature of Asymmetry in the Vibrational Line Shape of Single-Molecule Inelastic Electron Tunneling Spectroscopy with the STM, Phys. Rev. Lett. 116, 166101 (2016) (experiment, compared to approximate Green-function calculations, Mathematica notebook included in supplement)
- R. Frisenda and H. S. J. van der Zant, Transition from Strong to Weak Electronic Coupling in a Single-Molecule Junction, Phys. Rev. Lett. 117, 126804 (2016) (break junction, separation is tuned)
-
J. Brand, P. Ribeiro, N. Néel, S. Kirchner, and J. Kröger, Impact of Atomic-Scale Contact Geometry on Andreev Reflection, Phys. Rev. Lett. 118, 107001 (2017) (STM-tip/C60/superconducting Nb, compared to Blonder-Tinkham-Klapwijk model with surprisingly good agreement, probably due to strong molecule-substrate hybridization)
-
F. Troiani, C. Godfrin, S. Thiele, F. Balestro, W. Wernsdorfer, S. Klyatskaya, M. Ruben, and M. Affronte, Landau-Zener Transition in a Continuously Measured Single-Molecule Spin Transistor, Phys. Rev. Lett. 118, 257701 (2017) (also analyzed in terms of master equation)
-
T. Jasper-Tönnies, A. Garcia-Lekue, T. Frederiksen, S. Ulrich, R. Herges, and R. Berndt, Conductance of a Freestanding Conjugated Molecular Wire, Phys. Rev. Lett. 119, 066801 (2017) (STM experiments on molecule on Au(111), compared to DFT-NEGF calculations)
-
C. Godfrin, A. Ferhat, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer, and F. Balestro, Operating Quantum States in Single Magnetic Molecules: Implementation of Grover’s Quantum Algorithm, Phys. Rev. Lett. 119, 187702 (2017)
- M. H. Garner et al., Comprehensive suppression of single-molecule conductance using destructive σ-interference, Nature online (2018) (experiments and Landauer/DFT calculations; silicon-based molecules, multi-path interference)
-
J. de Bruijckere, P. Gehring, M. Palacios-Corella, M. Clemente-León, E. Coronado, J. Paaske, P. Hedegård, and H. S. J. van der Zant, Ground-State Spin Blockade in a Single-Molecule Junction, Phys. Rev. Lett. 122, 197701 (2019) (transport, Mn(III)(MoO6)6 complex in break junction, with theory)
Theory of transport and weak and strong localization in extended systems
- P. W. Brouwer and A. Altland, Anderson localization from classical trajectories, arXiv:0802.0976 (in ballistic quasi-1D conductors)
- Y. Imry and A. Amir, The localization transition at finite temperatures: electric and thermal transport, arXiv:1004.0966
- J. T. Chalker, T. S. Pickles, and P. Shukla, Anderson localisation in tight-binding models with flat bands, arXiv:1008.3256
- S. Johri and R. N. Bhatt, Singular Behavior of Eigenstates in Anderson's Model of Localization, arXiv:1106.1131 (inverse participation ratio shows singularities at certain energies, which are distinct from the mobility edge and are present in any number of dimensions, bounded disorder is required for this); Singular Behavior of Anderson Localized Wavefunctions for a Two-Site Model, arXiv:1205.5096
- C. Wickles and W. Belzig, Effective Quantum Theories for Transport in Inhomogeneous Systems with Non-trivial Band Structure, arXiv:1209.4933 (semiclassical approach plus Berry curvatures)
- C. Karrasch, R. Ilan, and J. E. Moore, Nonequilibrium thermal transport and its relation to linear response, arXiv:1211.2236 (for the case of diverging linear response due to nonzero Drude weight, applied to dimerized spin chain)
- M. P. Mink, H. T. C. Stoof, R. A. Duine, M. Polini, and G. Vignale, Unified Boltzmann-transport theory for the drag resistivity close to a second-order phase transition, arXiv:1306.5078
- A. R. Kolovsky, Master equation approach to conductivity of bosonic and fermionic carriers in one- and two-dimensional lattices, arXiv:1306.6422 (beyond linear response)
- J. D. Bodyfelt, D. Leykam, C. Danieli, X. Yu, and S. Flach, Flatbands under Correlated Perturbations, Phys. Rev. Lett. 113, 236403 (2014) (effects of correlated disorder on flat bands)
- G. Tatara, Thermal vector potential theory of transport induced by temperature gradient, arXiv:1502.00347 (proposes a new description of thermal transport, starting from and apparently equivalent to Luttinger's; the introduced thermal vector potential is minimally coupled to the energy current; not a rigorous gauge theory but the author heuristically discusses its relation to energy conservation)
- H. Javan Mard, E. C. Andrade, E. Miranda, and V. Dobrosavljevic, Non-Gaussian Spatial Correlations Dramatically Weaken Localization, Phys. Rev. Lett. 114, 056401 (2015)
- I. L. Aleiner, A. V. Andreev, and V. Vinokur, Aharonov-Bohm Oscillations in Singly Connected Disordered Conductors, Phys. Rev. Lett. 114, 076802 (2015) (due to transport along surfaces)
- S. V. Syzranov, L. Radzihovsky, and V. Gurarie, Critical Transport in Weakly Disordered Semiconductors and Semimetals, Phys. Rev. Lett. 114, 166601 (2015)
- M. Schütt and R. M. Fernandes, Antagonistic In-Plane Resistivity Anisotropies from Competing Fluctuations in Underdoped Cuprates, Phys. Rev. Lett. 115, 027005 (2015)
- A. Principi and G. Vignale, Violation of the Wiedemann-Franz Law in Hydrodynamic Electron Liquids, Phys. Rev. Lett. 115, 056603 (2015) (finding a simple relation between the relaxation time of the thermal current and the quasiparticle scattering rate)
- R. Biele, R. D'Agosta, and A. Rubio, Time-Dependent Thermal Transport Theory, Phys. Rev. Lett. 115, 056801 (2015) P
- D. K. Efimkin and V. Galitski, Anomalous Coulomb Drag in Electron-Hole Bilayers due to the Formation of Excitons, Phys. Rev. Lett. 116, 046801 (2016) (concentrations of electrons, holes, and interlayer excitons are calculated assuming equilibrium; the electrons/holes and the excitons are decoupled in the model and thus their contributions to the conductivity tensor simply add up; the excitons contribute a Drude conductivity, which also appears in the interlayer terms due to the interlayer nature of the excitons; the transconductivity of the electrons/holes results from standard Coulomb drag, which is calculated microscopically)
-
R. P. Fornari, P. W. M. Blom, and A. Troisi, How Many Parameters Actually Affect the Mobility of Conjugated Polymers?, Phys. Rev. Lett. 118, 086601 (2017) (only two)
-
S. Tamaki, M. Sasada, and K. Saito, Heat Transport via Low-Dimensional Systems with Broken Time-Reversal Symmetry, Phys. Rev. Lett. 119, 110602 (2017) (chain with conservative noise)
-
A. Bruch, C. Lewenkopf, and F. von Oppen, Landauer-Büttiker Approach to Strongly Coupled Quantum Thermodynamics: Inside-Outside Duality of Entropy Evolution, Phys. Rev. Lett. 120, 107701 (2018)
-
A. S. Mishchenko, L. Pollet, N. V. Prokof'ev, A. Kumar, D. L. Maslov, and N. Nagaosa, Polaron Mobility in the “Beyond Quasiparticles” Regime, Phys. Rev. Lett. 123, 076601 (2019) (Fröhlich polaron; diagrammatic Monte Carlo simulations)
-
J. C. Szabo, K. Lee, V. Madhavan, and N. Trivedi, Local Spectroscopies Reveal Percolative Metal in Disordered Mott Insulators, Phys. Rev. Lett. 124, 137402 (2020) (non-Fermi liquid induced by increasing disorder in a Mott insulator)
-
M. Panhans and F. Ortmann, Efficient Time-Domain Approach for Linear Response Functions, Phys. Rev. Lett. 127, 016601 (2021)
-
C. L. Kane, Quantized Nonlinear Conductance in Ballistic Metals, Phys. Rev. Lett. 128, 076801 (2022) (d+1 terminal setup, order d current at certain frequency measures the Euler characteristic of the Fermi surface for d = 1, 2)
Model-based theory for quantum dots, nanojunctions, and related structures (not specifically molecules)
- J. Appelbaum, "s-d" Exchange Model of Zero-Bias Tunneling Anomalies, Phys. Rev. Lett. 17, 91 (1966) (this is the original suggestion that the zero-bias anomaly in tunneling is a manifestation of the Kondo effect; shows logarithmic singularity in third order of perturbation theory)
- D. Ahn, Time-convolutionless reduced-density-operator theory of an arbitrary driven system coupled to a stochastic reservoir: Quantum kinetic equations for semiconductors, Phys. Rev. B 50, 8310 (1994) (not for a quantum dot, but technique is applicable) P
- H. Schoeller and G. Schön, Mesoscopic quantum transport: Resonant tunneling in the presence of a strong Coulomb interaction, Phys. Rev. B 50, 18436 (1994) (large dot with dense spectrum) P
- S. A. Gurvitz and Ya. S. Prager, Microscopic derivation of rate equations for quantum transport, Phys. Rev. B 53, 15932 (1996) (exact derivation of full master equation for reduced density matrix of a (double) dot with interaction and phonons, T = 0, applicable if at least one resonance lies deep inside the energy interval between the lead chemical potentials) P
- K. A. Matveev, L. I. Glazman, and H. U. Baranger, Coulomb blockade of tunneling through a double quantum dot, Phys. Rev. B 54, 5637 (1996)
- J. König, J. Schmid, H. Schoeller, and G. Schön, Resonant tunneling through ultrasmall quantum dots: Zero-bias anomalies, magnetic-field dependence, and boson-assisted transport, Phys. Rev. B 54, 16820 (1996) (developing a diagrammatic approach employing the Keldysh time contour) P
- J. König, H. Schoeller, and G. Schön, Cotunneling at Resonance for the Single-Electron Transistor, Phys. Rev. Lett. 78, 4482 (1997) (uses method of König et al., PRB 54, 16820 (1996), does not require an ad hoc cutoff to make the cotunneling contribution finite)
- J. König, H. Schoeller, and G. Schön, Cotunneling and renormalization effects for the single-electron transistor, Phys. Rev. B 58, 7882 (1998) (limit of many channels, uses method of König et al., PRB 54, 16820 (1996), also comparison with renormalization group approach) P
- W. B. Thimm, J. Kroha, and J. von Delft, Kondo Box: A Magnetic Impurity in an Ultrasmall Metallic Grain, Phys. Rev. Lett. 82, 2143 (1999)
- M. Pustilnik and L. I. Glazman, Kondo effect induced by a magnetic field, Phys. Rev. B 64, 045328 (2001)
- P. Coleman, C. Hooley, and O. Parcollet, Is the Quantum Dot at Large Bias a Weak-Coupling Problem?, Phys. Rev. Lett. 86, 4088 (2001) (no)
- M. Turek and K. A. Matveev, Cotunneling thermopower of single electron transistors, Phys. Rev. B 65, 115332 (2002) (discusses renormalization scheme for divergence in the cotunneling contribution, later applied by J. Koch et al.)
- P. S. Cornaglia and C. A. Balseiro, Kondo impurities in nanoscopic systems: Confinement-induced regimes, Phys. Rev. B 66, 115303 (2002)
- N. A. Mortensen and J. C. Egues, Universal spin-polarization fluctuations in one-dimensional wires with magnetic impurities, Phys. Rev. B 66, 153306 (2002)
- J.-X. Zhu and A. V. Balatsky, Quantum Electronic Transport through a Precessing Spin, Phys. Rev. Lett. 89, 286802 (2002) P
- D. A. Bagrets and Yu. V. Nazarov, Full counting statistics of charge transfer in Coulomb blockade systems, Phys. Rev. B 67, 085316 (2003) (important work on FCS, uses rate equations)
- J. Paaske, A. Rosch, and P. Wölfle, Nonequilibrium transport through a Kondo dot in a magnetic field: Perturbation theory, Phys. Rev. B 69, 155330 (2004) (starts with rather extensive review, applies diagrammatic perturbation theory for Keldysh Green functions to a fermionized impurity spin between reservoirs to obtain local spin polarization and current under a bias voltage to leading logarithmic order; no charge fluctuations); J. Paaske, A. Rosch, J. Kroha, and P. Wölfle, Nonequilibrium transport through a Kondo dot: Decoherence effects, Phys. Rev. B 70, 155301 (2004)
- S. Kehrein, Scaling and Decoherence in the Nonequilibrium Kondo Model, Phys. Rev. Lett. 95, 056602 (2005) (Kondo spin between two leads under bias, same model as in Paaske et al., infinitesimal unitary transformations)
- M. P. Das and F. Green, Ballistic transport is dissipative: the why and how, cond-mat/0601459, J. Phys.: Condens. Matter 17, V13 (2005) (the Landauer formula gives a finite resistivity - how is the energy dissipated?)
- W. Belzig, Full counting statistics of super-Poissonian shot noise in multilevel quantum dots, Phys. Rev. B 71, 161301(R) (2005)
- S. Braig and P. W. Brouwer, Rate equations for Coulomb blockade with ferromagnetic leads, Phys. Rev. B 71, 195324 (2005)
- B. Dong, N. J. M. Horing, and H. L. Cui, Inelastic cotunneling-induced decoherence and relaxation, charge, and spin currents in an interacting quantum dot under a magnetic field, Phys. Rev. B 72, 165326 (2005) (extended Kondo model: local spin coupled to two leads, no other tunneling between the leads)
- F. B. Anders and A. Schiller, Real-Time Dynamics in Quantum-Impurity Systems: A Time-Dependent Numerical Renormalization-Group Approach, Phys. Rev. Lett. 95, 196801 (2005) (NRG for impurity coupled to bath subject to a perturbation that is suddenly switched on, no transport geometry)
- A. Donarini, T. Novotny, and A.-P. Jauho, Simple models suffice for the single-dot quantum shuttle, New J. Phys. 7, 237 (2005) (using and showing Wigner function of oscillator in various regimes)
- I. Sela and D. Cohen, Adiabatic Transport is counter-intuitive, cond-mat/0512500 (in a closed ring with two adiabatically changed delta barriers the transported charge per cycle can be made Q >> e)
- O. Parcollet and X. Waintal, Theory of Spin Torque in a nanomagnet, cond-mat/0512508
- M. Braun, J. König, and J. Martinek, Manipulating Single Spins in Quantum Dots Coupled to Ferromagnetic Leads, cond-mat/0512519 (long paper using Keldysh formalism)
- M. Albrecht, B. Song, and A. Schnurpfeil, A wave function based ab initio non-equilibrium Green's function approach to charge transport, cond-mat/0512554 (another long paper introducing a wave-function based Keldysh formalism for charge transport)
- R. Swirkowicz, M. Wilczynski, and J. Barnas, Spin-polarized transport through a single-level quantum dot in the Kondo regime, J. Phys.: Condens. Matter 18, 2291 (2006) (also consider the case of one ferromagnetic and one nonmagnetic lead; Keldysh formalism with approximate equation of motion approach) P
- F. Pistolesi and R. Fazio, Dynamics and Current Fluctuations in AC driven Charge Shuttle, New Journal of Physics 8, 113 (2006)
- P. Mehta and N. Andrei, Nonequilibrium Transport in Quantum Impurity Models: The Bethe Ansatz for Open Systems, Phys. Rev. Lett. 96, 216802 (2006)
- U. Harbola, J. Maddox, and S. Mukamel, Many-body theory of current-induced fluorescence in molecular junctions, Phys. Rev. B 73, 075211 (2006); Nonequilibrium superoperator Green's function approach to inelastic resonances in STM currents, Phys. Rev. B 73, 205404 (2006)
- U. Harbola, M. Esposito, and S. Mukamel, Quantum master equation for electron transport through quantum dots and single molecules, Phys. Rev. B 74, 235309 (2006) (Hamiltonian without electron-electron interaction or internal degrees of freedom, deriving the master equation for the reduced density matrix, projected onto sectors with specific electron number, in second order [sequential tunneling]) P
- A. Ueda and M. Eto, Resonant tunneling and Fano resonance in quantum dots with electron-phonon interaction, cond-mat/0601327 (Keldysh formalism)
- M. Braun, J. König, and J. Martinek, Frequency-Dependent Current Noise through Quantum-Dot Spin Valves, cond-mat/0601366 (using Keldysh formalism to obtain time dependence of reduced density matrix)
- J. Twamley, D. W. Utami, H.-S. Goan, and G. J. Milburn, Spin-detection in a quantum electromechanical shuttle system, cond-mat/0601448
- G. Vasseur, D. Weinmann, and J. A. Jalabert, Coulomb blockade without potential barriers, cond-mat/0602166
- J. Luo, X.-Q. Li, and Y. Yan, Calculation of the current noise spectrum in mesoscopic transport: an efficient quantum master equation approach, cond-mat/0603164, Phys. Rev. B
- K. Zabrocki, S. Trimper, S. Tatur, and R. Mahnke, Relationship between a Non-Markovian Process and Fokker-Planck Equation, cond-mat/0603252
- C. Flindt, A. S. Sorensen, and K. Flensberg, Spin-Orbit Mediated Control of Spin Qubits, cond-mat/0603559
- H. Frahm, C. von Zobeltitz, N. Maire, and R. J. Haug, Fermi Edge Singularities in Transport through Quantum Dots, cond-mat/0603668
- M. Hatami and M. Zareyan, Shot noise in diffusive ferromagnetic metals, cond-mat/0604142
- Y. Tanaka and N. Kawakami, Transport through Double-Dots coupled to normal and superconducting leads, cond-mat/0604212
- D. Klauser, W. A. Coish, and D. Loss, Quantum-dot spin qubit and hyperfine interaction, cond-mat/0604252, Advances in Solid State Physics 46 (2006)
- V. Meden, Correlation effects on electronic transport through dots and wires, cond-mat/0604302, Advances in Solid State Physics 46 (2006) (functional renormalization group approach for quantum dots and wires)
- J. Splettstoesser, M. Governale, J. König, and R. Fazio, Adiabatic pumping through interacting quantum dots: A perturbation expansion in the tunnel coupling, cond-mat/0604369
- P. Stano and J. Fabian, Orbital and spin relaxation in single and coupled quantum dots, cond-mat/0604633
- S. Kettemann, Dimensional Control of Antilocalisation and Spin Relaxation in Quantum Wires, cond-mat/0605243
- D. A. Bagrets, Y. Utsumi, D. S. Golubev, and G. Schön, Full Counting Statistics of Interacting Electrons, cond-mat/0605263 (one example considered is electron transport through quantum dots with strong interaction)
- A. F. Izmaylov, A. I. Goker, P. Nordlander, and B. Friedman, On universality and non-universality for a quantum dot in the Kondo regime, cond-mat/0605544
- M. Tolea and B. R. Bulka, Electronic transport through a quantum dot with a magnetic impurity using the equation of motion, cond-mat/0606057
- J. Foros, A. Brataas, G. E. W. Bauer, and Y. Tserkovnyak, Resistance noise in spin valves, cond-mat/0606131
- M. Pustilnik, E. G. Mishchenko, and O. A. Starykh, Generation of spin current by Coulomb drag, cond-mat/0606185 (Coulomb drag between two quantum wires in a magnetic field)
- I. Adagideli, G. E. W. Bauer, and B. I. Halperin, Detection of current-induced spins by ferromagnetic contacts, cond-mat/0606193
- W. Wetzels, G. E. W. Bauer, and M. Grifoni, Exchange effects on electron transport through single-electron spin-valve transistors, cond-mat/0608217
- A. Golub, Impact of Coulomb interaction and Kondo effect on transport in quantum dots, cond-mat/0609436
- L. Dell'Anna, A. Zazunov, R. Egger, and T. Martin, Josephson current through a quantum dot with spin-orbit coupling, cond-mat/0609577
- J. Fransson and J.-X. Zhu, Spin Dynamics in a Tunnel Junction between Ferromagnets, cond-mat/0609673
- C.-Y. Tsau, D. Nghiem, R. Joynt, and J. W. Halley, Energy Level Statistics of Quantum Dots, cond-mat/0610095
- W. A. Coish and D. Loss, Exchange-controlled single-spin rotations in quantum dots, cond-mat/0610443
- P. Stano and J. Fabian, Control of electron spin and orbital resonance in quantum dots through spin-orbit interactions, cond-mat/0611228
- F. M. Souza, J. C. Egues, and A. P. Jauho, Quantum Dot as a Spin-Current Diode, cond-mat/0611336 (with one ferromagnetic lead) P
- I. Weymann and J. Barnas, Cotunneling through quantum dots coupled to magnetic leads: zero-bias anomaly for non-collinear magnetic configurations, cond-mat/0611447
- C. Karrasch, Transport Through Correlated Quantum Dots - A Functional Renormalization Group Approach, cond-mat/0612329 (linear response regime)
- T. Domanski, A. Donabidowicz, and K.I. Wysokinski, Influence of the pair coherence on the charge tunneling through a quantum dot connected to a superconducting lead, cond-mat/0612440 (S-dot-N structure)
- V. Koerting, P. Wölfle, and J. Paaske, Transconductance of a double quantum dot system in the Kondo regime, cond-mat/0612566 (two separately contacted quantum dots coupled by antiferromagnetic exchange interaction)
- J. Fernandez-Rossier and R. Aguado, Single Electron Transport in electrically tunable nanomagnets, Phys. Rev. Lett. 98, 106805 (2007)
- A. Mitra and A. J. Millis, Coulomb Gas on the Keldysh Contour: Anderson-Yuval-Hamann representation of the Nonequilibrium Two Level System, Phys. Rev. B 76, 085342 (2007) (renormalization group for a degenerate orbital with nonstandard coupling to a local pseudo-spin 1/2, under nonzero bias, high-energy states in the leads are integrated out, main focus on methodology of RG for nonequilibrium system) P
- D. Segal, D. R. Reichman, and A. J. Millis, Nonequilibrium quantum dissipation in spin-fermion systems, Phys. Rev. B 76, 195316 (2007) (considering the reduced density operator of a spin coupled to two leads at different chemical potential) P
- D. Sztenkiel and R. Swirkowicz, Interference effects in a double quantum dot system with inter-dot Coulomb correlations, J. Phys.: Condens. Matter 19, 176202 (2007) (Green function formalism)
- F. J. Kaiser and S. Kohler, Shot noise in non-adiabatically driven nanoscale conductors, Annalen der Physik 16, 702 (2007) (Floquet approach within both Green-function and master-equation formalisms)
- B. Muralidharan and S. Datta, A Generic Model for Current Collapse in Spin Blockaded Transport, cond-mat/0702161
- B. Lassen and A. Wacker, Electron Transport through Nanosystems Driven by Coulomb Scattering, cond-mat/0703286
- C. Emary, D. Marcos, R. Aguado, and T. Brandes, Frequency-dependent counting statistics in interacting nanoscale conductors, cond-mat/0703781 (using the n-resolved-density-matrix approach and assuming infinite bias)
- Y. Y. Wang, J. H. Jiang, and M. W. Wu, Reexamination of spin decoherence in semiconductor quantum dots from equation-of-motion approach, arXiv:0704.0148 (detailed study of the various spin relaxation mechanisms)
- A. Nishino and N. Hatano, Resonance in an open quantum dot system with a Coulomb interaction: a Bethe-ansatz approach, arXiv:0705.3994
- D. Herman, T. T. Ong, G. Usaj, H. Mathur, and H. U. Baranger, Level Spacings in Random Matrix Theory and Coulomb Blockade Peaks in Quantum Dots, arXiv:0707.1620
- E. Sela, H. S. Sim, Y. Oreg, M. E. Raikh, and F. von Oppen, Electron Pair Resonance in the Coulomb Blockade, arXiv:0707.2892 (time-dependent perturbation theory)
- C.-H. Chung, G. Zaránd, and P. Wölfle, Two-stage Kondo effect in side-coupled quantum dots: Renormalized perturbative scaling theory and Numerical Renormalization Group analysis, arXiv:0707.3498
- N. Sandschneider and W. Nolting, Spin-polarized tunneling currents through a ferromagnetic insulator between two metallic or superconducting leads, arXiv:0708.2881
- T. L. Schmidt, A. Komnik, and A. O. Gogolin, Full counting statistics of spin transfer through ultrasmall quantum dots, arXiv:0709.2779
- E. Bascones, V. Estevez, J. A. Trinidad, and A. H. MacDonald, Electronic correlations and disorder in transport through one-dimensional nanoparticle arrays, arXiv:0709.3718; E. Bascones, J. A. Trinidad, V. Estevez, and A. H. MacDonald, Effect of the long-range interaction in transport through one-dimensional nanoparticle arrays, arXiv:0709.3724
- D. Becker and D. Pfannkuche, Transport Through a Single-Level Quantum Dot in the Cotunneling Regime: Increase of Differential Conductance Peaks by Spin Relaxation, arXiv:0710.1977
- F. Delgado and P. Hawrylak, Theory of electronic transport through a triple quantum dot in the presence of magnetic field, arXiv:0712.0624 (no electron-electron interaction on dot, magnetic field enters through Peierls factors)
- R. P. Hornberger, S. Koller, G. Begemann, A. Donarini, and M. Grifoni, Transport through a double quantum dot system with non-collinearly polarized leads, arXiv:0712.0757 (Wangsness-Bloch-Redfield master equation)
- J. E. Birkholz and V. Meden, Spin-orbit coupling effects in one-dimensional ballistic quantum wires, J. Phys.: Condens. Matter 20, 085226 (2008)
- M. Governale, M. G. Pala, and J. König, Real-time diagrammatic approach to transport through interacting quantum dots with normal and superconducting leads, Phys. Rev. B 77, 134513 (2008), see also erratum
- J. Gao, Q. Sun, and X. C. Xie, Quantum coherence effect in spin-polarized transport through nano-magnets, J. Phys.: Condens. Matter 20, 415216 (2008) (tunneling through magnetic dot described using the full quantum master equation)
- N. A. Zimbovskaya, The electron transport through a quantum dot in the Coulomb blockade regime: Non-equilibrium Green's functions based model, Phys. Rev. B 78, 035331 (2008) (this works brings NEGF results for the step heights in line with master equation results)
- A. L. Chudnovskiy, J. Swiebodzinski, and A. Kamenev, Spin-Torque Shot Noise in Magnetic Tunnel Junctions, Phys. Rev. Lett. 101, 066601 (2008) (derive stochastic Landau-Lifshitz-Gilbert equations for a free ferromagnetic layer in contact with a fixed one, use the Keldysh formalism)
- C. Flindt, T. Novotny, A. Braggio, M. Sassetti, and A.-P. Jauho, Counting Statistics of Non-Markovian Quantum Stochastic Processes, arXiv:0801.0661 (master equation)
- C. L. Romano, G. E. Marques, L. Sanz, and A. M. Alcalde, Phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in quantum dots, arXiv:0801.1699
- J. J. Krich and B. I. Halperin, Spin polarized current generation from quantum dots without magnetic fields, arXiv:0801.2592 (due to spin-orbit coupling, use random-matrix theory)
- M. Braun and G. Burkard, Non-adiabatic two-parameter charge and spin pumping in a quantum dot, arXiv:0801.4925
- J. Splettstoesser, M. Governale, and J. König, Adiabatic charge and spin pumping through quantum dots with ferromagnetic leads, arXiv:0802.0422
- V. V. Mkhitaryan and M. E. Raikh, Supergap anomalies in cotunneling between N-S and between S-S leads via a small quantum dot, arXiv:0802.0586 (normal-superconducting and superconducting-superconducting leads, time-dependent perturbation theory in the tunneling amplitudes)
- F. M. Souza, A. P. Jauho, and J. C. Egues, Spin-polarized Current and Shot Noise in the Presence of Spin-flip in a Quantum Dot, arXiv:0802.0982
- L. O. Baksmaty, C. Yannouleas, and U. Landman, Nonuniversal transmission phases through a quantum dot: An exact-diagonalization of the many-body transport problem, arXiv:0802.1064 (use a real-space wave-function approach, the "entailed exact diagonalization" [references are given], related to the CI method)
- T. Brandes, Waiting Times and Noise in Single Particle Transport, arXiv:0802.2233
- J. Koch and K. Le Hur, Discontinuous current-phase relations in small 1D Josephson junction arrays, arXiv:0802.2351
- E. Khosravi, S. Kurth, G. Stefanucci, and E. K. U. Gross, The Role of Bound States in Time-Dependent Quantum Transport, arXiv:0802.2516; E. Khosravi, G. Stefanucci, S. Kurth, and E. K. U. Gross, Bound States in Time-Dependent Quantum Transport: Oscillations and Memory Effects in Current and Density, arXiv:0803.0914
- S. Weiss, J. Eckel, M. Thorwart, and R. Egger, Iterative real-time path integral approach to nonequilibrium quantum transport, arXiv:0802.3374
- M. Krawiec, Thermoelectric transport through a quantum dot coupled to a normal metal and BCS superconductor, arXiv:0803.0208
- B. Solis, M. L. Ladron de Guevara, and P. A. Orellana, Friedel phase discontinuity and bound states in the continuum in quantum dot systems, arXiv:0803.3573
- P. Wächter, V. Meden, and K. Schönhammer, The conductance of Luttinger liquid wires: towards experimental setups, arXiv:0804.4108
- S. Kirino, T. Fujii, J. Zhao, and K. Ueda, Time-dependent DMRG Study on Quantum Dot under a Finite Bias Voltage, arXiv:0805.0218
- Y. Dubi and M. Di Ventra, Theory of non-equilibrium thermoelectric effects in nanoscale junctions, arXiv:0805.1415 (for non-interacting electrons, Lindblad equation) P
- T. Hecht, A. Weichselbaum, Y. Oreg, and J. von Delft, Interplay of mesoscopic and Kondo effects for transmission amplitude of few-level quantum dots, arXiv:0805.3145 (use NRG to calculate the dot Green function and from this the transmission amplitude, regime of small level width compared to level spacing, i.e., regime relevant for molecular junctions)
- D. Urban, J. König, and R. Fazio, Coulomb-Interaction Effects in Full Counting Statistics of a Quantum-Dot Aharonov-Bohm Interferometer, arXiv:0805.3697 (master equation formalism on the Keldysh contour)
- J. Tailleur, J. Kurchan, and V. Lecomte, Mapping out of equilibrium into equilibrium in one-dimensional transport models, arXiv:0809.0709, J. Phys. A (map several driving models onto isolated models showing detailed balance, also possible for some interacting problems; of general interest for nonequilibrium statistical physics)
- A. Levchenko and A. Kamenev, Coulomb drag in quantum circuits, arXiv:0809.1670 (two point contacts coupled by Coulomb interaction)
- P. Werner, T. Oka, and A. J. Millis, Diagrammatic Monte Carlo simulation of non-equilibrium systems, arXiv:0810.2345 (based on Keldysh formalism)
- V. Kashcheyevs, C. Karrasch, T. Hecht, A. Weichselbaum, V. Meden, and A. Schiller, A quantum criticality perspective on the charging of narrow quantum-dot levels, arXiv:0810.2538
- V. Koerting, T. L. Schmidt, C. B. Doiron, B. Trauzettel, and C. Bruder, Transport properties of a superconducting single-electron transistor coupled to a nanomechanical oscillator, arXiv:0810.5718
- Y. Dubi and M. Di Ventra, Thermo-spin effects in a quantum dot connected to ferromagnetic leads, arXiv:0811.3265
- H. Zhang, G.-M. Zhang, and L. Yu, Spin transport properties of a quantum dot coupled to ferromagnetic leads with noncollinear magnetizations, arXiv:0811.3800 (using non-equilibrium Keldysh-Green functions)
- P. Stefanski, Tunnelling magnetoresistance anomalies of Coulomb blockaded quantum dot, arXiv:0812.1109
- P. Parida, S. Lakshmi, and S. K. Pati, Negative differential resistance in nanoscale transport in the Coulomb blockade regime, J. Phys.: Condens. Matter 21, 095301 (2009)
- S.-H. Chen, C.-R. Chang, J. Q. Xiao, and B. K. Nikolic, Spin and charge pumping in magnetic tunnel junctions with precessing magnetization: A nonequilibrium Green function approach, Phys. Rev. B 79, 054424 (2009)
- N. Winkler, M. Governale, and J. König, Diagrammatic real-time approach to adiabatic pumping through metallic single-electron devices, Phys. Rev. B 79, 235309 (2009)
- S. Lindebaum, D. Urban, and J. König, Spin-induced charge correlations in transport through interacting quantum dots with ferromagnetic leads, Phys. Rev. B 79, 245303 (2009) (full counting statistics)
- P. Zedler, G. Schaller, G. Kießlich, C. Emary, and T. Brandes, Weak coupling approximations in non-Markovian Transport, Phys. Rev. B 80, 045309 (2009) (comparison of master-equation results with exact solution using Green functions)
- R. K. Kaul, D. Ullmo, G. Zarand, S. Chandrasekharan, and H. U. Baranger, Ground State and Excitations of Quantum Dots with "Magnetic Impurities", arXiv:0901.0016
- A. M. Lunde, A. De Martino, A. Schulz, R. Egger, and K. Flensberg, Electron-electron interaction effects in quantum point contacts, arXiv:0901.1183 (relevant for 0.7 anomaly)
- G. Benenti, G. Casati, T. Prosen, D. Rossini, and M. Znidaric, Charge and spin transport in strongly correlated 1D quantum systems driven far from equilibrium, arXiv:0901.2032 (two interacting 1D electronic systems, mapped onto spin models, Lindblad master equation with biased insertion/extraction of electrons at the boundaries described by Lindblad operators, find distinct ballistic and diffusive regimes, the latter with strong negative differential conductance) P
- T. Kwapinski, S. Kohler, and P. Hänggi, Discontinuous conductance of bichromatically ac-gated quantum wires, arXiv:0901.2452
- T. Domanski and A. Donabidowicz, Electron pair current through the correlated quantum dot, arXiv:0901.4248 (charge Kondo effect and pair tunneling)
- T. Birol and P. W. Brouwer, Spin torque from tunneling through impurities in a magnetic tunnel junction, arXiv:0902.1150
- Z. Ratiani and A. Mitra, 1/N expansion of the nonequilibrium infinite-U Anderson Model, arXiv:0902.1263 (slave-boson approach and Keldysh functional integral)
- J. Prachar and T. Novotny, Charge conservation breaking within generalized master equation description of electronic transport through dissipative double quantum dots, arXiv:0902.2382
- S.-H. Ouyang, C.-H. Lam, and J. Q. You, Shot noise in electron transport through a double quantum dot: A master equation approach, arXiv:0902.3085
- R. S. Whitney, P. Marconcini, and M. Macucci, Symmetry causes a huge conductance peak in double quantum dots, arXiv:0902.3099 (interference effect for mirror-symmetric double quantum dot)
- C. Emary, Counting statistics of cotunneling electrons, arXiv:0902.3544
- U. Schroeter and E. Scheer, Transport Channels in a Double Junction - coherent coupling changes the picture, arXiv:0902.3545
- G. Cohen, V. Fleurov, and K. Kikoin, Time-dependent single electron tunneling through a shuttling nano-island, arXiv:0903.1964 (between half-metallic ferromagnetic leads)
- F. Elste, S. M. Girvin, and A. A. Clerk, Quantum Noise Interference and Back-action Cooling in Cavity Nanomechanics, arXiv:0903.2242 (coupled electrodynamical and mechanical resonators, propose that the mechanical resonator can be cooled down to arbitrarily low temperatures)
- F. Heidrich-Meisner, A. E. Feiguin, and E. Dagotto, Real-time simulations of nonequilibrium transport in the single-impurity Anderson model, arXiv:0903.2414 (employ time-dependent DMRG)
- P. Fritsch and S. Kehrein, Non-Equilibrium Kondo Model with Voltage Bias in a Magnetic Field, arXiv:0903.2865
- V. Gudmundsson, C. Gainar, C.-S. Tang, V. Moldoveanu, and A. Manolescu, Time-dependent transport via the generalized master equation through a finite quantum wire with an embedded subsystem, arXiv:0903.3491
- M. Leijnse, M. R. Wegewijs, and M. H. Hettler, Pair-tunneling resonance in the single-electron transport regime, arXiv:0903.3559 (produces a peak in the second derivative of the current at fourth order in tunneling amplitudes, but shows a slope in the (Vg,V)-diagram identical to that of sequential tunneling; not the mechanism discussed by Koch et al.)
- R. Steinigeweg, J. Gemmer, H.-P. Breuer, and H.-J. Schmidt, Projection operator approach to transport in complex single-particle quantum systems, arXiv:0903.5427 (time-convolutionless master equation with judicious choice of projection operator, for complex quasi-1D systems, the approach is applied to a single-particle model to facilitate comparison with numerical results)
- S. M. Huang, Y. Tokura, H. Akimoto, K. Kono, J. J. Lin, S. Tarucha, and K. Ono, Spin bottleneck in resonant tunneling through double quantum dots with different Zeeman splittings, arXiv:0904.1046 (different g-factors, effect of misalignment of levels)
- F. Cavaliere, M. Governale, and J. König, Non-adiabatic pumping through interacting quantum dots, arXiv:0904.1687
- J. N. Pedersen and A. Wacker, Modeling of cotunneling in quantum dot systems, arXiv:0904.3249, Physica E 42, 595 (2010)
- J. Danon and Yu. V. Nazarov, Pauli Spin Blockade in the Presence of Strong Spin-Orbit Coupling, arXiv:0905.1818
- Ya. I. Rodionov, I. S. Burmistrov, and A. S. Ioselevich, Charge relaxation resistance in the Coulomb blockade problem, arXiv:0905.2688
- D. Schuricht and H. Schoeller, Dynamical spin-spin correlation functions in the Kondo model out of equilibrium, arXiv:0905.3095 P
- T. Ulbricht and P. Schmitteckert, Is spin-charge separation observable in a transport experiment?, arXiv:0905.4743 (the authors claim yes)
- R. S. Whitney, H. Schomerus, and M. Kopp, Semiclassical transport in nearly symmetric quantum dots I: internal symmetry breaking, arXiv:0906.0891; Semiclassical transport in nearly symmetric quantum dots II: symmetry-breaking due to asymmetric leads, arXiv:0906.0892
- A. R. Hernández, F. A. Pinheiro, C. H. Lewenkopf, and E. R. Mucciolo, Adiabatic Charge Pumping through Quantum Dots in the Coulomb Blockade Regime, arXiv:0907.0038
- T. Ojanen, F. C. Gethmann, and F. von Oppen, Electromechanical instability in vibrating quantum dots with effectively negative charging energy, arXiv:0907.3041
- S. Rotter and Y. Alhassid, The strong-coupling limit of a Kondo spin coupled to a mesoscopic quantum dot: effective Hamiltonian in the presence of exchange correlations, arXiv:0907.5297 (a large, chaotic quantum dot with a Kondo spin)
- K. Schönhammer, Full counting statistics for noninteracting fermions: Exact finite temperature results and generalized long time approximation, arXiv:0908.1892 (1D tight-binding model and quantum dot with 1D leads)
- X. Wang and A. J. Millis, Quantum criticality and non-Fermi-liquid behavior in a two level, two lead quantum dot, arXiv:0909.3120 (QMC, also analytical results)
- T. Karzig and F. von Oppen, Signatures of critical full counting statistics in a quantum-dot chain, arXiv:0909.4470
- M. Pletyukhov, D. Schuricht, and H. Schoeller, Relaxation vs decoherence: Spin and current dynamics in the anisotropic Kondo model at finite bias and magnetic field, arXiv:0910.0119
- M. W. Y. Tu, M.-T. Lee, and W.-M. Zhang, Exact Master Equation and Non-Markovian Decoherence for Quantum Dot Quantum Computing, arXiv:0910.0302 (based on the "exact master equation" formalism developed by Tu and Zhang); J. Jin, M. W. Y. Tu, W.-M. Zhang, and Y. Yan, A nonequilibrium theory for transient transport dynamics in nanostructures via the Feynman-Vernon influence functional approach, arXiv:0910.1675
- O. Entin-Wohlman, A. Aharony, Y. Tokura, and Y. Avishai, Spin-polarized electric currents in quantum transport, arXiv:0911.1347
- S. Smirnov, D. Bercioux, M. Grifoni, and K. Richter, Charge ratchet from spin flip: space-time symmetry paradox, arXiv:0911.3273 (a ratchet effect on charge transport due to spin-orbit coupling, even though the periodic potential is symmetric)
- H. Schmidt and P. Wölfle, Transport through a Kondo quantum dot: Functional RG approach, arXiv:0911.4383
- C. Karrasch, S. Andergassen, M. Pletyukhov, D. Schuricht, L. Borda, V. Meden, and H. Schoeller, Non-equilibrium current and relaxation dynamics of a charge-fluctuating quantum dot, arXiv:0911.5496
- S. G. Jakobs, M. Pletyukhov, and H. Schoeller, Nonequilibrium functional RG with frequency dependent vertex function - a study of the single impurity Anderson model, arXiv:0911.5502
- S. Bandopadhyay and M. Hentschel, Anderson orthogonality catastrophe in realistic quantum dots, arXiv:0912.1525 (parabolic quantum dot)
- I. Weymann, The tunnel magnetoresistance in chains of quantum dots weakly coupled to external leads, arXiv:0912.1948 (diagrammatics on Keldysh contour)
- O. A. Tretiakov and A. Mitra, ac- and dc-driven noise and I-V characteristics of magnetic nanostructures, Phys. Rev. B 81, 024416 (2010) (Keldysh formalism, macrospin in ferromagnetic layer of N/F/N junction)
- M. A. Laakso, T. T. Heikkilä, and Y. V. Nazarov, Fully Overheated Single-Electron Transistor, Phys. Rev. Lett. 104, 196805 (2010) (quantum dot coupled to phonons, electronic excitations may relax with excitation of phonons, thereby heating the dot; master equation with counting fields)
- C. P. Moca, I. Weymann, and G. Zaránd, Theory of frequency-dependent spin current noise through correlated quantum dots, Phys. Rev. B 81, 241305(R) (2010)
- A. Donarini, G. Begemann, and M. Grifoni, Interference effects in the Coulomb blockade regime: Current blocking and spin preparation in symmetric nanojunctions, Phys. Rev. B 82, 125451 (2010)
- S. Koller, M. Leijnse, M. R. Wegewijs, and M. Grifoni, Density-operator approaches to transport through interacting quantum dots: simplifications in fourth order perturbation theory, Phys. Rev. B 82, 235307 (2010) (with a comparison of various master-equation approaches) P
- V. Moldoveanu, A. Manolescu, C.-S. Tang, and V. Gudmundsson, Coulomb interaction and transient charging of excited states in open nanosystems, arXiv:1001.0047 (focus on the transient currents, employ the quantum master equation)
- I. Weymann and J. Barnas, Kondo effect in a quantum dot coupled to ferromagnetic leads and side-coupled to a nonmagnetic reservoir, arXiv:1001.2475, Phys. Rev. B
- J. Splettstoesser, M. Governale, J. König, and M. Büttiker, Charge and spin dynamics in interacting quantum dots, arXiv:1001.2664
- R. Van Roermund, S.-Y. Shiau, and M. Lavagna, Anderson Model out of equilibrium: decoherence effects in transport through a quantum dot, arXiv:1001.3873
- M. Lee, T. Jonckheere, and T. Martin, Josephson effect through a multilevel dot near a singlet-triplet transition, arXiv:1001.3914
- I. C. Fulga, F. Hassler, and C. W. J. Beenakker, Nonzero temperature effects on antibunched photons emitted by a quantum point contact out of equilibrium, arXiv:1001.4389
- C.-S. Tang, K. Torfason, and V. Gudmundsson, Magnetotransport in a time-modulated double quantum point contact system, arXiv:1002.1551 (Lippmann-Schwinger scattering theory)
- V. Gudmundsson, C.-S. Tang, O. Jonasson, V. Moldoveanu, and A. Manolescu, Correlated time-dependent transport through a 2D quantum structure, arXiv:1002.1556 (quantum master equation)
- V. Gudmundsson, C.-S. Tang, C. M. Gainar, V. Moldoveanu, and A. Manolescu, Time-dependent magnetotransport in semiconductor nanostructures via the generalized master equation, arXiv:1002.1579 (quantum master equation)
- C.-H. Chung, K.V.P. Latha, K. Le Hur, M. Vojta, and P. Wölfle, Tunable Kondo-Luttinger systems far from equilibrium, arXiv:1002.1757 (quantum dot coupled to strictly one-dimensional leads)
- C. Flindt, T. Novotny, A. Braggio, and A.-P. Jauho, Counting statistics of transport through Coulomb blockade nanostructures: high-order cumulants and non-Markovian effects, arXiv:1002.4506 (non-Markovian quantum master equation, use superoperator notation)
- A. Braggio, M. Governale, M. G. Pala, and J. König, Superconducting proximity effect in interacting quantum dots revealed by shot noise, arXiv:1002.4629 (S-dot-N junction)
- F. Elste, D. R. Reichman, and A. J. Millis, Effect of a Coulombic dot-lead coupling on the dynamics of a quantum dot, arXiv:1003.0845
- C. A. Balseiro, Gonzalo Usaj, and M. J. Sanchez, Out of equilibrium transport through an Anderson impurity: Probing scaling laws within the equation of motion approach, arXiv:1003.3847 (based on Meir-Wingreen formula)
- T. A. Costi and V. Zlatic, Thermoelectric transport through strongly correlated quantum dots, arXiv:1004.1519 (using a renormalization-group approach, relevance of the Kondo effect)
- D. Marcos, C. Emary, T. Brandes, and R. Aguado, Finite-frequency counting statistics of electron transport: Markovian Theory, arXiv:1004.1572 (quantum master equation, full counting statistics)
- N. B. Kopnin, Y. M. Galperin, and V. M. Vinokur, Coulomb-enhanced resonance transmission of quantum SINIS junctions, arXiv:1004.5288 (charging of Andreev bound states can preserve the resonant-tunneling condition)
- P. Dutt, J. Koch, J. E. Han, and K. Le Hur, Effective Equilibrium Description of Nonequilibrium Quantum Transport I: Fundamentals and Methodology, arXiv:1004.5591 (based on effective-density-matrix approach of Hershfield) P; Effective Equilibrium Description of Nonequilibrium Quantum Transport II: Perturbation Theory for Interacting Models, arXiv:1101.1526
- H. D. Cornean, C. Gianesello, and V. Zagrebnov, A partition-free approach to transient and steady-state charge currents, arXiv:1005.3914
- H. Dai and D. K. Morr, Non-equilibrium Transport in dissipative one-dimensional Nanostructures, arXiv:1006.1893 (Keldysh non-equilibrium Green functions, Coulomb repulsion treated perturbatively to second order, also include disordered on-site energies) P
- J. Paaske, A. Andersen, and K. Flensberg, Exchange cotunneling through quantum dots with spin-orbit coupling, arXiv:1006.2371 (start from quantum dot with charging energy, applied magnetic field, and spin-orbit coupling, reduce this to Anderson-type and then Kondo-type models, discuss effect of spin-orbit coupling)
- C. Chamon, E. R. Mucciolo, L. Arrachea, and R. C. Capaz, Heat pumping in nanomechanical systems, arXiv:1006.4874
- P. Wang and S. Kehrein, Flow Equation Calculation of Transient and Steady State Currents in the Anderson Impurity Model, arXiv:1006.5203 (beyond linear response theory, use flow equation/infinitesimal unitary transformations)
- J. Hong, Green's function technique for a two-electrode mesoscopic system under bias, arXiv:1007.0615 (calculation of the local retarded Green function for the Meir-Wingreen formula in superoperator formalism)
- H. Ness, L. K. Dash, and R. W. Godby, Generalization and applicability of the Landauer formula for non-equilibrium current in the presence of interactions, arXiv:1007.1104
- K. R. Patton, Theory of correlated electron transport and inelastic tunneling spectroscopy, arXiv:1007.1238 (derivation of the tunneling Hamiltonian, which contains a correlated-tunneling term)
- L. Mühlbacher, D. F. Urban, and A. Komnik, Anderson impurity model in nonequilibrium: analytical results versus quantum Monte Carlo data, arXiv:1007.1793 (with two leads, MC simulation vs. perturbation theory)
- S. Y. Mueller, V. Koerting, D. Schuricht, and S. Andergassen, Spin and orbital fluctuations in non-equilibrium transport through quantum dots: A renormalisation-group analysis, arXiv:1007.3605
- S. A. Bender, Y. Tserkovnyak, and A. Brataas, Microwave Detection by a Magnetic Single-Electron Transistor, arXiv:1007.4966
- C. P. Moca, P. Simon, C. H. Chung, and G. Zarand, Non-equilibrium frequency-dependent noise through a quantum dot: A real time functional renormalization group approach, arXiv:1008.0150
- B. Sothmann, J. König, and A. Kadigrobov, Influence of spin waves on transport through a quantum-dot spin valve, arXiv:1008.0948 (consider one bosonic spin-wave mode in each lead) P
- D. Segal, A. J. Millis, and D. R. Reichman, Numerically exact path integral simulation of nonequilibrium quantum transport and dissipation, arXiv:1008.5200 (numerical approach related to S. Weiss, J. Eckel, M. Thorwart, and R. Egger, Phys. Rev. B 77, 195316 (2008))
- L. Tosi, P. Roura-Bas, A. M. Llois, and L. O. Manuel, Effects of vertex corrections on diagrammatic approximations applied to the study of transport through a quantum dot, arXiv:1009.1157 (Anderson model with two leads, linear response, conductance from local spectral function at the dot)
- K. Flensberg, Tunneling characteristic of a chain of Majorana bound states, arXiv:1009.3533 (Majorana bound states at randomness-induced boundaries between topologically trivial and non-trivial superconductors)
- M. Tsaousidou and G. P. Triberis, Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency, J. Phys.: Condens. Matter 22, 355304 (2010)
- M. Baumgärtel, M. Hell, S. Das, and M. R. Wegewijs, Spin quadrupoletronics: moving spin anisotropy around, arXiv:1009.5874 (spin anisotropy, quantified by the average of the quadropole tensor, can be transfered to a quantum dot)
- B. Sothmann and J. König, Transport through quantum-dot spin valves containing magnetic impurities, arXiv:1009.5901 (two models: local spin in dot or in barrier, full master equation in sequential-tunneling approximation) P
- G. Weick, F. von Oppen, and F. Pistolesi, Euler buckling instability and enhanced current blockade in suspended single-electron transistors, arXiv:1010.0800
- F. Elste, D. R. Reichman, and A. J. Millis, Transport through a quantum dot with excitonic dot-lead coupling, arXiv:1010.2251 (excitonic coupling to image charges, leads are Luttinger liquids)
- A. Mitra and A. Rosch, Current induced decoherence in the multichannel Kondo problem, arXiv:1010.2404
- S. Andergassen, M. Pletyukhov, D. Schuricht, H. Schoeller, and L. Borda, A renormalization-group analysis of the interacting resonant level model at finite bias: Generic analytic study of static properties and quench dynamics, arXiv:1010.5666
- O. Karlström, J. N. Pedersen, P. Samuelsson, and A. Wacker, Correlation- and Interference-Induced Suppression and Enhancement of Current in a two-level Quantum Dot, arXiv:1011.4182 (2nd-order von Neumann approach [relation to perturbative master equation is briefly discussed], also compared to NEGF)
- S. Grap, S. Andergassen, J. Paaske, and V. Meden, Spin-orbit interaction and asymmetry effects on Kondo ridges at finite magnetic field, arXiv:1011.5916 (functional RG, leads integrated out, giving Γ's)
- S. Walter and B. Trauzettel, Momentum and position detection in nanoelectromechanical systems beyond Born and Markov approximations, arXiv:1012.4649 (Keldysh formalism)
- M. Leijnse and K. Flensberg, Majorana bound state spectroscopy via a Coulomb-blockaded quantum dot, arXiv:1012.4650 (rate equations)
- M. Znidaric, Quantum transport in 1d systems via a master equation approach: numerics and an exact solution, arXiv:1012.4684 (time-dependent DMRG for the solution of the stationary Lindblad master equation for quantum wires)
- B. Horváth, B. Lazarovits, and G. Zaránd, Fluctuation-exchange approximation theory of the non-equilibrium singlet-triplet transition, arXiv:1012.5326 (Keldysh Green functions with FLEX, for tunneling through a quantum dot)
- J. Y. Luo, H. J. Jiao, G. Cen, X.-L. He, and C. Wang, Full Counting statistics of level renormalization in electron transport through double quantum dots, J. Phys.: Condens. Matter 23, 145301 (2011) (quantum master equation, sequential-tunneling approximation)
- S.-P. Chao and G. Palacios, Nonequilibrium transport in the Anderson model of a biased quantum dot: Scattering Bethe ansatz phenomenology, Phys. Rev. B 83, 195314 (2011)
- F. Elste, D. Reichman, and A. Millis, Transport through a quantum dot with two parallel Luttinger liquid leads, Phys. Rev. B 83, 245405 (2011) ("|*|" geometry)
- J. Hong, Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model, J. Phys.: Condens. Matter 23, 275602 (2011)
- K. A. Matveev and A. V. Andreev, Equilibration of Luttinger Liquid and Conductance of Quantum Wires, Phys. Rev. Lett. 107, 056402 (2011) (corrections beyond the Luttinger liquid approximation)
- P. Roura-Bas, L. Tosi, A. A. Aligia, and K. Hallberg, Interplay between quantum interference and Kondo effects in nonequilibrium transport through nanoscopic systems, Phys. Rev. B 84, 073406 (2011) (short paper, NCA, how is the current obtained?)
- S. Smirnov and M. Grifoni, Slave-boson Keldysh field theory for the Kondo effect in quantum dots, Phys. Rev. B 84, 125303 (2011) (local constraint is implemented by exact projection, bosonic action is truncated after bilinear term); Kondo effect in interacting nanoscopic systems: Keldysh field integral theory, arXiv:1109.1540
- D. A. Lovey, S. S. Gomez, and R. H. Romero, Transmission through a quantum dot molecule embedded in an Aharonov-Bohm interferometer, J. Phys.: Condens. Matter 23, 425303 (2011) (four quantum dots in a ring with tunable tunneling along one diameter, no interactions, Landauer formula)
- T. Karzig, G. Refael, L. I. Glazman, and F. von Oppen, Energy Partitioning of Tunneling Currents into Luttinger Liquids, Phys. Rev. Lett. 107, 176403 (2011)
- A. Golub, I. Kuzmenko, and Y. Avishai, Kondo Correlations and Majorana Bound States in a Metal to Quantum-Dot to Topological-Superconductor Junction, Phys. Rev. Lett. 107, 176802 (2011)
- D. Breyel and A. Komnik, Nonequilibrium transport properties of a double quantum dot in the Kondo regime, Phys. Rev. B 84, 155305 (2011)
- B. M. Andersen, K. Flensberg, V. Koerting, and J. Paaske, Nonequilibrium Transport through a Spinful quantum Dot with Superconducting Leads, Phys. Rev. Lett. 107, 256802 (2011) (NEGF)
- D. W. H. Swenson, T. Levy, G. Cohen, E. Rabani, and W. H. Miller, Application of a semiclassical model for the second-quantized many-electron Hamiltonian to nonequilibrium quantum transport: The resonant level model, arXiv:1103.4405 (interesting semiclassical approach based on approximate expression for matrix elements in terms of action-angle variables; for non-interacting electron system)
- Y. Li, M. B. A. Jalil, and S. G. Tan, Nonequilibrium Keldysh Formalism for Interacting Leads - Application to Quantum Dot Transport Driven by Spin Bias, arXiv:1103.4920
- C. López-Monís, C. Emary, G. Kiesslich, G. Platero, and T. Brandes, Limit-Cycles and Chaos in the Current Through a Quantum Dot, arXiv:1104.3995 (based on Ehrenfest equations of motion, truncated in mean-field spirit, find periodic and chaotic solutions of the resulting nonlinear system of differential equations) P
- V. Moldoveanu, H. D. Cornean, and C.-A. Pillet, Non-equilibrium steady-states for interacting open systems: exact results, arXiv:1104.5399 (proof existence of steady state under certain weak conditions, Green-function approach)
- H. D. Cornean and V. Moldoveanu, On the cotunneling regime of interacting quantum dots, arXiv:1104.5412 (rigorous results for the current when the coupling to the leads is suddenly switched on) P
- J. Jin, W.-M. Zhang, X.-Q. Li, and Y.-J. Yan, Cotunneling current noise spectrum through noninteracting systems: An exact n-resolved master equation approach, arXiv:1105.0136
- E. Gull, D. R. Reichman, and A. J. Millis, Numerically Exact Long Time Behavior of Nonequilibrium Quantum Impurity Models, arXiv:1105.1175 (corrections to the non-crossing approximation are evaluated by Monte Carlo simulations)
- M. Schubotz and T. Brandes, Random backaction in tunneling of single electrons through nanostructures, arXiv:1105.4422
- M. Tahir and A. MacKinnon, Time-dependent transport via a quantum shuttle, arXiv:1105.5614 (NEGF)
- A. Dhar, K. Saito, and P. Hänggi, Nonequilibrium density matrix description of steady state quantum transport, arXiv:1106.3207 (exact but restricted to completely bilinear Hamiltonians)
- F. W. Jayatilaka, M. R. Galpin, and D. E. Logan, Two-channel Kondo physics in tunnel-coupled double quantum dots, arXiv:1106.5450
- A.-M. Uimonen, E. Khosravi, G. Stefanucci, S. Kurth, R. van Leeuwen, and E. K. U. Gross, Real-time switching between multiple steady-states in quantum transport, arXiv:1106.5631
- B. Hiltscher, M. Governale, J. Splettstoesser, and J. König, Adiabatic pumping in a double-dot Cooper pair beam splitter, arXiv:1107.4236
- C. P. Moca, I. Weymann, and G. Zarand, Theory of a.c. spin current noise and spin conductance through a quantum dot in the Kondo regime I: The equilibrium case, arXiv:1107.4265
- P. Trocha and J. Barnas, Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena, arXiv:1108.2422 (linear response, Green function approach, Hartree-Fock approximation)
- A. Zazunov, A. Levy Yeyati, and R. Egger, Coulomb blockade of Majorana fermion induced transport, arXiv:1108.4308 (topological superconductor dot with Majorana bound states at contacts, Keldysh formalism) P
- A. Rahmani, C.-Y. Hou, A. Feiguin, M. Oshikawa, C. Chamon, and I. Affleck, A general method for calculating the universal conductance of strongly-correlated junctions of multiple quantum wires, arXiv:1108.4418 (linear response, zero temperature, based on boundary conformal field theory)
- K. Torfason, A. Manolescu, V. Molodoveanu, and V. Gudmundsson, Generalized Master equation approach to mesoscopic time-dependent transport, arXiv:1109.2301 (time-dependent coupling to leads, master equation is numerically integrated)
- M. Nita, D. C. Marinescu, B. Ostahie, A. Manolescu, and V. Gudmundsson, Nonadiabatic generation of spin currents in a quantum ring with Rashba and Dresselhaus spin-orbit interactions, arXiv:1109.2572
- A. Levchenko, T. Micklitz, Z. Ristivojevic, and K. A. Matveev, Interaction effects on thermal transport in quantum wires, arXiv:1109.3657 (weak electron-electron interaction)
- W. A. Coish and F. Qassemi, Leakage-current lineshapes from inelastic cotunneling in the Pauli spin blockade regime, arXiv:1109.4445
- M. Imran, B. Tariq, M. Tahir, and K. Sabeeh, Electron transport through a coupled double dot molecule: role of inter-dot coupling, phononic and dissipative effects, arXiv:1109.4477 (Meir-Wingreen formula, no electron-electron interaction, first treat case of no electron-phonon interaction, then with electron-phonon interaction at the mean-field level)
- H. Soller and A. Komnik, Hamiltonian approach to the charge transfer statistics of Kondo quantum dots contacted by a normal metal and a superconductor, arXiv:1109.4520 (full counting statistics)
- V. Gudmundsson, O. Jonasson, C.-S. Tang, H.-S. Goan, and A. Manolescu, Time-dependent transport of electrons through a photon cavity, arXiv:1109.4728 (with Coulomb interaction, non-diagonal master equation with memory kernel, to second order in the tunneling)
- S. Lindebaum and J. König, Theory of transport through noncollinear single-electron spin-valve transistors, arXiv:1109.5800 (magnetization in ferromagnetic leads is noncollinear; quantum master equation, sequential tunneling approximation for the stationary state)
- N. Bode, S. V. Kusminskiy, R. Egger, and F. von Oppen, Current-induced forces in mesoscopic systems: a scattering matrix approach, arXiv:1109.6043 (long paper, unified theory for nanoelectromechanical systems)
- S. Koller, J. Paaske, and M. Grifoni, Sources of negative tunneling magneto-resistance in multilevel quantum dots with ferromagnetic contacts, arXiv:1109.6599
- A. A. Aligia, Nonequilibrium conductance of a nanodevice for small bias voltage, arXiv:1110.0816 (NEGF, mainly linear response)
- M. Dierl, P. Maass, and M. Einax, Classical Driven Transport in Open Systems with Particle Interactions and General Couplings to Reservoirs, arXiv:1110.2198 (1D chains, model-based time-dependent DFT)
- P. Zedler, C. Emary, T. Brandes, and T. Novotny, Noise calculations within the second-order von Neumann approach, arXiv:1110.3253 (master equation)
- J. Li, J. Jin, X.-Q. Li, and Y.-J. Yan, Improved master equation approach to quantum transport: From Born to self-consistent Born approximation, arXiv:1110.4417 (based on Nakajima-Zwanzig master equation, "Born approximation" here means the sequential-tunneling approximation)
- B. Muralidharan and M. Grifoni, Nanocaloritronic performance analysis of an interacting quantum dot thermoelectric system, arXiv:1110.4537
- A. Croy, U. Saalmann, A. R. Hernández, and C. H. Lewenkopf, Non-adiabatic Electron Pumping through Interacting Quantum Dots, arXiv:1110.5298 (Green-function equation-of-motion approach using auxiliary-mode expansion for the Fermi function)
- R. Zitko, J. S. Lim, R. Lopez, J. Martinek, and P. Simon, Tunable Kondo effect in double quantum dot coupled to ferromagnetic contacts, arXiv:1110.5819
- C. Eltschka and J. Siewert, Even-odd effect in the thermopower and strongly enhanced thermoelectric efficiency for superconducting single-electron transistors, arXiv:1111.2629 (NSN structure)
- K. Liu, K. Xia, and G. E. W. Bauer, Shot noise in magnetic tunnel junctions from first principles, arXiv:1111.2681 (Fe/MgO/Fe)
- L. D. Contreras-Pulido, J. Splettstoesser, M. Governale, J. König, and M. Büttiker, Time scales in the dynamics of an interacting quantum dot, arXiv:1111.4135 (a single reservoir; charge and spin relaxation times and a third time scale related to two-particle processes)
- P. Myöhänen, R. Tuovinen, T. Korhonen, G. Stefanucci, and R. van Leeuwen, Image charge dynamics in time-dependent quantum transport, arXiv:1111.6104 (important effects of image charges, dot with two interacting orbitals, leads are one-dimensional chains, NEGF using the embedded Kadanoff-Baym method developed by some of the authors)
- D. M. Kennes, S. G. Jakobs, C. Karrasch, and V. Meden, A renormalization group approach to time dependent transport through correlated quantum dots, arXiv:1111.6982 (Keldysh NEGF with Meir-Wingreen type current expression and real-time fRG as approximation)
- K. H. Bennemann, Spin Dependent Thermoelectric Currents of Tunnel Junctions, Small Rings and Quantum Dots: Onsager Theory, arXiv:1112.1379 (review on transport in systems with reduced dimensions, emphasis on linear response, mostly own works)
- E. G. Kavousanaki and G. Burkard, Signatures of spin blockade in the optical response of a charged quantum dot, arXiv:1112.5596
- A. Oguri and Y. Tanaka, Transport through a single Anderson impurity coupled to one normal and two superconducting leads, arXiv:1112.6053 (crossover between Kondo and Josephson/Andreev physics)
- H. Ness and L. K. Dash, Nonequilibrium Charge Susceptibility and Dynamical Conductance: Identification of Scattering Processes in Quantum Transport, Phys. Rev. Lett. 108, 126401 (2012) (conceptionally important extension of charge susceptibility to non-equilibrium situation for junstions)
- M. Busl and G. Platero, Triple quantum dots as charge rectifiers, J. Phys.: Condens. Matter 24, 154001 (2012) (due to destructive interference)
- P. Stano, J. Fabian, and P. Jacquod, Non-linear spin to charge conversion in mesoscopic structures, arXiv:1201.0249
- W. Lai, Y. Cao, and Z. Ma, Current-oscillator correlation and Fano factor spectrum of quantum shuttle with finite bias voltage and temperature, J. Phys.: Condens. Matter 24, 175301 (2012) (master equation, various regimes)
- D. Nandi, A. D. K. Finck, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Exciton condensation and perfect Coulomb drag, Nature 488, 481 (2012) (interlayer excitons moving without dissipation); S. M. Girvin, Quantum physics: Electrons in perfect drag, Nature 488, 464 (2012)
- A. Martín-Rodero and A. Levy Yeyati, The Andreev states of a superconducting quantum dot: mean field vs exact numerical results, J. Phys.: Condens. Matter 24, 385302 (2012) (despite the title concerned with normal quantum dot with superconducting leads)
- G. A. Skorobagatko, S. I. Kulinich, I. V. Krive, R. I. Shekhter, and M. Jonson, Magnetopolaronic effects in electron transport through a single-level vibrating quantum dot, Low Temp. Phys. 37, 1032 (2011) (without electron-electron interaction, dot-lead hopping couples to a vibronic mode, Landauer-Büttiker approach)
- A. A. Dzhioev and D. S. Kosov, Nonequilibrium perturbation theory in Liouville-Fock space for inelastic electron transport, arXiv:1201.1230 (inelastic charge transport through a quantum dot, method related to Lindblad and Keldysh NEGF approaches)
- I. A. Sadovskyy, G. B. Lesovik, G. Blatter, T. Jonckheere, and T. Martin, Andreev quantum dot with several conducting channels, arXiv:1201.2831 (a quantum dot in a gap in a superconducting ring pierced by magnetic flux)
- A. G. Moghaddam, M. Governale, and J. König, Driven superconducting proximity effect in interacting quantum dots, arXiv:1201.5032 (time-dependent tunneling between dot and superconducting lead)
- D. J. Luitz, F. F. Assaad, T. Novotny, C. Karrasch, and V. Meden, Understanding the Josephson current through a Kondo-correlated quantum dot, arXiv:1201.5117 (QMC, linear conductance and dc Josephson effect)
- A. Croy and U. Saalmann, Non-adiabatic Rectification and Current Reversal in Electron Pumps, arXiv:1201.6333 (NEGF and auxiliary-mode expansion)
- A. V. Kretinin, H. Shtrikman, and D. Mahalu, Universal lineshape of the Kondo zero-bias anomaly in a quantum dot, arXiv:1201.6470
- K. Torfason, A. Manolescu, V. Molodoveanu, and V. Gudmundsson, Excitation of collective modes in a quantum flute, arXiv:1202.0566 (master equation for short wire)
- H. Ness and L. K. Dash, Many-body current formula and current conservation for non-equilibrium fully interacting nanojunctions, arXiv:1202.3393 (NEGF, methodological development beyond Meir/Wingreen/Jauho)
- V. Gudmundsson, O. Jonasson, T. Arnold, C.-S. Tang, H.-S. Goan, and A. Manolescu, Stepwise introduction of model complexity in a generalized master equation approach to time-dependent transport, arXiv:1203.3048 (electronic system in photonic cavity)
- T. Can, H. Dai, and D. K. Morr, Current Eigenmodes and Dephasing in Nanoscopic Quantum Networks, arXiv:1203.3198
- J. Li, T. C. A. Yeung, and C. H. Kam, Influence of electron scatterings on thermoelectric effect, arXiv:1203.5562
- S. Ajisaka, F. Barra, C. Mejia-Monasterio, and T. Prosen, Nonequlibrium particle and energy currents in quantum chains connected to mesoscopic Fermi reservoirs, arXiv:1204.1321 (the relaxation of the mesoscopic reservoirs is included explicitly by a Lindblad equation)
- D. M. Kennes and V. Meden, Quench dynamics of correlated quantum dots, arXiv:1204.2100
- A. Croy and A. Eisfeld, Dynamics of a nano-scale rotor driven by single-electron tunneling, arXiv:1204.5918
- C. P. Orth, D. F. Urban, and A. Komnik, Finite frequency noise properties of the non-equilibrium Anderson impurity model, arXiv:1205.0876 (Green-function approach, diagrammatic perturbation theory in U, for small and, using partial resummation, intermediate U)
- J. E. Han, A. Dirks, and T. Pruschke, Imaginary-time quantum many-body theory out of equilibrium I: Formal equivalence to Keldysh real-time theory and calculation of static properties, arXiv:1205.1816 P; A. Dirks, J. E. Han, M. Jarrell, and T. Pruschke, Imaginary-time quantum many-body theory out of equilibrium II: Analytic continuation of dynamic observables and transport properties, arXiv:1205.1817 P
- D. Becker, S. Weiss, M. Thorwart, and D. Pfannkuche, Nonequilibrium quantum dynamics of the magnetic Anderson model, arXiv:1205.2462 (method: iterative summation of real-time path integrals)
- J. Splettstoesser, M. Governale, and J. König, Tunneling-induced renormalization in interacting quantum dots, arXiv:1205.4913 (renormalization of system parameters by tunneling processes, perturbative analysis)
- S. Lindebaum and J. Köonig, Current fluctuations of noncollinear single-electron spin-valve transistors, arXiv:1206.0954 (Anderson impurity coupled to two leads with not collinear magnetization, non-diagonal master equation in sequential-tunneling approximation)
- D. S. Kosov, T. Prosen, and B. Zunkovic, Markovian kinetic equation approach to electron transport through quantum dot coupled to superconducting leads, arXiv:1206.3450 (Anderson impurity model, Born-Markov approximation, Lindblad equation to second order, complication lies in calculating the bath correlation functions)
- K. Mosshammer, G. Kiesslich, and T. Brandes, Transport and semiclassical dynamics of coupled quantum dots interacting with a local magnetic moment, arXiv:1206.5994 (electron spin coupled to a large local spin, which is treated semiclassical by Bloch-type equation, Lindblad equation, only at infinite bias)
- M. Leijnse and K. Flensberg, Parity qubits and poor man's Majorana bound states in double quantum dots, arXiv:1207.4299 (two dots connected by a superconducting wire realize two Majorana states, not topologically protected)
- S. Illera, J. D. Prades, A. Cirera, and A. Cornet, A Transfer Hamiltonian model for devices based in quantum dot arrays, arXiv:1207.5513 (for any distribution of quantum dots, bipolar transport [electrons and holes], sequential-tunneling approximation, interaction included via Poisson equation; illustrated for system of few quasi-randomly distributed dots); see also J. Sée, P. Dollfus, S. Galdin, and P. Hesto, From wave-functions to current-voltage characteristics: overview of a Coulomb blockade device simulator using fundamental physical parameters, cond-mat/0511652
- A. Goker and B. Uyanik, Transient thermoelectricity in a vibrating quantum dot in Kondo regime, arXiv:1207.6054
- H. T. Mebrahtu, I. V. Borzenets, D. E. Liu, H. Zheng, Y. V. Bomze, A. I. Smirnov, H. U. Baranger, and G. Finkelstein, Quantum Phase Transition in a Resonant Level Coupled to Interacting Leads, arXiv:1208.1988
- T. Yuge, T. Sagawa, A. Sugita, and H. Hayakawa, Geometrical Pump in Quantum Transport: Quantum Master Equation Approach, arXiv:1208.3926 (pumping by cycling tempertures and chemical potentials in the two leads, show that pumping is then only possible for interacting electrons)
- A. Metelmann and T. Brandes, Transport through single-level systems: spin-dynamics in the nonadiabatic regime, arXiv:1208.4574
- S. Pfaller, A. Donarini, and M. Grifoni, Subgap features due to quasiparticle tunneling in quantum dots coupled to superconducting leads, arXiv:1208.6168
- M. Thomas, T. Karzig, S. V. Kusminskiy, G. Zarand, and F. von Oppen, Scattering theory of adiabatic reaction forces due to out-of-equilibrium quantum environments, arXiv:1209.0620 (for nanoelectromechanical systems, scattering theory)
- C. Pöltl, C. Emary, and T. Brandes, Spin entangled two-particle dark state in quantum transport through coupled quantum dots, arXiv:1209.0992
- K.-C. Ri, C.-W. Ri, and G.-H. Jong, Electronic Transport through QD in the whole temperature range including both the high- and the low-T limits with the equation-of-motion technique, arXiv:1209.2247 (NEGF, equation-of-motion approach)
- S. Rojek, J. König, and A. Shnirman, Adiabatic pumping through an interacting quantum dot with spin-orbit coupling, arXiv:1209.4770 (diagrammatic real-time approach)
- R. D'Agosta, Towards a dynamical approach to the calculation of the figure of merit of thermoelectric nanoscale devices, arXiv:1209.5530 (beyond Landauer)
- D. Futterer, J. Swiebodzinski, M. Governale, and J. König, Renormalization effects in interacting quantum dots coupled to superconducting leads, arXiv:1210.2267 (two superconducting, one normal lead)
- C.-H. Chung, K. Le Hur, G. Finkelstein, M. Vojta, and P. Wölfle, Non-equilibrium quantum transport through a dissipative resonant level, arXiv:1211.3748 (spin-less orbital coupled to one vibrational mode, finite bias voltage, Keldysh NEGF and RG to study nonequilibrium [charge] Kondo effect)
- R. S. Whitney, Thermodynamic and quantum bounds on nonlinear thermoelectric devices, arXiv:1211.4737
- K. H. Thomas and C. Flindt, Electron Waiting Times in Non-Markovian Quantum Transport, arXiv:1211.4995
- L. G. G. V. Dias da Silva, E. Vernek, K. Ingersent, N. P. Sandler, and S. E. Ulloa, Spin-polarized conductance in double quantum dots: Interplay of Kondo, Zeeman and interference effects, arXiv:1211.5289
- B. Abdollahipour, J. Abouie, and A. A. Rostami, Pumping ac Josephson current in the Single Molecular Magnets by spin nutation, arXiv:1211.6879 (rotating echange field, NEGF)
- S. Y. Mueller, M. Pletyukhov, D. Schuricht, and S. Andergassen, Magnetic field effects on the finite-frequency noise and ac conductance of a Kondo quantum dot out of equilibrium, arXiv:1211.7072 (no charge fluctuations; real-time RG approach of Schoeller and Schuricht)
- K. P. Wojcik, I. Weymann, and J. Barnas, Asymmetry-induced effects in Kondo quantum dots coupled to ferromagnetic leads, J. Phys.: Condens. Matter 25, 075301 (2013) (strong coupling to leads)
- E. Arrigoni, M. Knap, and W. von der Linden, Nonequilibrium Dynamical Mean Field Theory: An Auxiliary Quantum Master Equation Approach, Phys. Rev. Lett. 110, 086403 (2013) (non-equilibrium extension of DMFT, impurity problem involves single interacting site coupled to two chains, which are coupled to two reservoirs, the latter coupling described by Lindblad master equation with "forced insertion and removal" Lindblad operators and fitted coefficents; applied to a Hubbard layer with current flowing through it in the normal, z direction)
- N. M. Chtchelkatchev, A. Glatz, and I. S. Beloborodov, Interplay of charge and heat transport in a nano-junction in the out-of-equilibrium cotunneling regime, J. Phys.: Condens. Matter 25, 185301 (2013) (inelastic cotunneling, Boltzmann-type kinetic equation)
- S. Kim and Y.-W. Son, Scattering theory approach to inelastic transport in nanoscale systems, Phys. Rev. B 87, 195423 (2013)
- R. Bustos-Marún, G. Rafael, and F. von Oppen, Adiabatic Quantum Motors, Phys. Rev. Lett. 111, 060802 (2013) (charges moving in a ring, driven by interaction with electrons flowing through a nanowire), see also Physics Viewpoint
- L. Rajabi, C. Pöltl, and M. Governale, Waiting Time Distributions for the Transport through a Quantum-Dot Tunnel Coupled to One Normal and One Superconducting Lead, Phys. Rev. Lett. 111, 067002 (2013) (master equation)
- X. Zheng, Y.-J. Yan, and M. Di Ventra, Kondo Memory in Driven Strongly Correlated Quantum Dots, Phys. Rev. Lett. 111, 086601 (2013) (use the hierarchical-equation-of-motion approach of Yan et al., leads effectively have Lorentzian density of states)
- F. Bauer, J. Heyder, E. Schubert, D. Borowsky, D. Taubert, B. Bruognolo, D. Schuh, W. Wegscheider, J. von Delft, and S. Ludwig, Microscopic origin of the '0.7-anomaly' in quantum point contacts, Nature 501, 73 (2013) (experiment and theory; explain 0.7 anomaly and zero-bias peak in terms of van Hove singularity of lower 1D subband; mechanism is essentially different from the Kondo effect); M. J. Iqbal, R. Levy, J. Koop, J. B. Dekker, J. P. de Jong, J. H. M. van der Velde, D. Reuter, A. D. Wieck, R. Aguado, Y. Meir, and C. H. van der Wal, Odd and even Kondo effects from emergent localization in quantum point contacts, Nature 501, 79 (2013) (experiment and theory; contains conflicting explanation of 0.7 anomaly in terms of localized states in the contact region due to electron-electron interactions; this is essentially Kondo physics); see also Nature Phys. 9, 530 (2013)
- J. Zhang, Z. Yin, X. Zheng, C. Yam, and G. Chen, A gauge-invariant and current-continuous microscopic ac quantum transport theory, arXiv:1301.0183
- D. M. Kennes, D. Schuricht, and V. Meden, Efficiency and power of a thermoelectric quantum dot device, arXiv:1301.3355 (linear response, with short-range dot-lead interaction)
- A. Dirks, S. Schmitt, J. E. Han, F. Anders, P. Werner, and T. Pruschke, Double Occupancy and Magnetic Susceptibility of the Anderson Impurity Model out of Equilibrium, arXiv:1302.0269
- J. Kern, Tunneling Hamiltonian, arXiv:1302.1391
- K. F. Albrecht, A. Martin-Rodero, R. C. Monreal, L. Mühlbacher, and A. Levy Yeyati, Long transient dynamics in the Anderson-Holstein model out of equilibrium, arXiv:1302.3108 (polaron effects)
- L. Simine and D. Segal, Path-integral simulations with fermionic and bosonic reservoirs: Transport and dissipation in molecular electronic junctions, arXiv:1302.5761 (numerical influence-functional path-integral approach to the time evolution)
- J. Kern, A perturbation theory for the Anderson model, arXiv:1302.6511 (master equation, expansion in the tunneling amplitude, partial resummation)
- A. Koga, Quantum Monte Carlo study of nonequilibrium transport through a quantum dot coupled to normal and superconducting leads, arXiv:1303.0288 (continuous-time QMC for time evolution of quantum dot)
- O. V. Ogloblya and G. M. Kuznetsova, Nanotube Quantum Dot Transport With Spin-Orbit Coupling and Interacting Leads, arXiv:1303.1451 (Coulomb interaction between dot and leads, NEGF)
- S. Kohler, Measurement correlations in mesoscopic charge detection, arXiv:1303.1662
- M. O. Assuncão, E. J. R. de Oliveira, J. M. Villas-Boas, and F. M. Souza, Thermal effects on photon-induced quantum transport in a single quantum dot, J. Phys.: Condens. Matter 25, 135301 (2013) (laser-induced transport, NEGF)
- A. Goker and E. Gedik, Time dependent quantum transport through Kondo correlated quantum dots, arXiv:1303.2859 (slave-boson transformation, Meir-Wingreen formula, linear conductance and thermopower only)
- N. Winkler, M. Governale, and J. König, Theory of spin pumping through an interacting quantum dot tunnel coupled to a ferromagnet with time-dependent magnetization, arXiv:1303.4184 (diagrammatic real-time formulation, extended to allow for time-dependent lead properties)
- A. Ivanov, G. Kordas, A. Komnik, and S. Wimberger, Bosonic transport through a chain of quantum dots, arXiv:1304.5503
- H. Ness and L. K. Dash, Nonequilibrium Fluctuation-Dissipation Theorems for Interacting Quantum Transport, arXiv:1305.5077 (NEGF approach)
- R. Sánchez, B. Sothmann, A. N. Jordan, and M. Büttiker, Correlations of heat and charge currents in quantum-dot thermoelectric engines, arXiv:1307.0598 (master equation with counting fields)
- J. Baranski and T. Domanski, In-gap states of the quantum dot coupled between a normal and superconducting lead, arXiv:1307.1004
- E. Wach, D. P. Zebrowski, and B. Szafran, Charge density mapping of strongly-correlated few-electron two-dimensional quantum dots by scanning probe technique, arXiv:1307.1206 (relatively large dots, calculate charge density, not dI/dV, taking the effect of the tip on the dot into account)
- F. G. Eich, A. Principi, M. Di Ventra, and G. Vignale, Luttinger-field approach to thermoelectric transport in nanoscale conductors, Phys. Rev. B 90, 115116 (2014) (application of ideas related to Phys. Rev. Lett. 112, 196401 (2014) to a model system)
- J. Danon and M. S. Rudner, Multilevel Interference Resonances in Strongly Driven Three-Level Systems, Phys. Rev. Lett. 113, 247002 (2014)
- R. Härtle and A. J. Millis, The formation of nonequilibrium steady states in interacting double quantum dots: When coherences dominate the charge distribution, arXiv:1409.3504 P
- R. Avriller and F. Pistolesi, Andreev Bound-State Dynamics in Quantum-Dot Josephson Junctions: A Washing Out of the 0-π Transition, Phys. Rev. Lett. 114, 037003 (2015) (Born-Markov master equation, Floquet theory)
- M. Esposito, M. A. Ochoa, and M. Galperin, Quantum Thermodynamics: A Nonequilibrium Green's Function Approach, Phys. Rev. Lett. 114, 080602 (2015) (noninteracting, fermionic lead-dot-lead system) P
- J.-T. Lü, R. B. Christensen, J.-S. Wang, P. Hedegård, and M. Brandbyge, Current-Induced Forces and Hot Spots in Biased Nanojunctions, Phys. Rev. Lett. 114, 096801 (2015) (heat flow carried by phonons, induced by electron current; physics seems to be that right-moving electrons emit more right-moving phonons than left-moving phonons; many-particle theory and DFT)
- E. Taylor and D. Segal, Quantum Bounds on Heat Transport Through Nanojunctions, Phys. Rev. Lett. 114, 220401 (2015) (Meir-Wingreen approach)
- Z.-Z. Li, C.-H. Lam, and J. Q. You, Probing Majorana bound states via counting statistics of a single electron transistor, Sci. Rep. 5, 11416 (2015) (non-interacting model, Pauli master equation in sequential-tunneling approximation, for large bias)
- A. E. Antipov, Q. Dong, and E. Gull, Voltage Quench Dynamics of a Kondo System, Phys. Rev. Lett. 116, 036801 (2016)
- G. Vionnet and O. P. Sushkov, Enhancement Mechanism of the Electron g Factor in Quantum Point Contacts, Phys. Rev. Lett. 116, 126801 (2016) (due to combination of electron-electron interaction and nonequilibrium; Hartree-Fock approximation)
- K. Kaasbjerg and A.-P. Jauho, Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures, Phys. Rev. Lett. 116, 196801 (2016) (higher-order master equation)
- K. Joulain, J. Drevillon, Y. Ezzahri, and J. Ordonez-Miranda, Quantum Thermal Transistor, Phys. Rev. Lett. 116, 200601 (2016) (with application to three spins)
- A. Dorda, M. Ganahl, S. Andergassen, W. von der Linden, and E. Arrigoni, Thermoelectric response of a correlated impurity in the nonequilibrium Kondo regime, arXiv:1608.05714 (non-equilibrium Anderson model; Keldysh approach) P
- A. Vikström, A. M. Eriksson, S. I. Kulinich, and L. Y. Gorelik, Nanoelectromechanical Heat Engine Based on Electron-Electron Interaction, Phys. Rev. Lett. 117, 247701 (2016)
-
A. Oguri and A. C. Hewson, Higher-Order Fermi-Liquid Corrections for an Anderson Impurity Away from Half Filling, Phys. Rev. Lett. 120, 126802 (2018) (exact results to first order in frequencies, also applied to transport through an interacting quantum dot)
-
A. Zazunov, S. Plugge, and R. Egger, Fermi-Liquid Approach for Superconducting Kondo Problems, Phys. Rev. Lett. 121, 207701 (2018)
-
A. Altland, D. Bagrets, and A. Kamenev, Sachdev-Ye-Kitaev Non-Fermi-Liquid Correlations in Nanoscopic Quantum Transport, Phys. Rev. Lett. 123, 226801 (2019) (sequential and cotunneling)
Model-based theory for nanotubes and nanowires
- L. Mayrhofer and M. Grifoni, Linear and nonlinear transport across carbon nanotube quantum dots, cond-mat/0612286 (applies second-order Blum-type perturbation theory to a partly bosonized model for interacting electrons on a large single-wall nanotube)
- J.-S. Wang, N. Zeng, J. Wang, and C. K. Gan, Nonequilibrium Green's function method for thermal transport in junctions, cond-mat/0701164 (note: thermal transport, also for carbon-nanotube junctions) P
- A. V. Andreev, Magnetoconductance of carbon nanotube p-n junctions, arXiv:0706.0735
- I. Weymann, J. Barnas, and S. Krompiewski, Theory of shot noise in single-walled metallic carbon nanotubes weakly coupled to nonmagnetic and ferromagnetic leads, arXiv:0710.2327
- N. Nemec, K. Richter, and G. Cuniberti, Diffusion and localization in carbon nanotubes and graphene nanoribbons, arXiv:0804.4833
- B. Wunsch, Few-electron physics in a nanotube quantum dot with spin-orbit coupling, arXiv:0904.0445
- E. Mariani and F. von Oppen, Electron-vibron coupling in suspended carbon nanotube quantum dots, arXiv:0904.4653 (mainly interested in calculating the electron-vibron coupling, not the transport)
- F. Cavaliere, E. Mariani, R. Leturcq, C. Stampfer, and M. Sassetti, Anisotropic Franck-Condon factors in suspended carbon nanotube quantum dots, arXiv:0911.2122
- A. W. Cummings and F. Léonard, Electrostatic effects on contacts to carbon nanotube transistors, arXiv:1106.2186
- A. Pályi, P. R. Struck, M. Rudner, K. Flensberg, and G. Burkard, Spin-Orbit-Induced Strong Coupling of a Single Spin to a Nanomechanical Resonator, Phys. Rev. Lett. 108, 206811 (2012), see also Physics Focus
- G. Kirsanskas, J. Paaske, and K. Flensberg, Cotunneling renormalization in carbon nanotube quantum dots, arXiv:1206.1359
- K. Goß, M. Leijnse, S. Smerat, M. R. Wegewijs, C. M. Schneider, and C. Meyer, Parallel carbon nanotube quantum dots and their interactions, arXiv:1208.5860
- P. R. Struck, H. Wang, and G. Burkard, Nanomechanical read-out of a single spin, arXiv:1212.1569 (spin-orbit coupling is required; master equation)
- J. E. Han and J. Li, Energy dissipation in DC-field driven electron lattice coupled to fermion baths, arXiv:1304.4269 (non-interacting model, electric field included by time-dependent Peierls phase)
- G. Micchi, R. Avriller, and F. Pistolesi, Mechanical Signatures of the Current Blockade Instability in Suspended Carbon Nanotubes, Phys. Rev. Lett. 115, 206802 (2015)
- B. Brun, F. Martins, S. Faniel, B. Hackens, A. Cavanna, C. Ulysse, A. Ouerghi, U. Gennser, D. Mailly, P. Simon, S. Huant, V. Bayot, M. Sanquer, and H. Sellier, Electron Phase Shift at the Zero-Bias Anomaly of Quantum Point Contacts, Phys. Rev. Lett. 116, 136801 (2016)
- A. Zazunov, F. Buccheri, P. Sodano, and R. Egger, 6π Josephson Effect in Majorana Box Devices, Phys. Rev. Lett. 118, 057001 (2017)
-
S. S. Pershoguba, T. Veness, and L. I. Glazman, Landauer Formula for a Superconducting Quantum Point Contact, Phys. Rev. Lett. 123, 067001 (2019)
Model-based theory for molecular and atomic systems other than nanotubes
- A. V. Balatsky and I. Martin, Theory of single spin detection with STM, cond-mat/0112407
- M. Zwolak and M. Di Ventra, DNA spintronics, Appl. Phys. Lett. 81, 925 (2002)
- A. S. Alexandrov, A. M. Bratkovsky, and R. S. Williams, Bistable tunneling current through a molecular quantum dot, Phys. Rev. B 67, 075301 (2003) (hysteresis in I-V characteristics for ground state with degeneracy d > 2)
- K. D. McCarthy, N. Prokof'ev, and M. T. Tuominen, Incoherent dynamics of vibrating single-molecule transistors, Phys. Rev. B 67, 245415 (2003)
- A. Thielmann, M. H. Hettler, J. König, and G. Schön, Shot noise in tunneling transport through molecules and quantum dots, Phys. Rev. B 68, 115105 (2003)
- Y. Xue and M. A. Ratner, Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop, and high-field transport, Phys. Rev. B 68, 115406 (2003); Microscopic study of electrical transport through individual molecules with metallic contacts. II. Effect of the interface structure, Phys. Rev. B 68, 115407 (2003)
- K. Flensberg, Tunneling broadening of vibrational sidebands in molecular transistors, Phys. Rev. B 68, 205323 (2003)
- V. Aji, J. E. Moore, and C. M. Varma, Electronic-vibrational coupling in single-molecule devices, cond-mat/0302222, Int. J. Nanosci. 3, 255 (2004)
- A. Mitra, I. Aleiner, and A. J. Millis, Phonon effects in molecular transistors: Quantal and classical treatment, Phys. Rev. B 69, 245302 (2004) (inelastic tunneling, Wangsness-Bloch-Redfield approach for weak tunneling and NEGF approach for strong tunneling) P
- G.-H. Kim and T.-S. Kim, Electronic Transport in Single-Molecule Magnets on Metallic Surfaces, Phys. Rev. Lett. 92, 137203 (2004) (model similar to Romeike et al., without molecular orbitals, applied to STM tunneling in the weak-tunneling limit, uses Fermi's Golden Rule)
- J. Paaske and K. Flensberg, Vibrational Sidebands and the Kondo Effect in Molecular Transistors, Phys. Rev. Lett. 94, 176801 (2005)
- M. Galperin, M. A. Ratner, and A. Nitzan, Hysteresis, Switching, and Negative Differential Resistance in Molecular Junctions: A Polaron Model, Nano Lett. 5, 125 (2005); A. S. Alexandrov and A. M. Bratkovsky, Comment on "Hysteresis, Switching, and Negative Differential Resistance in Molecular Junctions: A Polaron Model", cond-mat/0603467; M. Galperin, M. A. Ratner, and A. Nitzan, Reply to Comment by Alexandrov and Bratkovsky, cond-mat/0604112
- M. R. Wegewijs and K. C. Nowack, Nuclear wavefunction interference in single-molecule electron transport, New J. Phys. 7, 239 (2005) (effect of changes of the vibration potentials with electronic occupation, related to Koch and von Oppen)
- K. A. Al-Hassanieh, C. A. Büsser, G. B. Martins, and E. Dagotto, Electron Transport through a Molecular Conductor with Center-of-Mass Motion, Phys. Rev. Lett. 95, 256807 (2005) (conductance dip at zero bias)
- M. Galperin, A. Nitzan, and M. A. Ratner, Resonant inelastic tunneling in molecular junctions, cond-mat/0510452, Phys. Rev. B
- K. Walczak, The influence of vibronic coupling on the shape of transport characteristics in inelastic tunneling through molecules, cond-mat/0510802
- N. Jean and S. Sanvito, Inelastic transport in molecular spin valves, cond-mat/0511574 (1D chain with Einstein phonons)
- T. T. Heikkila and W. Belzig, Slow Vibrations in Transport through Molecules, cond-mat/0512047
- C. Romeike, M. R. Wegewijs, W. Hofstetter, and H. Schoeller, Quantum tunneling induced Kondo effect in single molecular magnets, Phys. Rev. Lett. 96, 196601 (2006) (zero bias, no molecular orbitals, discuss effect of anisotropy, use poor man's scaling and NRG) P
- C. Romeike, M. R. Wegewijs, and H. Schoeller, Spin quantum tunneling in single molecular magnets: fingerprints in transport spectroscopy of current and noise, Phys. Rev. Lett. 96, 196805 (2006) (sequential tunneling, allow mixing of Sz eigenstates by magnetic tunneling not related to electronic tunneling, which leads to additional peaks in differential conductance) P
- Z.-Z. Chen, H. Lu, R. Lü, and B. Zhu, Phonon-assisted Kondo effect in a single-molecule transistor out of equilibrium, J. Phys.: Condens. Matter 18, 5435 (2006)
- H. Ness, Quantum inelastic electron-vibration scattering in molecular wires: Landauer-like versus Green's function approaches and temperature effects, J. Phys.: Condens. Matter 18, 6307 (2006)
- M. N. Leuenberger and E. R. Mucciolo, Berry Phase Oscillations of the Kondo Effect in Single-Molecule Magnets, Phys. Rev. Lett. 97, 126601 (2006) (transverse magnetic field can quench the Kondo effect in transport, assuming strong coupling to metallic leads; Ni4 cluster)
- K. Walczak, Coulomb blockade in molecular quantum dots, cond-mat/0601379
- H. Ness and A. J. Fisher, Vibrational inelastic scattering effects in molecular electronics, cond-mat/0603494, Proc. Nat. Acad. Sci. 102, 8826 (2005)
- M. Galperin, A. Nitzan, and M. A. Ratner, Inelastic tunneling effects on noise properties of molecular junctions, cond-mat/0604029 (single-orbital molecule with one vibrational mode, which is coupled to a phonon bath, concentrate on noise)
- A. Donarini, M. Grifoni, and K. Richter, Dynamical symmetry breaking in transport through molecules, cond-mat/0605123 (... due to quasi-degenerate vibrational eigenstates)
- C. Benjamin, T. Jonckheere, A. Zazunov, and T. Martin, Controllable pi junction in a Josephson quantum-dot device with molecular spin, cond-mat/0605338 (model with one molecular orbital without Coulomb interaction, coupled to a local static exchange field and superconducting leads in equilibrium [thus does not really belong here]) P
- C. Romeike, M. R. Wegewijs, W. Hofstetter, and H. Schoeller, Kondo-transport spectroscopy of single molecule magnets, Phys. Rev. Lett. 97, 206601 (2006) (zero bias, discuss strong anisotropy, employ NRG) P
- G. Fagas, P. Delaney, and J. C. Greer, Independent particle descriptions of tunneling from a many-body perspective, cond-mat/0606026 (applied to metal-molecule-metal junction, goal is to find an optimal single-electron description for the many-body system)
- J. Lehmann and D. Loss, Sequential Tunneling through Anisotropic Heisenberg Spin Rings, cond-mat/0608642 (molecules with spins arranged in a ring, importance of Zener double exchange [the Hamiltonian describes a phenomenological Zener model, double exchange is at best present as the possible origin of the nearest-neighbor exchange interaction])
- B. Muralidharan, A. W. Ghosh, S. K. Pati, and S. Datta, Theory of high bias Coulomb Blockade in ultrashort molecules, cond-mat/0610244 (benzene, Hubbard model, rate equations for many-particle states, also compares to single-electron approach)
- M. Galperin, M. A. Ratner, and A. Nitzan, Heat conduction in molecular transport junctions, cond-mat/0611169 (long paper)
- F. Pump and G. Cuniberti, Rectification effects in coherent transport through single molecules, cond-mat/0611436
- M. Misiorny and J. Barnas, Quantum Tunneling of Magnetization in Single Molecular Magnets Coupled to Ferromagnetic Reservoirs, cond-mat/0611644 (with time-dependent magnetic field)
- M. Misiorny and J. Barnas, Magnetic Switching of a Single Molecular Magnet due to Spin-Polarized Current, Phys. Rev. B 75, 134425 (2007) (with two ferromagnetic leads, no explicit molecular orbital, direct left-right tunneling similar to Romeike et al.)
- B. Song, D. A. Ryndyk, and G. Cuniberti, Molecular junctions in the Coulomb blockade regime: rectification and nesting, Phys. Rev. B 76, 045408 (2007) (connects master equation and Green functions)
- M. Misiorny and J. Barnas, Spin polarized transport through a single-molecule magnet: Current-induced magnetic switching, Phys. Rev. B 76, 054448 (2007) (with explicit LUMO exchange-coupled to local spin, Fermi's Golden Rule)
- T. Korb, F. Reininghaus, H. Schoeller, and J. König, Real-time renormalization group and cutoff scales in nonequilibrium, Phys. Rev. B 76, 165316 (2007) (exchange scattering from single spin between two leads, with anisotropic exchange and on-site anisotropy, cotunneling regime, meaning here: no charge fluctuations) P
- G. Gonzalez and M. N. Leuenberger, Berry-phase blockade in single-molecule magnets, Phys. Rev. Lett. 98, 256804 (2007) (sequential tunneling, two ferromagnetic leads, interference effects) P
- S. Florens, Nano-DMFT for molecules, ultrasmall particles and inhomogeneous materials in the strong correlation regime, cond-mat/0701725 (includes a bias voltage)
- M. Paulsson and M. Brandbyge, Transmission eigenchannels from non-equilibrium Green's functions, cond-mat/0702295
- M. G. Schultz, T. S. Nunner, and F. von Oppen, Berry-phase effects in transport through single Jahn-Teller molecules, cond-mat/0702489
- H. Raza, An EHT based model for Single Molecule Incoherent Resonant Scanning Tunneling Spectroscopy, cond-mat/0703236 (EHT = extended Hückel theory)
- K. Walczak, Vibrational features in inelastic electron tunneling spectra, cond-mat/0703559 (non-perturbative approach for strong-tunneling regime)
- M. Misiorny and J. Barnas, Current-Induced Switching of a Single-Molecule Magnet with Arbitrary Oriented Easy Axis, arXiv:0704.2497 (a model without explicit molecular orbitals, but with spin-scattering of tunneling electrons off the local spin, find strong dependence of current on misalignment angle) P
- P. San-Jose, G. Schön, A. Shnirman, and G. Zarand, Spin dephasing due to a random Berry phase, arXiv:0704.2974 (effect of spin-orbit coupling)
- B. Dong, X. L. Lei, and N. J. M. Horing, Elimination of negative differential conductance in an asymmetric molecular transistor by an ac-voltage, arXiv:0705.2624
- A. S. Alexandrov and A. M. Bratkovsky, Fast polaron switching in degenerate molecular quantum dots, J. Phys.: Condens. Matter 19, 255203 (2007)
- A. Landau, L. Kronik, and A. Nitzan, Cooperative effects in molecular conduction, arXiv:0707.3038 (tunneling through molecular monolayers, tight-binding model)
- G. Li, M. Schreiber, and U. Kleinekathöfer, Coherent laser control of the current through molecular junctions, arXiv:0708.3429, Europhys. Lett. 79, 27006 (2007); U. Kleinekathöfer, G. Li, S. Welack, and M. Schreiber, Switching the current through molecular wires, arXiv:0708.3432, Europhys. Lett. 75, 129 (2006); U. Kleinekathöfer, G. Li, S. Welack, and M. Schreiber, Coherent destruction of the current through molecular wires using short laser pulses, arXiv:0708.3433, phys. stat. sol. (b) 243, 3775 (2006)
- J. Lagerqvist, M. Zwolak, and M. Di Ventra, Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport, arXiv:0708.4395 (tight-binding model, result is that sequencing in a nanochannel should be feasible)
- M. C. Lüffe, J. Koch, and F. von Oppen, Vibrational absorption sidebands in the Coulomb blockade regime, arXiv:0709.0876
- P. S. Cornaglia, Gonzalo Usaj, and C. A. Balseiro, Electronic Transport through Magnetic Molecules with Soft Vibrating Modes, arXiv:0711.0394 (employing the NRG)
- R. Egger and A. O. Gogolin, Vibration-induced correction to the current through a single molecule, arXiv:0712.0750 (NEGF formalism, perturbation theory for small electron-vibron coupling)
- G. Begemann, D. Darau, A. Donarini, and M. Grifoni, Symmetry fingerprints of a benzene single-electron transistor: Interplay between Coulomb interaction and orbital symmetry, Phys. Rev. B 77, 201406(R) (2008), also note erratum (Hubbard-type model, quantum master equation in secular and sequential-tunneling approximation; find different conductance for meta- and para-contacted benzene due to interference between degenerate MOs); D. Darau, G. Begemann, A. Donarini, and M. Grifoni, A benzene interference single-electron transistor, Phys. Rev. B 79, 235404 (2009) (extension, with symmetry analysis); A. Donarini, G. Begemann, and M. Grifoni, All-Electric Spin Control in Interference Single Electron Transistors, Nano Lett. 9, 2897 (2009) (with ferromagnetic leads)
- G. Gonzalez, M. N. Leuenberger, and E. R. Mucciolo, Kondo effect in single-molecule magnet transistors, Phys. Rev. B 78, 054445 (2008)
- P. D'Amico, D. A. Ryndyk, G. Cuniberti, and K. Richter, Charge-memory effect in a polaron model: equation-of-motion method for Green functions, New J. Phys. 10, 085002 (2008); D. A. Ryndyk, P. D'Amico, G. Cuniberti, and K. Richter, Charge-memory polaron effect in molecular junctions, Phys. Rev. B 78, 085409 (2008)
- J. S. Seldenthuis, H. S. J. van der Zant, M. A. Ratner, and J. M. Thijssen, Vibrational Excitations in Weakly Coupled Single-Molecule Junctions: A Computational Analysis, ACS Nano 2, 1445 (2008) (rate equations for sequential tunneling, vibration modes obtained from DFT); Understanding electroluminescence spectra in weakly coupled single-molecule junctions, arXiv:1002.4542
- J. K. Viljas, F. Pauly, and J. C. Cuevas, Photoassisted transport in organic molecular wires: length-dependence and current-voltage characteristics, arXiv:0801.1323 (tight-binding model for polyphenylene chains without electron-electron interactin)
- R. Härtle, C. Benesch, and M. Thoss, Multimode vibrational effects in single molecule conductance: A nonequilibrium Green's function approach, arXiv:0801.3602 (NEGF approach, long laper)
- J. Skoldberg, T. Lofwander, V. S. Shumeiko, and M. Fogelstrom, Andreev bound state spectroscopy in superconducting molecular junctions, arXiv:0801.3608 (molecule between superconducting leads, the focus is on properties of the leads and the point contact, not the molecule)
- M. Misiorny and J. Barnas, Effects of Intrinsic Spin-Relaxation in Molecular Magnets on Current-Induced Magnetic Switching, arXiv:0801.3655 (with two ferromagnetic leads, tunneling included at Golden-Rule level)
- M. Galperin, A. Nitzan, and M. A. Ratner, Non-linear response of molecular junctions: The polaron model revisited, arXiv:0801.3783 (Green function approach)
- H. Raza and E. C. Kan, An atomistic quantum transport solver with dephasing for field-effect transistors, arXiv:0802.2357 (detailed modelling of atomistic structure and electric potential, interaction treated at Hartree level)
- F. Reckermann, M. Leijnse, M. R. Wegewijs, and H. Schoeller, Transport signature of pseudo-Jahn-Teller dynamics in a single-molecule transistor, arXiv:0802.3326; Vibrational detection and control of spin in mixed-valence molecular transistors, arXiv:0802.3498, Europ. Phys. Lett. 83, 58001 (2008)
- M. Leijnse and M. R. Wegewijs, Kinetic equations for transport through single-molecule transistors, Phys. Rev. B 78, 235424 (2008) (consistent perturbative expansion of master equation to fourth order, discuss cotunneling-assisted sequential tunneling) P
- J. P. Bergfield and C. A. Stafford, Many-body treatment of quantum transport through single molecules, arXiv:0803.2756 (combines exact diagonalization of molecular Hamiltonian with NEGF approach to obtain the current)
- T. Jonckheere, K.-I. Imura, and T. Martin, Colossal spin fluctuations in a molecular quantum dot magnet with ferromagnetic electrodes, arXiv:0803.3058 (analytical expressions for various averages and fluctuations for a simple model at zero temperature, in sequential-tunneling approximation, one or two ferromagnetic leads) P
- W. Lee and S. Sanvito, Exploring the limits of the self consistent Born approximation for inelastic electronic transport, arXiv:0804.3389 (non-equilibrium Green function formalism)
- M. Lee, T. Jonckheere, and T. Martin, Josephson Effect through a Magnetic Metallofullerene Molecule, arXiv:0805.0301 (endohedral fullerene, employ NRG)
- F. Pistolesi, Ya. M. Blanter, and I. Martin, Self-consistent theory of molecular switching, arXiv:0806.1151
- M. Galperin, M. A. Ratner, and A. Nitzan, Raman scattering in current carrying molecular junctions. A preliminary account, arXiv:0808.0292
- A. Saffarzadeh, Electronic transport through a C60 molecular bridge: The role of single and multiple contacts, arXiv:0808.1352 (tight-binding model for C60, no Jahn-Teller distortion, Landauer-Büttiker approach, effect due to interference of tunneling paths)
- S. Vasudevan, K. Walczak, N. Kapur, M. Neurock, and A. W. Ghosh, Modeling electrostatic and quantum detection of molecules, arXiv:0808.2262
- M. Galperin, A. Nitzan, and M. A. Ratner, Nonequilibrium isolated molecule limit, arXiv:0808.3115 (using Green functions for Hubbard operators) P
- K. Kaasbjerg and K. Flensberg, Strong polarization-induced reduction of addition energies in single-molecule nanojunctions, arXiv:0809.1774
- M.Crisan and I.Grosu, Temperature effect in the conductance of hydrogen molecule, arXiv:0810.3120, Physica E 41, 130 (2008)
- J. P. Bergfield and C. A. Stafford, Many-body theory of electronic transport in single-molecule heterojunctions, arXiv:0812.0867 (nonequilibrium Green functions, including rigorous result for the Coulomb-interaction self energy in the sequential tunneling limit)
- F. Reckermann, M. Leijnse, and M. R. Wegewijs, Vibrational detection and control of spin in mixed-valence molecular transistors, Phys. Rev. B 79, 075313 (2009)
- H.-Z. Lu, B. Zhou, and S.-Q. Shen, Spin-bias driven magnetization reversal and nondestructive detection in a single molecular magnet, Phys. Rev. B 79, 174419 (2009) (spin bias = different chemical potential for up and down spins)
- M. A. Romero, S. C. Gomez-Carrillo, P. G. Bolcatto, and E. C. Goldberg, Spin fluctuation effects on the conductance through a single Pd atom contact, J. Phys.: Condens. Matter 21, 215602 (2009)
- M. Esposito and M. Galperin, Transport in molecular states language: Generalized quantum master equation approach, Phys. Rev. B 79, 205303 (2009) (using Hubbard operators for the interacting molecular part of the Hamiltonian and Keldysh-Green functions for the Hubbard and (lead) Fermi operators, equation of motion for the expectation value of Hubbard operators is written down and approximately decoupled by inserting projection superoperators P, leading to a master equation that is nonlocal in time, broadening of molecular levels by coupling is here taken into account; relation to standard Markovian master equation is explained)
- M. Misiorny, I. Weymann, and J. Barnas, Spin effects in transport through single-molecule magnets in the sequential and cotunneling regimes, Phys. Rev. B 79, 224420 (2009) (magnetic molecule with anisotropic spin, coupled to two ferromagnetic leads, real-time diagrammatics)
- J. Loos, T. Koch, A. Alvermann, A. R. Bishop, and H. Fehske, Phonon affected transport through molecular quantum dots, J. Phys.: Condens. Matter 21, 395601 (2009) (employing the Lang-Firsov transformation of the vibrons)
- M. G. Schultz and F. von Oppen, Quantum transport through nanostructures in the singular-coupling limit, Phys. Rev. B 80, 033302 (2009) (perturbation theory for nearly degenerate states, full master equation vs. rate equations; title changed compared to preprint) P
- T. L. Schmidt and A. Komnik, Charge transfer statistics of a molecular quantum dot with a vibrational degree of freedom, Phys. Rev. B 80, 041307(R) (2009) (full counting statistics, arbitrary tunneling, but weak electron-vibron coupling, see also the paper by Avriller and Levy Yeyati, below)
- I. Baldea and H. Köppel, Critical analysis of a variational method used to describe molecular electron transport, Phys. Rev. B 80, 165301 (2009), also arXiv:1108.0299 (strong critique of a generalization of the variational approach of P. Delaney and J. C. Greer, said to give unphysical results in simple limiting cases); there is also a comment by Delaney and Greer and a reply by Baldea and Köppel
- F. Haupt, T. Novotny, and W. Belzig, Phonon-assisted current noise in molecular junctions, Phys. Rev. Lett. 103, 136601 (2009) (non-equilibrium Green functions)
- B. B. Schmidt, M. H. Hettler, and G. Schön, Charge correlations in polaron hopping through molecules, arXiv:0902.3183 (chain molecules such as DNA with strong charge-deformation coupling)
- L. G. Dias da Silva and E. Dagotto, Phonon-assisted tunneling and two-channel Kondo physics in molecular junctions, arXiv:0902.3225 P
- R. Avriller and A. Levy Yeyati, Electron-phonon interaction and full counting statistics in molecular junctions, arXiv:0903.0939 (see also the paper by Schmidt and Komnik, above)
- A. Schulz, A. Zazunov, and R. Egger, Critical Josephson current through a bistable single-molecule junction, arXiv:0903.2007 (Ic for a molecule with one orbital, coupled to a two-level system, at zero bias, cotunneling) P
- O. Entin-Wohlman, Y. Imry, and A. Aharony, Voltage-induced singularities in transport through molecular junctions, arXiv:0904.4385 (Keldysh formalism, consider the cases of linear response at nonzero temperature and nonzero bias at zero temperature)
- B. Dong, H. Y. Fan, X. L. Lei, and N. J. M. Horing, Counting statistics of tunneling through a single molecule: effect of distortion and displacement of vibrational potential surface, arXiv:0904.4737 (rate equations)
- J. Loos, T. Koch, A. Alvermann, A. R. Bishop, and H. Fehske, Phonon affected transport through molecular quantum dots, arXiv:0905.0248 (one-dimensional model for lead-dot-lead system, for zero bias only, approach based on equilibrium Matsubara-Green functions, addressing weak to strong electron-phonon coupling)
- S. K. Shukla and S. Sanvito, Electron transport across electrically switchable magnetic molecules, arXiv:0905.1607 (magnetic dimer: two sites exchange-coupled to one classical spin each, no electron-electron interaction, local spins are frozen; employ non-equilibrium Green functions)
- J. Mravlje and A. Ramsak, Kondo effect in oscillating molecules, arXiv:0905.2409, phys. stat. sol. (b) 246, 994 (2009); Electron transport through molecules in the Kondo regime: the role of molecular vibrations, arXiv:0912.3536
- M. Galperin, K. Saito, A. V. Balatsky, and A. Nitzan, Cooling mechanisms in molecular conduction junctions, arXiv:0905.2748
- E. Prodan and A. LeVee, Tunneling transport in devices with semiconducting leads, arXiv:0907.4636 (mostly interested in the extension of the theory of tunneling transport to include semiconducting leads)
- D. Nozaki, H. Sevincli, W. Li, R. Gutierrez, and G. Cuniberti, Engineering the thermopower in semiconductor-molecule junctions: towards high thermoelectric efficiency at the nanoscale, arXiv:0908.0438
- R. Gutierrez, R. Caetano, P. B. Woiczikowski, T. Kubar, M. Elstner, and G. Cuniberti, Structural fluctuations and quantum transport through DNA molecular wires: a combined molecular dynamics and model Hamiltonian approach, arXiv:0910.0348 (for short oligomers)
- G.-Q. Li, B. D. Fainberg, A. Nitzan, P. Hänggi, and S. Kohler, Coherent charge transport through molecular wires: "Exciton blocking" and current from electronic excitations in the wire, arXiv:0910.4972 (double dot, full quantum master equation with off-diagonal components treated in the rotating-wave approximation; study effects of interaction between dots, which can suppress or enhance the current)
- A. Soncini and L. F. Chibotaru, Spintronics of noncollinear molecular magnets, arXiv:0910.5235 (two or three local spins with non-collinear anisotropy axes; stationary-state rate equations in the sequential-tunneling limit)
- S. Herzog and M. R. Wegewijs, Dzyaloshinskii-Moriya interaction in transport through single molecule transistors, arXiv:0911.0571
- S. Tornow and G. Zwicknagl, Conductance Through a Redox System in the Coulomb Blockade Regime: Many-Particle Effects and Influence of Electronic Correlations, arXiv:0911.5297 (employing a two-site extended Hubbard model and rate equations)
- O. Entin-Wohlman, Y. Imry, and A. Aharony, Transport through molecular junctions with a nonequilibrium phonon distribution, arXiv:0912.1569 (strong hybridization, Green functions)
- R. Jaafar, E. M. Chudnovsky, and D. A. Garanin, Single magnetic molecule between conducting leads: Effect of mechanical rotations, arXiv:0912.1882 (mean-field-type decoupling of expectation values)
- A. Zazunov and R. Egger, Adiabatic polaron dynamics and Josephson effect in a superconducting molecular quantum dot, arXiv:0912.2626 (a resonant level coupled to superconducting leads and to a slow oscillator)
- R.-Q. Wang, L. Sheng, R. Shen, B. Wang, and D. Y. Xing, Thermoelectric Effect in Single-Molecule-Magnet Junctions, Phys. Rev. Lett. 105, 057202 (2010) (spin with easy axis coupled to local orbital, rate equations in sequential-tunneling approximation; define and calculate thermopower [Seebeck coefficient] for charge and spin) P
- J. P. Bergfield, P. Jacquod, and C. A. Stafford, Coherent Destruction of Coulomb Blockade Peaks in Molecular Junctions, arXiv:0912.4066, Phys. Rev. B 82, 205405 (2010) (using the Green-function approach developed by two of the authors, cited above)
- M. Misiorny, I. Weymann, and J. Barnas, Spin diode behavior in transport through single-molecule magnets , EPL 89, 18003 (2010) (one ferromagnetic, one nonmagnetic lead)
- Z. G. Yu, Noninvasive electrical detection of electron spin dynamics at the N atom in N@C60, J. Phys.: Condens. Matter 22, 295305 (2010) (mostly interested in the nitrogen-spin dynamics, using Keldysh non-equilibrium Green functions)
- B. Sothmann and J. König, Non-equilibrium current and noise in inelastic tunneling through a magnetic atom, New J. Phys. 12, 083028 (2010)
- G. Begemann, S. Koller, M. Grifoni, and J. Paaske, Inelastic cotunneling in quantum dots and molecules with weakly broken degeneracies, Phys. Rev. B 82, 045316 (2010), arXiv:1003.5834 (contains a summary of problems with the T-matrix approach and regularization) P
- S. Teber, Transport and magnetization dynamics in a superconductor/single-molecule magnet/superconductor junction, arXiv:1002.3929 (a classical and isotropic spin [no orbitals] coupled to two leads, Keldysh formalism for electron current, also considers the spin current)
- M. G. Schultz, Quantum transport through single-molecule junctions with orbital degeneracies, arXiv:1004.1536 (full quantum master equation with Markov and sequential-tunneling approximations)
- M. Esposito and M. Galperin, A self-consistent quantum master equation approach to molecular transport, arXiv:1004.2533 (derive an approximate time-convolutionless master equation using an approximate backward propagation of the reduced density operator; suggested to be of similar accuracy as the time-nonlocal form derived earlier by the authors; tested against exact results for a non-interacting dot)
- M. Leijnse, M. R. Wegewijs, and K. Flensberg, Non-linear thermoelectrics of molecular junctions with vibrational coupling, arXiv:1004.4500
- O. Entin-Wohlman, Y. Imry, and A. Aharony, Three-terminal thermoelectric transport through a molecular junction, arXiv:1005.3940 (Keldysh Green functions, perturbative expansion in the electron-vibration coupling, no other interaction, study what happens if the molecule is coupled to a bath at a different temperature from the leads)
- R. Härtle, R. Volkovich, M. Thoss, and U. Peskin, Mode-selective vibrational excitation induced by nonequilibrium transport processes in single-molecule junctions, arXiv:1006.4795
- F. Delgado and J. Fernández-Rossier, Spin dynamics of current driven single magnetic adatoms and molecules, arXiv:1006.5608 (theory for STM, rate equations, spin-only model)
- M. Zilly, O. Ujsaghy, and D. E. Wolf, Conductance of DNA molecules: Effects of decoherence and bonding, arXiv:1007.1721
- P. S. Cornaglia, P. Roura Bas, A. A. Aligia, and C. A. Balseiro, Quantum Transport Through a Stretched Spin-1 Molecule, arXiv:1007.4214 (Meir-Wingreen formula, NRG, include anisotropy)
- I. Pshenichnyuk and M. Cizek, Motor effect in electron transport through a molecular junction with torsional vibrations, arXiv:1007.4826 (master equation, transport coupled to an anharmonic torsional mode that can overturn)
- J. P. Bergfield, J. D. Barr, and C. A. Stafford, The number of transmission channels through a single-molecule junction, arXiv:1008.0035 (Green-function approach, linear-response regime, molecular many-body states treated exactly, coupling by a constant imaginary self-energy in the local Green function; number of open transmission channels is found to equal degeneracy of orbital closest to metal Fermi energy)
- S. Maier, T. L. Schmidt, and A. Komnik, Charge transfer statistics of a molecular quantum dot with strong electron-phonon interaction, arXiv:1010.2918 (Keldysh-Green functions, polaron transformation, strong coupling to a vibration mode)
- A. Goker, Real time electron dynamics in an interacting vibronic molecular quantum dot, arXiv:1010.3369 (time-dependent NCA)
- R. Härtle and M. Thoss, Resonant Electron Transport in Single-Molecule Junctions: Vibrational Excitation, Rectification, Negative Differential Resistance and Local Cooling, arXiv:1010.4993 (molecule coupled to a vibrational mode; quantum master equation in sequential-tunneling approximation)
- M. Misiorny, I. Weymann, and J. Barnas, Interplay of the Kondo Effect and Spin-Polarized Transport in Magnetic Molecules, Adatoms and Quantum Dots, arXiv:1010.6030 (taking magnetic anisotropy into account); M. Misiorny, I. Weymann, and J. Barnas, Temperature dependence of electronic transport through molecular magnets in the Kondo regime, arXiv:1206.6069
- M. Dey, S. K. Maiti, and S. N. Karmakar, Effect of Dephasing on Electron Transport in a Molecular Wire: Green's Function Approach, arXiv:1011.2033 (Büttiker/Green-function approach)
- A. Nocera, C. A. Perroni, V. Marigliano Ramaglia, and V. Cataudella, Stochastic dynamics for a single vibrational mode in molecular junctions, arXiv:1011.4461 (derive a Langevin equation for the vibrational dynamics)
- H.-B. Xue, Y.-H. Nie, Z.-J. Li, and J.-Q. Liang, Effects of magnetic field and transverse anisotropy on full counting statistics in single-molecule magnet, arXiv:1011.5546 (full counting statistics, sequential-tunneling approximation)
- R. C. Monreal, F. Flores, and A. Martin-Rodero, Nonequilibrium transport in molecular junctions with strong electron-phonon interactions, arXiv:1012.2015 (Keldysh formalism)
- T. Markussen, J. Chen, and K. S. Thygesen, Improving Transition Voltage Spectroscopy of Molecular Junctions, arXiv:1012.3650 (how to extract molecular-level energies from I-V characteristics)
- M. Leijnse, W. Sun, M. Brøndsted Nielsen, P. Hedegård, and K. Flensberg, Interaction-induced negative differential resistance in asymmetric molecular junctions, arXiv:1012.3856 (master equation and quantum chemistry calculations)
- A. Ueda, O. Entin-Wohlman, and A. Aharony, Effects of coupling to vibrational modes on the ac conductance of molecular junctions, arXiv:1101.4440 (linear response, Keldysh formalism)
- R. Härtle and M. Thoss, Vibrational Instabilities in Resonant Electron Transport through Single-Molecule Junctions, arXiv:1102.0840 (2nd-order Markovian master equation; run-away of vibrational quantum number)
- T. Rangel, A. Ferretti, P. E. Trevisanutto, V. Olevano, and G.-M. Rignanese, Transport properties of molecular junctions from many-body perturbation theory, arXiv:1102.1880 (Landauer formula and perturbation theory to include many-body effects)
- F. May, M. R. Wegewijs, and W. Hofstetter, Interaction of spin and vibrations in transport through single-molecule magnets, arXiv:1102.2798 (NRG, the spectral function is calculated at zero bias) P
- R. Härtle, M. Butzin, O. Rubio-Pons, and M. Thoss, Quantum Interference and Decoherence in Single-Molecule Junctions: How Vibrations Induce Electrical Current, arXiv:1102.4190 (... by suppressing electronic interference)
- M. Misiorny, I. Weymann, and J. Barnas, The Influence of Magnetic Anisotropy on the Kondo Effect and Spin-Polarized Transport through Magnetic Molecules, Adatoms and Quantum Dots, arXiv:1103.1128
- Y.-L. Lo, S.-J. Sun, and Y.-J. Kao, Length and temperature dependent crossover of charge transport across molecular junctions, arXiv:1103.1708 (NEGF)
- D. Segal, A. J. Millis, and D. R. Reichman, Nonequilibrium transport in quantum impurity models: Exact path integral simulations, arXiv:1103.1867 (contains discussion of iterative influence-functional path integral method applied to transport through a quantum dot, it decouples the interactions on the dot via a Hubbard-Statonovich transformation and evaluate path integrals numerically)
- F. Delgado and J. Fernández-Rossier, Cotunneling theory of inelastic STM spin spectroscopy, arXiv:1103.3676 (map cotunneling onto an additional term in an effective Hamiltonian, which is then treated in leading order in the master equation)
- H. Wang and M. Thoss, Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions, arXiv:1103.4945 (using an advanced time-dependent Hartree approach, see also references); Numerically exact, time-dependent study of correlated electron transport in model molecular junctions, arXiv:1301.4489
- K. Kaasbjerg and K. Flensberg, Image charge effects in single-molecule junctions: Breaking of symmetries and NDR in a benzene SET, arXiv:1104.2398 (explain how the image charge leads to a blocking state; rate equations in sequential-tunneling approximation)
- D. Kast, L. Kecke, and J. Ankerhold, Charge transfer through single molecule contacts: How reliable are rate descriptions?, arXiv:1104.4903 (conclude that they are rather reliable, even where one does not expect this; mostly interested in coupling to vibrations)
- T. Koch, J. Loos, A. Alvermann, and H. Fehske, Non-equilibrium transport through molecular junctions in the quantum regime, arXiv:1105.0576 (Green-function approach, no Hubbard-U, variational Lang-Firsov transformation to treat electron-vibron interaction)
- L. Livadaru, J. Pitters, M. Taucer, and R. A. Wolkow, Theory of STM Imaging of Silicon Dangling Bonds on a H:Si(001) Surface: a Complex 3D Playground for Single Electron Dynamics, arXiv:1105.2332 (theory for observed halos based on non-equilibrium transport)
- O. Entin-Wohlman and A. Aharony, Three-terminal thermoelectric transport through a molecule placed on an Aharonov-Bohm ring, arXiv:1105.3994
- R. Volkovich, R. Härtle, M. Thoss, and U. Peskin, Bias-Controlled Selective Excitation of Vibrational Modes in Molecular Junctions: A Route Towards Mode-Selective Chemistry, arXiv:1106.0170
- A. C. Seridonio, F. S. Orahcio, F. M. Souza, and M. S. Figueira, Spin-resolved STM for a Kondo adatom in a ferromagnetic island, arXiv:1106.2853
- I. A. Sadovskyy, D. Chevallier, T. Jonckheere, M. Lee, S. Kawabata, and T. Martin, Josephson effect through an anisotropic magnetic molecule, arXiv:1106.4193 P
- J. Ren, J.-X. Zhu, J. E. Gubernatis, C. Wang, and B. Li, Thermoelectric transport with arbitrary electron-phonon coupling and electron-electron interaction in molecular junctions, arXiv:1106.5208 (NEGF)
- F. Zhan, S. Denisov, and P. Hänggi, Electronic Heat Transport Across a Molecular Wire: Power Spectrum of Heat Fluctuations, arXiv:1107.3434 (NEGF)
- J. P. Bergfield, J. D. Barr, and C. A. Stafford, Transmission eigenvalue distributions in highly-conductive molecular junctions, arXiv:1107.5854 (essentially Meir-Wingreen-Jauho approach, although not called that; use additional single-resonance approximation; model system is benzene between Pt electrodes; the eigenvalues mentioned in title are the ones of the coupling matrix Γ)
- A. Yar, A. Donarini, S. Koller, and M. Grifoni, Dynamical symmetry breaking in vibration-assisted transport through nanostructures, arXiv:1108.0814
- S. Kruchinin and T. Pruschke, Thermopower for a molecule with vibrational degrees of freedom, arXiv:1108.4526 (one spin-less electronic orbital coupled to a vibron, only two states of the harmonic-oscillator ladder are taken into account, Meir-Wingreen formula using the local density of states in the limit of zero coupling); V. N. Ermakov, S. P. Kruchinin, H. T. Kim, and T. Pruschke, Thermoelectric properties of molecular nanostructures, arXiv:1109.0365 (extension, still without interactions)
- D. Rai, O. Hod, and A. Nitzan, Magnetic Fields Effects on the Electronic Conduction Properties of Molecular Ring Structures, arXiv:1109.0619 (Aharonov-Bohm effect in molecular rings, dephasing, no interactions, Landauer approach)
- A. A. Dzhioev and D. S. Kosov, Solvent induced current-voltage hysteresis and negative differential resistance in molecular junctions, arXiv:1109.2046 (NEGF, effect of solvent)
- R. Gutierrez, E. Diaz, R. Naaman, and G. Cuniberti, Spin selective transport through helical molecular systems, arXiv:1110.0354
- N. Bode, L. Arrachea, G. Lozano, T. S. Nunner, and F. von Oppen, Current-induced switching in transport through anisotropic magnetic molecules, arXiv:1110.4270 (assuming slow spin dynamics, derive Langevin/Landau-Lifshitz-Gilbert equation for the spin)
- L. Kecke and J. Ankerhold, Voltage induced conformational changes and current control in charge transfer through molecules, arXiv:1110.5505 (electrons coupled to a slow [heavy] torsion mode of the molecule, master equation)
- H. Ness and L. K. Dash, Non-equilibrium quantum transport in fully interacting single-molecule nanojunctions, arXiv:1112.1878 (NEGF for systems with interactions in the molecule, in the leads, and spanning molecule and leads)
- D. Bohr and P. Schmitteckert, The dark side of benzene: interference vs. interaction, arXiv:1112.4585 (linear response, employ the DMRG)
- D. A. Lovey and R. H. Romero, Quantum interference through gated single-molecule junctions, Chem. Phys. Lett. 530, 86 (2012) (non-interacting tight-binding model, Landauer formula)
- I. Weymann, J. Barnas, and S. Krompiewski, Manifestation of the shape and edge effects in spin-resolved transport through graphene quantum dots, Phys. Rev. B 85, 205306 (2012)
- S. Sobczyk, A. Donarini, and M. Grifoni, Theory of STM junctions for π-conjugated molecules on thin insulating films, Phys. Rev. B 85, 205408 (2012) (quantum master equation, with spatial resolution, applied to benzene) P; A. Donarini, S. Sobczyk, B. Siegert, and M. Grifoni, Topographical fingerprints of many-body interference blocking in STM junctions on thin insulating films, Phys. Rev. B 86, 155451 (2012) (applied to Cu phthalocyanine) P
- F. R. Renani and G. Kirczenow, Tight-binding model of Mn12 single-molecule magnets: Electronic and magnetic structure and transport properties, Phys. Rev. B 85, 245415 (2012) (extended Hückel model plus spin-orbit coupling, transport with Landauer formula, for the specific ligands considered HOMO predicted on the core, LUMO etc. on the ligands, thus LUMO etc. should not show Coulomb blockade)
- L. Tosi, P. Roura-Bas, and A. A. Aligia, Non-equilibrium conductance through a benzene molecule in the Kondo regime, J. Phys.: Condens. Matter 24, 365301 (2012)
- A. Donarini, A. Yar, and M. Grifoni, Vibration induced memory effects and switching in ac-driven molecular nanojunctions, Eur. Phys. J. B 85, 316 (2012) (polaron shift, Franck-Condon blockade) P
- B. Popescu, P. B. Woiczikowski, M. Elstner, and U. Kleinekathöfer, Time-Dependent View of Sequential Transport through Molecules with Rapidly Fluctuating Bridges, Phys. Rev. Lett. 109, 176802 (2012) (noninteracting electrons, NEGF)
- A. Valli, G. Sangiovanni, A. Toschi, and K. Held, Correlation effects in transport properties of interacting nanostructures, Phys. Rev. B 86, 115418 (2012) (DMFT, applied to benzene-ring, only linear response, DMFT is found to be valid unless hybridization is weak)
- G. Li, M. S. Shishodia, B. D. Fainberg, A. Nitzan, and M. A. Ratner, Compensation of Coulomb blocking and energy transfer in the current voltage characteristic of molecular conduction junctions, arXiv:1201.0245
- B. D. Fainberg and T. Seideman, Optically induced current in molecular conduction nanojunctions with intrinsic semiconductor contacts, arXiv:1201.4682
- R. Hützen, S. Weiss, M. Thorwart, and R. Egger, Iterative summation of path integrals for nonequilibrium molecular quantum transport, arXiv:1201.6466 (a spinless fermionic orbital, thus without fermionic interaction, with Fröhlich coupling to a single harmonic oscillator, approach works in the quantum-coherent [open] situation)
- V. Balachandran, R. Bosisio, and G. Benenti, Validity of Wiedemann Franz law in small molecular wires, arXiv:1202.5109
- L. Simine and D. Segal, Vibrational cooling, heating, and instability in molecular conducting junctions: Full counting statistics analysis, arXiv:1203.3910
- K. I. Wysokinski, Thermal transport of molecular junctions in the pair tunneling regime, arXiv:1204.3059
- H. Xie, Q. Wang, H. Jiao, and J.-Q. Liang, Tunneling anisotropic magnetoresistance in single-molecule magnet junctions, arXiv:1205.3916 (importance of angle between easy axis and magnetization of electrode)
- G. Schaller, T. Krause, T. Brandes, and M. Esposito, Fluctuation theorem for a single electron transistor strongly coupled to vibrations, arXiv:1206.3960 (master equation, full counting statistics, one or more vibrational modes, Franck-Condon blockade)
- K. F. Albrecht, H. Wang, L. Muehlbacher, M. Thoss, and A. Komnik, Bistability signatures in nonequilibrium charge transport through molecular quantum dots, arXiv:1206.4464 (non-interacting orbital strongly coupled to a vibrational mode, dependence of current on the initial state is long lived, are careful not to claim a dependence of the true stationary state)
- C. Stevanato, M. Leijnse, K. Flensberg, and J. Paaske, Finite-bias conductance anomalies at a singlet-triplet crossing, arXiv:1207.3020 (full master equation including all fourth-order terms, effect of crossing between singlet and triptlet ground state inside a Coulomb diamond, e.g., for double dot)
- G. Gonzalez and M. N. Leuenberger, MQC-Fano effect in single molecule magnet transistors, arXiv:1208.0963 (MQC = magnetic quantum coherence, due to spin tunneling through anisotropy barrier)
- H. Ishida and A. Liebsch, Coulomb blockade and Kondo effect in the electronic structure of Hubbard molecules connected to metallic leads: a finite-temperature, arXiv:1208.6225 (linear response, leads modeled by finite clusters, exact diagonalization, Green-function approach)
- R. Härtle, M. Butzin, and M. Thoss, Vibrationally Induced Decoherence in Single-Molecule Junctions, arXiv:1209.5619 (Lang-Firsov transformation, NEGF)
- H. Ness and L. K. Dash, Non-equilibrium transport with self-consistent renormalised contacts for a single-molecule nanodevice with electron-vibron interaction, arXiv:1210.1368, Phys. Rev. B (NEGF); Non-equilibrium renormalised contacts for transport in nanodevices with interaction: a quasi-particle approach, arXiv:1210.1372
- M. Leijnse, Interaction effects in transport through molecular monolayers, arXiv:1210.2843 (normal transport through layer with nearest-neighbor Coulomb interaction, one spinless orbital per site, sequential tunneling, nonlinear master equation) P
- D. H. Santamore, N. Lambert, and F. Nori, Vibrationally-mediated molecular transistors, arXiv:1210.7098
- M. B. Tagani and H. R. Soleimani, Photon-phonon-assisted thermoelectric effects in the molecular devices, arXiv:1210.7322
- M. Knap, E. Arrigoni, and W. von der Linden, Phonon mediated correlation effects on the transport properties of a benzene molecular transistor, arXiv:1211.1384 (electron-phonon coupling: electron hopping couples to six vibrational eigenmodes of benzene, focus on the lowest, i.e., breathing mode, no electron-electron interaction [U]; cluster perturbation theory and Meir-Wingreen-type current formula)
- M. Filipovic, C. Holmqvist, F. Haupt, and W. Belzig, Spin transport and tunable Gilbert damping in a single-molecule magnet junction, arXiv:1211.3611 (electronic orbital without Hubbard interaction coupled to time-dependent local magnetic field [modeling a large precessing spin], Keldysh NEGF formalism)
- A. A. Dzhioev, D. S. Kosov, and F. von Oppen, Out-of-equilibrium catalysis of chemical reactions by electronic tunnel currents, arXiv:1212.2010 (Keldysh NEGF)
- R. A. Molina, P. Schmitteckert, D. Weinmann, R. A. Jalabert, and P. Jacquod, Mesoscopic behavior of the transmission phase through confined correlated electronic systems, arXiv:1212.2114 (linear response, "embedding method")
- M. Imran, Electron transport through a diatomic molecule, arXiv:1212.3775 (noninteracting, two-site model)
- G. D. Scott, D. Natelson, S. Kirchner, and E. Muñoz, Transport Characterization of Kondo-Correlated Single Molecule Devices, arXiv:1301.2168
- L. Kecke and J. Ankerhold, Charge transfer through molecular junctions within Redfield theory: subtleties and pitfalls, arXiv:1301.2422 P
- A. Jovchev and F. Anders, Influence of vibrational modes on the quantum transport through a nano-device, arXiv:1302.0184
- M. Misiorny and J. Barnas, Effects of Transverse Magnetic Anisotropy on Current-Induced Spin Switching, arXiv:1302.1074
- J. I. Romero and E. R. Mucciolo, Berry phase interference and single-electronic transport in a three-ion magnetic molecule, arXiv:1302.4768 (magnetic-nonmagnetic-magnetic ions, rate equations, stationary state, diabolical [degeneracy] points)
- W. R. French, C. R. Iacovella, I. Rungger, A. Melo Souza, S. Sanvito, and P. T. Cummings, Structural Origins of Conductance Fluctuations in Gold-Thiolate Molecular Transport Junctions, arXiv:1303.0315 (molecular-dynamics simulations with semiempirical tight-binding potentials, transport calculations using static DFT [SMEAGOL])
- Y. Dubi, The effect of fluctuations - thermal and otherwise - on the temperature dependence of thermopower in aromatic chain single-molecule junctions, arXiv:1303.0488 (linear response, tight-binding model based on DFT, NEGF)
- E. Eidelstein, D. Goberman, and A. Schiller, Crossover from adiabatic to antiadiabatic phonon-assisted tunneling in single-molecule transistors, arXiv:1303.7161 (single level without Hubbard interaction coupled to vibrational mode, equilibrium [single reservoir] and linear response transport, NRG)
- R. Härtle, U. Peskin, and M. Thoss, Vibrationally coupled electron transport in single-molecule junctions: The importance of electron-hole pair creation processes, arXiv:1304.4846 (NEGF)
- H. Xie, Q. Wang, H.-B. Xue, H.-J. Jiao, and J.-Q. Liang, Intrinsic spin-relaxation induced negative tunnel magnetoresistance in a single-molecule magnet, arXiv:1304.6044 (standard model, rate equations including cotunneling used to find the stationary state, study effect of additional spin relaxation) P
- P. Stadler, C. Holmqvist, and W. Belzig, Josephson current through a quantum dot coupled to a molecular magnet, arXiv:1304.8030 (quantum dot with one orbital exchange coupled to a classical spin precessing in a constant magnetic field, i.e., rotating Zeeman field; NEGF) P
- P. Roura-Bas, L. Tosi, and A. A. Aligia, Nonequilibrium transport through magnetic vibrating molecules, arXiv:1305.3263 (Anderson impurity with infinite U coupled to vibrational mode, no local spin; Keldysh NEGF, Kondo peak is DOS vs. frequency shows vibron satellites)
- D. A. Lovey and R. H. Romero, Quantum transport through single and multilayer icosahedral fullerenes, arXiv:1305.6299 (tight-biding model, Landauer approach)
- A. Migliore and A. Nitzan, Nonlinear charge transport in redox molecular junctions: a Marcus perspective, arXiv:1306.4797, ACS Nano 5, 6669 (2011) (detailed study of sequential tunneling rates as they appear in rate equations and their effects on transport); Irreversibility and hysteresis in redox molecular conduction junctions, arXiv:1306.4812, J. Am. Chem. Soc. (memory effects, dependence on sweep rate); A. J. White, A. Migliore, M. Galperin, and A. Nitzan, Quantum Transport With Two Interacting Conduction Channels, arXiv:1306.4855, J. Chem. Phys. 138, 174111 (2013) (for example the redox molecules)
- M. Galperin and A. Nitzan, Cooperative effects in inelastic tunneling, arXiv:1306.4858
- B. Dong, G. H. Ding, and X. L. Lei, Full counting statistics of a single-molecular quantum dot, arXiv:1307.0946 (with strong coupling to a vibrational mode; NEGF with Lang-Firsov transformation)
- E. Perfetto and G. Stefanucci, Screening-induced negative differential conductance in the Franck-Condon blockade regime, arXiv:1307.7527 (using bosonization)
- M. Nuss, W. von der Linden, and E. Arrigoni, Effects of electronic correlations and magnetic field on a molecular ring out of equilibrium, arXiv:1307.7530 (steady-state cluster perturbation theory; benzene model, leads are modeled as 1D chains and are, oddly, said to have semicircular density of states)
- J. Fransson, J. Ren, and J.-X. Zhu, Electrical and Thermal Control of Magnetic Exchange Interactions, Phys. Rev. Lett. 113, 257201 (2014) (discuss various forms of indirect magnetic coupling mediated by electronic leads)
- S. Ajisaka, B. Zunkovic, and Y. Dubi, The Molecular Photo-Cell: Quantum Transport and Energy Conversion at Strong Non-Equilibrium, Sci. Rep. 5, 8312 (2015) (Lindblad master equation, including coupling to photons and vibrons)
-
R. Temirov et al., Molecular Model of a Quantum Dot Beyond the Constant Interaction Approximation, Phys. Rev. Lett. 120, 206801 (2018) (taking dependence of polarizability on charge state into account)
-
J. Fernández, P. Roura-Bas, and A. A. Aligia, Theory of Differential Conductance of Co on Cu(111) Including Co s and d Orbitals, and Surface and Bulk Cu States, Phys. Rev. Lett. 126, 046801 (2021)
Ab-initio theory for nanoscopic transport
- F. Evers, F. Weigend, and M. Koentopp, The conductance of molecular wires and DFT based transport calculations, Phys. Rev. B 69, 235411 (2004) (why DFT is bad for weak coupling)
- N. Sai, M. Zwolak, G. Vignale, and M. Di Ventra, Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems, Phys. Rev. Lett. 94, 186810 (2005) (TDCDFT for a nanoscale constriction, then applied to a molecular junction; note comment)
- C. Toher, A. Filippetti, S. Sanvito, and K. Burke, Self-Interaction Errors in Density-Functional Calculations of Electronic Transport, Phys. Rev. Lett. 95, 146402 (2005)
- R. Zikic, P. S. Krstic, X.-G. Zhang, M. Fuentes-Cabrera, J. Wells, and X. Zhao, Characterization of the tunneling conductance across DNA bases, Phys. Rev. E 74, 011919 (2006) (single nucleotides between gold electrodes, essentially Landauer picture); J. Lagerqvist, M. Zwolak, and M. Di Ventra, Comment on "Characterization of the tunneling conductance across DNA bases", cond-mat/0612493, and references therein
- V. V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge, T. Bredow, and I. Mertig, Organometallic Benzene-Vanadium Wire: A One-Dimensional Half-Metallic Ferromagnet, Phys. Rev. Lett. 97, 097201 (2006) P
- T. Ono and K. Hirose, First-Principles Study on Electron-Conduction Properties of C60 Chains, cond-mat/0606541
- C. Benesh, M. Thoss, W. Domcke, and M. Cizek, Vibronic effects on resonant electron conduction through single molecule junctions, cond-mat/0606756, Chem. Phys. Lett.
- X.-Q. Li and Y. Yan, Quantum master equation scheme of time-dependent density functional theory to time-dependent transport in nano-electronic devices, cond-mat/0606788
- C. J. Lambert, I. M. Grace, and T. Papadopolous, Controlled electron transport through single molecules, cond-mat/0609130 (for a specific class of molecular wires)
- F. Evers and A. Arnold, Molecular Conductance from Ab Initio Calculations: Self Energies and Absorbing Boundary Conditions, cond-mat/0611401
- T. Frederiksen, M. Paulsson, M. Brandbyge, and A.-P. Jauho, Inelastic transport theory from first-principles: methodology and applications for nanoscale devices, cond-mat/0611562
- X.-Q. Li, Y.-J. Yan, Quantum master equation scheme of time-dependent density functional theory to time-dependent transport in nanoelectronic devices, Phys. Rev. B 75, 075114 (2007) (combines the master equation for the reduced many-body density operator, in the sequential-tunneling approximation, with TDDFT to reduce the many-particle problem on the dot to solving time-dependent Kohn-Sham equations)
- E. Prodan and R. Car, DC conductance of molecular wires, Phys. Rev. B 76, 115102 (2007)
- N. Sai, N. Bushong, R. Hatcher, and M. Di Ventra, Microscopic durrent dynamics in nanoscale junctions, Phys. Rev. B 75, 115410 (2007)
- Z. Li and D. S. Kosov, Nature of well-defined conductance of amine anchored molecular junctions, cond-mat/0702507
- J. K. Viljas, F. Pauly, and J. C. Cuevas, Photoconductance of organic single-molecule contacts, arXiv:0704.0408
- M. del Valle, R. Gutierrez, C. Tejedor, and G. Cuniberti, Tuning the conductance of a molecular switch, arXiv:0705.0527 (Landauer theory)
- P. Bokes, J. Jung, and R. W. Godby, Ab-initio formulation of the 4-point conductance of interacting electronic systems, arXiv:0705.1568 (TDDFT)
- F. Pauly, J. K. Viljas, J. C. Cuevas, and G. Schön, Tilt-angle landscapes and temperature dependence of the conductance in biphenyl-dithiol single-molecule junctions, arXiv:0705.3285 (DFT and Landauer formula)
- S.-H. Ke, H. U. Baranger, and W. Yang, Electron transport through single conjugated organic molecules: Basis set effects in ab initio calculations, arXiv:0705.3409 (also DFT and Landauer formula)
- D. M. Cardamone and G. Kirczenow, Single-Molecule Device Prototypes for Protein-Based Nanoelectronics: Negative Differential Resistance and Current Rectification in Oligopeptides, arXiv:0708.1041 (semi-empirical Hamiltonian, Landauer formula)
- W. Y. Kim and K. S. Kim, Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the non-equilibrium Green function method at the level of first principles theory, arXiv:0708.2459, J. Comp. Chem. 29, 1073 (2008) (DFT + Landauer formula)
- S. E. Baltazar, M. De Menech, U. Saalmann, A. H. Romero, and M. E. Garcia, Negative differential resistance of Styrene on an ideal Si[111] surface: dependence of the I-V characteristics on geometry, surface doping and shape of the STM-tip, arXiv:0708.2834 (LSDA, Landauer formula)
- M. Galperin and S. Tretiak, Linear optical response of current-carrying molecular junction: A NEGF-TDDFT approach, arXiv:0712.1166
- A. Saffarzadeh, Tunnel magnetoresistance of a single-molecule junction, J. Appl. Phys. 104, 123715 (2008) (NEGF and Landauer-Büttiker formula for C60 with ferromagnetic leads)
- D. J. Mowbray, G. Jones, and K. S. Thygesen, Influence of Functional Groups on Charge Transport in Molecular Junctions, arXiv:0802.2069 (static DFT + NEGF to obtain transmission coefficient, Landauer formula, model STM tip [Au]-molecule-surface [Au], strong tunneling regime)
- Yu. V. Pershin, Y. Dubi, and M. Di Ventra, Effective single-particle order-N scheme for the dynamics of open non-interacting many-body systems, arXiv:0803.3216 (mapping of many-particle problem onto an effective single-particle one in the context of TDCDFT)
- R. Pati, M. McClain, and A. Bandyopadhyay, Origin of negative differential resistance in a strongly coupled single molecule-metal junction device, arXiv:0803.3342
- R. Stadler, V. Geskin, and J. Cornil, Towards a theoretical description of molecular junctions in the Coulomb blockade regime based on density functional theory, arXiv:0803.3886 (static DFT and NEGF to calculate transmission coefficients, claims to obtain good description of Coulomb blockade regime); Screening effects in a density functional theory based description of molecular junctions in the Coulomb blockade regime, arXiv:0811.3114 (application of previous idea)
- K. Tao, V. S. Stepanyuk, P. Bruno, D. I. Bazhanov, V. V. Maslyuk, M. Brandbyge, and I. Mertig, Manipulating magnetism and conductance of an adatom-molecule junction on metal surfaces: ab initio study, arXiv:0804.3337 (employing static LDA in the GGA and non-equilibrium Green functions)
- S.-H. Ke, W. Yang, and H. U. Baranger, Quantum Interference Controlled Molecular Electronics, arXiv:0806.3593, Nano Lett. 8, 3257 (2008) (static LDA and also HF, combined with Landauer formula)
- F. Pauly, J. K. Viljas, U. Huniar, M. Häfner, S. Wohlthat, M. Bürkle, J. C. Cuevas, and G. Schön, Cluster-based density-functional approach to quantum transport through molecular and atomic contacts, arXiv:0806.4173 (static GGA plus Landauer-Büttiker theory)
- V. M. Garcia-Suarez and C. J. Lambert, Tailoring the Fermi level of the leads in molecular-electronic devices, arXiv:0807.4032 (static DFT and NEGF to obtain transmission coefficients)
- P. Hyldgaard, Density-functional theory of nonequilibrium tunneling: A Lippmann-Schwinger single-particle scheme, arXiv:0807.4555 (promising alternative to static DFT plus Landauer-Büttiker formalism and also to TD-DFT) P
- H. He, R. Pandey, and S. P. Karna, Electronic conduction in a three-terminal molecular transistor, arXiv:0809.3796 (static DFT plus Landauer-Büttiker formula)
- J. Ferrer and V. M. Garcia-Suarez, Tuning the conductance of molecular junctions: transparent versus tunneling regimes, arXiv:0810.1863 (static DFT and Landauer formalism)
- G. Vignale and M. Di Ventra, Incompleteness of the Landauer Formula for Electronic Transport, arXiv:0810.2857 (viscosity of the electron liquid is important, develop formalism based on TDCDFT)
- C. M. Finch, V. M. García-Suárez, and C. J. Lambert, Giant thermopower and figure of merit in single-molecule devices, arXiv:0811.3029 (use static DFT and non-equilibrium Green-function method [SIESTA code], find strong effect of Fano resonances on heat transport)
- Y.-S. Liu and Y.-C. Chen, Thermoelectricity of Molecular Tunneling Junctions, arXiv:0812.0400 (linear response, Landauer approach)
- L. Michalak, C. M. Canali, M. R. Pederson, M. Paulsson, and V. G. Benza, Theory of tunneling spectroscopy in a Mn12 single-electron transistor by DFT methods, arXiv:0812.1058 (using a many-body/spin Hamiltonian based on ab-initio calculations, and rate equations)
- M. J. Verstraete, P. Bokes, and R. W. Godby, First-Principles conductance of nanoscale junctions from the polarizability of finite systems, arXiv:0812.4205
- R. Zhang, G. Ma, R. Li, Z. Qian, Z. Shen, X. Zhao, S. Hou, and S. Sanvito, Effects of spin-orbit coupling on the conductance of molecules contacted with gold electrodes, J. Phys.: Condens. Matter 21, 335301 (2009) (spin-orbit coupling in the leads, not in the molecule)
- S. Barraza-Lopez, K. Park, V. Garcia-Suarez, and J. Ferrer, Spin-filtering effect in the transport through a single-molecule magnet Mn12 bridged between metallic electrodes, arXiv:0901.4271 (static GGA and GGA+U, non-equilibrium Green functions to calculate the transmission coefficients, and Landauer-Büttiker formula)
- Z. Zhou and S.-I Chu, Description of electron transport dynamics in molecular devices: A time-dependent density functional theoretical approach in momentum space makes it simple, arXiv:0902.1489
- C. D. Pemmaraju, I. Rungger, and S. Sanvito, Magnetic state electrical readout of Mn12 molecules, arXiv:0905.0281
- D. Nozaki and G. Cuniberti, Silicon-based molecular switch junctions, arXiv:0907.0155
- T. Ozaki, K. Nishio, and H. Kino, Efficient implementation of the nonequilibrium Green function method for electronic transport calculations, arXiv:0908.4142 (using static DFT)
- K. K. Saha, W. Lu, J. Bernholc, and V. Meunier, Electron transport in multi-terminal molecular device, arXiv:0908.4346 (DFT and Keldysh-NEGF, essentially Landauer approach)
- S. Barraza-Lopez, K. Park, V.r Garcia-Suarez, and J. Ferrer, First-principles study of electron transport through the single-molecule magnet Mn12, arXiv:0909.3672 (static DFT/GGA including spin-orbit coupling, Landauer formula)
- T. Kostyrko, V. M. Garcia-Suarez, C. J. Lambert, and B. R. Bulka, Current rectification in molecular junctions produced by local potential fields, Phys. Rev. B 81, 085308 (2010) (using SMEAGOL: static DFT and NEGF)
- V. V. Maslyuk, S. Achilles, and I. Mertig, Spin-polarized transport and thermopower of organometallic nanocontacts, Sol. State Commun. 150, 505 (2010) (static GGA + NEGF for short benzene-vanadium wires)
- X. Shen, L. Sun, E. Benassi, Z. Shen, X. Zhao, S. Sanvito, and S. Hou, Spin filter effect of manganese phthalocyanine contacted with single-walled carbon nanotube electrodes, J. Chem. Phys. 132, 054703 (2010)
- S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, and E. K. U. Gross, Dynamical Coulomb Blockade and the Derivative Discontinuity of Time-Dependent Density Functional Theory, Phys. Rev. Lett. 104, 236801 (2010) (Coulomb blockade is associated with undamped oscillations, not a stationary state, if the tunneling is suddenly instead of adiabatically switched on); see also Viewpoint: C. A. Ullrich, A not-so-steady state, Physics 3, 47 (2010)
- T. Olsen and J. Schiøtz, Vibrationally Mediated Control of Single Electron Transmission in Weakly Coupled Molecule-Metal Junctions, arXiv:1001.0455 (calculate transmission coefficients, idea is that a single electron can tunnel through the molecule if the molecule was prepared in the first excited vibrational state, the vibration is deexcited, providing the energy required for the tunneling)
- I. Rungger, X. Chen, U. Schwingenschlögl, and S. Sanvito, Finite-bias electronic transport of molecules in water solution, arXiv:1002.0226 (NEGF based on SIC-LDA, calculate transmission coefficient at zero and nonzero bias voltage)
- S.-H. Ke, R. Liu, W. Yang, and H. U. Baranger, Time-Dependent Transport Through Molecular Junctions, arXiv:1002.1441 (static GGA and NEGF approach, focus on dynamics)
- K. Park, S. Barraza-Lopez, V. M. Garcia-Suarez, and J. Ferrer, Effects of bonding type and interface geometry on coherent transport through the single-molecule magnet Mn12, arXiv:1003.2750 (static GGA and NEGF approach, SMEAGOL and SIESTA codes)
- R. Stadler, Conformation dependence of charge transfer and level alignment in nitrobenzene junctions with pyridyl anchor groups, arXiv:1004.1323
- J. Chen, T. Markussen, and K. S. Thygesen, Quantifying Transition Voltage Spectroscopy of Molecular Junctions, arXiv:1005.3937 (DFT and NEGF calculation is used to elucidate the method of transition voltage spectroscopy)
- K. Stokbro, First-principles modelling of molecular single-electron transistors, arXiv:1006.0082 (DFT used to calculate the charging energy) P
- C. D. Pemmaraju, I. Rungger, X. Chen, A. R. Rocha, and S. Sanvito, Ab initio study of electron transport in dry poly(G)-poly(C) A-DNA strands, arXiv:1007.0035 (DFT with self-interaction correction and NEGF)
- D. Jacob, K. Haule, and G. Kotliar, Dynamical Mean-Field Theory for Molecular Electronics: Electronic Structure and Transport Properties, arXiv:1009.0523 (static LDA and DMFT with one-crossing approximation as impurity solver)
- S. Schenk, P. Schwab, M. Dzierzawa, and U. Eckern, Density functional theory for a model quantum dot: Beyond the local-density approximation, arXiv:1009.3416 (various regimes, also stress that the linear conductance cannot, in general, be obtained from static DFT)
- F. Mirjani and J. M. Thijssen, DFT-based many-body analysis of electron transport through molecules, arXiv:1009.5312 (extract parameters of Hubbard-type models from LSDA ground-state energies with constrained charge and spin) P
- Y. Xing, B. Wang, and J. Wang, First-principles investigation of dynamical properties of molecular devices under a steplike pulse, arXiv:1011.2625 (NEGF)
- R. E. Sparks, V. M. García-Suárez, D. Zs. Manrique1, and C. J. Lambert, Quantum Interference in Single Molecule Electronic Systems, Phys. Rev. B 83, 075437 (2011)
- T. Ono, S. Tsukamoto, Y. Egami, and Y. Fujimoto, Real-space calculations for electron transport properties of nanostructures, J. Phys.: Condens. Matter 23, 394203 (2011)
- M. Karolak, D. Jacob, and A. I. Lichtenstein, Orbital Kondo Effect in Cobalt-Benzene Sandwich Molecules, Phys. Rev. Lett. 107, 146604 (2011) (static DFT + one-crossing approximation + Hubbard and Hund's-first-rule interactions, Green-function approach to obtain Meir-Wingreen-type transmission function)
- G. Stefanucci and S. Kurth, Towards a Description of the Kondo Effect Using Time-Dependent Density-Functional Theory, Phys. Rev. Lett. 107, 216401 (2011)
- D. Toroz, M. Rontani, and S. Corni, Visualizing electron correlation by means of ab-initio scanning tunneling spectroscopy images of single molecules, arXiv:1101.2517, J. Chem. Phys. 134, 024104 (2011) (quantum chemistry)
- V. M. Garcíia-Suárez and C. J. Lambert, First-principles scheme for spectral adjustment in nanoscale transport, arXiv:1101.2778
- F. D. Novaes, M. Cobian, A. Garcia, P. Ordejon, H. Ueba, and N. Lorente, Negative differential resistance in scanning tunneling microscopy: simulations on C60-based molecular overlayers, arXiv:1101.3714 (static DFT and Landauer formula, Transiesta package)
- Y. Wang, C.-Y. Yam, G. H. Chen, T. Frauenheim, and T. A. Niehaus, An efficient method for quantum transport simulations in the time domain, arXiv:1101.5929 (TDDFT)
- M. Polok, D. V. Fedorov, A. Bagrets, P. Zahn, and I. Mertig, Evaluation of conduction eigenchannels of an adatom probed by an STM tip, arXiv:1103.1162 (DFT/KKR and Kubo formula for linear response, conductance is decomposed into channels in the spirit of Landauer theory)
- J. Prasongkit, A. Grigoriev, G. Wendin, and R. Ahuja, Interference effects in phtalocyanine controlled by H-H tautomerization: a potential two-terminal unimolecular electronic switch, arXiv:1104.1441 (static DFT and NEGF: TranSIESTA code)
- M. Karolak, D. Jacob, and A. I. Lichtenstein, Orbital Kondo effect in Cobalt-Benzene sandwich molecules, arXiv:1105.4803 (LDA+OCA method, [OCA: one-crossing approximation])
- J. P. Bergfield, Z. Liu, K. Burke, and C. A. Stafford, Kondo effect given exactly by density functional theory, arXiv:1106.3104 (linear response is described exactly if the exact Kohn-Sham potential of static DFT is used, which here can be obtained from the Bethe ansatz; this holds although the spectral function of static DFT completely misses the Kondo peak; overlaps with the following reference)
- P. Tröster, P. Schmitteckert, and F. Evers, DFT-based transport calculations, Friedel's sum rule and the Kondo effect, arXiv:1106.3669 (linear-response conductance; overlaps with previous reference)
- A.-M. Uimonen, E. Khosravi, A. Stan, G. Stefanucci, S. Kurth, R. van Leeuwen, and E. K. U. Gross, Comparative study of many-body perturbation theory and time-dependent density functional theory in the out-of-equilibrium Anderson model, arXiv:1107.0162 (detailed comparison of various approximations)
- M. Bürkle, J. K. Viljas, A. Mishchenko, D. Vonlanthen, G. Schön, M. Mayor, T. Wandlowski, and F. Pauly, Conduction mechanisms in biphenyl-dithiol single-molecule junctions, arXiv:1109.0273 (static DFT and Landauer-Büttiker approach)
- C. Krzeminski, C. Delerue, G. Allan, D. Vuillaume, and R. M. Metzger, Theory of electrical rectification in a molecular monolayer, arXiv:1109.2695
- D. Hou and J. H. Wei, The Difficulty of Gate Control in Molecular Transistors, arXiv:1109.5940
- H. Hao, X.-H. Zheng, L.-L. Song, R.-N. Wang, and Z. Zeng, Electrostatic Spin Crossover in a Molecular Junction of a Single-Molecule Magnet Fe2, Phys. Rev. Lett. 108, 017202 (2012) (DFT, molecule in Au junction is predicted to show a transition between parallel and antiparallel alignment of the Fe spins, not a spin-crossover transition; no transport calculation; transition is driven by the Stark effect in the applied electric field, main idea is that the polarizability of the molecule has opposite [negative] sign in the junction compared to free space)
- A. Calzolari, T. Jayasekera, K. W. Kim, and M. Buongiorno Nardelli, Ab initio thermal transport properties of nanostructures from density functional perturbation theory, J. Phys.: Condens. Matter 24, 492204 (2012) (due to phonons only, Landauer approach based on DFPT)
- P. Darancet, J. R. Widawsky, H. J. Choi, L. Venkataraman, and J. B. Neaton, Quantitative Current-Voltage Characteristics in Molecular Junctions from First Principles, Nano Lett., Article ASAP DOI: 10.1021/nl3033137 (stong coupling to leads, nearly linear IV curve [cotunneling]; self-interaction-corrected DFT + Landauer formula, SIC brings calculated conductance down to experimental range)
- Z. Liu, J. P. Bergfield, K. Burke, and C. A. Stafford, Accuracy of density functionals for molecular electronics: the Anderson junction, arXiv:1201.1310 (linear response, zero temperature, obtain exact exchange-correlation functional and compare it to approximations)
- N. Baadji and S. Sanvito, Giant magnetoresistance across the phase transition in spin crossover molecules, arXiv:1201.2028 (single spin-crossover molecule in junction studied by static DFT and Landauer approach, huge change in current between the two spin states)
- M. Bürkle, L. A. Zotti, J. K. Viljas, D. Vonlanthen, A. Mishchenko, T. Wandlowski, M. Mayor, G. Schön, and F. Pauly, Ab-initio study of the thermopower of biphenyl-based single-molecule junctions, arXiv:1202.5709 (static DFT and NEGF)
- S. Bilan, L. A. Zotti, F. Pauly, and J. C. Cuevas, Theoretical study of the charge transport through C60-based single-molecule junctions, arXiv:1203.3101 (static DFT)
- D. Nozaki, H. Sevincli, S. M. Avdoshenko, R. Gutierrez, and G. Cuniberti, Control of quantum interference in molecular junctions: Understanding the origin of Fano and anti- resonances with parabolic diagrams, arXiv:1203.5269; D. Nozaki, C. Gomes da Rocha, H. M. Pastawski, and G. Cuniberti, Disorder and dephasing effect on electron transport through conjugated molecular wires in molecular junctions, arXiv:1204.0152 (static DFT and NEGF)
- A. Pertsova, M. Stamenova, and S. Sanvito, Time-dependent electron transport through a strongly correlated quantum dot: multiple-probe open boundary conditions approach, arXiv:1204.0937 (one-dimensional chain, combination of LDA and Bethe ansatz)
- G. Géranton, C. Seiler, A. Bagrets, L. Venkataraman, and F. Evers, Transport properties of individual C60-molecules, arXiv:1206.1226
- R. Stadler, J. Cornil, and V. Geskin, Electron transfer through a single barrier inside a molecule: from strong to weak coupling, arXiv:1207.7232, J. Chem. Phys. (charge distribution in biphenyl radical ions in electric field, not transport)
- S. Ulstrup, T. Frederiksen, and M. Brandbyge, Nonequilibrium electron-vibration coupling and conductance fluctuations in a C60-junction, arXiv:1209.5644 (DFT and NEGF)
- D. A. Ryndyk, A. Donarini, M. Grifoni, and K. Richter, Many-body localized molecular orbital approach to molecular transport, arXiv:1210.5615 (DFT/LDA, Kohn-Sham orbitals transformed into localized molecular orbitals as basis, thereby obtain hopping amplitudes, calculate Coulomb matrix elements between them with ad-hoc dielectric constant but no screening, state that two-center [density-density] terms are dominant, no discussion of double counting of interactions; finally apply NEGF and Pauli master equation)
- D. Toroz, M. Rontani, and S. Corni, Proposed alteration of images of molecular orbitals obtained using a scanning tunnelling microscope as a probe of electron correlation, arXiv:1212.0550, Phys. Rev. Lett.
- A. Pertsova, M. Stamenova, and S. Sanvito, Time-dependent electron transport through a strongly correlated quantum dot: multiple-probe open-boundary conditions approach, J. Phys.: Condens. Matter 25, 105501 (2013)
- A. Saffarzadeh and G. Kirczenow, Voltage-controlled spin injection with an endohedral fullerene Co@C60 dimer, Appl. Phys. Lett. 102, 173101 (2013) (DFT and extended Hückel model, Landauer approach)
- S. Kurth and G. Stefanucci, Dynamical correction to Kohn-Sham conductances from static density functional theory, Phys. Rev. Lett. 111, 030601 (2013) (linear-response conductance, Kondo effect for one electron in ground state)
- G. Sclauzero and A. Dal Corso, Efficient DFT+U calculations of ballistic electron transport: Application to Au monatomic chains with a CO impurity, arXiv:1301.5746 (DFT+U combined with Landauer-Büttiker approach)
- F. R. Renani and G. Kirczenow, Switching of a Quantum Dot Spin Valve by Single Molecule Magnets, arXiv:1303.1867 (two Mn12 molecules side-coupled to gold nanoparticle between electrodes, extended Hückel approach with spin-orbit coupling, Landauer formula for transmission coefficient)
- J. F. Nossa, M. Fhokrul Islam, C. M. Canali, and M. R. Pederson, Electric control of a Fe4 single-molecule magnet in a single-electron transistor, arXiv:1303.3283 (detailed paper, static DFT, motivated by transport but no transport calculation)
- W. R. French, C. R. Iacovella, I. Rungger, A. Melo Souza, S. Sanvito, and P. T. Cummings, Atomistic Simulations of Highly Conductive Molecular Transport Junctions Under Realistic Conditions, arXiv:1303.5036 (molecular dynamics using semiempirical potentials and S-Au bonding modelled based on DFT)
- C. Oppenländer, B. Korff, T. Frauenheim, and T. A. Niehaus, Atomistic modeling of dynamical quantum transport, arXiv:1304.4157 (adiabatic time-dependent density functional theory, compared to Landauer approach)
- T. Markussen, C. Jin, and K. S. Thygesen, Quantitatively Accurate Calculations of Conductance and Thermopower of Molecular Junctions, arXiv:1305.3048 (DFT with GW approximation, also self-interaction correction, calculate transmission function at zero bias and from this the thermopower in linear response)
- C. Oppenländer, B. Korff, and T. A. Niehaus, Higher harmonics and ac transport from time dependent density functional theory, arXiv:1305.3746 (approximate TDDFT)
- G. Stefanucci and S. Kurth, Kondo effect in the Kohn-Sham conductance of multiple levels quantum dots, arXiv:1307.6337 (point out that static DFT + Landauer formalism can describe the Kondo effect when appropriate XC functionals are used, namely ones that show steps at integer filling fraction; useful references)
- S. Liu, A. Nurbawono, and C. Zhang, Density Functional Theory for Steady-State Nonequilibrium Molecular Junctions, Sci. Rep. 5, 15386 (2015) (based on Hershfield's mapping to effectively equilibrium system; assumptions questionable, higher-potential lead what run dry before steady state is reached, see also endnote 20)
Cavities, optical properties, polaritons
- J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf, and R. F. Mahrt, Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer, Nature Mat. 13, 247 (2014) (nonequilibrium BEC driven by pump laser, induced lasing)
- K. S. Daskalakis, S. A. Maier, R. Murray, and S. Kéna-Cohen, Nonlinear interactions in an organic polariton condensate, Nature Mat. 13, 271 (2014) (similar to previous; nonequilibrium BEC and lasing)
- J. Feist and F. J. Garcia-Vidal, Extraordinary Exciton Conductance Induced by Strong Coupling, Phys. Rev. Lett. 114, 196402 (2015) (nearly unaffected by disorder)
-
F. Herrera and F. C. Spano, Dark Vibronic Polaritons and the Spectroscopy of Organic Microcavities, Phys. Rev. Lett. 118, 223601 (2017) (theory)
Other studies on nanoscopic and mesoscopic systems (not transport)
- M. Ludwig, B. Kubala, and F. Marquardt, The optomechanical instability in the quantum regime, arXiv:0803.3714
- H. E. Türeci, M. Hanl, M. Claassen, A. Weichselbaum, T. Hecht, B. Braunecker, A. Govorov, L. Glazman, J. von Delft, and A. Imamoglu, Shedding light on non-equilibrium dynamics of a spin coupled to fermionic reservoir, arXiv:0907.3854 (optically excited spin coupled to quantum dot, which is coupled to an electron bath)
- M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck, Quantum-dot Carnot engine at maximum power, arXiv:1001.2192
- A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, Cooling and squeezing via quadratic optomechanical coupling, arXiv:1004.2510
- D. S. Kosov, T. Prosen, and B. Zunkovic, Lindblad master equation approach to superconductivity in open quantum systems, arXiv:1106.4656
- M. Misiorny, M. Hell, and M. R. Wegewijs, Spintronic magnetic anisotropy, Nature Phys. 9, 801 (2013) (coupling a quatum dot to a ferromagnetic lead induces a uniaxial anisotropy [here called quadrupolar field] to second order in the coupling Γ; also calculate the spectral function at finite frequency but zero bias using the density matrix numerical renormalization group)
Superconductivity
Experiments
- J. Demsar, B. Podobnik, V. V. Kabanov, D. Mihailovic, and T. Wolf, The superconducting gap Deltac, the pseudogap Deltap and pair fluctuations above Tc in overdoped Y1-xCaxBa2Cu3O7-delta from femtosecond time-domain spectroscopy, cond-mat/9905026 (the pseudogap and the superconducting gap show different time dependence); J. Demsar, K. Zagar, V. V. Kabanov, and D. Mihailovic, Low-energy electronic structure in Y1-xCaxBa2Cu3O7-y comparison of time-resolved optical spectroscopy, NMR, neutron and tunneling data, cond-mat/9907028 P
- Y. Zuev, J. A. Skinta, M.-S. Kim, T. R. Lemberger, E. Wertz, K. Wu, and Q. Li, The Role of Thermal Phase Fluctuations in Underdoped YBCO Films, cond-mat/0407113
- W. J. Padilla, Y. S. Lee, M. Dumm, G. Blumberg, S. Ono, K. Segawa, S. Komiya, Y. Ando, and D. N. Basov, Constant effective mass across the phase diagram of high-Tc cuprates, Phys. Rev. B 72, 060511(R) (2005)
- A. Uldry, M. Mali, J. Roos, and P. F. Meier, Anisotropy of the antiferromagnetic spin correlations in the superconducting state of YBa2Cu3O7 and YBa2Cu4O8, cond-mat/0506245, J. Phys.: Condens. Matter 17, L499 (2005) (NMR/NQR: claim that in-plane antiferromagnetic correlations vanish at zero temperature in the superconducting phase)
- D. M. Broun, P. J. Turner, W. A. Huttema, S. Ozcan, B. Morgan, R. Liang, W. N. Hardy, and D. A. Bonn, In-Plane Superfluid Density of Highly Underdoped YBa2Cu3O6+x, cond-mat/0509223
- R. S. Keizer, S. T. B. Goennenwein, T. M. Klapwijk, G. Miao, G. Xiao, and A. Gupta, A spin triplet supercurrent through the half-metallic ferromagnet CrO2, cond-mat/0602359, Nature 439, 825 (2006)
- E. Bustarret, C. Marcenat, P. Achatz, J. Kacmarcik, F. Lévy, A. Huxley, L. Ortéga, E. Bourgeois, X. Blase, D. Débarre, and J. Boulmer, Superconductivity in doped cubic silicon, Nature 444, 465 (2006) (in heavily boron-doped silicon, Tc about 0.35 K)
- H. Yamazaki, N. Shannon, and H. Takagi, Interplay between superconductivity and ferromagnetism in epitaxial Nb(110)/Au(111)/Fe(110) trilayers, cond-mat/0604030 (interesting oscillations of superconducting Tc with Au thickness, open questions)
- J. E. Sonier, F. D. Callaghan, Y. Ando, R. F. Kiefl, J. H. Brewer, C. V. Kaiser, V. Pacradouni, S.-A. Sabok-Sayr, X. F. Sun, S. Komiya, W. N. Hardy, D. A. Bonn, and R. Liang, Avoided Quantum Criticality in YBa2Cu3Oy and La2-xSrxCuO4, cond-mat/0610051
- G.-M. Zhao, Unambiguous exclusion of d-wave gap symmetry in high-temperature superconductors, cond-mat/0610599 (analysis of existing ARPES data for two compounds supports extended s-wave gap) Q
- Y. Okada, T. Takeuchi, T. Baba, S. Shin, and H. Ikuta, The origin of the anomalously strong influence of out-of-plane disorder on high-Tc superconductivity, arXiv:0704.1698
- E. E. M. Chia, J.-X. Zhu, D. Talbayev, R. D. Averitt, K.-H. Oh, I.-S. Jo, S.-I. Lee, and A. J. Taylor, Observation of Competing Order in a High-Tc Superconductor with Femtosecond Optical Pulses, arXiv:0705.1724 (Tl-2223, competing order with second gap at low temperatures)
- M. C. Boyer, W. D. Wise, K. Chatterjee, M. Yi, T. Kondo, T. Takeuchi, H. Ikuta, and E. W. Hudson, Imaging the Two Gaps of the High-TC Superconductor Pb-Bi2Sr2CuO6+x, arXiv:0705.1731 (evidence for second gap/competing order)
- H.-H. Wen and X.-G. Wen, Two energy scales and close relationship between the pseudogap and superconductivity in underdoped cuprate superconductors, arXiv:0708.3878, Physica C 460-462, 28 (2007), Proceedings of M2S-2006
- A. Kanigel, U. Chatterjee, M. Randeria, M. R. Norman, S. Souma, M. Shi, Z. Z. Li, H. Raffy, and J. C. Campuzano, Protected nodes and the collapse of the Fermi arcs in high Tc cuprates, arXiv:0708.4099
- J. M. Tranquada, G. D. Gu, M. Hücker, Q. Jie, H.-J. Kang, R. Klingeler, Q. Li, N. Tristan, J. S. Wen, G. Y. Xu, Z. J. Xu, J. Zhou, and M. v. Zimmermann, Evidence for unusual superconducting correlations coexisting with stripe order in La1.875Ba0.125CuO4, Phys. Rev. B 78, 174529 (2008)
- S. E. Sebastian, J. Gillett, N. Harrison, P. H. C. Lau, C. H. Mielke, and G. G. Lonzarich, Quantum oscillations in the parent magnetic phase of an iron arsenide high temperature superconductor, arXiv:0806.4726 (for a "122" compound, giving information on the Fermi surface in the paramagnetic and SDW phases)
- A. S. Mishchenko, N. Nagaosa, Z.-X. Shen, G. De Filippis, V. Cataudella, T. P. Devereaux, C. Bernhard, K. W. Kim, and J. Zaanen, Charge dynamics of doped holes in high Tc cuprates - A clue from optical conductivity, arXiv:0804.0479 (experiment and theory; explanation for mid-infrared band in terms of correlations and electron-phonon coupling)
- A. Koitzsch, D. Inosov, J. Fink, M. Knupfer, H. Eschrig, S. V. Borisenko, G. Behr, A. Köhler, J. Werner, B. Büchner, R. Follath, and H. A. Dürr, Electronic structure of LaO1-xFxFeAs from Photoemission Spectroscopy, arXiv:0806.0833 (doping is seen to lead to significant spectral-weight transfer and Fe-d-like bands close to the Fermi energy are narrower than predicted by LDA)
- C. Liu, T. Kondo, M. Tillman, M. Tillman, G. D. Samolyuk, Y. Lee, C. Martin, J. L. McChesney, S. Bud'ko, M. Tanatar, E. Rotenberg, P. Canfield, R. Prozorov, B. Harmon, and A. Kaminski, Fermi surface and strong coupling superconductivity in single crystal NdFeAsO1-xFx, arXiv:0806.2147 (ARPES, see relatively flat bands below the Fermi energy and pseudogap behaviour) P
- S. Margadonna, Y. Takabayashi, M. T. McDonald, M. Brunelli, G. Wu, R. H. Liu, X. H. Chen, and K. Prassides, Crystal structure and phase transitions across the metal-superconductor boundary in the SmFeAsO1-xFx (0 < x < 0.20) family, arXiv:0806.3962 (Structural transition is seen to persist into the superconducting range) P
- H. Luetkens, H.-H. Klauss, M. Kraken, F. J. Litterst, T. Dellmann, R. Klingeler, C. Hess, R. Khasanov, A. Amato, C. Baines, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner, The electronic phase diagram of the LaO1-xFxFeAs superconductor, arXiv:0806.3533, Nature Materials P
- S. C. Riggs, J. B. Kemper, Y. Jo, Z. Stegen, L. Balicas, G. S. Boebinger, F. F. Balakirev, A. Migliori, H. Chen, R. H. Liu, and X. H. Chen, Log-T divergence and Insulator-to-Metal Crossover in the normal state resistivity of fluorine doped SmFeAsO1-xFx, arXiv:0806.4011 (logarithmic divergence of resistivity if superconductivity is suppressed by strong magnetic field, magnetoresistance is positive, effect is more pronounced in underdoped than in optimally doped sample) P
- F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P. M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, and M.-K. Wu, Superconductivity in the PbO-type Structure alpha-FeSe, arXiv:0807.2369 (superconductivity with Tc around 8K, requires Se deficiency)
- M. Shi, A. Bendounan, E. Razzoli, S. Rosenkranz, M. R. Norman, J. C. Campuzano, J. Chang, M. Mansson, Y. Sassa, T. Claesson, O. Tjernberg, L. Patthey, N. Momono, M. Oda, M. Ido, S. Guerrero, C. Mudry, and J. Mesot, Spectroscopic evidence for preformed Cooper pairs in the pseudogap phase of cuprates, arXiv:0810.0292 (ARPES, find Bogoliubov-type dispersion in the pseudogap phase, with a gap agreeing in size and angular dependence with the d-wave superconducting gap)
- M. A. McGuire, R. P. Hermann, A. S. Sefat, B. C. Sales, R. Jin, D. Mandrus, F. Grandjean, and G. J. Long, Influence of the rare-earth element on the effects of the structural and magnetic phase transitions in CeFeAsO, PrFeAsO, and NdFeAsO, arXiv:0811.0589 P
- C. Hess, A. Kondrat, A. Narduzzo, J. E. Hamann-Borrero, R. Klingeler, J. Werner, G. Behr, and B. Büchner, The intrinsic electronic phase diagram of iron-pnictide superconductors, arXiv:0811.1601 P
- F. Pfuner, J. G. Analytis, J.-H. Chu, I. R. Fisher, and L. Degiorgi, Charge dynamics of the spin-density-wave state in BaFe2As2, arXiv:0811.2195 (Optical conductivity, suggesting a partially ungapped Fermi surface and, caused by the partial gapping, reduced electronic scattering in the SDW phase) P
- X. Zhang, Y. S. Oh, Y. Liu, L. Yan, K. H. Kim, R. L. Greene, and I. Takeuchi, Observation of the Josephson effect in Pb/(Ba,K)Fe2As2 single crystal junctions, arXiv:0812.3605 (suggesting s-wave pairing)
- W. L. Yang, A. P. Sorini, C-C. Chen, B. Moritz, W.-S. Lee, F. Vernay, P. Olalde-Velasco, J. D. Denlinger, B. Delley, J.-H. Chu, J. G. Analytis, I. R. Fisher, Z. A. Ren, J. Yang, W. Lu, Z. X. Zhao, J. van den Brink, Z. Hussain, Z.-X. Shen, and T. P. Devereaux, Evidence for weak electronic correlations in iron pnictides, Phys. Rev. B 80, 014508 (2009) (x-ray absorption and x-ray scattering accompanied by ab-initio and many-body theory, finding U of less than about 2eV and a Hund's rule coupling J of about 0.8 eV: intermediate coupling; changed relative to preprint); see also Viewpoint: Z. Tesanovic, Are iron pnictides new cuprates?, Physics 2, 60 (2009)
- J. Meng, G. Liu, W. Zhang, L. Zhao, H. Liu, X. Jia, D. Mu, S. Liu, X. Dong, J. Zhang, W. Lu, G. Wang, Y. Zhou, Y. Zhu, X. Wang, Z. Xu, C. Chen, and X. J. Zhou, Coexistence of Fermi arcs and Fermi pockets in a high-Tc copper oxide superconductor, Nature 462, 335 (2009)
- A. Amato, R. Khasanov, H. Luetkens, and H.-H. Klauss, Probing the Ground State Properties of Iron-based Superconducting Pnictides and Related Systems by Muon-Spin Spectroscopy, arXiv:0901.3139
- V. Crespo, J. G. Rodrigo, H. Suderow, S. Vieira, D. Hinks, and I. K. Schuller, Evolution of the local superconducting density of states in ErRh4B4 close to the ferromagnetic transition, arXiv:0902.0308 (tunneling spectroscopy, ferromagnetic correlations in superconducting state)
- P. Vilmercati, A. Fedorov, I. Vobornik, Manju U., G. Panaccione, A. Goldoni, A. S. Sefat, M. A. McGuire, B. C. Sales, R. Jin, D. Mandrus, D. J. Singh, and N. Mannella, Evidence for Three-Dimensionality in the Fermi Surface Topology of Layered Electron Doped Ba(Fe1-XCox)2As2 Iron Superconductors, arXiv:0902.0756 (ARPES)
- C. Bernhard, A. J. Drew, L. Schulz, V.K. Malik, M. Roessle, Ch. Niedermayer, Th. Wolf, G.D. Varma, G. Mu, H. H. Wen, H. Liu, G. Wu, and X.H. Chen, Muon spin rotation study of magnetism and superconductivity in BaFe2-xCoxAs2 and Pr1-xSrxFeAsO, arXiv:0902.0859 (muSR, find static but disordered local magnetic fields in superconducting phase for the electron-doped system, and microscopic phase separation for the hole-doped system)
- V. V. Moshchalkov, M. Menghini, T. Nishio, Q. H. Chen, A. V. Silhanek, V. H. Dao, L. F. Chibotaru, and J. Karpinsky, Type-1.5 Superconductors, arXiv:0902.0997, Phys. Rev. Lett. (2009) (MgB2 single crystals, which are type-1 and type-2 with respect to the two components of the order parameter, leading to novel vortex-lattice states, also contains simulations)
- S. Sanna, R. De Renzi, G. Lamura, C. Ferdeghini, A. Palenzona, M. Putti, M. Tropeano, and T. Shiroka, Magnetic-superconducting phase boundary of SmFeAsO1-xFx studied via muon spin rotation: Unified behavior in a pnictide family, arXiv:0902.2156
- D. H. Lu, M. Yi, S.-K. Mo, J. G. Analytis, J.-H. Chu, A. S. Erickson, D. J. Singh, Z. Hussain, T. H. Geballe, I. R. Fisher, and Z.-X. Shen, ARPES studies of the electronic structure of LaOFe(P,As), arXiv:0902.2503, Physica C (2009) (ARPES compared to LDA, agreement is quite good for P-compound but not for As-compound); M. Yi, D. H. Lu, J. G. Analytis, J.-H. Chu, S.-K. Mo, R.-H. He, X. J. Zhou, G. F. Chen, J. L. Luo, N. L. Wang, Z. Hussain, D. J. Singh, I. R. Fisher, and Z.-X. Shen, Electronic Structure of the BaFe2As2 Family of Iron Pnictides, arXiv:0902.2628 (only electron pockets, no hole pockets, reasonable agreement between ARPES and renormalized LDA results)
- I. Felner and Y. Kopelevich, Magnetization Measurement of a Possible High-Temperature Superconducting State in Amorphous Carbon Doped with Sulfur, arXiv:0902.4631 (superconductivity below 38 K, coexisting with ferromagnetism)
- L. Ortenzi, E. Cappelluti, L. Benfatto, and L. Pietronero, Fermi surface shrinking and interband coupling in iron-based pnictides, arXiv:0903.0315 (LaFePO, really not about superconducting compound, but relevant to it)
- S. Mukhopadhyay, S. Oh, A. M. Mounce, M. Lee, W. P. Halperin, N. Ni, S. L. Bud'ko, P. C. Canfield, A. P. Reyes, and P. L. Kuhns, Magnetic Impurities in the Pnictide Superconductor Ba1-xKxFe2As2, arXiv:0903.0674
- H. Ogino, Y. Matsumura, Y. Katsura, K. Ushiyama, S. Horii, K. Kishio, and J. Shimoyama, Superconductivity at 17K in Sr4Sc2Fe2P2O6: new superconducting layered oxypnictides with thick perovskite oxide layer, arXiv:0903.3314
- D. Parshall, K. A. Lokshin, Jennifer Niedziela, A. D. Christianson, M. D. Lumsden, H. A. Mook, S. E. Nagler, M. A. McGuire, M. B. Stone, D. L. Abernathy, A. S. Sefat, B. C. Sales, D. G. Mandrus, and T. Egami, Spin Excitations in BaFe1.84Co0.16As2Superconductor Observed by Inelastic Neutron Scattering, arXiv:0903.4621 (spin resonance peak, comparison to cuprates)
- A. de Visser, N. T. Huy, A. Gasparini, D. E. de Nijs, D. Andreica, C. Baines, and A. Amato, Muon spin rotation and relaxation in the superconducting ferromagnet UCoGe, arXiv:0904.0532 (coexistence of ferromagnetism and superconductivity)
- K. Ahilan, F. L. Ning, T. Imai, A. S. Sefat, M. A. McGuire, B. C. Sales, and D. Mandrus, The Electronic Phase Diagram of the Iron-based High Tc Superconductor Ba(Fe(1-x)Co(x))2As2 Under Hydrostatic Pressure (0 less than x less than 0.099), arXiv:0904.2215 (resistivity measurements, pressure effect on SDW [suppressed] and superconductivity in the underdoped regime [strongly enhanced])
- J. Meng, G. Liu, W. Zhang, L. Zhao, H. Liu, X. Jia, D. Mu, S. Liu, X. Dong, W. Lu, G. Wang, Y. Zhou, Y. Zhu, X. Wang, Z. Xu, C. Chen, and X. J. Zhou, Direct Observation of Fermi Pocket in High Temperature Cuprate Superconductors, arXiv:0906.2682 (ARPES, observe Fermi pockets, not ungapped arcs, in the pseudogap phase)
- M. A. Tanatar, J. P. Reid, H. Shakeripour, X. G. Luo, N. Doiron-Leyraud, N. Ni, S. L. Bud'ko, P. C. Canfield, R. Prozorov, and L. Taillefer, Doping Evolution of the Gap Structure in the Iron-Arsenide Superconductor Ba(Fe1-xCox)2As2 via Heat Transport, arXiv:0907.1276 (gap is nearly isotropic in the underdoped regime and becomes highly anisotropic in the overdoped regime, but remains gapless)
- C. R. Rotundu, D. T. Keane, B. Freelon, S. D. Wilson, A. Kim, P. N. Valdivia, E. Bourret-Courchesne, and R. J. Birgeneau, Phase diagram of the PrFeAsO1-xFx superconductor, arXiv:0907.1308 P
- K. C. Kirshenbaum, S. R. Saha, N. P. Butch, J. D. Magill, and J. Paglione, Superconductivity in the Iron-Pnictide Parent Compound SrFe2As2, arXiv:0907.4141 (superconductivity in nominally undoped parent compound, is suppressed by annealing, but reappears after cold-working, thus apparently defect-induced)
- J. L. Tallon and J. G. Storey, Energy gaps in high-Tc superconductors: BCS after all?, arXiv:0908.4430 (reexamination of data, gap is found to scale with the mean-field Tc value, suggesting a BCS-type theory)
- L. Luan, O. M. Auslaender, T. M. Lippman, C. W. Hicks, B. Kalisky, J.-H. Chu, J. G. Analytis, I. R. Fisher, J. R. Kirtley, and K. A. Moler, Local measurement of the penetration depth in the pnictide superconductor Ba(Fe0.95Co0.05)2As, arXiv:0909.0744 (magnetic force microscopy, results consistent with two full gaps, superfluid density is found to be uniform)
- S. E. Sebastian, N. Harrison, M. M. Altarawneh, C. H. Mielke, R. Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich, Metal-insulator quantum critical point beneath the high Tc superconducting dome, arXiv:0910.2359 (YBCO, quantum oscillations in strong magnetic fields, find direct evidence for a metal-insulator QCP under the superconducting dome, but shifted to the underdoped side) P
- J. E. Sonier, C. V. Kaiser, V. Pacradouni, S. A. Sabok-Sayr, C. Cochrane, D. E. MacLaughlin, S. Komiya, and N. E. Hussey, Emergence of a Novel Frozen Magnetic State in a Heavily Overdoped Non-Superconducting Copper Oxide, arXiv:0911.0407 (LSCO, a state with local moments tied to Sr-rich regions)
- S. A. J. Kimber, A. Kreyssig, Y.-Z. Zhang, H. O. Jeschke, R. Valentí, F. Yokaichiya, E. Colombier, J. Yan, T. C. Hansen, T. Chatterji, R. J. McQueeney, P. C. Canfield, A. I. Goldman, and D. N. Argyriou, Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2, arXiv:0912.2376 (experiments and DFT calculations: effects of high pressure on lattice and electronic structure are similar to effects of doping, change in Fermi surface is likely more important for superconductivity than introduction of additional carriers with doping)
- S. R. Saha, T. Drye, K. Kirshenbaum, N. P. Butch, and J. Paglione, Superconductivity at 23 K in Pt-doped BaFe2As2 single crystals, arXiv:0912.2752 (Pt substituted for Fe, removes structural and SDW transitions, induces superconductivity at low temperatures)
- L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, G. F. Chen, J. L. Luo, N. L. Wang, and M. Z. Hasan, Observation of intertwined Fermi surface topology, orbital parity symmetries and electronic interactions in iron arsenide superconductors, arXiv:0912.5089 (ARPES on optimally doped 122 compound)
- T. Zhang, P. Cheng, W.-J. Li, Y.-J. Sun, G. Wang, X.-G. Zhu, K. He, L. Wang, X. Ma, X. Chen, Y. Wang, Y. Liu, H.-Q. Lin, J.-F. Jia, and Q.-K. Xue, Superconductivity in one-atomic-layer metal films grown on Si(111), Nature Phys. 6, 104 (2010) (Pb and In films)
- R. Daou, J. Chang, David LeBoeuf, O. Cyr-Choiniere, F. Laliberte, N. Doiron-Leyraud, B. J. Ramshaw, Ruixing Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor, Nature 463, 519 (2010)
- L. Li, Y. Wang, S. Komiya, S. Ono, Y. Ando, G. D. Gu, and N. P. Ong, Diamagnetism and Cooper pairing above Tc in cuprates, Phys. Rev. B 81, 054510 (2010), see also Viewpoint: S. A. Kivelson and E. H. Fradkin, Fluctuation diamagnetism in high-temperature superconductors, Physics 3, 15 (2010)
- B. Kalisky, J. R. Kirtley, J. G. Analytis, J.-H. Chu, A. Vailionis, I. R. Fisher, and K. A. Moler, Stripes of increased diamagnetic susceptibility in underdoped superconducting Ba(Fe1-xCox)2As2 single crystals: Evidence for an enhanced superfluid density at twin boundaries, Phys. Rev. B 81, 184513 (2010); J. R. Kirtley, B. Kalisky, L. Luan, and K. A. Moler, Meissner response of a bulk superconductor with an embedded sheet of reduced penetration depth, Phys. Rev. B 81, 184514 (2010); see also Viewpoint: J. M. Tranquada, Modulated superfluid density in an iron-pnictide superconductor, Physics 3, 41 (2010)
- S. E. Sebastian, N. Harrison, P. A. Goddard, M. M. Altarawneh, C. H. Mielke, R. Liang, D. A. Bonn, W. N. Hardy, O. K. Andersen, and G. G. Lonzarich, Compensated electron and hole pockets in an underdoped high-Tc superconductor, Phys. Rev. B 81, 214524 (2010) (quantum oscillation experiments and theoretical interpretation in terms of two types of hole pockets and one type of electron pockets in underdoped YBCO, for which superconductivity was suppressed by a magnetic field, results support density-wave order); see also Viewpoint: A. V. Chubukov, Slicing the cuprate Fermi surface to reveal underlying order, Physics 3, 54 (2010)
- E. Bauer, G. Rogl, Xing-Qiu Chen, R. T. Khan, H. Michor, G. Hilscher, E. Royanian, K. Kumagai, D. Z. Li, Y. Y. Li, R. Podloucky, and P. Rogl, Unconventional superconducting phase in the weakly correlated noncentrosymmetric Mo3Al2C compound, Phys. Rev. B 82, 064511 (2010); A. B. Karki, Y. M. Xiong, I. Vekhter, D. Browne, P. W. Adams, D. P. Young, K. R. Thomas, Julia Y. Chan, H. Kim, and R. Prozorov, Structure and physical properties of the noncentrosymmetric superconductor Mo3Al2C, Phys. Rev. B 82, 064512 (2010) (mixed singlet-triplet superconductivity in a non-centrosymmetric compound); note also Synopsis
- T. Mertelj, P. Kusar, V. V. Kabanov, L. Stojchevska, N. D. Zhigadlo, S. Katrych, Z. Bukowski, J. Karpinski, and D. Mihailovic, Quasiparticle relaxation dynamics in spin-density-wave and superconducting SmFeAsO1-xFx single crystals, arXiv:1001.1047 (pump-probe experiments on undoped/SDW and doped/superconducting samples)
- N. Pascher, J. Deisenhofer, H.-A. Krug von Nidda, M. Hemmida, H. S. Jeevan, P. Gegenwart, and A. Loidl, Magnetic fluctuations and superconductivity in Fe pnictides probed by Electron Spin Resonance, arXiv:1001.1302 (Eu0.5K0.5Fe2As2)
- X. Zhu, F. Han, G. Mu, J. Tang, J. Ju, K. Tanigaki, and H.-H Wen, Superconductivity induced by doping Platinum in BaFe2As2, arXiv:1001.4913
- M. Eisterer, M. Zehetmayer, H. W. Weber, J. Jiang, J. D. Weiss, A. Yamamoto, E. E. Hellstrom, D. C. Larbalestier, N. D. Zhigadlo, and J. Karpinski, Disorder effects and current percolation in FeAs based superconductors, arXiv:1001.5386
- J. G. Analytis, J.-H. Chu, R. D. McDonald, S. C. Riggs, and I. R. Fisher, Enhanced Fermi surface nesting in superconducting BaFe2(As1-xPx)2 revealed by de Haas-van Alphen effect, arXiv:1002.1304
- T. Yamazaki, N. Takeshita, R. Kobayashi, H. Fukazawa, Y. Kohori, K. Kihou, C.-H. Lee, H. Kito, A. Iyo, and H. Eisaki, Extremely high sensitivity to uniaxial stress in pressure induced superconductivity of BaFe2As2, arXiv:1003.0913
- M. S. Anwar, M. Hesselberth, M. Porcu, and J. Aarts, Supercurrents through half-metallic ferromagnetic CrO2 revisited, arXiv:1003.4446 (surprising long-range proximity effect in the CrO2)
- D. Kalok, A. Bilusic, T. I. Baturina, V. M. Vinokur, and C. Strunk, Charge BKT Transition and Electron-Phonon Decoupling in Thin TiN Films, arXiv:1004.5153
- M. Hücker, M. v. Zimmermann, G. D. Gu, Z. J. Xu, J. S. Wen, G. Xu, H. J. Kang, A. Zheludev, and J. M. Tranquada, Stripe order in superconducting La(2-x)Ba(x)CuO(4) for 0.095 <= x <= 0.155, arXiv:1005.5191
- D. Wu, N. Barisic, M. Dressel, G. H. Cao, Z-A. Xu, J. Carbotte, and E. Schachinger, Eliashberg Analysis of Optical Spectra Reveals Strong Coupling of Charge Carriers to Spin Fluctuations in Superconducting Iron Pnictides, arXiv:1006.5468 (analysis of optical conductivity data)
- P. M. Shirage, K. Miyazawa, K. Kihou, H. Kito, Y. Yoshida, Y. Tanaka, H. Eisaki, and A. Iyo, Absence of an appreciable iron isotope effect on the transition temperature of the optimally doped SmFeAsO_{1-y} superconductor, arXiv:1007.2666 (unlike for (Ba,K)Fe2As2, where there is a sizeable inverse isotope effect)
- D. Fournier, G. Levy, Y. Pennec, J. L. McChesney, A. Bostwick, E. Rotenberg, R. Liang, W. N. Hardy, D. A. Bonn, I. S. Elfimov, and A. Damascelli, Loss of nodal quasiparticle integrity in underdoped YBa2Cu3O6+x, arXiv:1007.4027 (ARPES to determine quasiparticle weight, found to vanish in the underdoped regime)
- M. Yoshizawa, R. Kamiya, R. Onodera, Y. Nakanishi, K. Kihou, H. Eisaki, and C. H. Lee, Strong electron-lattice coupling and orbital fluctuations in iron pnictide superconductor Ba(Fe1-xCox)2As2, arXiv:1008.1479
- B. Lee, S. Khim, J. S. Kim, G. R. Stewart, and K. H. Kim, Single crystal growth and superconducting properties of LiFeAs, arXiv:1008.2050 (also see next reference)
- H. Kim, M. A. Tanatar, Y. J. Song, Y. S. Kwon, and R. Prozorov, Nodeless two-gap superconductivity in stoichiometric iron pnictide LiFeAs, arXiv:1008.3251 (suggest s+- symmetry; also see previous reference)
- J. Wen, Q. Jie, Q. Li, M. Hücker, M. von Zimmermann, Zhijun Xu, D. K. Singh, L. Zhang, G. Gu, and J. M. Tranquada, Magnetic-field-induced stripe order and two-dimensional superconductivity in a high-Tc superconductor, arXiv:1009.0031
- C. Zhang, L. Sun, Z. Chen, X. Zhou, Q. Wu, W. Yi, J. Guo, X. Dong, and Z. Zhao, Phase Diagram of Pressure-induced Superconductivity and its Relation to Hall Coefficient in Bi2Te3 Single Crystal, arXiv:1009.3746 (superconductivity emerging from a topological insulator)
- M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K. Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid, Superconductivity in SnO: a Nonmagnetic Analog to Fe-based Superconductors?, arXiv:1009.3787 (same symmetry as FeSe, superconductivity in a certain pressure range)
- A. K. Pramanik, L. Harnagea, C. Nacke, A. U. B. Wolter, S. Wurmehl, V. Kataev, and B. Büchner, Fishtail effect and vortex dynamics in LiFeAs single crystals, arXiv:1009.4896 (observe strong pinning, also construct phase diagram of vortex lattice); O. Heyer, T. Lorenz, V. B. Zabolotnyy, D. V. Evtushinsky, S. V. Borisenko, I. Morozov, L. Harnagea, S. Wurmehl, C. Hess, and B. Büchner, Intrinsic scattering in pnictides: transport properties of LiFeAs single crystals, arXiv:1010.2876; U. Stockert, M. Abdel-Hafiez, D. V. Evtushinsky, V. B. Zabolotnyy, A. U. B. Wolter, S. Wurmehl, I. Morozov, R. Klingeler, S. V. Borisenko, and B. Büchner, The superconducting gaps in LiFeAs: Joint study of specific heat and ARPES, arXiv:1011.4246 (two distinct, node-less gaps)
- C. Liu, A. D. Palczewski, T. Kondo, R. M. Fernandes, E. D. Mun, H. Hodovanets, A. N. Thaler, J. Schmalian, S. L. Bud'ko, P. C. Canfield, and A. Kaminski, Importance of Fermi surface topology for high temperature superconductivity in electron-doped iron arsenic superconductors, arXiv:1011.0980
- K. Cho, H. Kim, M. A. Tanatar, Y. J. Song, Y. S. Kwon, W. A. Coniglio, C. C. Agosta, A. Gurevich, and R. Prozorov, Anisotropic upper critical field and a possible Fulde-Ferrel-Larkin-Ovchinnikov state in a stoichiometric pnictide superconductor LiFeAs, arXiv:1011.5126 (measure the components of the anisotropic Hc2)
- D. LeBoeuf, N. Doiron-Leyraud, B. Vignolle, M. Sutherland, B. J. Ramshaw, J. Levallois, R. Daou1, F.s Laliberté, O. Cyr-Choiniere1, J. Chang, Y. J. Jo, L. Balicas, R. Liang, D. A. Bonn, W. N. Hardy, C. Proust, and L. Taillefer, Lifshitz critical point in the cuprate superconductor YBa2Cu3Oy from high-field Hall effect measurements, Phys. Rev. B 83, 054506 (2011); see also Viewpoint: M. Vojta, Picking the cuprates' Fermi pockets, Physics 4, 12 (2011)
- H. Mizoguchi, S. Matsuishi, M. Hirano, M. Tachibana, E. Takayama-Muromachi, H. Kawaji, and H. Hosono, Coexistence of Light and Heavy Carriers Associated with Superconductivity and Antiferromagnetism in CeNi0.8Bi2 with a Bi Square Net, Phys. Rev. Lett. 106, 057002 (2011)
- U. Chatterjee, J. Zhao, D. Ai, S. Rosenkranz, A. Kaminski, H. Raffy, Z. Z. Li, K. Kadowaki, M. Randeria, M. R. Norman, and J. C. Campuzano, Electronic phase diagram of high-temperature copper oxide superconductors, PNAS 108, 9346 (2011)
- A. T. Bollinger, G. Dubuis, J. Yoon, D. Pavuna, J. Misewich, and I. Bozovic, Superconductor-insulator transition in La2-xSrxCuO4 at the pair quantum resistance, Nature 472, 458 (2011)
- J. S. Kim, G. R. Stewart, S. Kasahara, T. Shibauchi, T. Terashima, and Y. Matsuda, Specific heat discontinuity, DC, at Tc in BaFe2(As0.7P0.3)2 - consistent with unconventional superconductivity, J. Phys.: Condens. Matter 23, 222201 (2011)
- A. Maisuradze, A. Shengelaya, A. Amato, E. Pomjakushina, and H. Keller, Muon spin rotation investigation of the pressure effect on the magnetic penetration depth in YBa2Cu3Ox, Phys. Rev. B 84, 184523 (2011) (coupling increases with pressure)
- A. Piriou, N. Jenkins, C. Berthod, I. Maggio-Aprile, and Ø. Fischer, First direct observation of the Van Hove singularity in the tunneling spectra of cuprates, arXiv:1103.0850, Nature Commun. 2, 221 (2011) (Bi-2201, also observe a pseudogap above the superconducting dome on the overdoped side)
- K. Jin, N. P. Butch, K. Kirshenbaum, J. Paglione, and R. L. Greene, Link between spin fluctuations and electron pairing in copper oxide superconductors, Nature 476, 73 (2011) (electron-doped La2-xCexCuO4)
- E. A. Yelland, J. M. Barraclough, W. Wang, K. V. Kamenev, and A. D. Huxley, High-field superconductivity at an electronic topological transition in URhGe, Nature Physics (2011), doi:10.1038/nphys2073
- C.-L. Song et al., Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor, Science 332, 1410 (2011) (STS on superconducting FeSe, showing breaking of fourfold rotation symmetry [nematicity?])
- J. Chang, N. Doiron-Leyraud, F. Laliberté, R. Daou, D. LeBoeuf, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, C. Proust, I. Sheikin, K. Behnia, and L. Taillefer, Nernst effect in the cuprate superconductor YBCO: Broken rotational and translational symmetries, arXiv:1103.3044 (superconductivity suppressed by magnetic field, evolution of in-plane anisotropy below T* and would-be Tc)
- D. A. Dikin, M. Mehta, C. W. Bark, C. M. Folkman, C. B. Eom, and V. Chandrasekhar, Coexistence of superconductivity and ferromagnetism in two dimensions, arXiv:1103.4006 (at the interface between LaAlO3 and SrTiO3)
- S. E. Sebastian, N. Harrison, M. M. Altarawneh, R. Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich, Chemical potential oscillations from a single nodal pocket in the underdoped high-Tc superconductor YBa2Cu3O6+x, arXiv:1103.4180 (second-harmonic quantum oscillations, suggesting a single type of electron-like Fermi pocket in the nodal region)
- A. E. Taylor, M. J. Pitcher, R. A. Ewings, T. G. Perring, S. J. Clarke, and A. T. Boothroyd, Spin fluctuations in LiFeAs observed by neutron scattering, arXiv:1104.1609 (support the same type of superconductivity as in other pnictides, not triplet pairing)
- M. A. Tanatar, J.-Ph. Reid, S. Rene de Cotret, N. Doiron-Leyraud, F. Laliberte, E. Hassinger, H. Kim, K. Cho, Yoo Jang Song, Yong Seung Kwon, R. Prozorov, and L. Taillefer, Isotropic three-dimensional gap in the iron-arsenide superconductor LiFeAs from directional heat transport measurements, arXiv:1104.2209 (support isotropic 3D gap, no signs of different gaps on different Fermi pockets)
- S. R. Saha, N. P. Butch, T. Drye, J. Magill, S. Ziemak, K. Kirshenbaum, P. Y. Zavalij, J. W. Lynn, and J. Paglione, Structural collapse and 45 K superconductivity in electron-doped CaFe2As2, arXiv:1105.4798
- T. Hänke, S. Sykora, R. Schlegel, D. Baumann, L. Harnagea, S. Wurmehl, M. Daghofer, B. Büchner, J. van den Brink, and C. Hess, Probing unconventional superconductivity in LiFeAs by quasiparticle interference, arXiv:1106.4217
- G. Koren and T. Kirzhner, Transport and spectroscopic properties of superconductor - ferromagnet - superconductor junctions of La1.9Sr0.1CuO4 - La0.67Ca0.33MnO3 - La1.9Sr0.1CuO4, arXiv:1107.0806; G. Koren, T. Kirzhner, and P. Aronov, Critical current measurements in superconductor - ferromagnet - superconductor junctions of YBa2Cu3Oy - SrRuO3 - YBa2Cu3Oy: No evidence for a dominant proximity induced triplet superconductivity in the ferromagnetic barrier, arXiv:1107.0808
- S. Hacohen-Gourgy, B. Almog, and G. Deutscher, Coexistence of a triplet nodal order-parameter and a singlet order-parameter at the interfaces of ferromagnet-superconductor Co/CoO/In junctions, arXiv:1107.2252
- C. Putzke, A. I. Coldea, I. Guillamon, D. Vignolles, A. McCollam, D. LeBoeuf, M. D. Watson, I. I. Mazin, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, and A. Carrington, A de Haas-van Alphen study of the Fermi surfaces of superconducting LiFeP and LiFeAs, arXiv:1107.4375 (claim good agreement with DFT for LiFeAs, but disagreement with earlier ARPES results); S. V. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky, T. K. Kim, I. V. Morozov, A. A. Kordyuk, and B. Büchner, Comment, arXiv:1108.1159 (challenge the conclusions regarding LiFeAs); Reply, arXiv:1108.3956
- M. Mondal, S. Kumar, M. Chand, A. Kamlapure, G. Saraswat, G. Seibold, L. Benfatto, and P. Raychaudhuri, Role of the vortex-core energy on the Beresinkii-Kosterlitz-Thouless transition in thin films of NbN, arXiv:1108.0912 (experiment and theory)
- P. Cai, C. Ye, W. Ruan, X. Zhou, A. Wang, M. Zhang, X. Chen, and Y. Wang, Imaging the coexistence of superconductivity and a charge density modulation in K0.73Fe1.67Se2 superconductor, arXiv:1108.2798 (STM, see also following article by Wiesenmayer et al.)
- E. Wiesenmayer, H. Luetkens, G. Pascua, R. Khasanov, A. Amato, H. Potts, B. Banusch, H.-H. Klauss, and D. Johrendt, Microscopic co-existence of superconductivity and magnetism in Ba1-xKxFe2As2, arXiv:1108.4307 (x-ray defraction and μSR, see also previous article by Cai et al.)
- A. Charnukha, J. Deisenhofer, D. Pröpper, M. Schmidt, Z. Wang, Y. Goncharov, A. N. Yaresko, V. Tsurkan, B. Keimer, A. Loidl, and A. V. Boris, Optical conductivity of superconducting Rb2Fe4Se5, arXiv:1108.5698
- N. Qureshi, P. Steffens, Y. Drees, A. C. Komarek, D. Lamago, Y. Sidis, L. Harnagea, H.-J. Grafe, S. Wurmehl, B. Büchner, and M. Braden, Incommensurate magnetic excitations in superconducting LiFeAs, arXiv:1108.6187
- Y. Wang, W. P. Pratt, Jr., and N. O. Birge, Area-dependence of spin-triplet supercurrent in ferromagnetic Josephson junctions, arXiv:1108.6243
- X. Zhang, B. Lee, S. Khim, K. H. Kim, R. L. Greene, and I. Takeuchi, Probing the Superconducting Order Parameter of LiFeAs by Point Contact Spectroscopy, arXiv:1109.1537 (indicating that the pairing is at least partly of s-wave type)
- J.-Y. Lin, Y. S. Hsieh, D. A. Chareev, A. N. Vasiliev, Y. Parsons, and H. D. Yang, Low temperature specific-heat measurements of a coexistence of isotropic and extended s-wave order parameters in superconducting FeSe single crystals, arXiv:1109.5225
- D. S. Inosov, P. Bourges, A. Ivanov, A. Prokofiev, E. Bauer, and B. Keimer, Dispersion and damping of zone-boundary magnons in the noncentrosymmetric superconductor CePt3Si, arXiv:1109.5784
- T. Katase, H. Hiramatsu, T. Kamiya, and H. Hosono, Indirect electron doping in BaFe2As2 using metastable cation doped epitaxial films, arXiv:1110.0045
- S. Sanna, P. Carretta, P. Bonfà, G. Prando, G. Allodi, R. De Renzi, T. Shiroka, G. Lamura, A. Martinelli, and M. Putti, Correlated trends of coexisting magnetism and superconductivity in optimally electron-doped oxy-pnictides, arXiv:1110.6326 (susceptibility and μSR)
- S. V. Borisenko, V. B. Zabolotnyy, A. A. Kordyuk, D. V. Evtushinsky, T. K. Kim, I. V. Morozov, R. Follath, and B. Büchner, One-sign order parameter in iron based superconductor, arXiv:1110.6922 (ARPES on undoped LiFeAs; no sign changes of order parameter, but unclear how ARPES can rule out sign changes between Fermi sheets)
- E. H. da Silva Neto, C. V. Parker, P. Aynajian, A. Pushp, J. Wen, G. Gu, and A. Yazdani, Scattering from incipient stripe order in the high-temperature superconductor Bi2Sr2CaCu2O8+d, arXiv:1111.2564 (comparison of quasiparticle scattering with model calculations, confirm their previous finding of short-range stripe order)
- K. Umezawa, Y. Li, H. Miao, K. Nakayama, Z.-H. Liu, P. Richard, T. Sato, J. B. He, D.-M. Wang, G. F. Chen, H. Ding, T. Takahashi, and S.-C. Wang, Unconventional Anisotropic s-Wave Superconducting Gaps of LiFeAs Iron-Pnictide Superconductor, arXiv:1111.3496
- W. Zhao, Q. Wang, M. Liu, W. Zhang, Y. Wang, M. Chen, Y. Guo, K. He, X. Chen, Y. Wang, J. Wang, X. Xie, Q. Niu, L. Wang, X. Ma, J. Jain, M. H. W. Chan, and Q.-K. Xue, Phases and phase transitions in two dimensional superconducting films, arXiv:1112.1207 (STM and transport measurements on Pb films, find two transitions, consistent with vortex unbinding [BKT] and local pairing)
- M. Bendele, A. Ichsanow, Yu. Pashkevich, L. Keller, T. Strässle, A. Gusev, E. Pomjakushina, K. Conder, R. Khasanov, and H. Keller, Coexistence of Superconductivity and Magnetism in FeSe1-x under Pressure, arXiv:1112.2602
- S. Kasahara, K. Hashimoto, H. Ikeda, T. Terashima, Y. Matsuda, and T. Shibauchi, Contrasts in electron correlations and inelastic scattering between LiFeAs and LiFeP revealed by charge transport, arXiv:1112.5597
- K. Fujita, A. R. Schmidt, E.-A. Kim, M. J. Lawler, D. H. Lee, J. C. Davis, H. Eisaki, and S. Uchida, Spectroscopic Imaging STM Studies of Electronic Structure in the Superconducting and Pseudogap Phases of Cuprate High-Tc Superconductors, arXiv:1112.5893, J. Phys. Soc. Jpn. 81, 011005 (2012) (long paper presenting and discussing distinct states in arc and antinodal regions)
- K. Umezawa, Y. Li, H. Miao, K. Nakayama, Z.-H. Liu, P. Richard, T. Sato, J. B. He, D.-M. Wang, G. F. Chen, H. Ding, T. Takahashi, and S.-C. Wang, Unconventional Anisotropic s-Wave Superconducting Gaps of the LiFeAs Iron-Pnictide Superconductor, Phys. Rev. Lett. 108, 037002 (2012) (ARPES, nodeless but anisotropic gap on the Fermi surfaces)
- L. Sun et al., Re-emerging superconductivity at 48 kelvin in iron chalcogenides, Nature doi:10.1038/nature10813 (2012)
- T. Scheike, W. Böhlmann, P. Esquinazi, J. Barzola-Quiquia, A. Ballestar, and A. Setzer, Can Doping Graphite Trigger Room Temperature Superconductivity? Evidence for Granular High-Temperature Superconductivity in Water-Treated Graphite Powder, Adv. Mat. DOI: 10.1002/adma.201202219 (2012) (based on magnetization hysteresis loops)
- L. Ma, G. F. Ji, J. Dai, X. R. Lu, M. J. Eom, J. S. Kim, B. Normand, and W. Yu, Microscopic Coexistence of Superconductivity and Antiferromagnetism in Underdoped Ba(Fe1-xRux)2As2, Phys. Rev. Lett. 109, 197002 (2012)
- M. Mondal, B. Joshi, S. Kumar, A. Kamlapure, S. C. Ganguli, A. Thamizhavel, S. S. Mandal, S. Ramakrishnan, and P. Raychaudhuri, Observation of Andreev bound state and multiple energy gaps in the non-centrosymmetric superconductor BiPd, arXiv:1202.2454 (also observe zero-bias conductance peak)
- D.-J. Jang, J. B. Hong, Y. S. Kwon, T. Park, K. Gofryk, F. Ronning, J. D. Thompson, and Y. Bang, Evidence for +-s-wave pairing symmetry in LiFeAs: specific heat study, arXiv:1203.1362
- V. Grinenko, M. Abdel-Hafiez, S. Aswartham, A. U. B. Wolter-Giraud, C. Hess, M. Kumar, S. Wurmehl, K. Nenkov, G. Fuchs, B. Holzapfel, S.-L. Drechsler, and B. Büchner, KFe2As2: coexistence of superconductivity and local moment derived spin-glass, arXiv:1203.1585
- S. V. Borisenko, A. N. Yaresko, D. V. Evtushinsky, V. B. Zabolotnyy, A. A. Kordyuk, J. Maletz, B. Büchner, Z. Shermadini, H. Luetkens, K. Sedlak, R. Khasanov, A. Amato, A. Krzton-Maziopa, K. Conder, E. Pomjakushina, H.-H. Klauss, and E. Rienks, "Cigar" Fermi surface as a possible requisite for superconductivity in iron-based superconductors, arXiv:1204.1316 (ARPES and μSR compared to DFT, for Rb0.77Fe1.61Se2, suggest presence of superconducting and magnetic domains)
- T. Hanaguri, K. Kitagawa, K. Matsubayashi, Y. Mazaki, Y. Uwatoko, and H. Takagi, Scanning Tunneling Microscopy/Spectroscopy of Vortices in LiFeAs, arXiv:1204.4863
- S. Iimura, S. Matuishi, H. Sato, T. Hanna, Y. Muraba, S. W. Kim, J. E. Kim, M. Takata, and H. Hosono, Two-dome structure in electron-doped iron arsenide superconductors, Nature Commun. 3, 943 (2012), also arXiv:1207.0583 (LaFeAsO doped by hydrogen substituting for oxygen)
- S. Grothe, S. Chi, P. Dosanjh, R. Liang, W. N. Hardy, S .A. Burke, D. A. Bonn, and Y. Pennec, Bound States of Defects in Superconducting LiFeAs Studied by Scanning Tunneling Spectroscopy, arXiv:1207.4249 (consistent with s+- pairing)
- J.-Ph. Reid, A. Juneau-Fecteau, R. T. Gordon, S. Rene de Cotret, N. Doiron-Leyraud, X. G. Luo, H. Shakeripour, J. Chang, M. A. Tanatar, H. Kim, R. Prozorov, T. Saito, H. Fukazawa, Y. Kohori, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, B. Shen, H.-H. Wen, and L. Taillefer, From d-wave to s-wave pairing in the iron-pnictide superconductor (Ba,K)Fe2As2, arXiv:1207.5719 (evidence for d-wave pairing in this stoichiometric 122 compound)
- M. Wang, M. Wang, H. Miao, S. V. Carr, D. L. Abernathy, M. B. Stone, X. C. Wang, L.i Xing, C. Q. Jin, X. Zhang, J. Hu, T. Xiang, H. Ding, and P. Dai, Effect of Li-deficiency impurities on the electron-overdoped LiFeAs superconductor, arXiv:1208.0909 (transport, ARPES, neutron scattering; superconducting and non-superconducting samples)
- Q. Q. Ge, Z. R. Ye, M. Xu, Y. Zhang, J. Jiang, B. P. Xie, Y. Song, C. L. Zhang, P. Dai, and D. L. Feng, Anisotropic but nodeless superconducting gap in the presence of spin density wave in iron-pnictide superconductor NaFe1-xCoxAs, arXiv:1209.1967 (ARPES, coexistence between stripe-like SDW [but crystal is twinned], reconstruction due to SDW changes Fermi pockets only little, superconducting gap on both electron pockets is highly anisotropic but nodeless in the coexistence regime, whereas it is essentially isotropic for a more strongly Co-doped sample without SDW, gap on hole pocket is isotropic in both samples)
- J. Knolle, V. B. Zabolotnyy, I. Eremin, S. V. Borisenko, N. Qureshi, M. Braden, D. V. Evtushinsky, T. K. Kim, A. A. Kordyuk, S. Sykora, Ch. Hess, I. V. Morozov, S. Wurmehl, R. Moessner, and B. Büchner, Incommensurate magnetic fluctuations and Fermi surface topology in LiFeAs, arXiv:1210.3792 (ARPES, also theoretical discussion)
- W. Li et al., Superconductivity in a single layer alkali-doped FeSe: a weakly coupled two-leg ladder system, arXiv:1210.4619 (Fermi surface of film is different from bulk, but superconductivity is similar, conclude that it is not nesting driven)
- H. Maeter, J. E. H. Borrero, T. Goltz, J. Spehling, A. Kwadrin, A. Kondrat, L. Veyrat, G. Lang, H.-J. Grafe, C. Hess, G. Behr, B. Büchner, H. Luetkens, C. Baines, A. Amato, N. Leps, R. Klingeler, R.Feyerherm, D. Argyriou, and H.-H. Klauss, Structural and electronic phase diagrams of CeFeAsO1-xFx and SmFeAsO1-xFx, arXiv:1210.6959
- D. V. Evtushinsky, V. B. Zabolotnyy, L. Harnagea, A. N. Yaresko, S. Thirupathaiah, A. A. Kordyuk, J. Maletz, S. Aswartham, S. Wurmehl, E. Rienks, R. Follath, B. Büchner, and S. V. Borisenko, Electronic band structure and momentum dependence of the superconducting gap in (Ca,Na)Fe2As2 from angle-resolved photoemission spectroscopy, arXiv:1211.4593
- J. Timmerwilke, E. Kim, J. Maughan, J. S. Kim, G. R. Stewart, and A. Biswas, a-b Plane Point Contact Spectroscopy measurements of optimally Cobalt doped Ba-122 iron-pnictide superconductors, arXiv:1211.4659 (two gaps, no nodes)
- C. Hess, S. Sykora, T. H\änke, R. Schlegel, D. Baumann, V. B. Zabolotnyy, L. Harnagea, S. Wurmehl, J. van den Brink, and B. Büchner, Resolving the quasiparticle scattering paradox in superconducting LiFeAs, arXiv:1212.2009 (quasi-particle interference experiments and theory)
- S. Yonezawa, T. Kajikawa, and Y. Maeno, First-Order Superconducting Transition of Sr2RuO4, arXiv:1212.4954
- G. Li, R. R. Urbano, P. Goswami, C. Tarantini, B. Lv, P. Kuhns, A. P. Reyes, C. W. Chu, and L. Balicas, Magnetic field-induced parity and time-reversal symmetry broken superconducting state in LiFeAs, Phys. Rev. B 87, 024512 (2013) (experiment and Ginzburg-Landau analysis, suggest pairing in strong magnetic field that breaks time-reversal and parity symmetries, might be d+id or p+ip)
- D. H. Torchinsky, F. Mahmood, A. T. Bollinger, I Bozovic, and N. Gedik, Fluctuating charge-density waves in a cuprate superconductor, Nature Materials (2013), doi:10.1038/nmat3571 (competing CDW fluctuations and superconductivity in underdoped LSCO)
- A. F. May, M. A. McGuire, J. E. Mitchell, A. S. Sefat, and B. C. Sales, Influence of spin fluctuations on the thermal conductivity in superconducting Ba(Fe1-xCox)2As2, Phys. Rev. B 88, 064502 (2013) (thermal conductivity shows an additional positive contribution below superconducting transition, attributed to scattering of low-energy spin fluctuations becoming weaker by suppressed spin density of states [spin-gap formation])
- S. Sakai, S. Blanc, M. Civelli, Y. Gallais, M. Cazayous, M.-A. Measson, J. S. Wen, Z. J. Xu, G. D. Gu, G. Sangiovanni, Y. Motome, K. Held, A. Sacuto, A. Georges, and M. Imada, Raman-Scattering Measurements and Theory of the Energy-Momentum Spectrum for Underdoped Bi2Sr2CaCuO8+δ Superconductors: Evidence of an s-Wave Structure for the Pseudogap, Phys. Rev. Lett. 111, 107001 (2013) (Raman-scattering experiment and theory, evidence for pseudogap having nodeless s-wave character; title changed)
- G. F. Ji, J. S. Zhang, L. Ma, P. Fan, P. S. Wang, J. Dai, G. T. Tan, Y. Song, C. L. Zhang, P. Dai, B. Normand, and W. Yu, Simultaneous Optimization of Spin Fluctuations and Superconductivity under Pressure in an Iron-Based Superconductor, Phys. Rev. Lett. 111, 107004 (2013) (NMR experiments on overdoped pnictide; strength of spin fluctuations, inferred from nuclear-spin relaxation rate, shows peak as function of pressure, superconducting Tx shows the same pressure dependence)
- C. Richter, H. Boschker, W. Dietsche, E. Fillis-Tsirakis, R. Jany, F. Loder, L. F. Kourkoutis, D. A. Muller, J. R. Kirtley, C. W. Schneider, and J. Mannhart, Interface superconductor with gap behaviour like a high-temperature superconductor, Nature (2013) doi:10.1038/nature12494 (2DEG at LaAlO3-SrTiO3 interface, tunable by gate voltage)
- C. Richter, H. Boschker, W. Dietsche, E. Fillis-Tsirakis, R. Jany, F. Loder, L. F. Kourkoutis, D. A. Muller, J. R. Kirtley, C. W. Schneider, and J. Mannhart, nterface superconductor with gap behaviour like a high-temperature superconductor, Nature 502, 528 (2013) (critical temperature shows a dome, whereas pseudogap increases with underdoping)
- N. Barišić, et al., Universal quantum oscillations in the underdoped cuprate superconductors, Nature Phys. (2013), doi:10.1038/nphys2792 (quantum oscillations observed in Hg1201)
- J. Engelmann et al., Strain induced superconductivity in the parent compound BaFe2As2, Nature Commun. 4, 2877 (2013) (tensile strain due to growth on substrate with lattice mismatch)
- K. J. Zhou, Y. B. Huang, C. Monney, X. Dai, V. N. Strocov, N. L. Wang, Z. G. Chen, C. Zhang, P. Dai, L. Patthey, J. van den Brink, H. Ding, and T. Schmitt, Persistent high-energy spin excitations in iron pnictide superconductors, arXiv:1301.1289 (resonant inelastic x-ray scattering; pronounced high-energy paramagnons in the superconducting state of Ba0.6K0.4Fe2As2)
- D. Daghero, M. Tortello, G. A. Ummarino, V. A. Stepanov, F. Bernardini, M. Tropeano, M. Putti, and R. S. Gonnelli, Effects of isoelectronic Ru substitution at the Fe site on the energy gaps of optimally F-doped SmFeAsO, arXiv:1301.3757 (Andreev reflection spectroscopy, also theory, ratios of gap to Tc, increase markedly for low Tc)
- R. S. Gonnelli, M. Tortello, D. Daghero, P. Pecchio, S. Galasso, V. A. Stepanov, Z. Bukowski, N. D. Zhigadlo, J. Karpinski, K. Iida, and B. Holzapfel, The order-parameter symmetry and Fermi surface topology of 122 Fe-based superconductors: a point-contact Andreev-reflection study, arXiv:1301.3782, J. Supercond. Novel Magn. (Ba-122 and Ca-122 compounds) P
- T. Yoshida et al., Importance of both spin and orbital fluctuations in BaFe2(As1-xPx)2: Evidence from superconducting gap anisotropy, arXiv:1301.4818 (ARPES, s+- pairing, support comparable strength of spin and orbital fluctuations as the pairing glue)
- F. F. Tafti, T. Fujii, A. Juneau-Fecteau, S. Rene de Cotret, N. Doiron-Leyraud, A. Asamitsu, and L. Taillefer, Superconductivity in the noncentrosymmetric half-Heusler compound LuPtBi: A possible topological superconductor, arXiv:1302.1943
- T. Ritschel, J. Trinckauf, G. Garbarino, M. Hanfland, M. v. Zimmermann, H. Berger, B. Buechner, and J. Geck, Pressure dependence of the charge density wave in 1T-TaS2 and its relation to superconductivity, arXiv:1302.6449 (find microscopic coexistence of CDW and superconductivity)
- U. B. Paramanik, D. Das, R. Prasad, and Z. Hossain, Reentrant Superconductivity in Ir-doped Eu(Fe1-xIrx)2As2, arXiv:1303.2855 (due to Eu spin ordering)
- F. F. Tafti, A. Juneau-Fecteau, M.-E. Delage, S. Rene de Cotret, J.-Ph. Reid, A. F. Wang, X.-G. Luo, X. H. Chen, N. Doiron-Leyraud, and L. Taillefer, Change of pairing symmetry in the iron-based superconductor KFe2As2, arXiv:1303.2961 (high-pressure experiment)
- C. N. Veenstra, Z.-H. Zhu, M. Raichle, B. M. Ludbrook, A. Nicolaou, B. Slomski, G. Landolt, S. Kittaka, Y. Maeno, J. H. Dil, I. S. Elfimov, M. W. Haverkort, and A. Damascelli, Observation of strong spin-orbital entanglement in Sr2RuO4 by spin-resolved ARPES, arXiv:1303.5444
- M. Wang, C. Zhang, X. Lu, G. Tan, H. Luo, Y. Song, M. Wang, X. Zhang, E. A. Goremychkin, T. G. Perring, T. A. Maier, Z. Yin, K. Haule, G. Kotliar, and P. Dai, A magnetic origin for high temperature superconductivity in iron pnictides, arXiv:1303.7339 (neutron scattering)
- T. Uchino et al., Enhancement of the superconducting transition temperature of MgB2 by proximity effect of d0 ferromagnet, arXiv:1304.4105 (suggest, based on magnetization measurements, that ferromagnetic transition is accompanied by [partial] superconducting transition in the 110K range)
- G. Grissonnanche et al., Direct measurement of the upper critical field in cuprate superconductors, Nature Commun. 5, 3280 (2014) (Y-123, Y-124, Tl2Ba2CuO6+x, for Y-14 find two peaks in Hc2 as function of doping, separated by a dip around 1/8)
- Y. I. Joe et al., Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe2, Nature Phys. 10, 421 (2014)
- X. Shi, P. V. Lin, T. Sasagawa, V. Dobrosavljevic, and Dragana Popovic, Two-stage magnetic-field-tuned superconductor-insulator transition in underdoped La2-xSrxCuO4, Nature Physics (2014), doi:10.1038/nphys2961 (magnetic-field-driven two-step quantum phase transition)
- S. E. Sebastian, N. Harrison, F. F. Balakirev, M. M. Altarawneh, P. A. Goddard, R. Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich, Normal-state nodal electronic structure in underdoped high-Tc copper oxides, Nature 511, 61 (2014) (quantum-oscillation experiments on underdoped YBCO in strong magnetic fields; report small electron pockets close to would-be nodal points)
- Z. Xu, C. Stock, S. Chi, A. I. Kolesnikov, G. Xu, G. Gu, and J. M. Tranquada, Neutron-Scattering Evidence for a Periodically Modulated Superconducting Phase in the Underdoped Cuprate La1.905Ba0.095CuO4, Phys. Rev. Lett. 113, 177002 (2014)
- J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y.-T. Cui, W. Li, M. Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D.-H. Lee, and Z.-X. Shen, Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3, Nature 515, 245 (2014) (ARPES showing shadow bands from coupling to substrate phonons, also modeling), see also News & Views: J. Zaanen, High-temperature superconductivity: Electron mirages in an iron salt, Nature 515, 205 (2014)
- J.-F. Ge et al., Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3, Nature Mat. (2014), doi:10.1038/nmat4153 (four-probe resistance measurements)
- H. Mayaffre, S. Krämer, M. Horvatic, C. Berthier, K. Miyagawa, K. Kanoda, and V. F. Mitrovic, Evidence of Andreev bound states as a hallmark of the FFLO phase in κ-(BEDT-TTF)2Cu(NCS)2, Nature Phys. 10, 928 (2014)
- T. Yamashita, Y. Shimoyama, Y. Haga, T. D. Matsuda, E. Yamamoto, Y. Onuki, H. Sumiyoshi, S. Fujimoto, A. Levchenko, T. Shibauchi, and Y. Matsuda, Colossal thermomagnetic response in the exotic superconductor URu2Si2, Nature Phys. 11, 17 (2015) (Nernst coefficient is enhanced by 106 compared to expectation based on Gaussian fluctuations; related to breaking of time-reversal invariance?)
- B. J. Ramshaw, S. E. Sebastian, R. D. McDonald, J. Day, B. Tam, Z. Zhu, J. B. Betts, R. Liang, D. A. Bonn, W. N. Hardy, and N. Harrison, A quantum critical point at the heart of high temperature superconductivity, arXiv:1409.3990 (quantum-oscillation [mass-enhancement] and some resistivity measurements in magnetic fields up to 90 T, indicating the existence of two QCPs below the superconducting dome in doped YBCO)
- A. P. Drozdov, M. I. Eremets, and I. A. Troyan, Conventional superconductivity at 190 K at high pressures, arXiv:412.0460 (transport in diamond anvil cell, also in magnetic field, also observe isotope effect; superconductivity might involve an unknown hydride of sulfur produced at hight pressures out of H2S), see also commentary at Journal Club for Condensed Matter Physics; A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Conventional superconductivity at 203 K at high pressures, arXiv:1506.08190 and Nature (2015), doi:10.1038/nature14964 (isotope effect points to a phononic, conventional, mechanism of superconductivity; suggest that superconductivity emerges in H3S)
- A. E. Böhmer, F. Hardy, L. Wang, T. Wolf, P. Schweiss, and C. Meingast, Superconductivity-induced reentrance of orthorhombic distortion in (Ba,K)Fe2As2, arXiv:1412.7038 (thermodynamic measurements, find tetragonal magnetic phase in an intermediate doping range; compare theory in arXiv:1412.7079)
- A. Pogrebna, T. Mertelj, N. Vujicic, G. Cao, Z. A. Xu, and D. Mihailovic, Coexistence of ferromagnetism and superconductivity in iron based pnictides: a time resolved magnetooptical study, Sci. Rep. 5, 7754 (2015) (EuFe2(As,P)2, ferromagnetism of Eu f-moments)
- J.-G. Cheng, K. Matsubayashi, W. Wu, J. P. Sun, F. K. Lin, J. L. Luo, and Y. Uwatoko, Pressure Induced Superconductivity on the border of Magnetic Order in MnP, Phys. Rev. Lett. 114, 117001 (2015) (the magnetic order is helical)
- S. Benhabib, A. Sacuto, M. Civelli, I. Paul, M. Cazayous, Y. Gallais, M.-A. Méasson, R. D. Zhong, J. Schneeloch, G. D. Gu, D. Colson, and A. Forget, Collapse of the Normal-State Pseudogap at a Lifshitz Transition in the Bi2Sr2CaCu2O8+δ Cuprate Superconductor, Phys. Rev. Lett. 114, 147001 (2015) (strongly overdoped Bi-2212, normal-state pseudogap vanishes at a Lifshitz transition, where the superconducting transition temperature is smooth)
- S.-L. Yang, J. A. Sobota, D. Leuenberger, Y. He, M. Hashimoto, D. H. Lu, H. Eisaki, P. S. Kirchmann, and Z.-X. Shen, Inequivalence of Single-Particle and Population Lifetimes in a Cuprate Superconductor, Phys. Rev. Lett. 114, 247001 (2015) (optimally doped Bi-2212; discussion of why the single-particle lifetime and the lifetime of an excited population of electrons are different)
- G. Prando, T. Hartmann, W. Schottenhamel, Z. Guguchia, S. Sanna, F. Ahn, I. Nekrasov, C. G. F. Blum, A. U. B. Wolter, S. Wurmehl, R. Khasanov, I. Eremin, and B. Büchner, Mutual Independence of Critical Temperature and Superfluid Density under Pressure in Optimally Electron-Doped Superconducting LaFeAsO1-xFx, Phys. Rev. Lett. 114, 247004 (2015) (so, no Uemura scaling)
- J-X. Yin et al., Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se), Nature Phys. 11, 543 (2015) (STM experiments, broad zero-energy bound states at iron interstitials; such states are not observed in FeSe, suggesting that the stronger spin-orbit coupling of Te is crucial)
- H. Takahashi et al., Pressure-induced superconductivity in the iron-based ladder material BaFe2S3, Nature Mat. (2015), doi:10.1038/nmat4351 (is an antiferromagnetic Mott insulator at ambient pressure)
- Q. Wang et al., Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe, Nature Mat. (2015), doi:10.1038/nmat4492 (neutron scattering)
- J. A. T. Barker, D. Singh, A. Thamizhavel, A. D. Hillier, M. R. Lees, G. Balakrishnan, D. McK. Paul, and R. P. Singh, Unconventional Superconductivity in La7Ir3 Revealed by Muon Spin Relaxation: Introducing a New Family of Noncentrosymmetric Superconductor That Breaks Time-Reversal Symmetry, Phys. Rev. Lett. 115, 267001 (2015)
- B. Ludbrook et al., Evidence for superconductivity in Li-decorated monolayer graphene, PNAS 112, 11795 (2015)
- X.-X. Gong et al., Possible p-Wave Superconductivity in Epitaxial Bi/Ni Bilayers, Chin. Phys. Lett. 32, 067402 (2015)
- O. Pavlosiuk, D. Kaczorowski, X. Fabreges, A. Gukasov, and P. Wisniewski, Antiferromagnetism and superconductivity in the half-Heusler semimetal HoPdBi, Sci. Rep. 6, 18797 (2016) (TN = 1.9 K, Tc = 0.7 K from resistivity and ac susceptibility, onset of superconductivity is neither seen in specific heat nor in dc susceptibility; authors suggest surface supercondunctivity, perhaps of topological surface states, as a possible explanation)
- A. Charnukha, K. W. Post, S. Thirupathaiah, D. Pröpper, S. Wurmehl, M. Roslova, I. Morozov, B. Büchner, A. N. Yaresko, A. V. Boris, S. V. Borisenko, and D. N. Basov, Weak-coupling superconductivity in a strongly correlated iron pnictide, Sci. Rep. 6, 18620 (2016) (NaFeAs with some Co substitution; optical spectroscopy, ARPES, DFT, and Eliashberg theory; find strong, orbital-dependent correlations, but mass enhancement is unexpectedly small near the Gamma point, which the authors attribute to strong spin-orbit coupling acting against correlations, this allows a weak-coupling description of superconductivity with spin fluctuations as glue)
- Y. Saito et al., Superconductivity protected by spin-valley locking in ion-gated MoS2, Nature Phys. 12, 144 (2016) (huge critical field, importance of strong spin-orbit coupling and lack of inversion symmetry); X. Xi et al., Ising pairing in superconducting NbSe2 atomic layers, Nature Phys. 12, 139 (2016) (huge in-plane critical field, importance of spin-orbit coupling and lack of inversion symmetry)
- D. Rybicki, M. Jurkutat, S. Reichardt, C. Kapusta, and J. Haase, Perspective on the phase diagram of cuprate high-temperature superconductor, Nature Commun. 7, 11413 (2016) (analysis of NMR/NQR: Tc vs. hole concentration in Cu vs. O orbitals, suggest that oxygen is dominant)
- T. Jacobs, Y. Simsek, Y. Koval, P. Müller, and V. M. Krasnov, Sequence of Quantum Phase Transitions in Bi2Sr2CaCu2O8+δ Cuprates Revealed by In Situ Electrical Doping of One and the Same Sample, Phys. Rev. Lett. 116, 067001 (2016) (in-situ doping by current injection [nonequilibrium!] allows to tune the doping over a broad interval)
- A. J. Achkar, F. He, R. Sutarto, C. McMahon, M. Zwiebler, M. Hücker, G. D. Gu, R. Liang, D. A. Bonn, W. N. Hardy, J. Geck, and D. G. Hawthorn, Orbital symmetry of charge-density-wave order in La1.875Ba0.125CuO4 and YBa2Cu3O6.67, Nature Mat. (2016), doi:10.1038/nmat4568 (resonant soft X-ray scattering; find different symmetry of SDW in these compounds)
- S. V. Borisenko, D. V. Evtushinsky, Z.-H. Liu, I. Morozov, R. Kappenberger, S. Wurmehl, B. Büchner, A. N. Yaresko, T. K. Kim, M. Hoesch, T. Wolf, and N. D. Zhigadlo, Direct observation of spin-orbit coupling in iron-based superconductors, Nature Phys. 12, 311 (2016) (ARPES)
- S. Badoux et al., Change of carrier density at the pseudogap critical point of a cuprate superconductor, Nature 531, 210 (2016) (YBCO, Hall effect at high magnetic field of up to 88 T)
- C.-L. Song, H.-M. Zhang, Y. Zhong, X.-P. Hu, S.-H. Ji, L. Wang, K. He, X.-C. Ma, and Q.-K. Xue, Observation of Double-Dome Superconductivity in Potassium-Doped FeSe Thin Films, Phys. Rev. Lett. 116, 157001 (2016) (two separate superconducting domes as a function of doping; see also Physics viewpoint)
- J. M. Allred, K. M. Taddei, D. E. Bugaris, M. J. Krogstad, S. H. Lapidus, D. Y. Chung, H. Claus, M. G. Kanatzidis, D. E. Brown, J. Kang, R. M. Fernandes, I. Eremin, S. Rosenkranz, O. Chmaissem, and R. Osborn, Double-Q spin-density wave in iron arsenide superconductors, Nature Phys. 12, 493 (2016) (Sr1-xNaxFe2As2 (x = 0.37), tetragonal magnetic phase, Mössbauer spectroscopy)
- E. C. Gingrich et al., Controllable 0-π Josephson junctions containing a ferromagnetic spin valve, Nature Phys. 12, 564 (2016
- Y. Li, Z. Yin, X. Wang, D. W. Tam, D. L. Abernathy, A. Podlesnyak, C. Zhang, M. Wang, L. Xing, C. Jin, K. Haule, G. Kotliar, T. A. Maier, and P. Dai, Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe1-xCoxAs, Phys. Rev. Lett. 116, 247001 (2016) (neutron scattering and DFT/DMFT calculations)
- Z. F. Weng, J. L. Zhang, M. Smidman, T. Shang, J. Quintanilla, J. F. Annett, M. Nicklas, G. M. Pang, L. Jiao, W. B. Jiang, Y. Chen, F. Steglich, and H. Q. Yuan, Two-Gap Superconductivity in LaNiGa2 with Nonunitary Triplet Pairing and Even Parity Gap Symmetry, Phys. Rev. Lett. 117, 027001 (2016) (experiments and proposal of pairing state: time-reversal-symmetry-breaking, spin-triplet, even parity, but odd in orbital index; fully gapped state; material is centrosymmetric orthorhombic)
- H. Ding et al., High-Temperature Superconductivity in Single-Unit-Cell FeSe Films on Anatase TiO2(001), Phys. Rev. Lett. 117, 067001 (2016) (STM)
- P. Bourgeois-Hope, S. Chi, D. A. Bonn, R. Liang, W. N. Hardy, T. Wolf, C. Meingast, N. Doiron-Leyraud, and L. Taillefer, Thermal Conductivity of the Iron-Based Superconductor FeSe: Nodeless Gap with a Strong Two-Band Character, Phys. Rev. Lett. 117, 097003 (2016)
- X. Xi, H. Berger, L. Forró, J. Shan, and K. F. Mak, Gate Tuning of Electronic Phase Transitions in Two-Dimensional NbSe2, Phys. Rev. Lett. 117, 106801 (2016) (coexisting CDW and superconductivity in monolayer material, tuned by ionic liquid gate)
- Y. Zhang, J. J. Lee, R. G. Moore, W. Li, M. Yi, M. Hashimoto, D. H. Lu, T. P. Devereaux, D.-H. Lee, and Z.-X. Shen, Superconducting Gap Anisotropy in Monolayer FeSe Thin Film, Phys. Rev. Lett. 117, 117001 (2016)
- H. C. Xu et al., Highly Anisotropic and Twofold Symmetric Superconducting Gap in Nematically Ordered FeSe0.93S0.07, Phys. Rev. Lett. 117, 157003 (2016) (ARPES; nematically but not magnetically ordered, as usual for 11 family)
- E. Hassinger, P. Bourgeois-Hope, H. Taniguchi, S. R. de Cotret, G. Grissonnanche, M. S. Anwar, Y. Maeno, N. Doiron-Leyraud, and L. Taillefer, Vertical line nodes in the superconducting gap structure of Sr2RuO4, arXiv:1606.04936 (thermal conductivity, also in magnetic field)
- T. Kondo, M. Ochi, M. Nakayama, H. Taniguchi, S. Akebi, K. Kuroda, M. Arita, S. Sakai, H. Namatame, M. Taniguchi, Y. Maeno, R. Arita, and S. Shin, Orbital-Dependent Band Narrowing Revealed in an Extremely Correlated Hund’s Metal Emerging on the Topmost Layer of Sr2RuO4, Phys. Rev. Lett. 117, 247001 (2016) (001 surface, ARPES for the normal state, but relevant for understanding the surface in the superconducting state)
- A. Gauzzi, Y. Klein, M. Nisula, M. Karppinen, P. K. Biswas, H. Saadaoui, E. Morenzoni, P. Manuel, D. Khalyavin, M. Marezio, and T. H. Geballe, Bulk superconductivity at 84 K in the strongly overdoped regime of cuprates, Phys. Rev. B 94, 180509(R) (2016) (Cu0.75Mo0.25Sr2YCu2O7.54)
-
P. Zhang et al., Observation of topological superconductivity on the surface of iron-based superconductor, arXiv:1706.05163 (FeTe1-xSex); D. Wang et al., Observation of pristine Majorana bound state in iron-based superconductor, arXiv:1706.06074 (dito)
-
C. Cho, J. H. Yang, N. F. Q. Yuan, J. Shen, T. Wolf, and R. Lortz, Thermodynamic Evidence for the Fulde-Ferrell-Larkin-Ovchinnikov State in the KFe2As2 Superconductor, Phys. Rev. Lett. 119, 217002 (2017) (careful field alignment)
-
S. Gerber et al., Femtosecond electron-phonon lock-in by photoemission and x-ray free-electron laser, Science 357, 71 (2017) (electron-phonon coupling is not small)
- P. O. Sprau, A. Kostin, A. Kreisel, A. E. Böhmer, V. Taufour, P. C. Canfield, S. Mukherjee, P. J. Hirschfeld, B. M. Andersen, and J. C. Séamus Davis, Discovery of orbital-selective Cooper pairing in FeSe, Science 357, 75 (2017) (quasiparticle interference, comparison to theory)
-
S. Choi et al., Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor, Phys. Rev. Lett. 119, 227001 (2017) (spin-polarized STM)
-
C. Berthod, I. Maggio-Aprile, J. Bruér, A. Erb, and C. Renner, Observation of Caroli–de Gennes–Matricon Vortex States in YBa2Cu3O7−δ, Phys. Rev. Lett. 119, 237001 (2017) (conclude that superconductivity is conventional in the sense of being well described by mean-field theory)
- N. P. Breznay and A. Kapitulnik, Particle-hole symmetry reveals failed superconductivity in the metallic phase of two-dimensional superconducting films, Science Adv. 3, e1700612 (2017) (vanishing Hall effect: particle-hole symmetry retained?)
-
A. A. Kalenyuk, A. Pagliero, E. A. Borodianskyi, A. A. Kordyuk, and V. M. Krasnov, Phase-Sensitive Evidence for the Sign-Reversal s± Symmetry of the Order Parameter in an Iron-Pnictide Superconductor Using Nb/Ba1-xNaxFe2As2 Josephson Junctions, Phys. Rev. Lett. 120, 067001 (2018)
-
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556, 43 (2018)
-
D. Liu et al., Orbital Origin of Extremely Anisotropic Superconducting Gap in Nematic Phase of FeSe Superconductor, Phys. Rev. X 8, 031033 (2018) (laser ARPES)
-
G. Ghigo, D. Torsello, G. A. Ummarino, L. Gozzelino, M. A. Tanatar, R. Prozorov, and P. C. Canfield, Disorder-Driven Transition from s± to s++ Superconducting Order Parameter in Proton Irradiated Ba(Fe1−xRhx)2As2 Single Crystals, Phys. Rev. Lett. 121, 107001 (2018)
-
S. Kitagawa, G. Nakamine, K. Ishida, H. S. Jeevan, C. Geibel, and F. Steglich, Evidence for the Presence of the Fulde-Ferrell-Larkin-Ovchinnikov State in CeCu2Si2 Revealed Using 63Cu NMR, Phys. Rev. Lett. 121, 157004 (2018)
-
T. Shang et al., Time-Reversal Symmetry Breaking in Re-Based Superconductors, Phys. Rev. Lett. 121, 257002 (2018) (μSR, thermodynamics, magnetization/susceptibility, with symmetry analysis; includes pure Re: centrosymmetric, nonsymmorphic, point group D6h, propose Eg singlet pairing with line and point nodes and Eu triplet pairing with point nodes, interband pairing not discussed)
-
X. Zhou et al., Logarithmic Upturn in Low-Temperature Electronic Transport as a Signature of d-Wave Order in Cuprate Superconductors, Phys. Rev. Lett. 121, 267004 (2018) (microwave conductivity, argue that upturn is a consequence of d-wave pairing)
-
Y. Gao, Y. Wang, T. Zhou, H. Huang, and Q.-H. Wang, Possible Pairing Symmetry in the FeSe-Based Superconductors Determined by Quasiparticle Interference, Phys. Rev. Lett. 121, 267005 (2018) (gap might not change sign)
-
M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures, Phys. Rev. Lett. 122, 027001 (2019) (LaH10); A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. Balakirev, D. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, Superconductivity at 250 K in lanthanum hydride under high pressures, arXiv:1812.01561
-
P. Chauhan, F. Mahmood, D. Yue, P.-C. Xu, X. Jin, and N. P. Armitage, Nodeless Bulk Superconductivity in the Time-Reversal Symmetry Breaking Bi/Ni Bilayer System, Phys. Rev. Lett. 122, 017002 (2019)
-
P. Steffens, Y. Sidis, J. Kulda, Z. Q. Mao, Y. Maeno, I. I. Mazin, and M. Braden, Spin Fluctuations in Sr2RuO4 from Polarized Neutron Scattering: Implications for Superconductivity, Phys. Rev. Lett. 122, 047004 (2019) (neutron scattering and theorical discussion: strong ferromagnetic spin fluctuations but not strong enough on their own to explain triplet pairing)
-
B. Michon et al., Thermodynamic signatures of quantum criticality in cuprate superconductors, Nature https://doi.org/10.1038/s41586-019-0932-x (superconductivity suppressed by magnetic field, strong peak in Sommerfeld coefficient at optimal doping for temperature going to zero)
- A. P. Drozdov et al., Superconductivity at 250 K in lanthanum hydride under high pressures, Nature 569, 528 (2019)
-
A. Pustogow, Y. Luo, A. Chronister, Y.-S. Su, D. A. Sokolov, F. Jerzembeck, A. P. Mackenzie, C. W. Hicks, N. Kikugawa, S. Raghu, E. D. Bauer, and S. E. Brown, Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance, Nature 574, 72 (2019) (NMR rules out triplet pairing with out-of-plane d vector)
-
E. Gati, A. E. Böhmer, S. L. Bud’ko, and P. C. Canfield, Bulk Superconductivity and Role of Fluctuations in the Iron-Based Superconductor FeSe at High Pressures, Phys. Rev. Lett. 123, 167002 (2019)
-
S.-D. Chen et al., Incoherent strange metal sharply bounded by a critical doping in Bi2212, Science 366, 1099 (2019) (ARPES, rather sharp transition between Fermi liquid and pseudogap phase, nearly vertical in x, T phase diagram, said to be inconsistent with picture based on quantum critical point)
-
S. Ran et al., Extreme magnetic field-boosted superconductivity, Nature Phys. 15, 1250 (2019) (two additional superconducting phases found in applied magnetic field) P, see also News & Views
- Z. Wang, J. Olivares Rodriguez, L. Jiao, S. Howard, M. Graham, G. D. Gu, T. L. Hughes, D. K. Morr, and V. Madhavan, Evidence for dispersing 1D Majorana channels in an iron-based superconductor, Science 367, 104 (2020) (FeSe0.45Te0.55)
-
J. Juraszek, R. Wawryk, Z. Henkie, M. Konczykowski, and T. Cichorek, Symmetry of Order Parameters in Multiband Superconductors LaRu4As12 and PrOs4Sb12 Probed by Local Magnetization Measurements, Phys. Rev. Lett. 124, 027001 (2020)
-
S. Kasahara, Y. Sato, S. Licciardello, M. Čulo, S. Arsenijević, T. Ottenbros, T. Tominaga, J. Böker, I. Eremin, T. Shibauchi, J. Wosnitza, N. E. Hussey, and Y. Matsuda, Evidence for an Fulde-Ferrell-Larkin-Ovchinnikov State with Segmented Vortices in the BCS-BEC-Crossover Superconductor FeSe, Phys. Rev. Lett. 124, 107001 (2020)
-
X. Xu, Y. Li, and C. L. Chien, Spin-Triplet Pairing State Evidenced by Half-Quantum Flux in a Noncentrosymmetric Superconductor, Phys. Rev. Lett. 124, 167001 (2020) (phase-sensitive experiments on α-BiPd, support singlet-triplet mixing)
- K. E. Avers et al., Broken time-reversal symmetry in the topological superconductor UPt3, Nature Phys. 16, 531 (2020) (neutron scattering, evidence for broken time-reversal symmetry, not sensitive to which E irrep it is)
-
T. Shang, M. Smidman, A. Wang, L.-J. Chang, C. Baines, M. K. Lee, Z. Y. Nie, G. M. Pang, W. Xie, W. B. Jiang, M. Shi, M. Medarde, T. Shiroka, and H. Q. Yuan, Simultaneous Nodal Superconductivity and Time-Reversal Symmetry Breaking in the Noncentrosymmetric Superconductor CaPtAs, Phys. Rev. Lett. 124, 207001 (2020) (space group I41md, point group C4v, TRSB at Tc found by μSR, Δλ quadratic in temperature, suggesting point nodes; best fit to data for s + p gap, slightly worse for s + d gap, apparently without complex phase, so what breaks TRS? The considered p gap has an unusual sin θ structure, which leads to non-standard point nodes only without s gap); see also W. Xie, P. R. Zhang, B. Shen, W. B. Jiang, G. M. Pang, T. Shang, C. Cao, M. Smidman, and H. Q. Yuan, CaPtAs: A new noncentrosymmetric superconductor, Science China Physics, Mechanics & Astronomy 63, 237412 (2020) (reports on superconductivity, also DFT band structure)
-
V. Grinenko, R. Sarkar, K. Kihou, C. H. Lee, I. Morozov, S. Aswartham, B. Büchner, P. Chekhonin, W. Skrotzki, K. Nenkov, R. Hühne, K. Nielsch, S. -L. Drechsler, V. L. Vadimov, M. A. Silaev , P. A. Volkov, I. Eremin, H. Luetkens, and H.-H. Klauss, Superconductivity with broken time-reversal symmetry inside a superconducting s-wave state, Nature Phys. 16, 789 (2020) (Ba1-xKxFe2As2, μSR, specific heat)
-
J. A. Krieger, A. Pertsova, S. R. Giblin, M. Döbeli, T. Prokscha, C. W. Schneider, A. Suter, T. Hesjedal, A. V. Balatsky, and Z. Salman, Proximity-Induced Odd-Frequency Superconductivity in a Topological Insulator, Phys. Rev. Lett. 125, 026802 (2020) (Bi2Se3 in proximity to Nb, magnetic-field enhancement; experiments and theory)
- E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K. V. Lawler, A. Salamat, and R. P. Dias, Room-temperature superconductivity in a carbonaceous sulfur hydride, Nature 586, 373 (2020) (Tc of about 288 K at 267 GPa)
- V. Grinenko, S. Ghosh, R. Sarkar, J.-C. Orain, A. Nikitin, M. Elender, D. Das, Z. Guguchia, F. Brückner, M. E. Barber, J. Park, N. Kikugawa, D. A. Sokolov, J. S. Bobowski, T. Miyoshi, Y. Maeno, A. P. Mackenzie, H. Luetkens, C. W. Hicks, and H.-H. Klauss, Split superconducting and time-reversal symmetry-breaking transitions, and magnetic order in Sr2RuO4 under uniaxial stress, arXiv:2001.08152
- Z. Zhu et al., Discovery of segmented Fermi surface induced by Cooper pair momentum, arXiv:2010.02216 (Volovik-type Bogoliubov Fermi surfaces induced by current); see also C. Beenakker, Bogoliubov Fermi surface revealed, 10.36471/JCCM_October_2020_02
-
S. Ghosh, A. Shekhter, F. Jerzembeck, N. Kikugawa, D. A. Sokolov, M. Brando, A. P. Mackenzie, C. W. Hicks, and B. J. Ramshaw, Thermodynamic evidence for a two-component superconducting order parameter in Sr2RuO4, Nature Phys. 17, 199 (2021) (elastic tensor from ultrasound spectroscopy)
-
M. Müller, L. Liensberger, L. Flacke, H. Huebl, A. Kamra, W. Belzig, R. Gross, M. Weiler, and M. Althammer, Temperature-Dependent Spin Transport and Current-Induced Torques in Superconductor-Ferromagnet Heterostructures, Phys. Rev. Lett. 126, 087201 (2021)
-
S. Khim, J. F. Landaeta, J. Banda, N. Bannor, M. Brando, P. M. R. Brydon, D. Hafner, R. Küchler, R. Cardoso-Gil, U. Stockert, A. P. Mackenzie, D. F. Agterberg, C. Geibel, and E. Hassinger, Field-induced transition within the superconducting state of CeRh2As2, Science 373, 1012 (2021) (centrosymmetric materials consisting of non-centrosymmetric layers; even-parity superconducting phase at low field, transition to odd-parity phase at critical field)
-
V. Grinenko, D. Das, R. Gupta, B. Zinkl, N. Kikugawa, Y. Maeno, C. W. Hicks, H.-H. Klauss, M. Sigrist, and R. Khasanov, Unsplit superconducting and time reversal symmetry breaking transitions in Sr2RuO4 under hydrostatic pressure and disorder, Nature Commun. 12 3920 (2021) (no splitting under hydrostatic or chemical pressure, strongly disfavoring mixed irrep TRS-breaking state)
-
T. Gazdić, I. Maggio-Aprile, G. Gu, and C. Renner, Wang-MacDonald d-Wave Vortex Cores Observed in Heavily Overdoped Bi2Sr2CaCu2O8+δ, Phys. Rev. X 11, 031040 (2021)
-
Y. He, S.-D. Chen, Z.-X. Li, D. Zhao, D. Song, Y. Yoshida, H. Eisaki, T. Wu, X.-H. Chen, D.-H. Lu, C. Meingast, T. P. Devereaux, R. J. Birgeneau, M. Hashimoto, D.-H. Lee, and Z.-X. Shen, Superconducting Fluctuations in Overdoped Bi2Sr2CaCu2O8+δ, Phys. Rev. X 11, 031068 (2021) (preformed pairs in spite of heavy overdoping)
-
K. Ishihara, T. Takenaka, Y. Miao, Y. Mizukami, K. Hashimoto, M. Yamashita, M. Konczykowski, R. Masuki, M. Hirayama, T. Nomoto, R. Arita, O. Pavlosiuk, P. Wiśniewski, D. Kaczorowski, and T. Shibauchi, Tuning the Parity Mixing of Singlet-Septet Pairing in a Half-Heusler Superconductor, Phys. Rev. X 11, 041048 (2021) (magnetotransport and penetration depth)
-
H.-S. Xu, Y.-J. Yan, R. Yin, W. Xia, S. Fang, Z. Chen, Y. Li, W. Yang, Y. Guo, and D.-L. Feng, Multiband Superconductivity with Sign-Preserving Order Parameter in Kagome Superconductor CsV3Sb5, Phys. Rev. Lett. 127, 187004 (2021) (with CDW)
-
B. M. Huddart, I. J. Onuorah, M. M. Isah, P. Bonfà, S. J. Blundell, S. J. Clark, R. De Renzi, and T. Lancaster, Intrinsic Nature of Spontaneous Magnetic Fields in Superconductors with Time-Reversal Symmetry Breaking, Phys. Rev. Lett. 127, 237002 (2021) (TRS breaking is likely intrinsic and not caused by the perturbation of the system by the implanted muon)
-
S. Kasahara, H. Suzuki, T. Machida, Y. Sato, Y. Ukai, H. Murayama, S. Suetsugu, Y. Kasahara, T. Shibauchi, T. Hanaguri, and Y. Matsuda, Quasiparticle Nodal Plane in the Fulde-Ferrell-Larkin-Ovchinnikov State of FeSe, Phys. Rev. Lett. 127, 257001 (2021) (nodal planes in real space, normal to applied magnetic field; heat capacity and STM)
-
M. Kibune, S. Kitagawa, K. Kinjo, S. Ogata, M. Manago, T. Taniguchi, K. Ishida, M. Brando, E. Hassinger, H. Rosner, C. Geibel, and S. Khim, Observation of Antiferromagnetic Order as Odd-Parity Multipoles inside the Superconducting Phase in CeRh2As2, Phys. Rev. Lett. 128, 057002 (2022) (NQR, AFM transition below superconducting Tc, remains superconducting) P; D. Hafner, P. Khanenko, E.-O. Eljaouhari, R. Küchler, J. Banda, N. Bannor, T. Lühmann, J. F. Landaeta, S. Mishra, I. Sheikin, E. Hassinger, S. Khim, C. Geibel, G. Zwicknagl, and M. Brando, Possible Quadrupole Density Wave in the Superconducting Kondo Lattice CeRh2As2, Phys. Rev. X 12, 011023 (2022) (in normal state)
-
H. Zhou, L. Holleis, Y. Saito, L. Cohen, W. Huynh, C. L. Patterson, F. Yang, T. Taniguchi, K. Watanabe, and A. F. Young, Isospin magnetism and spin-polarized
superconductivity in Bernal bilayer graphene, Science 375, 774 (2022) (superconducting phase induced by perpendicular electric field to reach van Hove singularity and in-plane magnetic field) -
C. Liu et al., Preferred Spin Excitations in the Bilayer Iron-Based Superconductor CaK(Fe0.96Ni0.04)4As4 with Spin-Vortex Crystal Order, Phys. Rev. Lett. 128, 137003 (2022)
-
K. Kinjo, M. Manago, S. Kitagawa, Z. Q. Mao, S. Yonezawa, Y. Maeno, and K. Ishida, Superconducting spin smecticity evidencing the Fulde-Ferrell-Larkin-Ovchinnikov state in Sr2RuO4, Science 376, 397 (2022) (NMR, two-peak structure in spectrum, i.e., two values of Knight shift)
-
J. Choi, Q. Wang, S. Jöhr, N. B. Christensen, J. Küspert, D. Bucher, D. Biscette, M. H. Fischer, M. Hücker, T. Kurosawa, N. Momono, M. Oda, O. Ivashko, M. v. Zimmermann, M. Janoschek, and J. Chang, Unveiling Unequivocal Charge Stripe Order in a Prototypical Cuprate Superconductor, Phys. Rev. Lett. 128, 207002 (2022) (in LSCO)
-
N. Harrison and M. K. Chan, Magic Gap Ratio for Optimally Robust Fermionic Condensation and Its Implications for High-Tc Superconductivity, Phys. Rev. Lett. 129, 017001 (2022) (BCS-BEC crossover in cuprate)
-
C. Cho, J. Lyu, L. An, T. Han, K. T. Lo, C. Y. Ng, J. Hu, Y. Gao, G. Li, M. Huang, N. Wang, J. Schmalian, and R. Lortz, Nodal and Nematic Superconducting Phases in NbSe2 Monolayers from Competing Superconducting Channels, Phys. Rev. Lett. 129, 087002 (2022) (magnetotransport experiments, with theory)
-
J. F. Landaeta, P. Khanenko, D. C. Cavanagh, C. Geibel, S. Khim, S. Mishra, I. Sheikin, P. M. R. Brydon, D. F. Agterberg, M. Brando, and E. Hassinger, Field-Angle Dependence Reveals Odd-Parity Superconductivity in CeRh2As2, Phys. Rev. X 12, 031001 (2022)
- N. Dasenbrock-Gammon, E. Snider, R. McBride, H. Pasan, D. Durkee, N. Khalvashi-Sutter, S. Munasinghe, S. E. Dissanayake, K. V. Lawler, A. Salamat, and R. P. Dias, Evidence of near-ambient superconductivity in a N-doped lutetium hydride, Nature 615, 244 (2023)
- Y. Z. Zhou, J. Chen, Z. X. Li, J. Luo, J. Yang, Y. F. Guo, W. H. Wang, R. Zhou, and G.-q. Zheng, Antiferromagnetic Spin Fluctuations and Unconventional Superconductivity in Topological Superconductor Candidate YPtBi Revealed by 195Pt-NMR, Phys. Rev. Lett. 130, 266002 (2023) (showing AFM spin fluctuations in normal state and 1/T1 scaling characteristic for line nodes in superconducting state); highlighted in Physics
-
A. Rosuel, C. Marcenat, G. Knebel, T. Klein, A. Pourret, N. Marquardt, Q. Niu, S. Rousseau, A. Demuer, G. Seyfarth, G. Lapertot, D. Aoki, D. Braithwaite, J. Flouquet, and J. P. Brison, Field-Induced Tuning of the Pairing State in a Superconductor, Phys. Rev. X 13, 011022 (2023) (UTe2, thermodynamics, phase diagram for magnetic field along any principal axis)
- S. Lee, J.-H. Kim, and Y.-W. Kwon, The First Room-Temperature Ambient-Pressure Superconductor, arXiv:2307.12008
-
S. Nakamura, H. Matsumoto, H. Ogawa, T. Kobayashi, F. Nabeshima, A. Maeda, and R. Shimano, Picosecond Trajectory of Two-Dimensional Vortex Motion in FeSe0.5Te0.5 Visualized by Terahertz Second Harmonic Generation, Phys. Rev. Lett. 133, 036004 (2024), see also Viewing Fast Vortex Motion in a Superconductor, Physics 17, 117 (2024) (effective mass of vortex is found to be only about one electron mass, a factor of about 10000 smaller than predicted, suggested explanation is that vortex leaves most of the exited quasiparticles in its core behind when it moves)
Microscopic theory of bulk superconductors
- S. Ami and K. Maki, Fluctuation-induced electric conductivity in dirty type-II superconductors, Phys. Rev. B 18, 4714 (1978)
- J. R. Schrieffer, X. G. Wen, and S. C. Zhang, Dynamic spin fluctuations and the bag mechanism of high-Tc superconductivity, Phys. Rev. B 39, 11663 (1989) (explanation of the spin-bag picture of high-temperature superconductivity, derivation of RPA pairing interaction in SDW phase)
- S. Haas, A. V. Balatsky, M. Sigrist, and T. M. Rice, Extended gapless regions in disordered dx2-y2 wave superconductors, Phys. Rev. B 56, 5108 (1997) (Abrikosov-Gorkov theory, momentum-dependent scattering off nonmagnetic impurities leads to extended ungapped regions on the Fermi surface, close to the gap nodes of the clean system)
- C. Noce and M. Cuoco, Energy bands and Fermi surface of Sr2RuO4, Phys. Rev. B 59, 2659 (1999) (among other things clarifies the relation between extended Hückel and tight-binding theory)
- E. Babaev and H. Kleinert, Nonperturbative XY-model approach to strong coupling superconductivity in two and three dimensions, Phys. Rev. B 59, 12083 (1999) (stiffness obtained from BCS theory, then include phase fluctuations)
- T. K. Ng, Duality picture between antiferromagnetism and d-wave superconductivity in t-J model at two dimensions, cond-mat/9911099 (long paper)
- M. R. Norman, M. Randeria, B. Janko, and J. C. Campuzano, Photoemission and the Origin of High Temperature Superconductivity, cond-mat/0003406, Physica C 341-348, 2063 (2000) (a few insightful remarks)
- T. Senthil and M. P. A. Fisher, Fractionalization and confinement in the U(1) and Z2 gauge theories of strongly correlated systems, cond-mat/0006500
- A. Foussats, A. Greco, C. Repetto, O. P. Zandron, and O. S. Zandron, Connection between the Slave-Particles and X-Operators Path-Integral Representations. A New Perturbative Approach, cond-mat/0007018, J. Physics A
- J. Dukelsky, C. Esebbag, and P. Schuck, Class of Exactly Solvable Pairing Models, Phys. Rev. Lett. 87, 066403 (2001) (extend Richardson's exact solution)
- M. Franz, Z. Tesanovic, and O. Vafek, QED3 theory of pairing pseudogap in cuprates: From d-wave superconductor to antiferromagnet via an algebraic Fermi liquid, Phys. Rev. B 66, 054535 (2002) (includes detailed derivation of QED3 theory, long paper)
- I. F. Herbut, QED3 theory of underdoped high-temperature superconductors, Phys. Rev. B 66, 094504 (2002)
- J. E. Han, Spin-triplet s-wave local pairing induced by Hund's rule coupling, Phys. Rev. B 70, 054513 (2004) (apart from the idea that Hund's first rule can induce local triplet pairing, this is interesting since the antisymmetry of the pairing state resides in its orbital part)
- Z. B. Huang, W. Hanke, and E. Arrigoni, Role of vertex corrections in the spin-fluctuation mediated pairing mechanism, cond-mat/0408564, Europhys. Lett. (to be published)
- C. Iniotakis, S. Graser, T. Dahm, and N. Schopohl, Local density of states at polygonal boundaries of d-wave superconductors, Phys. Rev. B 71, 214508 (2005) (continuum description [no lattice] using the Eilenberger-Ricatti approach)
- T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent, and J. B. White, Systematic Study of d-Wave Superconductivity in the 2D Repulsive Hubbard Model, Phys. Rev. Lett. 95, 237001 (2005) (finite-size effects in dynamical cluster approximation with QMC as cluster solver)
- C. M. Varma, A Theory of the Pseudogap State of the Cuprates, cond-mat/0507214
- A. V. Chubukov and J. Schmalian, Strong coupling superconductivity due to massless boson exchange, cond-mat/0507562 (including discussion of phase fluctuations)
- K. Aryanpour, E. R. Dagotto, M. Mayr, T. Paiva, W. E. Pickett, and R. T. Scalettar, Enhancement of Superconducting Pairing by Inhomogeneity, cond-mat/0507588
- M. Mayr, G. Alvarez, C. Sen, and E. Dagotto, Phase Fluctuations in Strongly Coupled d-Wave Superconductors, cond-mat/0511023
- M. Aichhorn, E. Arrigoni, M. Potthoff, and W. Hanke, Antiferromagnetic to superconducting phase transition in the hole- and electron-doped Hubbard model at zero temperature, cond-mat/0511460, Phys. Rev. B (variational quantum-cluster approach)
- T. Eckl and W. Hanke, Precursor effects of the superconducting state caused by d-wave phase-fluctuations above Tc, cond-mat/0511541
- P. W. Anderson, The "Strange Metal" is a Projected Fermi Liquid with Edge Singularities, cond-mat/0512471
- M. Kircan and M. Vojta, Magnetic order in lightly doped cuprates: Coherent vs. incoherent hole quasiparticles and non-magnetic impurities, Phys. Rev. B 73, 014516 (2006)
- W.-F. Tsai and S. A. Kivelson, Superconductivity in Inhomogeneous Hubbard Models, cond-mat/0601113
- V. Barzykin and D. Pines, Protected behavior in the Cuprate superconductors, cond-mat/0601396 (analysis of scaling of susceptibility data leads to two-component model for cuprates)
- M. Capone and G. Kotliar, Competition between d-wave superconductivity and antiferromagnetism in the 2D Hubbard model, cond-mat/0603227 (cellular DMFT)
- K.-Y. Yang, C. T. Shih, C. P. Chou, S. M. Huang, T. K. Lee, T. Xiang, and F. C. Zhang, Low Energy Physical Properties of High Tc Superconducting Cu-oxides - A Comparison Between Plain Vannila RVB Theory and Experiments, cond-mat/0603423
- W. P. Su, Inhomogeneous D-Wave Superconductivity and Antiferromagnetism in a Two-Dimensional Extended Hubbard Model with Nearest-Neighbor Attractive Interaction, cond-mat/0604400 (mean-field solution, with weak disorder potential)
- D. J. Singh, On kinetic energy stabilized superconductivity in cuprates, cond-mat/0607175 (lucid discussion of superconductivity in the t-J model due to reduction of kinetic energy and how this idea violates the virial theorem)
- C. M. Varma and L. Zhu, The Shrinking "Fermi-Arc" in Cuprates, cond-mat/0607777 (short paper)
- D. C. Mattis, Stripes in Microscopic Theory of High-Tc Superconductivity, cond-mat/0608277
- P. W. Anderson, Do We Need (or Want) a Bosonic Glue to Pair Electrons in High Tc Superconductors?, cond-mat/0609040 (short but illuminating discussion of why low-energy bosonic modes are not the important issue)
- W. A. Atkinson, Superfluid Suppression in d-Wave Superconductors due to Disordered Magnetism, cond-mat/0610041 (mean-field theory)
- V. Aji and C. M. Varma, Theory of the Quantum Critical Fluctuations in Cuprates, cond-mat/0610646 (critical properties related to time-reversal and inversion symmetry breaking order parameter postulated for the pseudogap regime of cuprates)
- Y. Sun, M. Guidry, and C.-L. Wu, k-dependent SU(4) model of high-temperature superconductivity and its coherent-state solutions, arXiv:0705.0818; M. Guidry, Y. Sun, and C.-L. Wu, The Origin of Fermi Arcs in Underdoped High-Temperature Superconductors, arXiv:0705.0822
- Z. Tesanovic, Emergence of Cooper pairs, d-wave duality and the phase diagram of cuprate superconductors, arXiv:0705.3836
- S. Huefner, M. A. Hossain, A. Damascelli, and G. A. Sawatzky, Two Gaps Make a High Temperature Superconductor, arXiv:0706.4282 (extensive analysis of existing experimental data)
- T. Aimi and M. Imada, Does Simple Two-Dimensional Hubbard Model Account for High-Tc Superconductivity in Copper Oxides?, arXiv:0708.3416 (they say "no")
- P. W. Anderson, Hidden Fermi Liquid: The Secret of High Tc Cuprates, arXiv:0709.0656
- J. Wu, P. Phillips, and A. H. Castro-Neto, Theory of the Magnetic Moment in Iron Pnictides, Phys. Rev. Lett. 101, 126401 (2008) P
- A. V. Chubukov, D. Efremov, and I. Eremin, Magnetism, superconductivity, and pairing symmetry in iron-based superconductors, Phys. Rev. B 78, 134512 (2008) P
- T. D. Stanescu, V. Galitski, and S. Das Sarma, Orbital fluctuation mechanism for superconductivity in iron-based compounds, Phys. Rev. B 78, 195114 (2008) P
- M. Daghofer, A. Moreo, J. A. Riera, E. Arrigoni, D. J. Scalapino, and E. Dagotto, Model for the Magnetic Order and Pairing Channels in Fe Pnictide Superconductors, Phys. Rev. Lett. 101, 237004 (2008)
- G. Alvarez and E. Dagotto, Fermi Arcs in the Superconducting Clustered State for Underdoped Cuprates, arXiv:0802.3394 (Monte Carlo simulations, with disorder)
- V. Cvetkovic and Z. Tesanovic, Multiband magnetism and superconductivity in Fe-based compounds, arXiv:0804.4678, EPL 85, 37002 (2009)
- O. Dutta and A. Lebed, Cooper Pairs with Broken Time-Reversal, Parity, and Spin-Rotational Symmetries in Singlet Type-II Superconductors, arXiv:0805.1749, Phys. Rev. Lett. (for a singlet superconductor, a triplet component appears in the order parameter above Hc1)
- T. Morinari, Pseudogap and short-range antiferromagnetic correlation controlled Fermi surface in underdoped cuprates: From Fermi arc to electron pocket, arXiv:0805.1977
- K. Seo, B. A. Bernevig, and J. Hu, Pairing Symmetry in a Two-Orbital Exchange Coupling Model of Oxypnictides, arXiv:0805.2958 P
- P. Wachter, Cu, Pu and Fe high Tc superconductors: all the same mechanism!, arXiv:0806.0900
- V. Barzykin and L. P. Gorkov, On superconducting and magnetic properties of iron-oxypnictides, arXiv:0806.1933
- P. R. C. Kent, T. Saha-Dasgupta, O. Jepsen, O. K. Andersen, A. Macridin, T. A. Maier, M. Jarrell, and T. C. Schulthess, Combined density-functional and dynamical cluster quantum Monte Carlo calculations for three-band Hubbard models for hole-doped cuprate superconductors, arXiv:0806.3770
- D. Eichenberger and D. Baeriswyl, Superconductivity in the 2D Hubbard model: Electron doping is different, arXiv:0808.0433
- A. Mitra, Dissipative and nonequilibrium effects near a superconductor-metal quantum critical point, arXiv:0808.0942 (2D electron gas with attractive interaction, with tunneling to a normal-metallic substrate, which acts as a particle and energy bath; an electric field is applied parallel to the 2D layer; Keldysh formalism) P
- G. A. Sawatzky, I. S. Elfimov, J. van den Brink, and J. Zaanen, Heavy anion solvation of polarity fluctuations in Pnictides, arXiv:0808.1390 P
- O. P. Sushkov, Why phase diagrams of different underdoped cuprates are remarkably different? Disorder versus bilayer, arXiv:0808.2094 (LSCO vs. YBCO)
- V. Stanev, J. Kang, and Z. Tesanovic, Spin Fluctuation Dynamics and Multiband Superconductivity in Iron Pnictides, arXiv:0809.0014
- Y. Senga and H. Kontani, Impurity Effects in Sign Reversing Fully-Gapped Superconductors: Analysis of FeAs Superconductors, arXiv:0809.0374 (extended s-wave picture is found to account for the robustness against impurity doping)
- Q. Han and Z. D. Wang, Impurity states in antiferromagnetic Iron Arsenides, arXiv:0809.0795
- E. Berg, E. Fradkin, and S. A. Kivelson, The striped superconductor, arXiv:0810.1564
- M. S. Laad, L. Craco, S. Leoni, and H. Rosner, Mottness underpins the anomalous optical response of Iron Pnictides, arXiv:0810.1607 (LDA+DMFT, mostly for parent compounds with unbroken symmetry) P
- H. Ikeda, Pseudogap and Superconductivity in Iron-Based Layered Superconductor studied by Fluctuation-Exchange Approximation, arXiv:0810.1828
- G. S. Unrig, M. Holt, J. Oitmaa, O. P. Sushkov, and R. R. P. Singh, Self-consistent spin-wave theory for the magnetic excitations in pnictides, arXiv:0810.3068
- M. Berciu, I. Elfimov, and G. A. Sawatzky, Electronic polarons and bipolarons in Fe-based superconductors: a pairing mechanism, arXiv:0811.0214
- H. Aoki, Unconventional superconductivity originating from disconnected Fermi surfaces in the iron-based compound, arXiv:0811.1656 (tight-binding model based on LDA band structure, finding the generally accepted Fermi surface, RPA calculation of spin susceptibility) P
- F. Krüger, S. Kumar, J. Zaanen, and J. van den Brink, Spin-orbital frustrations and anomalous metallic state in iron-pnictide superconductors, arXiv:0811.4104
- S.-P. Kou, T. Li, and Z.-Y. Weng, Coupled Local Moments and Itinerant Electrons in Iron-Based Superconductors, arXiv:0811.4111 (an alternative picture of the SDW phase based on the coexistence of local moments and itinerant carriers)
- Z. Hao and A. V. Chubukov, Magnetic resonance in the cuprates - exciton, plasmon, or pi-mode, arXiv:0812.2697 (show that the presence of a resonance peak in the spin susceptibility does not imply that the pairing interaction is magnetic in origin)
- A. Hackl and M. Vojta, Pressure-induced magnetic transition and volume collapse in FeAs superconductors: An orbital-selective Mott scenario, arXiv:0812.3394
- Y. Ran, F. Wang, H. Zhai, A. Vishwanath, and D.-H. Lee, Nodal spin density wave and band topology of the FeAs-based materials, Phys. Rev. B 79, 014505 (2009) P
- L. Boeri, O. V. Dolgov, and A. A. Golubov, Electron-Phonon Properties of Pnictide Superconductors, arXiv:0902.0288 (standard phonon-mediated interaction cannot explain high Tc)
- L. Fanfarillo, L. Benfatto, S. Caprara, C. Castellani, and M. Grilli, Fluctuation conductivity from interband pairing in pnictides, arXiv:0902.0303
- D. A. Tompsett and G. G. Lonzarich, CaFe2As2: a Springboard to Investigating Fe-Pnictide Superconductivity, arXiv:0902.4859 (LSDA)
- S. Sykora and K. W. Becker, Microscopic approach to high-temperature superconductors: Pseudogap phase, arXiv:0903.0921; Microscopic approach to high-temperature superconductors: Superconducting phase, arXiv:0903.0925
- L. Craco and M. S. Laad, Theory of Magnetic Fluctuations in Iron Pnictides, arXiv:0903.1568 (in the superconducting phase)
- C. Platt, C. Honerkamp, and W. Hanke, Pairing in the iron arsenides: a functional RG treatment, arXiv:0903.1963
- J. A. Wilson, A different explanation of energy-resolved scanning tunnelling results from (Ca2-xNax)CuO2Cl2 than that suggested by Hanaguri et al (2009), arXiv:0903.3549
- J. Zhang, R. Sknepnek, R. M. Fernandes, and J. Schmalian, Orbital coupling and superconductivity in the iron pnictides, arXiv:0903.4473 (FLEX, finding s+/- order)
- T. A. Maier, S. Graser, D. J. Scalapino, and P. J. Hirschfeld, Origin of Gap Anisotropy in Spin Fluctuation Models of the Fe-pnictides, arXiv:0903.5216
- H. Zhai, F. Wang, and D.-H. Lee, Antiferromagnetically Driven Electronic Correlation in Iron Pnictides and Cuprates, arXiv:0905.1711 (functional renormalization group) P
- H. Eschrig and K. Koepernik, Tight-binding models for the new iron based superconductor materials, arXiv:0905.4844
- R. Thomale, C. Platt, J. Hu, C. Honerkamp, and B. A. Bernevig, Doping-dependent pairing symmetry in the Iron-Pnictides, arXiv:0906.4475
- D. Parker, M. G. Vavilov, A. V. Chubukov, and I. I. Mazin, Coexistence of superconductivity and a spin density wave in pnictides: Gap symmetry and nodal lines, arXiv:0907.2826 P
- J. Zaanen, The specific heat jump at the superconducting transition and the quantum critical nature of the normal state of Pnictide superconductors, arXiv:0908.0033
- K.-W. Lee and W. E. Pickett, Sr2VO3FeAs: A New Paradigm for Fe-Pnictide Superconductors, arXiv:0908.2698 (DFT calculations not for superconducting phase but important for its understanding, this material is quite different from the other pnictides)
- R. Arita and H. Ikeda, Is Fermi-surface nesting the origin of superconductivity in iron pnictides?: A fluctuation-exchange-approximation study, arXiv:0909.1413, J. Phys. Soc. Jpn. 78 (11) (2009)
- M. Khodas and A.M. Tsvelik, Influence of thermal phase fluctuations on the single particle Green function in a 2D d-wave superconductor, arXiv:0910.3967
- A. Akbari, I. Eremin, and P. Thalmeier, Magnetic impurity resonance states and symmetry of the superconducting order parameter in iron-based superconductors, arXiv:0911.3738
- V. Stanev and Z. Tesanovic, Three-band superconductivity and time-reversal symmetry breaking order parameter, arXiv:0912.5214 (related to pnictides)
- P. W. Anderson and P. A. Casey, Hidden Fermi liquid; the moral: a good effective low-energy theory is worth all of Monte Carlo with Las Vegas thrown in, J. Phys.: Condens. Matter 22, 164201 (2010); see also letter cited below
- I. I. Mazin, Sr2VO3FeAs as compared to other iron-based superconductors, Phys. Rev. B 81, 020507(R) (2010) (despite its complicated Fermi surface, this material is said to fall into the same class as the other iron pnictides)
- S. Raghu, S. A. Kivelson, and D. J. Scalapino, Superconductivity in the repulsive Hubbard model: An asymptotically exact weak-coupling solution, Phys. Rev. B 81, 224505 (2010), see also synopsis: Weak-coupling superconductivity from repulsive interactions
- J.-P. Ismer, I. Eremin, E. Rossi, D. K. Morr, and G. Blumberg, Multiband Superconductivity in Spin Density Wave Metals, Phys. Rev. Lett. 105, 037003 (2010) P (single-band Hubbard model with band structure relevant for cuprates, see also the following paper by Parker et al.)
- R. S. Markiewicz, T. Das, S. Basak, and A. Bansil, Intermediate coupling model of cuprates: adding fluctuations to a weak coupling model of pseudogap and superconductuctivity competition, arXiv:1002.0106
- M. Combescot and G. Zhu, Coboson Derivation of Richardson's Equations for Cooper pairs, arXiv:1002.1182
- A. M. Tsvelik and F. H. L. Essler, Effects of thermal phase fluctuations in a 2D superconductor: an exact result for the spectral function, arXiv:1002.3046
- X. Wang, M. Daghofer, A. Nicholson, A. Moreo, M. Guidry, and E. Dagotto, Constraints Imposed by Symmetry on Pairing Operators for the Pnictides, arXiv:1002.4335
- P. Ghaemi and A. Vishwanath, Coexistence of superconductivity and a spin-density wave in pnictide superconductors: Effect of transverse Zeeman field, arXiv:1002.4638
- S. Graser, A. F. Kemper, T. A. Maier, H.-P. Cheng, P. J. Hirschfeld, and D. J. Scalapino, Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2, arXiv:1003.0133
- H. Wadati, I. Elfimov, and G. A. Sawatzky, Where Are the Extra d Electrons in Transition-Metal Substituted Fe Pnictides?, arXiv:1003.2663 (based on DFT)
- A. F. Kemper, T. A. Maier, S. Graser, H.-P. Cheng, P. J. Hirschfeld, and D. J. Scalapino, Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides, arXiv:1003.2777
- L. Boeri, M. Calandra, I. I. Mazin, O. V. Dolgov, and F. Mauri, Effects of magnetism and doping on the electron-phonon coupling in BaFe2As2, arXiv:1004.1943 (DFT; electron-phonon coupling is enhanced by magnetism but still too weak to explain high Tc)
- N. Lee and H.-Y. Choi, Interplay between spin density wave and pi phase shifted superconductivity in the Fe pnictide superconductors, arXiv:1005.1728 (mean-field decoupling in SDW and superconducting channels, derivation of a Landau functional in functional-integral approach)
- R. M. Fernandes and J. Schmalian, Competing order and nature of the pairing state in the iron pnictides, arXiv:1005.2437 (s+- superconducting order nearly coexists with itinerant antiferromagnetism)
- E. G. Moon and S. Sachdev, Quantum critical point shifts under superconductivity: the pnictides and the cuprates, arXiv:1005.3312
- F. Yang, H. Zhai, F. Wang, and D.-H. Lee, A Variational Monte-Carlo Study of the Iron Pnictide Superconductors, arXiv:1007.2643
- W. Hanke, M. L. Kiesel, M. Aichhorn, S. Brehm, and E. Arrigoni, The 3-Band Hubbard-Model versus the 1-Band Model for the high-Tc Cuprates: Pairing Dynamics, Superconductivity and the Ground-State Phase Diagram, arXiv:1007.5431
- K. Kuroki, Anion height as a controlling parameter for the superconductivity in iron pnictides and cuprates, arXiv:1008.2286
- S. Onari and H. Kontani, Non-Fermi-Liquid-Like Behaviors and Superconductivity Driven by Orbital Fluctuations in Iron Pnictides: Analysis by Fluctuation-Exchange Approximation, arXiv:1009.3882
- S. Maiti and A. V. Chubukov, Renormalization group flow, competing phases, and the structure of superconducting gap in multi-band models of Iron based superconductors, arXiv:1010.0984
- K. Suzuki, H. Usui, and K. Kuroki, Possible three dimensional nodes in the s+- superconducting gap of BaFe2(As1-xPx)2, arXiv:1010.3542 (10 orbital, 3D model)
- L. H. C. M. Nunes, R. L. S. Farias, and E. C. Marino, Superconducting and excitonic quantum phase transitions in doped systems with Dirac electrons, arXiv:1010.4279
- E. G. Moon and S. Sachdev, The underdoped cuprates as fractionalized Fermi liquids: transition to superconductivity, arXiv:1010.4567 (electrons coupled to antiferromagnetic fluctuations)
- D. Baeriswyl, Superconductivity in the repulsive Hubbard model, arXiv:1010.6137 (variational approach)
- C. Platt, R. Thomale, and W. Hanke, Order-Parameter Anisotropies in the Pnictides - An Optimization Principle for Multi-Band Superconductivity, arXiv:1012.1763
- C. J. Jia, B. Moritz, C.-C. Chen, B. Sriram Shastry, and T. P. Devereaux, A Fidelity Study of the Superconducting Phase Diagram in the 2D Single-band Hubbard Model, arXiv:1012.4013 (exact diagonalization)
- J. Wu and P. Phillips, Magnon-mediated pairing and isotope effect in iron-based superconductors, J. Phys.: Condens. Matter 23, 094203 (2011), arXiv:0901.3538 (spin-fermion model)
- T. Li and Q. Han, On the origin of the Fermi arc phenomenon in the underdoped cuprates: signature of KT-type superconducting transition, J. Phys.: Condens. Matter 23, 105603 (2011)
- P. A. Casey and P. W. Anderson, Hidden Fermi Liquid: Self-Consistent Theory for the Normal State of High-Tc Superconductors, Phys. Rev. Lett. 106, 097002 (2011)
- S. Sykora and P. Coleman, Quasiparticle interference in an iron-based superconductor, Phys. Rev. B 84, 054501 (2011)
- L. Mao, J. Shi, Q. Niu, and C. Zhang, Superconducting Phase with a Chiral f-Wave Pairing Symmetry and Majorana Fermions Induced in a Hole-Doped Semiconductor, Phys. Rev. Lett. 106, 157003 (2011)
- M. Sentef, P. Werner, E. Gull, and A. P. Kampf, Superconducting Phase and Pairing Fluctuations in the Half-Filled Two-Dimensional Hubbard Model, Phys. Rev. Lett. 107, 126401 (2011) (becomes superconducting due to NNN hopping)
- R. Thomale, C. Platt, W. Hanke, J. Hu, and B. A. Bernevig, Exotic d-wave superconductivity in strongly hole doped K(x)Ba(1-x)Fe2As2, arXiv:1101.3593
- A. S. Alexandrov and V. V. Kabanov, Unconventional high-temperature superconductivity from repulsive interactions: theoretical constraints, arXiv:1101.5296 (argue that p-wave and d-wave pairing is not possible based exclusively on realistic Coulomb interaction)
- I. I. Mazin, Symmetry analysis of possible superconducting states in KxFe2Se2 superconductors, arXiv:1102.3655
- C. Platt, R. Thomale, and W. Hanke, From density functional theory to the functional renormalization group: superconductivity in the iron pnictide LiFeAs, arXiv:1103.2101 (find dominant s+- order)
- C. S. Liu, W. C. Wu, and Chung-Yu Mou, Midgap surface bound states as signatures of possible s+--wave pairing in Fe-pnictide superconductors, arXiv:1104.5282 (Bogoliubov-de Gennes Hamiltonian)
- N. Arakawa and M. Ogata, Orbital-Selective Superconductivity and the Effect of Lattice Distortion in Iron-Based Superconductors, arXiv:1105.4028, J. Phys. Soc. Jpn.
- P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Gap symmetry and structure of Fe-based superconductors, arXiv:1106.3712 (based on spin fluctuations)
- S. Zhou, G. Kotliar, and Z. Wang, Superconductivity driven by charge fluctuations in iron-pnictides, arXiv:1106.4552
- C. Platt, R. Thomale, C. Honerkamp, S.-C. Zhang, and W. Hanke, Mechanism for a Pairing State with Time-Reversal Symmetry Breaking in Iron-Based Superconductors, arXiv:1106.5964 (five-orbital model, FRG and mean-field analysis)
- F. Romeo and R. Citro, Scattering theory of magnetic/superconducting junctions with spin active interfaces, arXiv:1107.0819 (Bogoliubov-de Gennes wave function, Landauer approach)
- S. Maiti, J. Knolle, I. Eremin, and A. V. Chubukov, Effect of nodes, ellipticity and impurities on the spin resonance in Iron-based superconductors, arXiv:1108.0266
- K. Suzuki, H. Usui, and K. Kuroki, Spin fluctuations and unconventional pairing in KFe2As2, arXiv:1108.0657 (five-band model, RPA spin susceptibility) P
- J. Knolle, I. Eremin, J. Schmalian, and R. Moessner, Magnetic resonance from the interplay of frustration and superconductivity, arXiv:1108.2046
- G. Baskaran, Possibility of Skyrmion Superconductivity in Doped Antiferromagnet K2Fe4Se5, arXiv:1108.3562
- M. H. Fischer, F. Loder, and M. Sigrist, Superconductivity and local non-centrosymmetricity in crystal lattices, arXiv:1108.4694 (globally centrosymmetric lattices with staggered non-centrosymmetry, allowing staggered spin-orbit coupling, use group theory to analyze which superconducting gap symmetries can be mixed by this spin-orbit coupling, also applied to pnictide FeAs layer) P; D. Maruyama, M. Sigrist, and Y. Yanase, Locally Non-centrosymmetric Superconductivity in Multi-layer Systems, arXiv:1111.4293
- S. Maiti, M. M. Korshunov, T. A. Maier, P. J. Hirschfeld, and A. V. Chubukov, Evolution of symmetry and structure of the gap in Fe-based superconductors with doping and interactions, arXiv:1109.0498
- M. G. Vavilov and A. V. Chubukov, Phase diagram of iron-pnictides if doping acts as a disorder, arXiv:1110.0972
- K. Zhou and Z. Zhang, Opposite effect of spin-orbit coupling on condensation and superfluidity, arXiv:1110.3565 (BCS-BEC crossover)
- Y. Wang, P. J. Hirschfeld, and I. Vekhter, Theory of quasiparticle vortex bound states in Fe-based superconductors: application to LiFeAs, arXiv:1111.0126 (on STS of quasiparticle states close to vortices and what can or cannot be inferred for the gap symmetry from their anisotropy)
- S. Maiti, M. M. Korshunov, and A. V. Chubukov, Gap Symmetry in KFe_2As_2, arXiv:1111.0306 (... which has only hole pockets; propose extended, nodal s-wave pairing)
- P. Goswami, Investigation of pseudogap and superconducting transitions in hole-doped cuprates, arXiv:1111.0928
- R. H. Squire and N. H. March, High-Temperature Superconductivity Mechanism for Cuprates, arXiv:1111.2560 (based on preformed pairs)
- S. Raghu, E. Berg, A. V. Chubukov, and S. A. Kivelson, Effects of longer-range interactions on unconventional superconductivity, arXiv:1111.2982
- S. A. Wolf and V. Z. Kresin, Ordering of dopants and potential increase in Tc to near room temperature, arXiv:1111.3211 (proposal of how to do that)
- M. Combescot, W. V. Pogosov, and O. Betbeder-Matibet, BCS ansatz, Bogoliubov approach to superconductivity and Richardson-Gaudin exact wave function, arXiv:1111.4781 (elucidate the relations between these approaches, study novel extreme regimes)
- S. J. Youn, M. H. Fischer, S. H. Rhim, M. Sigrist, and D. F. Agterberg, Hexagonal pnictide SrPtAs: superconductivity with locally broken inversion symmetry, arXiv:1111.5058 (honeycomb PtAs layers lack inversion symmetry, whereas the 3D crystal has inversion symmetry with a center in the Sr layer, in this sense inversion symmetry is locally absent [or staggered], this makes spin-orbit coupling highly relevant)
- E. Krüger and H. P. Strunk, The reason why doping causes superconductivity in LaFeAsO, arXiv:1112.3169 (group-theoretical analysis based on breaking of rotational/reflection symmetries by flourine substitution)
- E. G. Moon and S. Sachdev, Competition between superconductivity and nematic order: anisotropy of superconducting coherence length, arXiv:1112.3973 (FeSe)
- A. Nicholson, W. Ge, J. Riera, M. Daghofer, A. Moreo, and E. Dagotto, Pairing symmetries of a hole-doped extended two-orbital model for the pnictides, Phys. Rev. B 85, 024532 (2012)
- H.-H. Hung, C.-L. Song, X. Chen, X. Ma, Q.-k. Xue, and C. Wu, Anisotropic vortex lattice structures in the FeSe superconductor, Phys. Rev. B 85, 104510 (2012) (theory explaining STS experiments [Science 332, 1410 (2011)] on superconducting FeSe in terms of orbital/nematic order; mean-field description of pairing in nematic state)
- T. Das and A. V. Balatsky, Testing the sign-changing superconducting gap in iron-based superconductors with quasiparticle interference and neutron scattering, J. Phys.: Condens. Matter 24, 182201 (2012)
- G. Sordi, P. Sémon, K. Haule, and A.-M. S. Tremblay, Strong Coupling Superconductivity, Pseudogap, and Mott Transition, Phys. Rev. Lett. 108, 216401 (2012) (cellular DMFT with QMC as impurity solver; among other results, support the view that the critical temperature obtained in their approach, i.e., the temperature of local pair formation, is distinct from the pseudogap temperature)
- G. Lee et al., Orbital Selective Fermi Surface Shifts and Mechanism of High Tc Superconductivity in Correlated AFeAs (A=Li, Na), Phys. Rev. Lett. 109, 177001 (2012)
- S. A. Parameswaran, S. A. Kivelson, R. Shankar, S. L. Sondhi, and B. Z. Spivak, Microscopic Model of Quasiparticle Wave Packets in Superfluids, Superconductors, and Paired Hall States, Phys. Rev. Lett. 109, 237004 (2012) (backflow pattern of bogolons)
- S. Maiti, R. M. Fernandes, and A. V. Chubukov, Gap nodes induced by coexistence with antiferromagnetism in iron-based superconductors, arXiv:1203.0991 (pairing on reconstructed Fermi surface)
- E. Krüger and H. P. Strunk, Structural distortion as prerequisite for superconductivity in LiFeAs, arXiv:1203.1543
- R. M. Fernandes, M. G. Vavilov, and A. V. Chubukov, Enhancement of Tc by disorder in underdoped iron pnictides, arXiv:1203.3012
- D. J. Scalapino and S. R. White, Stripe Structures in the t-t'-J Model, arXiv:1204.5212
- Y. Imai, K. Wakabayashi, and M. Sigrist, Properties of edge states in spin-triplet two-band superconductor, arXiv:1205.1591 (interaction effects on surface states, motivated by Sr2RuO4)
- dynamical cluster approximation with rather large cluster size)
- R. M. Fernandes and A. J. Millis, Suppression of superconductivity by Neel-type magnetic fluctuations in the iron pnictides, arXiv:1208.3412
- R. L. Frank, C. Hainzl, R. Seiringer, and J. P. Solovej, Microscopic Derivation of the Ginzburg-Landau Model, arXiv:1209.1080 (from BCS theory; mathematical-physics style, do not refer to Gor'kov's derivation)
- H. Shimahara, Phase diagrams of noncentrosymmetric superconductors, arXiv:1209.3367 (strong spin-orbit coupling, including the case that one of the helicity Fermi surfaces vanishes)
- M. Khodas and A. V. Chubukov, Vertical loop nodes in iron-based superconductors, arXiv:1209.5139 (effect of hybridization between electron pockets in correct Brillouin zone)
- H.-H. Wen, Overview on the physics and materials of the new superconductor KxFe2-ySe2, arXiv:1209.5945, Rep. Prog. Phys. (proposes microscopic phase separation)
- Y. Wang, A. Kreisel, P. J. Hirschfeld, and V. Mishra, Using controlled disorder to distinguish s+- and s++ gap structure in Fe-based superconductors, arXiv:1210.7474
- E. Gull and A. J. Millis, Energetics of superconductivity in the two dimensional Hubbard model, arXiv:1211.3123 (superconductivity in underdoped regime is driven by kinetic-energy reduction accompanied by potential-energy increase, but mechanism is not of RVB type; eight-site DCA)
- G. Litak, T. Örd, K. Rägo, and A. Vargunin, Peculiarities of length scales in a two-orbital superconductor, arXiv:1211.5280 (coherence lengths and penetration depths; Ginzburg-Landau equations); T. Örd, A. Vargunin, and K. Rägo, Spatial correlation of fluctuations in multi-component superconducting systems, arXiv:1211.5287
- D. Sénéchal, A. Day, V. Bouliane, and A.-M. S. Tremblay, Resilience of d-wave superconductivity to nearest-neighbor repulsion, arXiv:1212.4503
- A. Levchenko, M. G. Vavilov, M. Khodas, and A. V. Chubukov, Enhancement of the London penetration depth in pnictides at the onset of SDW order under superconducting dome, arXiv:1212.5719 (BiFe2(As,P)2, explain sharp maximum in low-temperature penetration depth seen at optimal doping in terms of QCP related to SDW formation) P
- Y. Wang and A. V. Chubukov, Superconductivity at the Onset of Spin-Density-Wave Order in a Metal, Phys. Rev. Lett. 110, 127001 (2013) (superconductivity close to a SDW quantum-critical point, motivated by cuprates and pnictides, find a BCS-type result for nontrivial reasons)
- J. L. Tallon, F. Barber, J. G. Storey, and J. W. Loram, Coexistence of the superconducting energy gap and pseudogap above and below the transition temperature of cuprate superconductors, Phys. Rev. B 87, 140508(R) (2013)
- G. A. Ummarino, S. Galasso, and A. Sanna, A phenomenological multiband Eliashberg model for LiFeAs, J. Phys.: Condens. Matter 25, 205701 (2013); G. A. Ummarino, S. Galasso, D. Daghero, M. Tortello, R. S. Gonnelli, and A. Sanna, Normal and superconducting properties of LiFeAs explained in the framework of four-band Eliashberg Theory, arXiv:1301.1542
- E. Gull, O. Parcollet, and A. J. Millis, Superconductivity and the Pseudogap in the Two-Dimensional Hubbard Model, Phys. Rev. Lett. 110, 216405 (2013)
- R. M. Fernandes, S. Maiti, P. Wölfle, and A. V. Chubukov, How many quantum phase transitions exist inside the superconducting dome of the iron pnictides?, Phys. Rev. Lett. 111, 057001 (2013) (one, since the Neel and nematic transitions merge into a single first-order transition somewhere within the superconducting dome in 122 pnictides)
- R. M. Fernandes and A. J. Millis, Nematicity as a Probe of Superconducting Pairing in Iron-Nased Superconductors, Phys. Rev. Lett. 111, 127001 (2013) (Ginzburg-Landau approach, coupling of superconducting and nematic order parameters, no orbital physics)
- T. T. Ong and P. Coleman, Tetrahedral and Orbital Pairing: A Fully Gapped Pairing Scenario for the Iron-Based Superconductors, Phys. Rev. Lett. 111, 217003 (2013) (for the FeSe system, spin-singlet but orbital-triplet nodeless gap, leading to a topological CI superconductor)
- J. Hu, Extended eta-Pairing B2u d-wave State and Pairing Symmetry Classification in Iron-Based Superconductors, arXiv:1301.6342 (real-space pairing shows a sign change made possible by the two-iron basis)
- M. H. Fischer, Gap Symmetry and Stability Analysis in the Multi-Orbital Fe-Based Superconductors, arXiv:1302.1468 (symmetry analysis of multi-orbital pairing, assumes time-reversal and inversion symmetries and absence of spin-orbit coupling)
- S. Maiti and A. V. Chubukov, s+is State with Broken Time Reversal Symmetry in Fe-Based Superconductors, arXiv:1302.2964 (hole-overdoped Ba1-xKxFe2As2)
- M. Casula and S. Sorella, First-principles calculations of the improper s-wave symmetry for the electronic pairing in iron-based superconductors, arXiv:1302.4748 (with symmetry analysis; true gap is stated to be linear combination of s- and d-wave)
- S. Sachdev and R. La Placa, Charge ordering in metals with antiferromagnetic spin correlations, arXiv:1303.2114 (Hartree-Fock)
- T. Saito, S. Onari, and H. Kontani, Nodal gap structure in Fe-based superconductors due to the competition between orbital and spin fluctuations, arXiv:1303.2871
- Y. Nagai, Y. Shinohara, Y. Futamura, Y. Ota, and T. Sakurai, Numerical construction of a low-energy effective Hamiltonian in a self-consistent Bogoliubov-de Gennes approach of superconductivity, arXiv:1303.3683
- N. V. Orlova, A. A. Shanenko, M. V. Milosevic, F. M. Peeters, A. Vagov, and V. M. Axt, Ginzburg-Landau theory for multiband superconductors: microscopic derivation, arXiv:1304.4032
- F. Yang, F. Wang, and D.-H. Lee, Fermiology, Orbital Order, Orbital Fluctuation and Cooper Pairing in Iron-based Superconductors, arXiv:1305.0605
- W. Cho, R. Thomale, S. Raghu, and S. A. Kivelson, Band-structure effects on superconductivity in Hubbard models, arXiv:1305.2228 (of relevance for pnictides and cuprates)
- A. M. Black-Schaffer and A. V. Balatsky, Odd-frequency superconducting pairing in multi-band superconductors, arXiv:1305.4593 (... is generically present)
- C. Weber, T. Giamarchi, and C. M. Varma, Phase Diagram of a Three Orbital Model for the high-Tc cuprates, arXiv:1305.7275 (variational Monte Carlo and exact diagonalization, investigate various phases, find loop-current phase)
- R. B. Laughlin, Hartree-Fock Computation of the High-Tc Cuprate Phase Diagram, arXiv:1306.5359
- S. Pandey, A. V. Chubukov, and M. Khodas, Spin resonance in AFe2Se2 with s-wave paring symmetry, arXiv:1310.2334 (unconventional s+- pairing with gap of opposite sign on hybridized Fermi sheets taking true lattice symmetry into account; spin structure factor from RPA agrees with inelastic neutron scattering data) P
- V. Mishra, U. Chatterjee, J. C. Campuzano, and M. R. Norman, Effect of the pseudogap on the transition temperature in the cuprates and implications for its origin, Nature Physics 10, 357 (2014) (theoretical analysis based on ARPES experiments; assumption that the pseudogap is not due to superconducting pairing leads to conclusions contradicted by experiments)
- A. C. Potter and P. A. Lee, Edge-Ferromagnetism from Majorana Flat-Bands: Application to Split Tunneling-Conductance Peaks in the High-Tc Cuprates, Phys. Rev. Lett. 112, 117002 (2014) (flat bands are spin degenerate in absence of magnetic symmetry breaking; mean-field theory)
- K. Suzuki, H. Usui, S. Iimura, Y. Sato, S. Matsuishi, H. Hosono, and K. Kuroki, Model of the Electronic Structure of Electron-Doped Iron-Based Superconductors: Evidence for Enhanced Spin Fluctuations by Diagonal Electron Hopping, Phys. Rev. Lett. 113, 027002 (2014)
- A. Hinojosa, R. M. Fernandes, and A. V. Chubukov, Time-Reversal Symmetry Breaking Superconductivity in the Coexistence Phase with Magnetism in Fe Pnictides, Phys. Rev. Lett. 113, 167001 (2014) (propose coexistence of intrapocket s++ singlet and interpocket triplet pairing with nontrivial relative phase)
- H. Ebrahimnejad, G. A. Sawatzky, and M. Berciu, The dynamics of a doped hole in a cuprate is not controlled by spin fluctuations, Nature Phys. (2014), doi:10.1038/nphys3130 (essentially a spin-fermion model with spins at the copper sites interacting with mobile electrons at the oxygen sites, static antiferromagnetic order; variational approach)
- R. Ganesh, G. Baskaran, J. van den Brink, and D. V. Efremov, Theoretical Prediction of a Time-Reversal Broken Chiral Superconducting Phase Driven by Electronic Correlations in a Single TiSe2 Layer, Phys. Rev. Lett. 113, 177001 (2014)
- Z. Y. Meng, Y. B. Kim, and H.-Y. Kee, Odd-Parity Triplet Superconducting Phase in Multiorbital Materials with a Strong Spin-Orbit Coupling: Application to Doped Sr2IrO4, Phys. Rev. Lett. 113, 177003 (2014) (DMFT with QMC impurity solver)
- Z. P. Yin, K. Haule, and G. Kotliar, Spin dynamics and orbital-antiphase pairing symmetry in iron-based superconductors, Nature Phys. 10, 845 (2014) (extensive DFT calculations for the dynamical spin structure factor of various pnictides, chalcogenides, and MgFeGe; resulting predictions for superconducting gap symmetry)
- J. Gukelberger, E. Kozik, L. Pollet, N. Prokof'ev, M. Sigrist, B. Svistunov, and M. Troyer, p-Wave Superfluidity by Spin-Nematic Fermi Surface Deformation, Phys. Rev. Lett. 113, 195301 (2014) (diagrammatic MC)
- J. Kang, A. F. Kemper, and R. M. Fernandes, Manipulation of Gap Nodes by Uniaxial Strain in Iron-Based Superconductors, Phys. Rev. Lett. 113, 217001 (2014) (possible due to large nematic susceptibility, orbital models)
- J. Kang, X. Wang, A. V. Chubukov, and R. M. Fernandes, Interplay between tetragonal magnetic order, stripe magnetism, and superconductivity in iron-based materials, arXiv:1412.7079 (theory for arXiv:1412.7038, Ba1-xKxFe2As2 coexistence region; find tetragonal magnetic order in an intermediate doping range, also in the coexistence regime)
- J. Hsiao, G. J. Martyna, and D. M. Newns, Phase Diagram of Cuprate High-Temperature Superconductors Described by a Field Theory Based on Anharmonic Oxygen Degrees of Freedom, Phys. Rev. Lett. 114, 107001 (2015) (claim that anharmonic lattice vibrations can reproduce the non-magnetic part of the typical cuprate phase diagram; spin fluctuations are inessential in this picture)
- Y. Wang, T. Berlijn, P. J. Hirschfeld, D. J. Scalapino, and T. A. Maier, Glide-Plane Symmetry and Superconducting Gap Structure of Iron-Based Superconductors, Phys. Rev. Lett. 114, 107002 (2015) (unconventional pairings are indeed possible but observables are well described by simpler theory based on single-iron unit cell)
- Y. Wang, D. F. Agterberg, and A. Chubukov, Coexistence of Charge-Density-Wave and Pair-Density-Wave Orders in Underdoped Cuprates, Phys. Rev. Lett. 114, 197001 (2015)
- S. Mukherjee, A. Kreisel, P. J. Hirschfeld, and B. M. Andersen, Model of Electronic Structure and Superconductivity in Orbitally Ordered FeSe, Phys. Rev. Lett. 115, 026402 (2015) (model Hamiltonian containing orbital order and spin-orbit coupling, solve linearized gap equation in the singlet channel, obtain nodal gap) P
- A. Linscheid, A. Sanna, A. Floris, and E. K. U. Gross, First-Principles Calculation of the Real-Space Order Parameter and Condensation Energy Density in Phonon-Mediated Superconductors, Phys. Rev. Lett. 115, 097002 (2015)
- N. Bittner, D. Einzel, L. Klam, and D. Manske, Leggett Modes and the Anderson-Higgs Mechanism in Superconductors without Inversion Symmetry, Phys. Rev. Lett. 115, 227002 (2015)
- Y. Gallais, I. Paul, L. Chauvière, and J. Schmalian, Nematic Resonance in the Raman Response of Iron-Based Superconductors, Phys. Rev. Lett. 116, 017001 (2016)
- I. Boettcher and I. F. Herbut, Superconducting quantum criticality in 3D Luttinger semimetals, arXiv:1603.00031 (quadratic band-touching point, k.p theory)
- M. Meinert, Unconventional Superconductivity in YPtBi and Related Topological Semimetals, Phys. Rev. Lett. 116, 137001 (2016) (based on DFT, obtains electron-phonon coupling strength, concludes that conventional phonon-mediated interaction is much too weak to explain the superconducting Tc) P
- A. Linscheid, S. Maiti, Y. Wang, S. Johnston, and P. J. Hirschfeld, High Tc via Spin Fluctuations from Incipient Bands: Application to Monolayers and Intercalates of FeSe, Phys. Rev. Lett. 117, 077003 (2016)
- A. V. Chubukov, O. Vafek, and R. M. Fernandes, Displacement and annihilation of Dirac gap-nodes in d-wave iron-based superconductors, arXiv:1608.05840 (two-band dx2-y2 superconductivity, 2D model, nodes are shifted in momentum space by interband pairing and can even annihilate, leading to a fully gapped state) P
- C. B. Bishop, A. Moreo, and E. Dagotto, Bicollinear Antiferromagnetic Order, Monoclinic Distortion, and Reversed Resistivity Anisotropy in FeTe as a Result of Spin-Lattice Coupling, Phys. Rev. Lett. 117, 117201 (2016) (spin-fermion model, MC simulations)
- R. Nourafkan, G. Kotliar, and A.-M. S. Tremblay, Correlation-Enhanced Odd-Parity Interorbital Singlet Pairing in the Iron-Pnictide Superconductor LiFeAs, Phys. Rev. Lett. 117, 137001 (2016) (DFT+DMFT for normal state, pairing interaction due to spin-fluctuation exchange treated in RPA; find sizable interorbital pairing)
- Y. Wang, A. Abanov, B. L. Altshuler, E. A. Yuzbashyan, and A. V. Chubukov, Superconductivity near a Quantum-Critical Point: The Special Role of the First Matsubara Frequency, Phys. Rev. Lett. 117, 157001 (2016)
- T. Nomoto and H. Ikeda, Exotic Multigap Structure in UPt3 Unveiled by a First-Principles Analysis, Phys. Rev. Lett. 117, 217002 (2016) (DFT, low-energy physics found to be dominated by j=5/2 multiplet of U 5f electrons) P
- J. Kang and R. M. Fernandes, Superconductivity in FeSe Thin Films Driven by the Interplay between Nematic Fluctuations and Spin-Orbit Coupling, Phys. Rev. Lett. 117, 217003 (2016) (simple approximation for pairing interaction due to nematic fluctuations, not microscopically derived, linearized gap equation; SOC found to be crucial for selecting actual pairing state)
- M. N. Gastiasoro, F. Bernardini, and B. M. Andersen, Unconventional Disorder Effects in Correlated Superconductors, Phys. Rev. Lett. 117, 257002 (2016) (real-space BCS theory; magnetic and non-magnetic impurities; application to iron-based systems)
-
A. Ramires and M. Sigrist, Identifying detrimental effects for multiorbital superconductivity: Application to Sr2RuO4, Phys. Rev. B 94, 104501 (2016) ("superconducting fitness"; a more general condition on pairing state in presence of spin-orbit coupling); A. Ramires, D. F. Agterberg, and M. Sigrist, Tailoring Tc by symmetry principles: The concept of superconducting fitness, Phys. Rev. B 98, 024501 (2018)
- L. Classen, R.-Q. Xing, M. Khodas, and A. V. Chubukov, Interplay between Magnetism, Superconductivity, and Orbital Order in 5-Pocket Model for Iron-Based Superconductors: Parquet Renormalization Group Study, Phys. Rev. Lett. 118, 037001 (2017) (RG for three-orbital model, mapped onto one- and two-band Luttinger-Kohn models in the vicinity of high-symmetry points, many allowed interaction parameters; flow is nevertheless towards one of only two distinct low-energy scenarios) P
-
C.-X. Liu, Unconventional Superconductivity in Bilayer Transition Metal Dichalcogenides, Phys. Rev. Lett. 118, 087001 (2017) (centrosymmetric crystal, noncentrosymmetric layers; effective intra- and interlayer interactions, BCS and microscopically derived Ginzburg-Landau theory; FFLO state in applied magnetic field)
-
O. Vafek and A. V. Chubukov, Hund Interaction, Spin-Orbit Coupling and the Mechanism of Superconductivity in Strongly Hole-Doped Iron Pnictides, Phys. Rev. Lett. 118, 087003 (2017) (s-wave pairing due to Hund coupling; A2g interband triplet pairing state opens gaps away from the Fermi energy and, in presence of SOC, which mixes it with the A1g singlet pairing state, opens gaps also at the Fermi energy)
-
P. Hlobil, J. Jandke, W. Wulfhekel, and J. Schmalian, Tracing the Electronic Pairing Glue in Unconventional Superconductors via Inelastic Scanning Tunneling Spectroscopy, Phys. Rev. Lett. 118, 167001 (2017) (theory for inelastic STS)
-
S. Sumita, T. Nomoto, and Y. Yanase, Multipole Superconductivity in Nonsymmorphic Sr2IrO4, Phys. Rev. Lett. 119, 027001 (2017) P
-
L. Komendová and A. M. Black-Schaffer, Odd-Frequency Superconductivity in Sr2RuO4 Measured by Kerr Rotation, Phys. Rev. Lett. 119, 087001 (2017) (theory for Kerr effect due to odd-frequency pairing)
-
Y. Gu et al., Unified Phase Diagram for Iron-Based Superconductors, Phys. Rev. Lett. 119, 157001 (2017) (crucial role of nematic fluctuations)
-
D. F. Agterberg, T. Shishidou, J. O’Halloran, P. M. R. Brydon, and M. Weinert, Resilient Nodeless d-Wave Superconductivity in Monolayer FeSe, Phys. Rev. Lett. 119, 267001 (2017) (nodes annihilate between the two normal-state Fermi surfaces since SOC is smaller than superconducting gap; Kohn-Luttinger theory in vicinity of M point, pairing due to Q = 0 spin fluctuations)
-
L.-D. Zhang, W. Huang, F. Yang, and H. Yao, Superconducting pairing in Sr2RuO4 from weak to intermediate coupling, Phys. Rev. B 97, 060510(R) (2018) (2D three-orbital model, RPA)
-
S. Sumita and Y. Yanase, Unconventional superconducting gap structure protected by space group symmetry, Phys. Rev. B 97, 134512 (2018) (extension of classification of gap structures to line nodes on high-symmetry planes and point nodes on high-symmetry lines) P
-
I. Mandal, Fate of superconductivity in three-dimensional disordered Luttinger semimetals, Ann. Phys. 392, 179 (2018)
-
Z. Chen, X. Li, and T. K. Ng, Exactly Solvable BCS-Hubbard Model in Arbitrary Dimensions, Phys. Rev. Lett. 120, 046401 (2018) (needs hopping to equal pairing amplitude; mapping to Majorana operators, similar to Kitaev model on honeycomb lattice)
-
A. Greco and A. P. Schnyder, Mechanism for Unconventional Superconductivity in the Hole-Doped Rashba-Hubbard Model, Phys. Rev. Lett. 120, 177002 (2018) (pairing interaction, RPA)
-
J. Kang, R. M. Fernandes, and A. Chubukov, Superconductivity in FeSe: The Role of Nematic Order, Phys. Rev. Lett. 120, 267001 (2018) (mainly model construction, linearized gap equation)
-
A. T. Rømer, P. J. Hirschfeld, and B. M. Andersen, Raising the Critical Temperature by Disorder in Unconventional Superconductors Mediated by Spin Fluctuations, Phys. Rev. Lett. 121, 027002 (2018) (theoretical proposal; by softening spin fluctuations by disorder)
-
A. A. Patel, M. J. Lawler, and E.-A. Kim, Coherent Superconductivity with a Large Gap Ratio from Incoherent Metals, Phys. Rev. Lett. 121, 187001 (2018)
-
J.-H. She, M. J. Lawler, and E.-A. Kim, Quantum Spin Liquid Intertwining Nematic and Superconducting Order in FeSe, Phys. Rev. Lett. 121, 237002 (2018) (spin fluctuations in a nematic spin liquid lead to superconductivity and observed features in neutron scattering)
-
F. Wu, A. H. MacDonald, and I. Martin, Theory of Phonon-Mediated Superconductivity in Twisted Bilayer Graphene, Phys. Rev. Lett. 121, 257001 (2018)
-
M. Claassen, D. M. Kennes, M. Zingl, M. A. Sentef, and A. Rubio, Universal Optical Control of Chiral Superconductors and Majorana Modes, arXiv:1810.06536 (protocols for switching the handedness of p + ip and related chiral superconductors by polarized light pulses, explicit calculations for twisted bilayer graphene)
-
W.-S. Wang, C.-C. Zhang, F.-C. Zhang, and Q.-H. Wang, Theory of Chiral p-Wave Superconductivity with Near Nodes for Sr2RuO4, Phys. Rev. Lett. 122, 027002 (2019) (fRG; spin-orbit coupling leads to near nodes)
-
K. Jiang, X. Dai, and Z. Wang, Quantum Anomalous Vortex and Majorana Zero Mode in Iron-Based Superconductor Fe(Te,Se), Phys. Rev. X 9, 011033 (2019) (Bogoliubov-de Gennes equation)
-
E. Langmann, C. Triola, and A. V. Balatsky, Ubiquity of Superconducting Domes in the Bardeen-Cooper-Schrieffer Theory with Finite-Range Potentials, Phys. Rev. Lett. 122, 157001 (2019) (there is an optimal concentration)
-
M. Barkman, A. Samoilenka, and E. Babaev, Surface Pair-Density-Wave Superconducting and Superfluid States, Phys. Rev. Lett. 122, 165302 (2019) (intermediate phase between FFLO and normal)
-
S. Kobayashi, A. Yamakage, Y. Tanaka, and M. Sato, Majorana Multipole Response of Topological Superconductors, Phys. Rev. Lett. 123, 097002 (2019)
-
D. D. Scherer and B. M. Andersen, Effects of spin-orbit coupling on spin-fluctuation induced pairing in iron-based superconductors, arXiv:1909.01313 (applied to LaFeAsO and FeSe)
-
S. Tchoumakov, L. J. Godbout, and W. Witczak-Krempa, Superconductivity from Coulomb repulsion in three-dimensional quadratic band touching Luttinger semimetals,
-
J. Ishizuka, S. Sumita, A. Daido, and Y. Yanase, Insulator-Metal Transition and Topological Superconductivity in UTe2 from a First-Principles Calculation, Phys. Rev. Lett. 123, 217001 (2019) (DFT: GGA+U, analysis of odd-parity states); Y. Xu, Y. Sheng, and Y. Yang, Quasi-Two-Dimensional Fermi Surfaces and Unitary Spin-Triplet Pairing in the Heavy Fermion Superconductor UTe2, Phys. Rev. Lett. 123, 217002 (2019) (DFT+DMFT, odd-parity pairing)
-
O. Gingras, R. Nourafkan, A.-M. S. Tremblay, and M. Côté, Superconducting Symmetries of Sr2RuO4 from First-Principles Electronic Structure, Phys. Rev. Lett. 123, 217005 (2019) (Eliashberg theory)
-
H. Uematsu, T. Mizushima, A. Tsuruta, S. Fujimoto, and J. A. Sauls, Chiral Higgs Mode in Nematic Superconductors, Phys. Rev. Lett. 123, 237001 (2019) (quasiclassical theory, Keldysh formalism)
-
A. T. Rømer, D. D. Scherer, I. M. Eremin, P. J. Hirschfeld, and B. M. Andersen, Knight Shift and Leading Superconducting Instability from Spin Fluctuations in Sr2RuO4, Phys. Rev. Lett. 123, 247001 (2019) P
-
J. M. Link, I. Boettcher, and I. F. Herbut, d-wave superconductivity and Bogoliubov-Fermi surfaces in Rarita-Schwinger-Weyl semimetals, Phys. Rev. B 101, 184503 (2020) (spin-3/2 semimetal linearly dispersing at fourfold degeneracy point, noncentrosymmetric with Bogoliubov Fermi surfaces, which are nondegenerate but likely protected by linear band-touching points)
-
Y. Cao, Y. Zhang, Y.-B. Liu, C.-C. Liu, W.-Q. Chen, and F. Yang, Kohn-Luttinger Mechanism Driven Exotic Topological Superconductivity on the Penrose Lattice, Phys. Rev. Lett. 125, 017002 (2020) (using point group with fivefold axis)
-
P. Coleman, Y. Komijani, and E. J. König, Triplet Resonating Valence Bond State and Superconductivity in Hund's Metals, Phys. Rev. Lett. 125, 077001 (2020) (Gutzwiller mean-field theory, applied to iron-based superconductors)
-
L. Fanfarillo, A. Valli, and M. Capone, Synergy between Hund-Driven Correlations and Boson-Mediated Superconductivity, Phys. Rev. Lett. 125, 177001 (2020) (weak-coupling superconductivity in the three-orbital Daghofer et al. pnictide model with Hubbard U and Hund coupling; DMFT)
-
F. Lechermann, Multiorbital Processes Rule the Nd1−xSrxNiO2 Normal State, Phys. Rev. X 10, 041002 (2020) (DFT and model study; two types of Ni-d orbitals are essential [point group D4h])
-
D. Wickramaratne, S. Khmelevskyi, D. F. Agterberg, and I. I. Mazin, Ising Superconductivity and Magnetism in NbSe2, Phys. Rev. X 10, 041003 (2020) (singlet-triplet mixing; DFT)
-
J. M. Link and I. F. Herbut, Bogoliubov-Fermi Surfaces in Noncentrosymmetric Multicomponent Superconductors, Phys. Rev. Lett. 125, 237004 (2020), (no topological invariant but stable because there are no further symmetries to break [except, in principle, translation])
- P. W. Phillips, L. Yeo, and E. W. Huang, Exact theory for superconductivity in a doped Mott insulator, Nature Phys. 16, 1175 (2020) (exactly solvable Hatsugai-Kohmoto model [repulsion local in momentum space], which exhibits Mott physics, with s-wave pairing interaction, solved by generalized BCS variational ansatz)
-
M. H. Christensen, X. Wang, Y. Schattner, E. Berg, and R. M. Fernandes, Modeling Unconventional Superconductivity at the Crossover between Strong and Weak Electronic Interactions, Phys. Rev. Lett. 125, 247001 (2020) (QMC, antiferromagnetic dome around metal-insulator transition, superconducting dome on the metallic side)
-
S. A. Kivelson, A. C. Yuan, B. J. Ramshaw, and R. Thomale, A proposal for reconciling diverse experiments on the superconducting state in Sr2RuO4, arXiv:2002.00016 (discussion based on Ginzburg-Landau and microscopic arguments, no nontrivial orbital content of order parameter)
-
J. Ahn and N. Nagaosa, Theory of optical responses in clean multi-band superconductors, arXiv:2010.02956 (criteria for when optical transitions over the superconducting gap are allowed, existence of Bogoliubov Fermi surfaces of either type is one of them) P
-
I. F. Herbut and J. M. Link, Bogoliubov-Fermi surface with inversion symmetry and electron-electron interactions: Relativistic analogies and lattice theory, Phys. Rev. B 103, 144517 (2021) (existence of Bogoliubov Fermi surfaces for 4×4 Bogoliubov-de Gennes Hamiltonians, stability under repulsive nearest-neighbor interactions for specific model) P
-
S. H. Lee, H. C. Choi, and B.-J. Yang, Odd-Parity Spin-Triplet Superconductivity in Centrosymmetric Antiferromagnetic Metals, Phys. Rev. Lett. 126, 067001 (2021) (based on symmetry considerations)
-
P. Solinas, A. Amoretti, and F. Giazotto, Sauter-Schwinger Effect in a Bardeen-Cooper-Schrieffer Superconductor, Phys. Rev. Lett. 126, 117001 (2021) (creation of excited coherent pairs by a static electric field applied normal to a superconducting film)
-
R.-X. Zhang and S. Das Sarma, Intrinsic Time-Reversal-Invariant Topological Superconductivity in Thin Films of Iron-Based Superconductors, Phys. Rev. Lett. 126, 137001 (2021) (in hybridized (001) surface bands)
-
Z. Wang, L. Dong, C. Xiao, and Q. Niu, Berry Curvature Effects on Quasiparticle Dynamics in Superconductors, Phys. Rev. Lett. 126, 187001 (2021) (semiclassical theory, effects on thermal transport)
-
S. Ryee, M. J. Han, and S. Choi, Hund Physics Landscape of Two-Orbital Systems, Phys. Rev. Lett. 126, 206401 (2021) (quarter-filled two-orbital Hubbard model, motivated by nickelates)
-
M. J. Pacholski, G. Lemut, O. Ovdat, İ. Adagideli, and C. W. J. Beenakker, Deconfinement of Majorana Vortex Modes Produces a Superconducting Landau Level, Phys. Rev. Lett. 126, 226801 (2021) (spatially modulated pairing potential leads to...)
-
G. Tang, C. Bruder, and W. Belzig, Magnetic Field-Induced “Mirage” Gap in an Ising Superconductor, Phys. Rev. Lett. 126, 237001 (2021)
-
S. Kanasugi and Y. Yanase, Anapole superconductivity from PT-symmetric mixed-parity interband pairing, arXiv:2107.07096 (four-band model with broken P and T symmetries, Lifshitz invariants, FFLO state)
-
R. M. Fernandes and L. Fu, Charge-4e Superconductivity from Multicomponent Nematic Pairing: Application to Twisted Bilayer Graphene, Phys. Rev. Lett. 127, 047001 (2021)
-
A. Lau, T. Hyart, C. Autieri, A. Chen, and D. I. Pikulin, Designing Three-Dimensional Flat Bands in Nodal-Line Semimetals, Phys. Rev. X 11, 031017 (2021) (using strain; DFT and tight-binding theory) P
-
P. Dutta, F. Parhizgar, and A. M. Black-Schaffer, Superconductivity in spin-3/2 systems: Symmetry classification, odd-frequency pairs, and Bogoliubov Fermi surfaces, Phys. Rev. Research 3, 033255 (2021) (JPT = -1 instead of SPOT = -1 classification)
-
D. Shaffer, J. Wang, and L. H. Santos, Theory of Hofstadter Superconductors, arXiv:2108.04831 (in 2D systems with incommensurate magnetic flux, breaking of global U(1) leads to breaking of translation symmetry, connection to Bogoliubov Fermi surfaces); see also J. Schmalian, Hofstadter superconductors, Journal Club of Condensed Matter Physics, DOI:10.36471/JCCM_August_2021_02
-
X. Wu, T. Schwemmer, T. Müller, A. Consiglio, G. Sangiovanni, D. Di Sante, Y. Iqbal, W. Hanke, A. P. Schnyder, M. M. Denner, M. H. Fischer, T. Neupert, and R. Thomale, Nature of Unconventional Pairing in the Kagome Superconductors AV3Sb5 (A=K, Rb, Cs), Phys. Rev. Lett. 127, 177001 (2021)
-
A. Chakraborty and F. Piazza, Long-Range Photon Fluctuations Enhance Photon-Mediated Electron Pairing and Superconductivity, Phys. Rev. Lett. 127, 177002 (2021)
-
C. P. Moca, I. Weymann, M. A. Werner, and G. Zaránd, Kondo Cloud in a Superconductor, Phys. Rev. Lett. 127, 186804 (2021) (phase transition between fully and partially screened magnetic impurities in singlet superconductors)
-
Y.-F. Jiang, H. Yao, and F. Yang, Possible Superconductivity with a Bogoliubov Fermi Surface in a Lightly Doped Kagome U(1) Spin Liquid, Phys. Rev. Lett. 127, 187003 (2021) (t-J model, variational MC)
-
M. Puviani, A. Baum, S. Ono, Y. Ando, R. Hackl, and D. Manske, Calculation of an Enhanced A1g Symmetry Mode Induced by Higgs Oscillations in the Raman Spectrum of High-Temperature Cuprate Superconductors, Phys. Rev. Lett. 127, 197001 (2021)
-
H. Oh, D. F. Agterberg, and E.-G. Moon, Using Disorder to Identify Bogoliubov Fermi-Surface States, Phys. Rev. Lett. 127, 257002 (2021) P
-
D. Pimenov and A. V. Chubukov, Quantum phase transition in a clean superconductor with repulsive dynamical interaction, arXiv:2112.06273 (frequency-dependent interaction, arising from dominant repulsive Coulomb and subdominant attractive phononic interactions, can lead to superconductivity with imaginary-frequency-dependent gap; superconductivity is destroyed with jump in stiffness when repulsion becomes too strong), see also journal club J. Schmalian, JCCM_January_2022_01
-
V. Crépel, T. Cea, L. Fu, and F. Guinea, Unconventional superconductivity due to interband polarization, Phys. Rev. B 105, 094506 (2022) (BN-type honeycomb model, repulsive nearest-neighbor interaction only, virtual hopping involving filled band leads to attractive pairing interaction)
-
J. Herzog-Arbeitman, V. Peri, F. Schindler, S. D. Huber, and B. A. Bernevig, Superfluid Weight Bounds from Symmetry and Quantum Geometry in Flat Bands, Phys. Rev. Lett. 128, 087002 (2022)
-
J.-Y. Zhao, S. A. Chen, H.-K. Zhang, and Z.-Y. Weng, Two-Hole Ground State: Dichotomy in Pairing Symmetry, Phys. Rev. X 12, 011062 (2022) (variational Monte Carlo simulations)
-
Y.-Y. He, H. Shi, and S. Zhang, Precision Many-Body Study of the Berezinskii-Kosterlitz-Thouless Transition and Temperature-Dependent Properties in the Two-Dimensional Fermi Gas, Phys. Rev. Lett. 129, 076403 (2022) (2D attractive-U Hubbard model; auxilliary-field QMC)
-
A. Kreisel, B. M. Andersen, A. T. Rømer, I. M. Eremin, and F. Lechermann, Superconducting Instabilities in Strongly Correlated Infinite-Layer Nickelates, Phys. Rev. Lett. 129, 077002 (2022)
- X. Dong, E. Gull, and A. J. Millis, Quantifying the role of antiferromagnetic fluctuations in the superconductivity of the doped Hubbard model, Nature Phys. 18, 1293 (2022) (DCA (QMC solver), low-energy spin fluctuations account for about half of the pairing interaction)
-
D. Chakraborty and A. M. Black-Schaffer, Quasiparticle Interference as a Direct Experimental Probe of Bulk Odd-Frequency Superconducting Pairing, Phys. Rev. Lett. 129, 247001 (2022)
-
C. Zhang, J. Sous, D. R. Reichman, M. Berciu, A. J. Millis, N. V. Prokof'ev, and B. V. Svistunov, Bipolaronic High-Temperature Superconductivity, Phys. Rev. X 13, 011010 (2023) (model with hopping modulated by lattice deformation, light but still small bipolarons)
See also: Mott antiferromagnets
Phenomenological theory of bulk superconductors
- S. Barabash, D. Stroud, and I.-J. Hwang, Conductivity due to classical phase fluctuations in a model for high-Tc superconductors, Phys. Rev. B 61, R14924 (2000)
- P. Nikolic and S. Sachdev, Effective action for vortex dynamics in clean d-wave superconductors, cond-mat/0511298 (long paper)
- K. Langfeld, D. Doenitz, R. Kleiner, and D. Koelle, 1/f noise from vortex-antivortex annihilation, cond-mat/0511637 (thin films, ideas related to QCD)
- J. Dietel and H. Kleinert, Defect induced melting of vortices in high-Tc superconductors: A model based on continuum elasticity theory, Phys. Rev. B 74, 024515 (2006)
- Q. Li, D. Belitz, and T. R. Kirkpatrick, Nearly Ferromagnetic Superconductors, cond-mat/0606090
- Q. Li, J. Toner, and D. Belitz, How to tell skyrmions from vortices: Elasticity and melting of skyrmion flux lattices in p-wave superconductors, cond-mat/0607391
- A. M. Tsvelik and A. V. Chubukov, Phenomenological theory of the underdoped phase of a high-Tc superconductor, cond-mat/0610181
- V. G. Kogan, Interaction of vortices in thin superconducting films and Berezinskii-Kosterlitz-Thouless transition, cond-mat/0611187
- Y. L. Loh and E. W. Carlson, Using Inhomogeneity to Raise Superconducting Critical Temperatures, cond-mat/0611719 (2D XY model)
- D. Podolsky, S. Raghu, and A. Vishwanath, Nernst effect and diamagnetism in phase fluctuating superconductors, cond-mat/0612096
- P. W. Anderson, Physics of the Pseudogap II: Dynamics, Incompressibility, and Fermi Arcs as Motional Narrowing, cond-mat/0701042 (vortex physics in cuprates)
- E. Babaev, J. Jäykkä, and M. Speight, Magnetic field delocalization and flux inversion in fractional vortices in two-component superconductors, arXiv:0903.3339
- E. H. Brandt, Vortex-vortex interaction in thin superconducting films, arXiv:0904.1436 (Pearl vortices)
- A. Mihlin and A. Auerbach, Temperature Dependence Of Cuprate Superconductors' Order Parameter, arXiv:0907.4768
- J. C. Y. Teo and C. L. Kane, Majorana Fermions and Non-Abelian Statistics in Three Dimensions, arXiv:0909.4741
- M. C. N. Fiolhais, H. Essen, and C. Providencia, Minimum magnetic energy theorem predicts Meissner effect in perfect conductors, arXiv:0912.1579 (claim that the Meissner effect is a consequence of vanishing resistivity and not an additional property of superconductors) Q
- M. G. Vavilov, A. V. Chubukov, and A. B. Vorontsov, Coexistence between superconducting and spin density wave states in iron-based superconductors: Ginzburg-Landau analysis, arXiv:0912.3556
- A. Erez and Y. Meir, Thermal Phase Transition in Two-Dimensional Disordered Superconductors: Kosterlitz-Thouless vs Percolation, arXiv:1002.3645 (show that the BKT transition and the percolation transition are dual descriptions)
- T. Fukui, Majorana zero modes bound to a vortex line in a topological superconductor, arXiv:1003.4814
- A. V. Chubukov and I. Eremin, Angular resolved specific heat in iron-based superconductors: the case for nodeless extended s-wave gap, arXiv:1006.3091
- J. Linder and T. Yokoyama, Supercurrent-Induced Magnetization Dynamics, arXiv:1007.0004 (SFNFS layer structure)
- J. Linder and T. Yokoyama, Spin Current in Generic Hybrid Structures due to Interfacial Spin-Orbit Scattering, Phys. Rev. Lett. 106, 237201 (2011)
- A. A. Shanenko, M. V. Milosevic, F. M. Peeters, and A. V. Vagov, Extended Ginzburg-Landau formalism for two-band superconductors, arXiv:1101.0971
- A. M. Tsvelik, Zero energy Majorana modes in superconducting wires, arXiv:1106.2996
- V. Vakaryuk, Stability of topological defects in chiral superconductors: London theory, arXiv:1109.6025
- T. I. Baturina and V. M. Vinokur, Superinsulator-Superconductor Duality in Two Dimensions, arXiv:1209.0530 (based on charge-phase duality; BKT transitions of vortices vs. of charges)
- Hae-Young Kee and Manfred Sigrist, Releasing half-quantum vortices via the coupling of spin polarization, charge- and spin-current, arXiv:1307.5859
- J. Carlström and E. Babaev, Entropy- and Flow-Induced Superfluid States, Phys. Rev. Lett. 113, 055301 (2014) P
- R. M. da Silva, M. V. Milosevic, A. A. Shanenko, F. M. Peeters, and J. Albino Aguiar, Giant paramagnetic Meissner effect in multiband superconductors, Sci. Rep. 5, 12695 (2015) (in the crossover regime between type 1 and type 2; use two-component Ginzburg-Landau theory)
- C.-T. Wu, B. M. Andersen, R. Boyack, and K. Levin, Quasicondensation in Two-Dimensional Fermi Gases, Phys. Rev. Lett. 115, 240401 (2015) (T-matrix theory of bosonic Cooper pairs)
- I. Errea, M. Calandra, C. J. Pickard, J. R. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system, Nature (2016), doi:10.1038/nature17175 (DFT, quantum effects are important to understand the transition to symmetric SHS bonds at high pressure)
-
T. Kvorning, T. H. Hansson, A. Quelle, and C. Morais Smith, Proposed Spontaneous Generation of Magnetic Fields by Curved Layers of a Chiral Superconductor, Phys. Rev. Lett. 120, 217002 (2018) (field theory, curved metric)
-
Q.-D. Jiang, T. H. Hansson, and F. Wilczek, Geometric Induction in Chiral Superconductors, Phys. Rev. Lett. 124, 197001 (2020) (coupling between [chiral] superconductivity, the electromagnetic field, and elasticity of films)
-
J. Shen, Q. Yao, Q. Zeng, H. Sun, X. Xi, G. Wu, W. Wang, B. Shen, Q. Liu, and E. Liu, Local Disorder-Induced Elevation of Intrinsic Anomalous Hall Conductance in an Electron-Doped Magnetic Weyl Semimetal, Phys. Rev. Lett. 125, 086602 (2020)
-
J. Garaud and E. Babaev, Effective Model and Magnetic Properties of the Resistive Electron Quadrupling State, Phys. Rev. Lett. 129, 087602 (2022) (theory for experiments by Grinenko et al. on Ba1−xKxFe2As2) P
-
N. R. Poniatowski, J. B. Curtis, C. G. L. Bøttcher, V. M. Galitski, A. Yacoby, P. Narang, and E. Demler, Surface Cooper-Pair Spin Waves in Triplet Superconductors, Phys. Rev. Lett. 129, 237002 (2022)
Theory of Josephson junctions, interfaces, and proximity effects
- N. Hayashi, C. Iniotakis, M. Machida, and M. Sigrist, Josephson Effect between Conventional and Rashba Superconductors, arXiv:0711.3241 (one superconductor has strong Rashba spin-orbit coupling)
- J. Linder and A. Sudbø, Theory of Andreev reflection in junctions with iron-based High-Tc superconductors, arXiv:0811.1775 (using the alternative unfolded large Brillouin zone with hole pockets at corner)
- W.-F. Tsai, D.-X. Yao, B. A. Bernevig, and J.-P. Hu, Novel properties in Josephson junctions involving the cos(kx)cos(ky)-pairing state in iron-pnictides, arXiv:0812.0661
- J. Linder, M. Zareyan, and A. Sudbø, Proximity effect in ferromagnet/superconductor hybrids: from diffusive to ballistic motion, arXiv:0901.3363 (quasiclassical approach, full range from clean to dirty limit)
- M. A. N. Araujo and P. D. Sacramento, Theory of Andreev reflection in a two-orbital model of iron-pnictide superconductors, arXiv:0909.2826
- J.-F. Liu and K. S. Chan, Anomalous Josephson current through a ferromagnetic trilayer junction, arXiv:1010.5554 (Bogoliubov-de Gennes)
- Y. Rahnavard, G. Rashedi, and T. Yokoyama, Transport properties in ferromagnetic Josephson junctions between triplet superconductors, J. Phys.: Condens. Matter 23, 275702 (2011)
- A. M. Black-Schaffer and J. Linder, Majorana fermions in spin-orbit coupled ferromagnetic Josephson junctions, arXiv:1106.1801
- Y. Asano and S. Yamano, Josephson Effect in Noncentrosymmetric Superconductor Junctions, arXiv:1107.2721
- S. Mai, E. Kandelaki, A. F. Volkov, and K. B. Efetov, Interaction of Josephson and Magnetic Oscillations in Josephson Tunnel Junctions with a Ferromagnetic Layer, arXiv:1107.4493
- S. Kawabata, Y. Tanaka, A. A. Golubov, A. S. Vasenko, and Y. Asano, Spectrum of Andreev bound states in Josepshon junctions with a ferromagnetic insulator, arXiv:1109.2753 (Bogoliubov-de Gennes)
- N. G. Pugach, M. Yu. Kupriyanov, E. Goldobin, R. Kleiner, and D. Koelle, Superconductor-insulator-ferromagnet-superconductor Josephson junction: From the dirty to the clean limit, arXiv:1109.3658
- Z. Shomali, M. Zareyan, and W. Belzig, Spin supercurrent in Josephson contacts with noncollinear ferromagnets, arXiv:1110.2568 (quantum-circuit theory)
- D. I. Pikulin and Y. V. Nazarov, Phenomenology and Dynamics of Majorana Josephson Junction, arXiv:1112.6368
- H. Enoksen, J. Linder, and A. Sudbø, Spin-flip scattering and critical currents in ballistic half-metallic d-wave Josephson junctions, Phys. Rev. B 85, 014512 (2012) (also consider spin-active interfaces; 0-π transitions and continuous changes of equilibrium phase difference)
- N. Yoshida and M. Yamashiro, Ferromagnetic features of zero-bias conductance peaks in a ferromagnet/insulator/superconductor junction, J. Phys.: Condens. Matter 24, 365702 (2012) (also for p-wave superconductor; the insulator is ferromagnetic; consider two types of ferromagnetic metal)
- S. Droste, S. Andergassen, and J. Splettstoesser, Josephson current through interacting double quantum dots with spin-orbit coupling, J. Phys.: Condens. Matter 24, 415301 (2012) (dc Josephson effect [vanishing bias voltage], limit of large gaps, spin-orbit coupling in the hopping between the two dots)
- T. Y. Chen, Z. Tesanovic, and C. L. Chien, Unified Formalism of Andreev Reflection at a Ferromagnet/Superconductor Interface, Phys. Rev. Lett. 109, 146602 (2012)
- G. Annunziata, D. Manske, and J. Linder, Proximity effect with noncentrosymmetric superconductors, Phys. Rev. B 86, 174514 (2012)
- C. Holmqvist, W. Belzig, and M. Fogelström, Spin-precession-assisted supercurrent in a superconducting quantum point contact coupled to a single-molecule magnet, arXiv:1202.6197 (junction with hopping amplitude containing a side-coupled classical spin, which precesses in an applied magnetic field, no action of the electrons on the spin)
- J. Kim, V. Chua, G. A. Fiete, H. Nam, A. H. MacDonald, and C.-K. Shih, Visualizing landscapes of the superconducting gap in heterogeneous superconductor thin films: geometric influences on proximity effects, arXiv:1203.0354
- B. Hiltscher, M. Governale, and J. König, AC Josephson transport through interacting quantum dots, arXiv:1208.1843
- A. A. Golubov and I. I. Mazin, Designing phase-sensitive tests for Fe-based superconductors, arXiv:1209.2944
- K. Sun, N. Shah, and S. Vishveshwara, Transport in multi-terminal superconductor-ferromagnet junctions having spin-dependent interfaces, arXiv:1209.4478
- S. Apostolov and A. Levchenko, Josephson current and density of states in proximity circuits with s+- superconductors, arXiv:1210.1875
- M. Leijnse and K. Flensberg, Coupling Spin Qubits via Superconductors, Phys. Rev. Lett. 111, 060501 (2013) (one of the proposed schemes works over distances larger than the coherence length of the superconductor)
- P. San-Jose, J. Cayao, E. Prada, and R. Aguado, Multiple Andreev reflection and critical current across a topological transition in superconducting nanowire junctions, arXiv:1301.4408
- E. Arahata, T. Neupert, and M. Sigrist, Spin Currents and Spontaneous Magnetization at Twin Boundaries of Noncentrosymmetric Superconductors, arXiv:1302.5610 (Rashba and Dzyalonshinsky-Moriya interactions, both changing sign across the interface, also Heisenberg and Hubbard interactions, real-space mean-field decoupling; find two extra phases: one breaks time-reversal invariance by selecting a non-TRS phase difference and the other in addition has a nonzero magnetization at the interface)
- C. Richard, M. Houzet, and J. S. Meyer, Superharmonic long-range triplet current in a diffusive Josephson junction, arXiv:1303.1022
- T. D. Stanescu and S. Das Sarma, Superconducting proximity effect in semiconductor nanowires, arXiv:1303.1187 (surprising dependence on thickness of semiconductor, induced gap can be small)
- S. Mukherjee, M. N. Gastiasoro, P. J. Hirschfeld, and B. M. Andersen, Low-energy bound states at interfaces between superconducting and block antiferromagnet regions in KxFe2-ySe2, arXiv:1304.6424
- S. Hikino and S. Yunoki, Long-range spin current driven by superconducting phase difference in a Josephson junction with double layer ferromagnets, arXiv:1304.6452 (quasiclassical theory)
- F. S. Bergeret and F. Giazotto, Phase-dependent heat transport through magnetic Josephson tunnel junctions, arXiv:1305.6301
- L. Klam, A. Epp, W. Chen, M. Sigrist, and D. Manske, Josephson Effect and Triplet-Singlet Ratio of Non-centrosymmetric Superconductors, arXiv:1312.6548 (continuum Bogoliubov-de Gennes equation)
- V. F. Maisi, D. Kambly, C. Flindt, and J. P. Pekola, Full Counting Statistics of Andreev Tunneling, Phys. Rev. Lett. 112, 036801 (2014) (SNS junction, experiment and theory using master equation, avalanches of Andreev-tunneling events, super-Poissonian noise)
- S. S. Pershoguba, K. Björnson, A. M. Black-Schaffer, and A. V. Balatsky, Currents Induced by Magnetic Impurities in Superconductors with Spin-Orbit Coupling, Phys. Rev. Lett. 115, 116602 (2015)
- J. D. Sau and P. M. R. Brydon, Bound States of a Ferromagnetic Wire in a Superconductor, Phys. Rev. Lett. 115, 127003 (2015) (for long wires, van Hove singularities in the dispersion of the bound states lead to a zero-bias peak)
- R. I. Shekhter, O. Entin-Wohlman, M. Jonson, and A. Aharony, Rashba Splitting of Cooper Pairs, Phys. Rev. Lett. 116, 217001 (2016) (junction is a normal conducting nanowire with strong Rashba SOC, in Coulomb-blockade regime, spin filtering)
- C. Triola, D. M. Badiane, A. V. Balatsky, and E. Rossi, General Conditions for Proximity-Induced Odd-Frequency Superconductivity in Two-Dimensional Electronic Systems, Phys. Rev. Lett. 116, 257001 (2016)
- K. M. D. Hals, M. Schecter, and M. S. Rudner, Composite Topological Excitations in Ferromagnet-Superconductor Heterostructures, Phys. Rev. Lett. 117, 017001 (2016)
- A. S. Mel'nikov and A. I. Buzdin, Giant Mesoscopic Fluctuations and Long-Range Superconducting Correlations in Superconductor-Ferromagnet Structures, Phys. Rev. Lett. 117, 077001 (2016) (including discussion of range of validity of Usadel equations); S. Mironov and A. Buzdin, Spontaneous Currents in Superconducting Systems with Strong Spin-Orbit Coupling, Phys. Rev. Lett. 118, 077001 (2017)
-
D. Breunig, P. Burset, and B. Trauzettel, Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic Ordering, Phys. Rev. Lett. 120, 037701 (2018) (using TI surface states out of equilibrium)
-
L. G. Johnsen, H. T. Simensen, A. Brataas, and J. Linder, Magnon Spin Current Induced by Triplet Cooper Pair Supercurrents, Phys. Rev. Lett. 127, 207001 (2021) (superconductor-ferromagnetic metal structure)
Theory of superconducting nanostructures (not transport)
- P. Ribeiro and A. M. García-García, Theoretical Description of the Superconducting State of Nanostructures at Intermediate Temperatures: A Combined Treatment of Collective Modes and Fluctuations, Phys. Rev. Lett. 108, 097004 (2012)
- Y. Kim, J. Cano, and C. Nayak, Majorana Zero Modes in Semiconductor Nanowires in Contact with Higher-Tc Superconductors, arXiv:1208.3701
- F. Mancarella, A. V. Balatsky, M. Wallin, and A. Rosengren, Angular momentum blockade in nanoscale high-T_c superconducting grains, arXiv:1303.3610 (analogy to Coulomb blockade)
Other superfluids, supersolids, and condensates
- P. W. Anderson, A Gross-Pitaevskii Treatment for Supersolid He, arXiv:0812.4961 (explains supersolid in terms of a superfluid of vacancies, argues that the ground state of every pure bosonic solid is a supersolid)
- H. Kleinert, Strong-Coupling Bose-Einstein Condensation, arXiv:1105.5115 (variational perturbation theory)
- P. W. Anderson, Theory of Supersolidity, arXiv:1111.1707
- N. Sakumichi, N. Kawakami, and M. Ueda, Perron-Frobenius theorem on the superfluid transition of an ultracold Fermi gas, arXiv:1202.6532
- J. Choi, S. W. Seo, and Y. Shin, Direct observation of a Berezinskii-Kosterlitz-Thouless superfluid in an atomic gas, arXiv:1211.5649 (optical trap, observe few vortex-antivortex pairs since small system)
- R. Desbuquois, T. Yefsah, L. Chomaz, C. Weitenberg, L. Corman, S. Nascimbène, and J. Dalibard, Determination of Scale-Invariant Equations of State without Fitting Parameters: Application to the Two-Dimensional Bose Gas Across the Berezinskii-Kosterlitz-Thouless Transition, Phys. Rev. Lett. 113, 020404 (2014)
- J. P. A. Devreese, J. Tempere, and C. A. R. Sá de Melo, Effects of Spin-Orbit Coupling on the Berezinskii-Kosterlitz-Thouless Transition and the Vortex-Antivortex Structure in Two-Dimensional Fermi Gases, Phys. Rev. Lett. 113, 165304 (2014)
- S. Gopalakrishnan, C. V. Parker, and E. Demler, Mobile Magnetic Impurities in a Fermi Superfluid: A Route to Designer Molecules, Phys. Rev. Lett. 114, 045301 (2015)
- H. D. Scammell and O. P. Sushkov, Violation of the Spin-Statistics Theorem and the Bose-Einstein Condensation of Particles with Half-Integer Spin, Phys. Rev. Lett. 114, 055702 (2015) (condensation of bosonic spinons, analyze the Goldstone and Higgs sectors; the eponymous violation of the spin-statistics theorem is a condition not a result)
- R. J. Fletcher, M. Robert-de-Saint-Vincent, J. Man, N. Navon, R. P. Smith, K. G. H. Viebahn, and Z. Hadzibabic, Connecting Berezinskii-Kosterlitz-Thouless and BEC Phase Transitions by Tuning Interactions in a Trapped Gas, Phys. Rev. Lett. 114, 255302 (2015) (ultra-cold 39K gas, experiments compared to theory; BKT transition approaches BEC transition at zero temperature in the limit of vanishing interactions)
- P. Christodoulou, M. Gałka, N. Dogra, R. Lopes, J. Schmitt, and Z. Hadzibabic, Observation of first and second sound in a BKT superfluid, Nature 594, 191 (2021) (in ultracold 39K Bose gas)
Other ordered states of matter such as charge-density waves
- K. Rossnagel, On the origin of charge-density waves in select layered transition-metal dichalcogenides, J. Phys.: Condens. Matter 23, 213001 (2011) (discussion of experiments)
- J. van Wezel, R. Schuster, A. König, M. Knupfer, J. van den Brink, H. Berger, and B. Büchner, Effect of Charge Order on the Plasmon Dispersion in Transition-Metal Dichalcogenides, Phys. Rev. Lett. 107, 176404 (2011)
- J. van Wezel, Polar charge and orbital order in 2H-TaS2, arXiv:1111.2035 (from coupling to several displacement waves)
- Y. Yamakawa and H. Kontani, Spin-Fluctuation-Driven Nematic Charge-Density Wave in Cuprate Superconductors: Impact of Aslamazov-Larkin Vertex Corrections, Phys. Rev. Lett. 114, 257001 (2015) (CDW in cuprates is argued to be closely related to the SDW in pnictides, in particular, both are spin-fluctuation driven)
-
Z. Sun, T. Kaneko, D. Golež, and A. J. Millis, Second-Order Josephson Effect in Excitonic Insulators, Phys. Rev. Lett. 127, 127702 (2021) (interlayer excitons, sin 2Θ Josephson effect)
Topological systems and graphene
Quantum Hall effects
- K. Moon and K. Mullen, An accurate effective action for 'baby' to 'adult' skyrmions, cond-mat/9707250
- E. J. Bergholtz, J. Kailasvuori, E. Wikberg, T. H. Hansson, and A. Karlhede, The Pfaffian quantum Hall state made simple - multiple vacua and domain walls on a thin torus, cond-mat/0604251, Phys. Rev. B 74, 081308(R) (2006)
- K. Yang, S. Das Sarma, and A. H. MacDonald, Collective Modes and Skyrmion Excitations in Graphene SU(4) Quantum Hall Ferromagnets, cond-mat/0605666
- D. A. Abanin, P. A. Lee, and L. S. Levitov, Order from Disorder in Graphene Quantum Hall Ferromagnet, cond-mat/0611062 (gauge-field description of strain effects, topological defects)
- E. J. Bergholtz and A. Karlhede, A simple view on the quantum Hall system, cond-mat/0611181 (... on a thin torus)
- Y. Gallais, J. Yan, A. Pinczuk, L. N. Pfeiffer, and K. W. West, Soft Spin Wave Near nu = 1: Evidence for a Magnetic Instability in Skyrmion Systems, arXiv:0709.0541
- P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Theory of Anomalous Quantum Hall Effects in Graphene, arXiv:0712.0597
- E. Berg, Y. Oreg, E.-A. Kim, and F. von Oppen, Fractional charges on an integer quantum Hall edge, arXiv:0812.4321
- G. Granger, J. P. Eisenstein, and J. L. Reno, Observation of Chiral Heat Transport in the Quantum Hall Regime, Phys. Rev. Lett. 102, 086803 (2009); see also H. A. Fertig, A view from the edge, Physics 2, 15 (2009)
- X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature 462, 192 (2009) (compare following paper)
- K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim, Observation of the fractional quantum Hall effect in graphene, Nature 462, 196 (2009) (compare previous paper) P
- M. Dolev, Y. Gross, Y. C. Chung, M. Heiblum, V. Umansky, and D. Mahalu, Unexpectedly Large Quasiparticles Charge in the Fractional Quantum Hall Effect, arXiv:0911.3023
- O. E. Dial, R. C. Ashoori, L. N. Pfeiffer, and K. W. West, Anomalous structure in the single particle spectrum of the fractional quantum Hall effect, Nature 464 566 (2010)
- E. Tang, J.-W. Mei, and X.-G. Wen, High temperature fractional quantum Hall states, arXiv:1012.2930 (proposal, states induced by spin-orbit coupling, ferromagnetism, and frustration)
- P. Bonderson, V. Gurarie, and C. Nayak, Plasma analogy and non-Abelian statistics for Ising-type quantum Hall states, Phys. Rev. B 83 075303 (2011) (very long paper, strong arguments that the low-energy states of for example the 5/2 quantum Hall state are anyons)
- G. Tkachov and E. M. Hankiewicz, Transition between ordinary and topological insulator regimes in two-dimensional resonant magnetotransport, Phys. Rev. B 83, 155412 (2011) P
- F. D. M. Haldane, Geometrical Description of the Fractional Quantum Hall Effect, Phys. Rev. Lett. 107, 116801 (2011) (in terms of a dynamical metric)
- S. A. Parameswaran, S. A. Kivelson, E. H. Rezayi, S. H. Simon, S. L. Sondhi, and B. Z. Spivak, A Typology for Quantum Hall Liquids, arXiv:1108.0689
- S. K. Maiti, M. Dey, and S. N. Karmakar, Integer quantum Hall effect in a square lattice revisited, arXiv:1108.3517 (explicit calculation for lattice model, Landauer approach)
- J. Xia, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Evidence for a fractional quantum Hall state with anisotropic longitudinal transport, arXiv:1109.3219 (anisotropy coexists with fractional plateaus)
- J. C. Y. Teo and C. L. Kane, From Luttinger liquid to non-Abelian quantum Hall states, arXiv:1111.2617
- Y. E. Kraus, Z. Ringel, and O. Zilberberg, Four-Dimensional Quantum Hall Effect in a Two-Dimensional Quasicrystal, arXiv:1302.2647
- B. E. Feldman, A. J. Levin, B. Krauss, D. Abanin, B. I. Halperin, J. H. Smet, and A. Yacoby, Fractional Quantum Hall Phase Transitions and Four-flux Composite Fermions in Graphene, arXiv:1303.0838
- J. Maciejko, B. Hsu, S. A. Kivelson, Y. J. Park, and S. L. Sondhi, Field theory of the quantum Hall nematic transition, arXiv:1303.3041
- A. Rahmani, R. A. Muniz, and I. Martin, Anyons in integer quantum Hall magnets, arXiv:1306.6080 (quantum Hall effect due to noncoplanar magnetization)
- M. Lababidi, I. I. Satija, and E. Zhao, Anomalous edge states and topological phases of a kicked quantum Hall system, arXiv:1307.3569
- H. Kamata, N. Kumada, M. Hashisaka, K. Muraki, and T. Fujisawa, Fractionalized wave packets from an artificial Tomonaga-Luttinger liquid, Nature Nanotechn. 9, 177 (2014); H. Inoue et al., Charge Fractionalization in the Integer Quantum Hall Effect, Phys. Rev. Lett. 112, 166801 (2014) (fractionalized edge states due to Coulomb repulsion)
- T. Can, M. Laskin, and P. Wiegmann, Fractional Quantum Hall Effect in a Curved Space: Gravitational Anomaly and Electromagnetic Response, Phys. Rev. Lett. 113, 046803 (2014)
- H. Choi, I. Sivan, A. Rosenblatt, M. Heiblum, V. Umansky, and D. Mahalu, Robust Electron Pairing in the Integer Quantum Hall Effect Regime, arXiv:1409.4427 (observe charge -2e carriers at the edge for integer filling factors 3 and 4 in Aharonov-Bohm oscillations and shot noise)
- J. Falson, D. Maryenko, B. Friess, D. Zhang, Y. Kozuka, A. Tsukazaki, J. H. Smet, and M. Kawasaki, Even-denominator fractional quantum Hall physics in ZnO, Nature Phys. 11, 347 (2015)
- X. Li, F. Zhang, and A. H. MacDonald, SU(3) Quantum Hall Ferromagnetism in SnTe, Phys. Rev. Lett. 116, 026803 (2016)
- N. Samkharadze, K. A. Schreiber, G. C. Gardner, M. J. Manfra, E. Fradkin, and G. A. Csáthy, Observation of a transition from a topologically ordered to a spontaneously broken symmetry phase, Nature Phys. 12, 191 (2016) (quantum Hall state at filling factor 5/2)
- Y. Shi et al., Energy Gaps and Layer Polarization of Integer and Fractional Quantum Hall States in Bilayer Graphene, Phys. Rev. Lett. 116, 056601 (2016)
- N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, Synthetic Landau levels for photons, Nature (2016), doi:10.1038/nature17943 (synthetic magnetic field in ring resonator with relatively twisted mirrors)
- M. Barkeshli, C. Nayak, Z. Papić, A. Young, and M. Zaletel, Topological Exciton Fermi Surfaces in Two-Component Fractional Quantized Hall Insulators, Phys. Rev. Lett. 121, 026603 (2018) (propose fermionic interlayer excitons)
-
D. F. Mross, Y. Oreg, A. Stern, G. Margalit, and M. Heiblum, Theory of Disorder-Induced Half-Integer Thermal Hall Conductance, Phys. Rev. Lett. 121, 026801 (2018)
- H. Bartolomei, M. Kumar, R. Bisognin, A. Marguerite, J.-M. Berroir, E. Bocquillon, B. Plaçais, A. Cavanna, Q. Dong, U. Gennser, Y. Jin, and G. Fève, Fractional statistics in anyon collisions, Science 368, 173 (2020) (interference in "beam splitter" for ν = 1/3 edge states), see S. M. Girvin, A collider for anyons, DOI: 10.36471/JCCM_July_2020_01
- J. Nakamura, S. Liang, G. C. Gardner, and M. J. Manfra, Direct observation of anyonic braiding statistics, Nature Phys. 16, 931 (2020), (at ν = 1/3 fractional quantum Hall state), see S. A. Kivelson and C. M. Marcus, At Last! Measurement of fractional statistics, DOI: 10.36471/JCCM_July_2020_02
-
B. Sbierski, E. J. Dresselhaus, J. E. Moore, and I. A. Gruzberg, Criticality of Two-Dimensional Disordered Dirac Fermions in the Unitary Class and Universality of the Integer Quantum Hall Transition, Phys. Rev. Lett. 126, 076801 (2021) (numerics contradicting a conjection by A. Ludwig et al.)
Graphene, carbon nanotubes, and related systems
- D. V. Khveshchenko, Ghost Excitonic Insulator Transition in Layered Graphite, Phys. Rev. Lett. 87, 246802 (2001)
- A. Cortijo and M. A. H. Vozmediano, A cosmological model for corrugated graphene sheets, cond-mat/0612623 (discusses topological defects in the hexagonal graphene lattice and their effect on electronic properties)
- J. H. Bardarson, J. Tworzydlo, P. W. Brouwer, and C. W. J. Beenakker, One-Parameter Scaling at the Dirac Point in Graphene, Phys. Rev. Lett. 99, 106801 (2007) (transfer-matrix [tunneling] method for non-interacting electrons on a lattice)
- J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, The structure of suspended graphene sheets, cond-mat/0701379
- R. Jackiw and S.-Y. Pi, Chiral Gauge Theory for Graphene, cond-mat/0701760
- E. Mariani, L. I. Glazman, A. Kamenev, and F. von Oppen, Zero-bias anomaly in the tunneling density of states of graphene, cond-mat/0702019 (effect of impurities, introduce disorder potential and fictitious gauge field)
- J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, On the roughness of single- and bi-layer graphene membranes, cond-mat/0703033 (experimental study of roughness of graphene)
- M. I. Katsnelson and K. S. Novoselov, Graphene: new bridge between condensed matter physics and quantum electrodynamics, cond-mat/0703374 (how insight from QED carries over to graphene)
- V. V. Cheianov, V. I. Falko, B. L. Altshuler, and I. L. Aleiner, Random resistor network model of minimal conductivity in graphene, arXiv:0706.2968
- V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, AC conductivity of graphene: from tight-binding model to 2+1-dimensional quantum electrodynamics, arXiv:0706.3016
- I. L. Aleiner, D. E. Kharzeev, and A. M. Tsvelik, Spontaneous symmetry breakings in graphene subjected to in-plane magnetic field, arXiv:0708.0394
- A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, Atomic Collapse and Quasi-Rydberg States in Graphene, arXiv:0708.0837
- T. Grover and T. Senthil, Topological spin Hall states, charged skyrmions, and superconductivity in two dimensions, arXiv:0801.2130 (transition between spin-Hall insulator and superconductor due to Skyrmion condensation, not really about graphene, but does discuss half-filled honeycomb lattice)
- R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene, arXiv:0803.3718 (experimental and theoretical work showing that the optical absorption coefficient of a single graphene layer is given by pi times the fine-structure constant [2.3%])
- M. Polini, A. Tomadin, R. Asgari, and A. H. MacDonald, Density-Functional Theory of Graphene Sheets, arXiv:0803.4150
- R. Winkler and U. Zülicke, Trigonal Band Structure and Time-Reversal Invariance in Graphene, arXiv:0807.4204
- J. E. Drut and T. A. Lähde, Lattice field theory simulations of graphene, Phys. Rev. B 79, 165425 (2009); see also A. H. Castro Neto, Viewpoint: Pauling's dreams for graphene, Physics 2, 30 (2009) (note that the effective fine structure constant in graphene is of the order of one and freestanding graphene is suggested to be a Mott insulator due to the strong Coulomb interaction)
- M. Yu. Kharitonov and K. B. Efetov, Excitonic condensation in a double-layer graphene system, arXiv:0903.4445
- J. Kailasvuori, Pedestrian index theorem a la Aharonov-Casher for bulk threshold modes in corrugated multilayer graphene, arXiv:0904.3807
- F. von Oppen, F. Guinea, and E. Mariani, Synthetic electric fields and phonon damping in carbon nanotubes and graphene, arXiv:0904.4660
- D. E. Sheehy and J. Schmalian, Why is the optical transparency of graphene determined by the fine structure constant?, arXiv:0906.5164
- O. V. Gamayun, E. V. Gorbar, and V. P. Gusynin, Supercritical Coulomb center and excitonic instability in graphene, arXiv:0907.5409
- R. Winkler and U. Zülicke, Time Reversal of a Pseudospin: General Properties and Application to Graphene, arXiv:0909.2169 (the sublattice-pseudospin in graphene differs from a real spin in its properties under time reserval, this has consequences for weak localization)
- J. Wang, H. A. Fertig, G. Murthy, and L. Brey, Excitonic Effects in Two-Dimensional Massless Dirac Fermions, arXiv:1010.0695
- J.-R. Wang and G.-Z. Liu, Eliashberg theory of excitonic insulating transition in graphene, J. Phys.: Condens. Matter 23, 155602 (2011)
- A. Deshpande, W. Bao, Z. Zhao, C. N. Lau, and B. J. LeRoy, Imaging charge density fluctuations in graphene using Coulomb blockade spectroscopy, Phys. Rev. B 83, 155409 (2011) (with a gold nanoparticle at the end of an STM tip)
- D. A. Abanin, S. V. Morozov, L. A. Ponomarenko, R. V. Gorbachev, A. S. Mayorov, M. I. Katsnelson, K. Watanabe, T. Taniguchi, K. S. Novoselov, L. S. Levitov, and A. K. Geim, Giant Nonlocality near the Dirac Point in Graphene, arXiv:1104.2268
- Q. Li, E. H. Hwang, and S. Das Sarma, Disorder-induced temperature-dependent transport in graphene: Puddles, impurities, activation, and diffusion, arXiv:1105.1771
- A. Jellal, E. B. Choubabi, H. Bahlouli, and A. Aljaafari, Transport Properties through Double Barrier Structure in Graphene, arXiv:1105.2185 (pure potential shifts, gapping of longitudinal motion due to transverse confinement by large potential [vacuum]) P
- S. Das Sarma, E. H. Hwang, and Q. Li, Disorder by order in graphene, arXiv:1109.0988 (why cleaner graphene can be more strongly insulating)
- F. de Juan and H. A. Fertig, Power law Kohn anomaly in graphene induced by Coulomb interactions, arXiv:1109.6375
- Z. Qiao, H. Jiang, X. Li, Y. Yao, and Q. Niu, Microscopic theory of quantum anomalous Hall effect in graphene, arXiv:1201.0543 (magnetically doped graphene, mostly modeled by uniform exchange field [no disorder], illustrate how non-zero Chern number emerges in the two limiting cases of weak and strong Rashba spin-orbit coupling relative to the exchange field; also check robustness of effect and illustrate it for small supercells with a single magnetic dopand) P
- R. Egger and K. Flensberg, Emerging Dirac and Majorana fermions for carbon nanotubes with proximity-induced pairing and spiral magnetic field, arXiv:1203.5618
- R. Winkler and U. Zülicke, Magneto-electric equivalence and emergent electrodynamics in bilayer graphene, arXiv:1206.4761 (there is a one-to-one mapping between coupling terms of electrons to electric and to magnetic fields)
- A. G. Grushin, E. V. Castro, A. Cortijo, F. de Juan, M. A. H. Vozmediano, and B. Valenzuela, Charge instabilities and topological phases in the extended Hubbard model on the honeycomb lattice with enlarged unit cell, arXiv:1212.6836 (graphene-type 2D honeycomb lattice, find that a complicated CDW competes with a topological state; mean-field approximation)
- I. Romanovsky, C. Yannouleas, and U. Landman, Topological effects and particle-physics analogies beyond the massless Dirac-Weyl fermion in graphene nanorings, Phys. Rev. B 87, 165431 (2013)
- M. J. Schmidt, M. Golor, T. C. Lang, and S. Wessel, Effective models for strong electronic correlations at graphene edges, arXiv:1305.0559
- S. Das Sarma and Q. Li, Intrinsic plasmons in 2D Dirac materials, arXiv:1305.0825 (characteristic q1/2 dispersion of plasmons in 2D Dirac material tuned to the Dirac point)
- P. D. Gorman, J. M. Duffy, M. S. Ferreira, and S. R. Power, RKKY interaction between adsorbed magnetic impurities in graphene: symmetry and strain effects, arXiv:1307.1234
- G. Z. Magda, X. Jin, I. Hagymási, P. Vancsó, Z. Osváth, P. Nemes-Incze, C. Hwang, L. P. Biró, and L. Tapasztó, Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature 514, 608 (2014) (STS experiments and theory; band gap of zigzag nanoribbons vs. width suggests a transition from gapped antiferromagnetic coupling of edges at small width to ungapped ferromagnetic [essentially due to the standard edge band] for larger width)
- Yu. I. Latyshev, A. P. Orlov, V. A. Volkov, V. V. Enaldiev, I. V. Zagorodnev, O. F. Vyvenko, Yu. V. Petrov, and P. Monceau, Transport of Massless Dirac Fermions in Non-topological Type Edge States, Sci. Rep. 4, 7578 (2014) (edge states at the edge of a grahene nanohole, interpreted as Tamm-Shockley states; Aharonov-Bohm effect)
- Z. Wang, C. Tang, R. Sachs, Y. Barlas, and J. Shi, Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect, Phys. Rev. Lett. 114, 016603 (2015)
- A. V. Nalitov, G. Malpuech, H. Tercas, and D. D. Solnyshkov, Spin-Orbit Coupling and the Optical Spin Hall Effect in Photonic Graphene, Phys. Rev. Lett. 114, 026803 (2015)
- M.-H. Liu, P. Rickhaus, P. Makk, E. Tóvári, R. Maurand, F. Tkatschenko, M. Weiss, C. Schönenberger, and K. Richter, Scalable Tight-Binding Model for Graphene, Phys. Rev. Lett. 114, 036601 (2015)
- F. Kisslinger, C. Ott, C. Heide, E. Kampert, B. Butz, E. Spiecker, S. Shallcross, and H. B. Weber, Linear magnetoresistance in mosaic-like bilayer graphene, Nature Phys. (2015), doi:10.1038/nphys3368 (Dykhne-type system?)
- S. M. Young and C. L. Kane, Dirac Semimetals in Two Dimensions, Phys. Rev. Lett. 115, 126803 (2015) (construct 2D models with Dirac points that are not gapped by spin-orbit interaction; nonsymmorphic symmetries are important; also find Weyl points if inversion symmetry is absent)
-
J. Kim et al., Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus, Phys. Rev. Lett. 119, 226801 (2017) (ARPES; 2D system with Dirac points that are stable under spin-orbit coupling)
-
G. W. Burg, N. Prasad, K. Kim, T. Taniguchi, K. Watanabe, A. H. MacDonald, L. F. Register, and E. Tutuc, Strongly Enhanced Tunneling at Total Charge Neutrality in Double-Bilayer Graphene-WSe2 Heterostructures, Phys. Rev. Lett. 120, 177702 (2018) (evidence for exciton condensate without requiring a strong magnetic field)
-
J. Kang and O. Vafek, Strong Coupling Phases of Partially Filled Twisted Bilayer Graphene Narrow Bands, Phys. Rev. Lett. 122, 246401 (2019) (SU(4) ferromagnet);
K. Seo, V. N. Kotov, and B. Uchoa, Ferromagnetic Mott state in Twisted Graphene Bilayers at the Magic Angle, Phys. Rev. Lett. 122, 246402 (2019)
- X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. H. MacDonald, and D. K. Efetov, Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene, Nature 574, 653 (2019) (transport measurements, also in magnetic field, with theory)
-
G. W. Burg, J. Zhu, T. Taniguchi, K. Watanabe, A. H. MacDonald, and E. Tutuc, Correlated Insulating States in Twisted Double Bilayer Graphene, Phys. Rev. Lett. 123, 197702 (2019)
-
E. Sela, Y. Bloch, F. von Oppen, and M. Ben Shalom, Quantum Hall Response to Time-Dependent Strain Gradients in Graphene, Phys. Rev. Lett. 124, 026602 (2020) (proposal to realize not only a pseudomagnetic but also a pseudoelectric field by complicated strain, would allow for pseudo-quantum Hall effect)
-
Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-Bigorda, K. Watanabe, T. Taniguchi, T. Senthil, and P. Jarillo-Herrero, Strange Metal in Magic-Angle Graphene with near Planckian Dissipation, Phys. Rev. Lett. 124, 076801 (2020) (Planckian scattering rate on the order of kBT/ℏ)
-
O. Vafek and J. Kang, Renormalization Group Study of Hidden Symmetry in Twisted Bilayer Graphene with Coulomb Interactions, Phys. Rev. Lett. 125, 257602 (2020) (connecting length scales below and above the size of the moire unit cell)
For quantum Hall effects in graphene see Quantum Hall effects, for magnetism in graphene see Magnetism
Topological insulators, superconductors, and metals - experiment
- M. Sato, Nodal structure of superconductors with time-reversal invariance and Z2 topological number, Phys. Rev. B 73, 214502 (2006) (Z2 number characterizing line nodes, not Z)
- P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Topological surface states protected from backscattering by chiral spin texture, Nature 460, 1106 (2009) (STM and ARPES on Bi1-xSbx, show that scattering into states with opposite momentum and (here necessarily) opposite spin is absent)
- T. Zhang, P. Cheng, X. Chen, J.-F. Jia, X. Ma, K. He, L. Wang, H. Zhang, X. Dai, Z. Fang, X. Xie, and Q.-K. Xue, Experimental demonstration of the topological surface states protected by the time-reversal symmetry, arXiv:0908.4136 (STM)
- B. Béri, Topologically stable gapless phases of time-reversal-invariant superconductors, Phys. Rev. B 81, 134515 (2015) (integer, Z, winding number characterizing nodal lines)
- Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se, Phys. Rev. B 82, 241306(R) (2010) (synthesize a highly resistive topological insulator), see also synopsis
- S.-Y. Xu, L. A. Wray, Y. Xia, R. Shankar, A. Petersen, A. Fedorov, H. Lin, A. Bansil, Y. S. Hor, D. Grauer, R. J. Cava, and M. Z. Hasan, Discovery of several large families of Topological Insulator classes with backscattering-suppressed spin-polarized single-Dirac-cone on the surface, arXiv:1007.5111
- Y. Qin, Z. Li, Z. Qu, Q. Wang, W. Ding, B. Wang, X. Wang, C. Van Haesondonck, F. Song, M. Han, Y. Zhang, G. Wang, and J. Wan, A spin-helicity-violent conductive surface state and its Altshuler-Aronov-Spivak interference in the topological insulating Bi2Te3, arXiv:1012.0104 (transport experiments)
- A. Richardella, D. M. Zhang, J. S. Lee, A. Koser, D. W. Rench, A. L. Yeats, B. B. Buckley, D. D. Awschalom, and N. Samarth, Coherent Heteroepitaxy of Bi2Se3 on GaAs (111)B, arXiv:1012.1918
- L. A. Wray, S.-Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov, Y. S. Hor, R. J. Cava, A. Bansil, H. Lin, and M. Z. Hasan, A topological insulator surface under strong Coulomb, magnetic and disorder perturbations, Nature Phys. 7, 32 (2011) (ARPES and theory, controlled deposition of iron on Bi2Se3 introducing Couloumb and magnetic disorder); see also News and Views article by E. Rotenberg, Topological insulators: The dirt on topology, Nature Phys. 7, 8 (2011)
- C. Brüne, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp, Quantum Hall Effect from the Topological Surface States of Strained Bulk HgTe, Phys. Rev. Lett. 106, 126803 (2011) (becomes a topological insulator due to strain)
- P. Das, Y. Suzuki, M. Tachiki, and K. Kadowaki, Spin-triplet vortex state in the topological superconductor CuxBi2Se3, Phys. Rev. B 83, 220513(R) (2011) (argue for a spin-triplet state based on magnetization data above Hc1 suggesting unusual flux penetration) P
- Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Optimizing Bi2-xSbxTe3-ySey solid solutions to approach the intrinsic topological insulator regime, Phys. Rev. B 84, 165311 (2011)
- T. Hirahara et al., Interfacing 2D and 3D Topological Insulators: Bi(111) Bilayer on Bi2Te3, Phys. Rev. Lett. 107, 166801 (2011)
- J. Zhang et al., Band structure engineering in (Bi1-xSbx)2Te3 ternary topological insulators, Nature Commun. 2, 574 (2011) (ARPES)
- B. Sacépé, J. B. Oostinga, J. Li, A. Ubaldini, N. J. G. Couto, E. Giannini, and A. F. Morpurgo, Gate-tuned normal and superconducting transport at the surface of a topological insulator, Nature Commun. 2, 575 (2011)
- S. Souma, K. Kosaka, T. Sato, M. Komatsu, A. Takayama, T. Takahashi, M. Kriener, K. Segawa, and Y. Ando, Direct Measurement of the Out-of-Plane Spin Texture in the Dirac Cone Surface State of a Topological Insulator, arXiv:1101.3421 (ARPES)
- S.-Y. Xu, L. A. Wray, Y. Xia, F. von Rohr, Y. S. Hor, J. H. Dil, F. Meier, B. Slomski, J. Osterwalder, M. Neupane, H. Lin, A. Bansil, A. Fedorov, R. J. Cava, and M. Z. Hasan, Realization of an isolated Dirac node and strongly modulated Spin Texture in the topological insulator Bi2Te3, arXiv:1101.3985
- G. Tkachov, C. Thienel, V. Pinneker, B. Buettner, C. Bruene, H. Buhmann, L. W. Molenkamp, and E. M. Hankiewicz, Backscattering of Dirac fermions in finite gap HgTe quantum wells, arXiv:1101.5692 (from fluctuations of gap, i.e., of Dirac-fermion mass)
- D. Hsieh, Y. Xia, L. Wray, D. Qian, J. H. Dil, F. Meier, L. Patthey, J. Osterwalder, G. Bihlmayer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Direct observation of spin-polarized surface states in the parent compound of topological insulator Bi-Sb using spin-resolved-ARPES in a 3D Mott-polarimetry spin mode, arXiv:1103.3413, New J. Phys.
- V. B. Zabolotnyy, E. Carleschi, T. K. Kim, A. A. Kordyuk, J. Trinckauf, J. Geck, D. V. Evtushinsky, B. P. Doyle, R. Fittipaldi, M. Cuoco, A. Vecchione, B. Büchner, and S. V. Borisenko, Topological states in a correlated superconductor, arXiv:1103.6196 (ARPES, surface states of Sr2RuO4)
- N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3, arXiv:1104.0349
- Y. S. Kim, M. Brahlek, N. Bansal, E. Edrey, G. A. Kapilevich, K. Iida, M. Tanimura, Y. Horibe, S.-W. Cheong, and S. Oh, Surface transport and anomalous bulk properties in topological insulator Bi2Se3, arXiv:1104.0913
- Z.-H. Pan, D. R. Gardner, S. Chu, Y. S. Lee, and T. Valla, Scattering on Magnetic and Non-magnetic Impurities on the Surface of a Topological Insulator, arXiv:1104.0966 (ARPES on Bi2Se3)
- J. Chen, X. Y. He, K. H. Wu, Z. Q. Ji, L. Lu, J. R. Shi, J. H. Smet, and Y. Q. Li, Tunable Surface Conductivity in Bi2Se3 Revealed in Diffusive Electron Transport, arXiv:1104.0986 (with theoretical analysis)
- S.-Y. Xu, Y. Xia, L. A. Wray, S. Jia, F. Meier, J. H. Dil, J. Osterwalder, B. Slomski, A. Bansil, H. Lin, R. J. Cava, and M. Z. Hasan, Topological Phase Transition and Texture Inversion in a Tunable Topological Insulator (towards e/2 topologically fractionalized charge), Science Express (2011), DOI: 10.1126/science.1201607, also arXiv:1104.4633
- L. A. Wray, S. Xu, Y. Xia, D. Qian, A. V. Fedorov, H. Lin, A. Bansil, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of topological order in a Superconducting doped topological insulator (based on the Bi2Se3 class), arXiv:1104.3881, Nature Phys. 6, 855 (2010); L. A. Wray, Y. Xia, S.-Y. Xu, D. Qian, A. V. Fedorov, H. Lin, A. Bansil, Y. S. Hor, R. J. Cava, L. Fu, and M. Z. Hasan, Spin-orbital groundstates of Superconducting doped topological insulators (A Majorana Platform), arXiv:1104.4325
- J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brüne, E. G. Novik, G. V. Astakhov, H. Buhmann, and L. Molenkamp, Surface state charge dynamics of a high-mobility three dimensional topological insulator, arXiv:1105.0884
- D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and M. S. Fuhrer, Electronic transport in the topological insulator regime: approaching the Dirac point in Bi2Se3, arXiv:1105.1410
- L. A. Wray, S. Xu, M. Neupane, Y. Xia, D. Hsieh, D. Qian, A. V. Fedorov, H. Lin, S. Basak, Y. S. Hor, R. J. Cava, A. Bansil, and M. Z. Hasan, Electron dynamics in topological insulator based semiconductor-metal interfaces (topological p-n interface based on Bi2Se3 class), arXiv:1105.4794 (towards devices); L. A. Wray, M. Neupane, S.-Y. Xu, Y.-Q. Xia, A. V. Fedorov, H. Lin, S. Basak, A. Bansil, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Electron behavior in topological insulator based P-N overlayer interfaces, arXiv:1206.1087, Phys. Rev. B (revised version of arXiv:1105.4794)
- A. A. Taskin, Z. Ren, S. Sasaki, K. Segawa, and Y. Ando, Observation of Dirac Holes and Electrons in a Topological Insulator, arXiv:1105.5483 (Bi1.5Sb0.5Te1.7Se1.3)
- Z.-H. Zhu, G. Levy, B. Ludbrook, C. N. Veenstra, J. A. Rosen, R. Comin, D. Wong, P. Dosanjh, A. Ubaldini, P. Syers, N. P. Butch, J. Paglione, I. S. Elfimov, and A. Damascelli, Rashba spin-splitting control at the surface of the topological insulator Bi2Se3, arXiv:1106.0552 (ARPES and also DFT calculations)
- G. M. Gusev, Z. D. Kvon, O. A. Shegai, N. N. Mikhailov, S. A. Dvoretsky, and J. C. Portal, Transport in disordered two-dimensional topological insulator, arXiv:1106.1824
- S. Kim, M. Ye, K. Kuroda, Y. Yamada, E. E. Krasovskii, E. V. Chulkov, K. Miyamoto, M. Nakatake, T. Okuda, Y. Ueda, K. Shimada, H. Namatame, M. Taniguchi, and A. Kimura, Surface Scattering via Bulk Continuum States in the 3D Topological Insulator Bi2Se3, arXiv:1106.2681
- H. Beidenkopf, P. Roushan, J. Seo, L. Gorman, I. Drozdov, Y. San Hor, R. J. Cava, and A. Yazdani, Spatial Fluctuations of Helical Dirac Fermions on the Surface of Topological Insulators, arXiv:1108.2089 (STS for Bi2Te3 and Bi2Se3)
- X. Zhu, L. Santos, R. Sankar, S. Chikara, C. Howard, F. C. Chou, C. Chamon, and M. El-Batanouny, Interaction of Phonons and Dirac Fermions on the Surface of Bi2Se3: A Strong Kohn Anomaly, arXiv:1108.2470 (also measure the surface phonon dispersion)
- D.-X. Qu, Y. S. Hor, R. J. Cava, and N. P. Ong, Signatures of Fractional Quantum Hall States in Topological Insulators, arXiv:1108.4483
- C.-Z. Chang et al., Carrier-independent ferromagnetism and giant anomalous Hall effect in magnetic topological insulator, arXiv:1108.4754
- N. P. Butch, P. Syers, K. Kirshenbaum, A. P. Hope, and J. Paglione, Superconductivity in the topological semimetal YPtBi, arXiv:1109.0979 (a cubic [half Heusler] noncentrosymmetric superconductor)
- I. Vobornik, U. Manju, J. Fujii, F. Borgatti, P. Torelli, D. Krizmancic, Y. S. Hor, R. J. Cava, and G. Panaccione, Magnetic Proximity Effect as a Pathway to Spintronic Applications of Topological Insulators, arXiv:1109.3609
- S. S. Hong, J. J. Cha, D. Kong, and Y. Cui, Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons, Nature Commun. 3, 757 (2012)
- S. Cho, D. Kim, P. Syers, N. P. Butch, J. Paglione, and M. S. Fuhrer, Topological insulator quantum dot with tunable barriers, arXiv:1201.3910
- V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, arXiv:1204.2792 (including supplement with extensive additional data), also Science DOI: 10.1126/science.1222360
- D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, and M. S. Fuhrer, Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3, Nature Phys. 8, 460 (2012) (bulk depleted by a gate voltage, observe ambipolar surface conduction, discuss dependence on disorder strength by comparing with theory)
- C. Brüne, A. Roth, H. Buhmann, E. M. Hankiewicz, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-C. Zhang, Spin polarization of the quantum spin Hall edge states, Nature Phys. 8, 486 (2012) (HgTe quantum wells, detection of spin polarization)
- J. R. Williams, A. J. Bestwick, P. Gallagher, S. S. Hong, Y. Cui, A. S. Bleich, J. G. Analytis, I. R. Fisher, and D. Goldhaber-Gordon, Unconventional Josephson Effect in Hybrid Superconductor-Topological Insulator Devices, Phys. Rev. Lett. 109, 056803 (2012) (conventional 2D superconducting film with narrow gap on Bi2Se3, forming a Josephson junction, dependence on magnetic field, Fraunhofer pattern differs in shape and scale from that expected for the given geometry, suggesting a modified current-phase relationship), see also J. E. Moore, Viewpoint: An Extraordinary Josephson Junction, Physics 5, 84 (2012)
- S.-Y. Xu et al., Hedgehog spin texture and Berry's phase tuning in a magnetic topological insulator, Nature Phys. 8, 616 (2012) (ARPES, magnetically [Mn] and non-magnetically doped thin Be2Se3 films; the spin textures are merons in k space for gapped surface states [for magnetic doping]; magnetic phase transition accompanied by electronic gap opening)
- A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Manifestation of Topological Protection in Transport Properties of Epitaxial Bi2Se3 Thin Films, Phys. Rev. Lett. 109, 066803 (2012)
- Y. H. Wang, D. Hsieh, E. J. Sie, H. Steinberg, D. R. Gardner, Y. S. Lee, P. Jarillo-Herrero, and N. Gedik, Measurement of Intrinsic Dirac Fermion Cooling on the Surface of the Topological Insulator Bi2Se3 Using Time-Resolved and Angle-Resolved Photoemission Spectroscopy, Phys. Rev. Lett. 109, 127401 (2012)
- J. G. Checkelsky, J. Ye, Y. Onose, Y. Iwasa, and Y. Tokura, Dirac-fermion-mediated ferromagnetism in a topological insulator, Nature Phys. 8, 729 (2012) (Mn-doped Bi2Te3-ySey with back gate, surface transport, also as a function of gate voltage, anomalous Hall effect, conclude that ferromagnetism is mediated by the surface states, magnetoresistance is interpreted in terms of 1D chiral transport channels along domain walls)
- P. Zareapour, A. Hayat, S. Y. F. Zhao, M. Kreshchuk, A. Jain, D. C. Kwok, N. Lee, S.-W. Cheong, Z. Xu, A. Yang, G. D. Gu, S. Jia, R. J. Cava, and K. S. Burch, Proximity-induced high-temperature superconductivity in topological insulators Bi2Se3 and Bi2Te3, Nature Commun. 3, 1056 (2012) (up to 80K)
- L. P. Rokhinson, X. Liu, and J. K. Furdyna, The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles, Nature Physics 8, 795 (2012), also arXiv:1204.4212 (junction with RF irradiation, observe Shapiro steps of height hf/e, suggesting Majorana states)
- A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions, Nature Physics (2012), doi:10.1038/nphys2479
- M. S. Bahramy, P. D. C. King, A. de la Torre, J. Chang, M. Shi, L. Patthey, G. Balakrishnan, Ph. Hofmann, R. Arita, N. Nagaosa, and F. Baumberger, Emergent quantum confinement at topological insulator surfaces, arXiv:1206.0564 (theory involving band bending at surface and experiments [ARPES])
- B. Li, Q. Fan, F.o Ji, Z. Liu, H. Pan, and S. Qiao, Carrier dependent ferromagnetism in chromium doped topological insulator Cr0.2BixSb1.8-xTe3, arXiv:1207.4363 (evidence that this is a DMS-like system)
- S. Sasaki, Z. Ren, A. A. Taskin, K. Segawa, L. Fu, and Y. Ando, Odd-Parity Pairing and Topological Superconductivity in a Strongly Spin-Orbit Coupled Semiconductor, arXiv:1208.0059 (Sn1-xInxTe, point-contact spectroscopy, observe zero-bias conduction peak)
- M. Brahlek, N. Bansal, N. Koirala, S.-Y. Xu, M. Neupane, C. Liu, M. Z. Hasan, and S. Oh, Topological-Metal to Band-Insulator Transition in (Bi1-xInx)2Se3 Thin Films, arXiv:1209.2840
- M. Romanowich, M.-S. Lee, D.-Y. Chung, J.-H. Song, S. D. Mahanti, M. G. Kanatzidis, and S. H. Tessmer, The Interplay of Topological Surface and Bulk Electronic States in Bi2Se3, arXiv:1210.1874 (STM, also DFT calculations)
- S.-Y. Xu, C. Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski, J. D. Denlinger, Y. J. Wang, H. Lin, L. A. Wray, G. Landolt, B. Slomski, J. H. Dil, A. Marcinkova, E. Morosan, Q. Gibson, R. Sankar, F. C. Chou, R. J. Cava, A. Bansil, and M. Z. Hasan, A topological crystalline insulator (TCI) phase via topological phase transition and crystalline mirror symmetry, arXiv:1210.2917, Nature Commun. ((Pb/Sn)Te, mirror symmetry leads to even number of topologically protected Dirac cones of surface states)
- L. Maier, J. B. Oostinga, D. Knott, C. Bruene, P. Virtanen, G. Tkachov, E. M. Hankiewicz, C. Gould, H. Buhmann, and L. W. Molenkamp, Induced superconductivity in the three-dimensional topological insulator HgTe, arXiv:1210.4320 (proximity effect from Nb)
- C. Kastl, T. Guan, X. Y. He, K. H. Wu, Y. Q. Li, and A. W. Holleitner, Local photocurrent generation in thin films of the topological insulator Bi2Se3, arXiv:1210.4743
- S. Wolgast, C. Kurdak, K. Sun, J. W. Allen, D.-J. Kim, and Z. Fisk, Discovery of the First True Three-Dimensional Topological Insulator: Samarium Hexaboride, arXiv:1211.5104 (transport experiments, state that the heavy-fermion Kondo insulator SmB6 is a topological insulator with true insulating bulk)
- Y. Cao, J. A. Waugh, N. C. Plumb, T. J. Reber, S. Parham, G. Landolt, Z. Xu, A. Yang, J. Schneeloch, G. Gu, J. H. Dil, and D. S. Dessau, Coupled Spin-Orbital Texture in a Prototypical Topological Insulator, arXiv:1211.5998 (ARPES)
- J. Botimer, D. J. Kim, S. Thomas, T. Grant, Z. Fisk, and J. Xia, Robust Surface Hall Effect and Nonlocal Transport in SmB6: Indication for an Ideal Topological Insulator, arXiv:1211.6769 (high mobility at surface, insulating bulk, strong correlations)
- A. Kandala, A. Richardella, D. W. Rench, D. M. Zhang, T. C. Flanagan, and N. Samarth, Magneto-transport Signatures of a Magnetic Gap in Hybrid Topological Insulator-Ferromagnetic Insulator Heterostructure Devices, arXiv:1212.1225 (GdN:Bi2Se3)
- D. Kim, P. Syers, N. P. Butch, J. Paglione, and M. S. Fuhrer, Coherent Topological Transport on the Surface of Bi2Se3, arXiv:1212.2665 (show that weak antilocalization is very sensitive to inter-surface coupling)
- T. Sato, Y. Tanaka, K. Nakayama, S. Souma, T. Takahashi, S. Sasaki, Z. Ren, A. A. Taskin, K. Segawa, and Y. Ando, Fermiology of Strongly Spin-Orbit Coupled Superconductor Sn1-xInxTe and its Implication to Topological Superconductivity, arXiv:1212.5886 (ARPES; claimed to be a doped topological crystalline insulator gone superconducting)
- Y. Ma et al., Direct Imaging of Quantum Spin Hall Edge States in HgTe Quantum Well, arXiv:1212.6441 (using a novel microwave impedance microscope)
- X. Zhang, N. P. Butch, P. Syers, S. Ziemak, R. L. Greene, and J. Paglione, Hybridization, Inter-Ion Correlation, and Surface States in the Kondo Insulator SmB6, Phys. Rev. X 3, 011011 (2013) (topologically protected surface states)
- B. Rasche, A. Isaeva, M. Ruck, S. Borisenko, V. Zabolotnyy, B. Büchner, K. Köpernik, C. Ortix, M. Richter, and J. van den Brink, Stacked topological insulator built from bismuth-based graphene sheet analogues, Nature Materials (2013), doi:10.1038/nmat3570 (experiment and band-structure calculations)
- S. Cho, B. Dellabetta, A. Yang, J. Schneeloch, Z. Xu, T. Valla, G. Gu, M. J. Gilbert, and N. Mason, Symmetry protected Josephson supercurrents in three-dimensional topological insulators, Nature Commun. 4, 1689 (2013) (proximity-induced superconductivity in topological insulator)
- R. Ritz, M. Halder, M. Wagner, C. Franz, A. Bauer, and C. Pfleiderer, Formation of a topological non-Fermi liquid in MnSi, Nature 497, 231 (2013) (under high pressure)
- J. Dufouleur, L. Veyrat, A. Teichgräber, S. Neuhaus, C. Nowka, S. Hampel, J. Cayssol, J. Schumann, B. Eichler, O. G. Schmidt, B. Büchner, and R. Giraud, Quasiballistic Transport of Dirac Fermions in a Bi2Se3 Nanowire, Phys. Rev. Lett. 110, 186806 (2013)
- P. Wei, F. Katmis, B. A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, Exchange-Coupling-Induced Symmetry Breaking in Topological Insulators, Phys. Rev. Lett. 110, 186807 (2013)
- J.-P. Castellan, S. Rosenkranz, R. Osborn, Q. Li, K. E. Gray, X. Luo, U. Welp, G. Karapetrov, J. P. C. Ruff, and J. van Wezel, Chiral Phase Transition in Charge Ordered 1T-TiSe2, Phys. Rev. Lett. 110, 196404 (2013)
- E. Wang et al., Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor, Nature Phys. doi:10.1038/nphys2744 (2013) (BSCCO film, nearly isotropic gap in surface states)
- A. Barfuss et al., Elemental Topological Insulator with Tunable Fermi Level: Strained α-Sn on InSb(001), Phys. Rev. Lett. 111, 157205 (2013) (tin with tetragonally strained diamond lattice, inverted band structure, gapped by tetragonal deformation)
- Y. L. Chen et al., Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl, Nature Physics 9 704 (2013)
- T. Okuda et al., Experimental Evidence of Hidden Topological Surface States in PbBi4Te7, Phys. Rev. Lett. 111, 206803 (2013) (not right at the surface but below top layers)
- Y. Ohtsubo, P. Le Fèvre, F. Bertran, and A. Taleb-Ibrahimi, Dirac Cone with Helical Spin Polarization in Ultrathin α-Sn(001) Films, Phys. Rev. Lett. 111, 216401 (2013)
- Z.-H. Zhu, A. Nicolaou, G. Levy, N. P. Butch, P. Syers, X. F. Wang, J. Paglione, G. A. Sawatzky, I. S. Elfimov, and A. Damascelli, Polarity-Driven Surface Metallicity in SmB6, Phys. Rev. Lett. 111, 216402 (2013) (ARPES and DFT calculations, surface states are explained in terms of unusual but not intrinsically topological physics involving dangling bonds)
- H.-J. Kim, K.-S. Kim, J.-F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang., and L. Li, Dirac versus Weyl Fermions in Topological Insulators: Adler-Bell-Jackiw Anomaly in Transport Phenomena, Phys. Rev. Lett. 111, 246603 (2013) (magnetotransport experiments on Bi0.97Sb0.03, which is at the topological-to-trivial transition and thus a bulk Dirac semimetal, Weyl semimetal induced by magnetic field splitting the Dirac points)
- H. Peng, D. De, B. Lv, F. Wei, and C.-W. Chu, Absence of zero-energy surface bound states in CuxBi2Se3 via a study of Andreev reflection spectroscopy, arXiv:1301.1030 (conclude that there are no Majorana surface states, at least for some barrier strengths)
- C. Chen et al., Tunable Dirac Fermion Dynamics in Topological Insulators, arXiv:1302.0123 (ARPES on Bi2(Te,Se)3)
- H. Li et al., Carrier density dependence of the magnetic properties in iron-doped Bi2Se3 topological insulator, arXiv:1302.0371
- L. Barreto, W. Simoes e Silva, M. Stensgaard, S. Ulstrup, X.-G. Zhu, M. Bianchi, M. Dendzik, and P. Hofmann, Tailoring the electronic texture of a topological insulator via its surface orientation, arXiv:1302.0396 (Bi1-xSbx (110) surface, find three Dirac cones using ARPES)
- D. M. Nisson, A. P. Dioguardi, P. Klavins, C. H. Lin, K. R. Shirer, A.C. Shockley, J. Crocker, and N. J. Curro, Nuclear magnetic resonance as a probe of electronic states of Bi2Se3, arXiv:1304.6768 (observe high concentration of local moments, suggested to be Se vacancies)
- D. J. Kim, J. Xia, and Z. Fisk, Topological surface state in the Kondo Insulator Samarium Hexaboride, arXiv:1307.0448
- A. F. Young, J. D. Sanchez-Yamagishi, B. Hunt, S. H. Choi, K. Watanabe, T. Taniguchi, R. C. Ashoori, and P. Jarillo-Herrero, Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state, Nature 505, 528 (2014) (strong tilted magnetic field, fully aligned spins with U(1) symmetry around field/spin direction, chiral majority and minority edge bands)
- P. Olbrich, L. E. Golub, T. Herrmann, S. N. Danilov, H. Plank, V. V. Bel'kov, G. Mussler, C. Weyrich, C. M. Schneider, J. Kampmeier, D. Grützmacher, L. Plucinski, M. Eschbach, and S. D. Ganichev, Room-Temperature High-Frequency Transport of Dirac Fermions in Epitaxially Grown Sb2Te3- and Bi2Te3-Based Topological Insulators, Phys. Rev. Lett. 113, 096601 (2014) (direct current induced selectively in the surface states)
- X. Xi, X.-G. He, F. Guan, Z. Liu, R. D. Zhong, J. A. Schneeloch, T. S. Liu, G. D. Gu, D. Xu, Z. Chen, X. G. Hong, W. Ku, and G. L. Carr, Bulk Signatures of Pressure-Induced Band Inversion and Topological Phase Transitions in Pb1-xSnxSe, Phys. Rev. Lett. 113, 096401 (2014)
- S. Hart, H. Ren, T. Wagner, P. Leubner, M. Mühlbauer, C. Brüne, H. Buhmann, L. W. Molenkamp, and A. Yacoby, Induced superconductivity in the quantum spin Hall edge, Nature Phys. 10, 638 (2014) (HgTe/HgCdTe)
- I. K. Drozdov, A. Alexandradinata, S. Jeon, S. Nadj-Perge, H. Ji, R. J. Cava, B. A. Bernevig, and A. Yazdani, One-dimensional topological edge states of bismuth bilayers, Nature Phys. 10, 664 (2014) (STM experiments)
- J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator, Nature Phys. 10, 731 (2014) (quantum anomalous Hall effect in Crx(Bi1-ySby)2-xTe3)
- T. Takayama, A. Yaresko, A. Matsumoto, J. Nuss, K. Ishii, M. Yoshida, J. Mizuki, and H. Takagi, Spin-orbit coupling induced semi-metallic state in the 1/3 hole-doped hyper-kagome Na3Ir3O8, Sc. Rep. 4, 6818 (2014) (various experimental techniques and DFT; not a Weyl semimetal, just small electron and hole Fermi pockets)
- Y. Shiomi, K. Nomura, Y. Kajiwara, K. Eto, M. Novak, K. Segawa, Y. Ando, and E. Saitoh, Spin-Electricity Conversion Induced by Spin Injection into Topological Insulators, Phys. Rev. Lett. 113, 196601 (2014)
- T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal â??Cd3As2, Nature Mat. (2014), doi:10.1038/nmat4143 (see also next article)
- L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2, Phys. Rev. Lett. 113, 246402 (2014) (see also previous article)
- J.-P. Xu, Experimental Detection of a Majorana Mode in the core of a Magnetic Vortex inside a Topological Insulator-Superconductor Bi2Te3/NbSe2 Heterostructure, Phys. Rev. Lett. 114, 017001 (2015)
- W. T. Fuhrman, J. Leiner, P. Nikolic, G. E. Granroth, M. B. Stone, M. D. Lumsden, L. DeBeer-Schmitt, P. A. Alekseev, J.-M. Mignot, S. M. Koohpayeh, P. Cottingham, W. A. Phelan, L. Schoop, T. M. McQueen, and C. Broholm, Interaction Driven Subgap Spin Exciton in the Kondo Insulator SmB6, Phys. Rev. Lett. 114, 036401 (2015)
- A. Sulaev, W. Zhu, K. L. Teo, and L. Wang, Gate-tuned quantum oscillations of topological surface states in β-Ag2Te, Sci. Rep. 5, 8062 (2015)
- I. Sochnikov, L. Maier, C. A. Watson, J. R. Kirtley, C. Gould, G. Tkachov, E. M. Hankiewicz, C. Brüne, H. Buhmann, L. W. Molenkamp, and K. A. Moler, Nonsinusoidal Current-Phase Relationship in Josephson Junctions from the 3D Topological Insulator HgTe, Phys. Rev. Lett. 114, 066801 (2015)
- C. Seibel, H. Bentmann, J. Braun, J. Minár, H. Maaß, K. Sakamoto, M. Arita, K. Shimada, H. Ebert, and F. Reinert, Connection of a Topological Surface State with the Bulk Continuum in Sb2Te3(0001), Phys. Rev. Lett. 114, 066802 (2015) (ARPES compared to DFT calculations)
- I. Zeljkovic et al., Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators, Nature Mat. (2015), doi:10.1038/nmat4215 (Pb1-xSnxSe, STM experiments, symmetry-breaking distortion at the surface)
- S.-Y. Xu et al., Experimental realization of a topological Weyl semimetal phase with Fermi arc surface states in TaAs, Science 349, 613 (2015) (ARPES; results consistent with pairs of Fermi arcs connecting Weyl points; TaAs has point group C4v); B. Q. Lv et al., Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5, 031013 (2015) (ARPES and DFT calculations, consisent with each other and with previous paper); see also Journal Club article by A. Vishwanath (discussion of band structure of TaAs and its 12 pairs of Weyl nodes, some are lined up for the pertinent (001) slab; note that TaAs lacks inversion symmetry but is unmagnetic and thus retains time-reversal invariance, this allows Weyl states); B. Q. Lv et al., Observation of Fermi-Arc Spin Texture in TaAs, Phys. Rev. Lett. 115, 217601 (2015)
- P. Syers, D. Kim, M. S. Fuhrer, and J. Paglione, Tuning Bulk and Surface Conduction in the Proposed Topological Kondo Insulator SmB6, Phys. Rev. Lett. 114, 096601 (2015) (with gate doping of surface region)
- A. J. Bestwick, E. J. Fox, X. Kou, L. Pan, K. L. Wang, and D. Goldhaber-Gordon, Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field, Phys. Rev. Lett. 114, 187201 (2015) (thin film of (Cr,Bi,Sb)2Te3, Hall resistivity quantized to ±h/e2, see also Viewpoint, longitudinal resistivity very small); C.-Z. Chang, W. Zhao, D. Y. Kim, H. Zhang, B. A. Assaf, D. Heiman, S.-C. Zhang, C. Liu, M. H. W. Chan, and J. S. Moodera, High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator, Nature Mat. 14, 473 (2015) (thin films of (Bi,Sb)2Te3, similar results)
- J. Liao et al., Observation of Anderson Localization in Ultrathin Films of Three-Dimensional Topological Insulators, Phys. Rev. Lett. 114, 216601 (2015)
- A. P. Weber, Q. D. Gibson, H. Ji, A. N. Caruso, A. V. Fedorov, R. J. Cava, and T. Valla, Gapped Surface States in a Strong-Topological-Insulator Material, Phys. Rev. Lett. 114, 256401 (2015) (ARPES and DFT, surface bands split)
- C.-Z. Chang, W. Zhao, D. Y. Kim, P. Wei, J. K. Jain, C. Liu, M. H. W. Chan, and J. S. Moodera, Zero-Field Dissipationless Chiral Edge Transport and the Nature of Dissipation in the Quantum Anomalous Hall State, Phys. Rev. Lett. 115, 057206 (2015)
- S.-Y. Xu et al., Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide, Nature Phys. (2015), doi:10.1038/nphys3437
- L. X. Yang et al., Weyl semimetal phase in the non-centrosymmetric compound TaAs, Nature Phys. (2015), doi:10.1038/nphys3425; B. Q. Lv et al., Observation of Weyl nodes in TaAs, Nature Phys. (2015), doi:10.1038/nphys3426 (see above)
- M. Neupane et al., Gigantic Surface Lifetime of an Intrinsic Topological Insulator, Phys. Rev. Lett. 115, 116801 (2015) (Bi2Te2Se, excited Dirac surface states)
- A. Politano, V. M. Silkin, I. A. Nechaev, M. S. Vitiello, L. Viti, Z. S. Aliev, M. B. Babanly, G. Chiarello, P. M. Echenique, and E. V. Chulkov, Interplay of Surface and Dirac Plasmons in Topological Insulators: The Case of Bi2Se3, Phys. Rev. Lett. 115, 216802 (2015)
- L. Wu et al., High-Resolution Faraday Rotation and Electron-Phonon Coupling in Surface States of the Bulk-Insulating Topological Insulator Cu0.02Bi2Se3, Phys. Rev. Lett. 115, 217602 (2015)
- F. F. Tafti, Q. D. Gibson, S. K. Kushwaha, N. Haldolaarachchige, and R. J. Cava, Resistivity plateau and extreme magnetoresistance in LaSb, Nature Phys. (2015), doi:10.1038/nphys3581 (rocksalt structure, particle-hole symmetry, shows signatures typical for topological insulators; indeed, LaSb has been predicted to be a TI)
- G. Autès, A. Isaeva, et al., A novel quasi-one-dimensional topological insulator in bismuth iodide β-Bi4I4, Nature Mat. 15, 154 (2016) (a quasi-one-dimensional compound, found to be a strong (1;110) topological insulator, close to a weak (0;001) topological insulator; also DFT calculations)
- A. Kogar et al., Surface Collective Modes in the Topological Insulators Bi2Se3 and Bi0.5Sb1.5Te3-xSex, Phys. Rev. Lett. 115, 257402 (2015) (most prominent surface collective mode is a surface plasmon relying on bulk electrons)
- C. H. Sohn, H. Jeong, H. Jin, S. Kim, L. J. Sandilands, H. J. Park, K. W. Kim, S. J. Moon, D.-Y. Cho, J. Yamaura, Z. Hiroi, and T. W. Noh, Optical Spectroscopic Studies of the Metal-Insulator Transition Driven by All-In-All-Out Magnetic Ordering in 5d Pyrochlore Cd2Os2O7, Phys. Rev. Lett. 115, 266402 (2015) (spectroscopy compared to DFT; find metallic all-in-all-out phase, not a Weyl semimetal)
- S. Kobayashi and M. Sato, Topological Superconductivity in Dirac Semimetals, Phys. Rev. Lett. 115, 187001 (2015) (such as Cd3As2); H. Wang et al., Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals, Nature Mat. (2015), doi:10.1038/nmat4456; L. Aggarwal et al., Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2, Nature Mat. (2015), doi:10.1038/nmat4455
- Z. K. Liu, L. X. Yang, Y. Sun, T. Zhang, H. Peng, H. F. Yang, C. Chen, Y. Zhang, Y. F. Guo, D. Prabhakaran, M. Schmidt, Z. Hussain, S.-K. Mo, C. Felser, B. Yan, and Y. L. Chen, Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family, Nature Mat. (2015), doi:10.1038/nmat4457 (ARPES, NbP, TaP, and TaAs; observation of Fermi arcs, study strength of spin-orbit coupling, also compared to DFT results)
- S. Borisenko, D. Evtushinsky, Q. Gibson, A. Yaresko, T. Kim, M. N. Ali, B. Büchner, M. Hoesch, and R. J. Cava, Time-Reversal Symmetry Breaking Type-II Weyl State in YbMnBi2, arXiv:1507.04847
- J. Hu et al., π Berry phase and Zeeman splitting of Weyl semimetal TaP, Sci. Rep. 6, 18674 (2016) (claim to determine the Berry phases from high-field transport measurements)
- M. C. Wang, S. Qiao, Z. Jiang, S. N. Luo, and J. Qi, Unraveling Photoinduced Spin Dynamics in the Topological Insulator Bi2Se3, Phys. Rev. Lett. 116, 036601 (2016) (also involving transitions between bulk and surface states)
- Z. Tian et al., Field-induced quantum metal-insulator transition in the pyrochlore iridate Nd2Ir2O7, Nature Phys. 12, 134 (2016) (MIT driven by rather small magnetic fields, close to tricritical point, no Weyl semimetal)
- K. Kuroda, J. Reimann, J. Güdde, and U. Höfer, Generation of Transient Photocurrents in the Topological Surface State of Sb2Te3 by Direct Optical Excitation with Midinfrared Pulses, Phys. Rev. Lett. 116, 076801 (2016)
- J.-C. Rojas-Sánchez et al., Spin to Charge Conversion at Room Temperature by Spin Pumping into a New Type of Topological Insulator: α-Sn Films, Phys. Rev. Lett. 116, 096602 (2016)
- S.-Y. Xu et al., Spin Polarization and Texture of the Fermi Arcs in the Weyl Fermion Semimetal TaAs, Phys. Rev. Lett. 116, 096801 (2016)
- S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Krogstrup, and C. M. Marcus, Exponential protection of zero modes in Majorana islands, Nature 531, 206 (2016) (wires, proximity-induced superconductivity from expitaxially grown Al; see also JCCM commentary)
- W. Witczak-Krempa and J. Maciejko, Optical Conductivity of Topological Surface States with Emergent Supersymmetry, Phys. Rev. Lett. 116, 100402 (2016) (Dirac surface states of topological insulators)
- Z. Liu, L. Yang, S.-C. Wu, C. Shekhar, J. Jiang, H. Yang, Y. Zhang, S.-K. Mo, Z. Hussain, B. Yan, C. Felser, and Y. Chen, Observation of Unusual Topological Surface States in Half-Heusler Compounds LnPtBi (Ln=Lu, Y), arXiv:1602.05633 (ARPES, compared to DFT, trivial and topological [Dirac] surface states in the normal state)
- F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, A high-temperature ferromagnetic topological insulating phase by proximity coupling, Nature 533, 513 (2016) (interface between Bi2Se3 and EuS, ferromagnetic order at temperatures much higher than the Curie temperature of EuS)H.-H. Sun et al., Majorana Zero Mode Detected with Spin Selective Andreev Reflection in the Vortex of a Topological Superconductor, Phys. Rev. Lett. 116, 257003 (2016) (Bi2Te3/NbSe2 heterostructure) P
- J. Hu et al., Evidence of Topological Nodal-Line Fermions in ZrSiSe and ZrSiTe, Phys. Rev. Lett. 117, 016602 (2016) (quantum oscillations, nodal-line semimetals)
- H. Wang, J. Kally, J. S. Lee, T. Liu, H. Chang, D. Reifsnyder Hickey, K. A. Mkhoyan, M. Wu, A. Richardella, and N. Samarth, Surface-State-Dominated Spin-Charge Current Conversion in Topological-Insulator-Ferromagnetic-Insulator Heterostructures, Phys. Rev. Lett. 117, 076601 (2016)
- W. Chen, W.-Y. Deng, J.-M. Hou, D. N. Shi, L. Sheng, and D. Y. Xing, π Spin Berry Phase in a Quantum-Spin-Hall-Insulator-Based Interferometer: Evidence for the Helical Spin Texture of the Edge States, Phys. Rev. Lett. 117, 076802 (2016)
- F. Arnold, M. Naumann, S.-C. Wu, Y. Sun, M. Schmidt, H. Borrmann, C. Felser, B. Yan, and E. Hassinger, Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs, Phys. Rev. Lett. 117, 146401 (2016) (Shubnikov-de Haas and de Haas-van Alphen measurements, DFT calculations, bulk only) P
- Y. Zhou et al., Pressure-Induced New Topological Weyl Semimetal Phase in TaAs, Phys. Rev. Lett. 117, 146402 (2016) (transport and synchrotron x-ray diffraction, DFT calcuzlations, high-pressure phase has only 12 Weyl points, all at the same energy)
- S. Thirupathaiah, S. Ghosh, R. Jha, E. D. L. Rienks, K. Dolui, V. V. R. Kishore, B. Büchner, T. Das, V. P. S. Awana, D. D. Sarma, and J. Fink, Unusual Dirac Fermions on the Surface of a Noncentrosymmetric α-BiPd Superconductor, Phys. Rev. Lett. 117, 177001 (2016) (ARPES and DFT; note that experiments are for the normal state at 50 K, Tc is 4 K; material is metallic and shows linearly dispersing surface states that are called Dirac states in the paper but are probably non-degenerate, the topological invariant protecting the surface states is not analyzed)
- K. Deng et al., Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2, Nature Physics 12, 1105 (2016)
- H. Zhen et al., Atomic-Scale Visualization of Quasiparticle Interference on a Type-II Weyl Semimetal Surface, Phys. Rev. Lett. 117, 266804 (2016) (STM/STS experiments and theory for quasiparticle interference at the surface of type-II Weyl system MoxW1-xTe2)
- M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C. A. Belvin, B. A. Bernevig, R. J. Cava, and N. P. Ong, The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi, Nature Mater. 15, 1161 (2016)
- P. Zhang et al., Topologically Entangled Rashba-Split Shockley States on the Surface of Grey Arsenic, Phys. Rev. Lett. 118, 046802 (2017)
-
Y.-Y. Lv et al., Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe1.98 Crystals at the Quasiclassical Regime, Phys. Rev. Lett. 118, 096603 (2017) (magnetoresistance measurements)
-
N. Xu et al., Distinct Evolutions of Weyl Fermion Quasiparticles and Fermi Arcs with Bulk Band Topology in Weyl Semimetals, Phys. Rev. Lett. 118, 106406 (2017) (ARPES; Fermi arcs at surface can still be present if Weyl nodes in the bulk are far from the Fermi energy so that Fermi pockets derived from Weyl points of opposite chirality are merged and the bulk physics has no particular Weyl character)
-
T. Liang, J. Lin, Q. Gibson, T. Gao, M. Hirschberger, M. Liu, R. J. Cava, and N. P. Ong, Anomalous Nernst Effect in the Dirac Semimetal Cd3As2, Phys. Rev. Lett. 118, 136601 (2017) (attributed to the Dirac nodes splitting into pairs of Weyl nodes in a magnetic field)
-
H. Yasuoka, T. Kubo, Y. Kishimoto, D. Kasinathan, M. Schmidt, B. Yan, Y. Zhang, H. Tou, C. Felser, A. P. Mackenzie, and M. Baenitz, Emergent Weyl Fermion Excitations in TaP Explored by 181Ta Quadrupole Resonance, Phys. Rev. Lett. 118, 236403 (2017)
-
S. Grauer, K. M. Fijalkowski, S. Schreyeck, M. Winnerlein, K. Brunner, R. Thomale, C. Gould, and L. W. Molenkamp, Scaling of the Quantum Anomalous Hall Effect as an Indicator of Axion Electrodynamics, Phys. Rev. Lett. 118, 246801 (2017) (Hall vs. longitudinal conductivity, crossover from integer QHE for thin to TI surface states in magnetic field for thick layer, the latter can be understood in terms of axion electrodynamics)
-
B. Q. Lv et al., Observation of three-component fermions in the topological semimetal molybdenum phosphide, Nature 546, 627 (2017) (ARPES compared to DFT; find threefold degenerate conical band crossings, unlike Weyl (twofold) or Dirac (fourfold), protected by lattice symmetry, D3h point group, threefold points are on threefold axis in momentum space, where one of the two crossing bands is twofold degenerate)
-
J. Gooth, A. C. Niemann, T. Meng, et al., Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP, Nature 547, 324 (2017) (with theoretical discussion; thermal transport, making use of temperature-gravitation analogy)
-
W. Gao et al., Extremely Large Magnetoresistance in a Topological Semimetal Candidate Pyrite PtBi2, Phys. Rev. Lett. 118, 256601 (2017) (fcc lattice, proposed Dirac semimetal)
-
Q. L. He et al., Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure, Science 357, 294 (2017) (QAH bar partially in proximity contact with superconducting Nb, 2D, edge modes give evidence for p + ip pairing); also see comment in journal club by J. Alicea
-
A. Pisoni, R. Gaál, A. Zeugner, V. Falkowski, A. Isaeva, H. Huppertz, G. Autès, O. V. Yazyev, and L. Forró, Pressure effect and superconductivity in the β-Bi4I4 topological, Phys. Rev. B 95, 235149 (2017) (transport, complicated results in normal state, charge-density wave, superconducting setting in suddenly at about 10 GPa)
-
H.-J. Noh, J. Jeong, E.-J. Cho, K. Kim, B. I. Min, and B.-G. Park, Experimental Realization of Type-II Dirac Fermions in a PdTe2 Superconductor, Phys. Rev. Lett. 119, 016401 (2017) (note: the type-II Dirac fermions appear already in the normal state, not as unconventional gap nodes); see also Physics viewpoint
-
D. Di Sante et al., Three-Dimensional Electronic Structure of the Type-II Weyl Semimetal WTe2, Phys. Rev. Lett. 119, 026403 (2017) (x-ray ARPES compared to DFT)
-
X. Li, L. Xu, L. Ding, J. Wang, M. Shen, X. Lu, Z. Zhu, and K. Behnia, Anomalous Nernst and Righi-Leduc Effects in Mn3Sn: Berry Curvature and Entropy Flow, Phys. Rev. Lett. 119, 056601 (2017) (a Weyl semi-metal candidate; extrinsic contributions found to be weak)
-
B. A. Assaf, T. Phuphachong, E. Kampert, V. V. Volobuev, P. S. Mandal, J. Sánchez-Barriga, O. Rader, G. Bauer, G. Springholz, L. A. de Vaulchier, and Y. Guldner, Negative Longitudinal Magnetoresistance from the Anomalous N=0 Landau Level in Topological Materials, Phys. Rev. Lett. 119, 106602 (2017) (a bulk effect)
-
F. Nichele et al., Scaling of Majorana Zero-Bias Conductance Peaks, Phys. Rev. Lett. 119, 136803 (2017)
-
C.-L. Zhang et al., Magnetic-tunnelling-induced Weyl node annihilation in TaP,
Nature Phys. 13, 979 (2017) (ARPES, in strong magnetic fields, compared to theory)
-
M. Ikhlas, T. Tomita, T. Koretsune, M.-T. Suzuki, D. Nishio-Hamane, R. Arita, Y. Otani, and S. Nakatsuji, Large anomalous Nernst effect at room temperature in a chiral antiferromagnet, Nature Phys. 13, 1085 (2017) (Weyl semimetal Mn3Sn) P
-
H. Zheng et al., Mirror Protected Dirac Fermions on a Weyl Semimetal NbP Surface, Phys. Rev. Lett. 119, 196403 (2017) (quasi-particle interference, compared to theory)
- S. Wu et al., Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal, Science 359, 76 (2018) (WTe2, quantized conductance of edge)
- H. Zhang et al., Quantized Majorana conductance, Nature 556, 74 (2018) (height of zero-bias peak suggests quantized conduction through a Majorana mode)
- D. Takane et al., Observation of Dirac-like energy band and ring-torus Fermi surface associated with the nodal line in topological insulator CaAgAs, npj Quantum Materials 3, 1 (2018) (ARPES)
-
F. Schindler et al. (A. Yazdani, B. A. Bernevig, T. Neupert), Higher-order topology in bismuth, Nature Phys. 14, 918 (2018) (STS, Josephson interferometry, ab-initio and model theory; evidence for hinge states)
-
S. Imhof et al. (L. W. Molenkamp, T. Neupert, R. Thomale), Topolectrical-circuit realization of topological corner modes, Nature Phys. 14, 925 (2018) (corner states of 2D LC network)
-
S. Liang, J. Lin, S. Kushwaha, J. Xing, N. Ni, R. J. Cava, and N. P. Ong, Experimental Tests of the Chiral Anomaly Magnetoresistance in the Dirac-Weyl Semimetals Na3Bi and GdPtBi, Phys. Rev. X 8, 031002 (2018) (how to control current jetting to obtain the intrinsic contribution)
-
H. Kim, K. Wang, Y. Nakajima, R. Hu, S. Ziemak, P. Syers, L. Wang, H. Hodovanets, J. D. Denlinger, P. M. R. Brydon, D. F. Agterberg, M. A. Tanatar, R. Prozorov, and J. Paglione, Beyond Spin-Triplet: Nodal Topological Superconductivity in a Noncentrosymmetric Semimetal, Sci. Adv. 4, eaao4513 (2018), also arXiv:1603.03375 P
-
D. Wang et al., Evidence for Majorana bound states in an iron-based superconductor, Science 362, 333 (2018) (FeTe0.55Se0.45)
-
F. Hütt, A. Yaresko, M. B. Schilling, C. Shekhar, C. Felser, M. Dressel, and A. V. Pronin, Linear-in-Frequency Optical Conductivity in GdPtBi due to Transitions near the Triple Points, Phys. Rev. Lett. 121, 176601 (2018)
-
A. Sakai, Y. P. Mizuta, A. A. Nugroho, R. Sihombing, T. Koretsune, M.-T. Suzuki, N. Takemori, R. Ishii, D. Nishio-Hamane, R. Arita, P. Goswami, and S. Nakatsuji, Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal, Nature Phys. 14, 1119 (2018) (ferromagnetic Weyl semimetal) P
-
E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S.-Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle,
S. Wirth, Y. Chen, S. T. B. Goennenwein, and C. Felser, Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal, Nature Phys. 14, 1125 (2018) (Co3Sn2S2) - E. Sajadi, T. Palomaki, Z. Fei, W. Zhao, P. Bement, C. Olsen, S. Luescher, X. Xu, J. A. Folk, and D. H. Cobden, Gate-induced superconductivity in a monolayer topological insulator, Science 362, 922 (2018) (WTe2, superconductivity with small carrier concentration, symmetry and topological properties unknown); V. Fatemi, S. Wu, Y. Cao, L. Bretheau, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Electrically tunable low-density superconductivity in a monolayer topological insulator, Science 362, 926 (2018) (dito)
- J. L. Collins et al., Electric-field-tuned topological phase transition in ultrathin Na3Bi, Nature https://doi.org/10.1038/s41586-018-0788-5 (2018) (STM and ARPES, transition from topological to conventional insulator)
- P. Zhang et al., Multiple topological states in iron-based superconductors, Nature Phys. 15, 41 (2019) (ARPES, also DFT; topological-insulator and Dirac-semimetal states in Li(Fe,Co)As and Fe(Te,Se), tunable by doping)
-
D. Takane et al., Observation of Chiral Fermions with a Large Topological Charge and Associated Fermi-Arc Surface States in CoSi, Phys. Rev. Lett. 122, 076402 (2019) (ARPES, evidence for previously predicted spin-1 chiral fermion [threefold degeneracy point, Chern numbers +-2] and double Weyl fermions [fourfold degeneracy point, Chern number +-2])
-
D. S. Sanchez et al., Topological chiral crystals with helicoid-arc quantum states, Nature 567, 500 (2019) (observation of chiral edge states in CoSi and RhSi, ARPES)
-
C.-H. Min et al., Orbital Fingerprint of Topological Fermi Arcs in the Weyl Semimetal TaP, Phys. Rev. Lett. 122, 116402 (2019) (ARPES and ab-initio calculations)
- B. Jäck, Y. Xie, J. Li, S. Jeon, B. A. Bernevig, and A. Yazdani, Observation of a Majorana zero mode in a topologically protected edge channel, Science 364, 1255 (2019) (proximity-induced topological superconductor in hinge states of Bi)
- N. B. M. Schröter et al., Chiral topological semimetal with multifold band crossings and long Fermi arcs, Nature Physics 15, 759 (2019)
-
B. Feng et al., Discovery of Weyl Nodal Lines in a Single-Layer Ferromagnet, Phys. Rev. Lett. 123, 116401 (2019) (GdAg2, ARPES, compared to DFT+MD)
-
I. Belopolski et al., Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet, Science 365, 1278 (2019) (magnetic Co2MnGa; ARPES and transport); D. F. Liu et al., Magnetic Weyl semimetal phase in a Kagomé crystal, Science 365, 1282 (2019) (magnetic Co3Sn2S2; ARPES); N. Morali, R. Batabyal, P. K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, and H. Beidenkopf, Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2, Science 365, 1286 (2019) (magnetic Co3Sn2S2; STS compared to ab-initio theory)
-
R. Noguchi et al., A weak topological insulator state in quasi-one-dimensional bismuth iodide, Nature 566, 518 (2019) (laser ARPES and other experiments: is a weak TI, after all; also DFT)
-
Y. Deng, Y. Yu, M. Z. Shi, J. Wang, X. H. Chen, and Y. Zhang, Magnetic-field-induced quantized anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4,
arXiv:1904.11468; C. Liu et al., Quantum phase transition from axion insulator to Chern insulator in MnBi2Te4, arXiv:1905.00715 (undiluted, magnetically ordered topological insulator, effect of applied magnetic field)
-
P. Puphal et al., Topological Magnetic Phase in the Candidate Weyl Semimetal CeAlGe, Phys. Rev. Lett. 124, 017202 (2020) (neutron scattering)
- J. Strunz, J. Wiedenmann, C. Fleckenstein, L. Lunczer, W. Beugeling, V. L. Müller, P. Shekhar, N. T. Ziani, S. Shamim, J. Kleinlein, H. Buhmann, B. Trauzettel, and L. W. Molenkamp, Interacting topological edge channels, Nature Phys. 16, 83 (2020) (two opposite edges of a QSH system close tegether; with theory)
-
R. Yang, T. Zhang, L. Zhou, Y. Dai, Z. Liao, H. Weng, and X. Qiu, Magnetization-Induced Band Shift in Ferromagnetic Weyl Semimetal Co3Sn2S2, Phys. Rev. Lett. 124, 077403 (2020) (optical spectroscopy compared to DFT calculations)
-
Y. Chen et al., Observation of Shubnikov-de Haas Oscillations in Large-Scale Weyl Semimetal WTe2 Films, Chin. Phys. Lett. 37, 017104 (2020)
- S. Vaitiekėnas, G. W. Winkler, B. van Heck, T. Karzig, M.-T. Deng, K. Flensberg, L. I. Glazman, C. Nayak, P. Krogstrup, R. M. Lutchyn, and C. M. Marcus, Flux-induced topological superconductivity in full-shell nanowires, Science 367, eaav3392 (2020)
-
B.-C. Lin, S. Wang, A.-Q. Wang, Y. Li, R.-R. Li, K. Xia, D. Yu, and Z.-M. Liao, Electric Control of Fermi Arc Spin Transport in Individual Topological Semimetal Nanowires, Phys. Rev. Lett. 124, 116802 (2020) (Dirac semimetal Cd3As2)
-
D. Rodriguez, A. A. Tsirlin, T. Biesner, T. Ueno, T. Takahashi, K. Kobayashi, M. Dressel, and E. Uykur, Two Linear Regimes in Optical Conductivity of a Type-I Weyl Semimetal: The Case of Elemental Tellurium, Phys. Rev. Lett. 124, 136402 (2020) (under high pressure, IR spectroscopy)
-
S. Polatkan, M. O. Goerbig, J. Wyzula, R. Kemmler, L. Z. Maulana, B. A. Piot, I. Crassee, A. Akrap, C. Shekhar, C. Felser, M. Dressel, A. V. Pronin, and M. Orlita, Magneto-Optics of a Weyl Semimetal beyond the Conical Band Approximation: Case Study of TaP, Phys. Rev. Lett. 124, 176402 (2020) (Landau levels vs. magnetic field, explanation in terms of partially gapped nodal ring)
-
T. Nguyen et al., Topological Singularity Induced Chiral Kohn Anomaly in a Weyl Semimetal, Phys. Rev. Lett. 124, 236401 (2020) (x-ray and neutron scattering on TaP, and theory)
-
D. S. Sanchez, G. Chang, I. Belopolski, H. Lu, J.-X. Yin, N. Alidoust, X. Xu, T. A. Cochran, X. Zhang, Y. Bian, S. S. Zhang, Y.-Y. Liu, J. Ma, G. Bian, H. Lin, S.-Y. Xu, S. Jia, and M. Z. Hasan, Observation of Weyl fermions in a magnetic non-centrosymmetric crystal, Nature Commun. 11, 3356 (2020) (ferromagnetic PrAlGe, point group C4v)
-
G. Gatti et al., Radial Spin Texture of the Weyl Fermions in Chiral Tellurium, Phys. Rev. Lett. 125, 216402 (2020) (relatively simple trigonal system, identify exoctic types of Weyl fermions)
-
T. Kono, M. Kakoki, T. Yoshikawa, X. Wang, K. Goto, T. Muro, R. Y. Umetsu, and A. Kimura, Visualizing Half-Metallic Bulk Band Structure with Multiple Weyl Cones of the Heusler Ferromagnet, Phys. Rev. Lett. 125, 216403 (2020) (ferromagnetic full-Heusler compound Co2MnGe; soft-x-ray ARPES; see half metallic character and Weyl points)
- K. Wang, B. Xu, C. W. Rischau, N. Bachar, B. Michon, J. Teyssier, Y. Qiu, T. Ohtsuki, B. Cheng, N. P. Armitage, S. Nakatsuji, and D. van der Marel, Unconventional free charge in the correlated semimetal Nd2Ir2O7, Nature Phys. 16, 1194 (2020) (optical conductivity suggests Weyl points but specific heat data are inconsistent with this)
-
G. B. Osterhoudt, Y. Wang, C. A. C. Garcia, V. M. Plisson, J. Gooth, C. Felser, P. Narang, and K. S. Burch, Evidence for Dominant Phonon-Electron Scattering in Weyl Semimetal WP2, Phys. Rev. X 11, 011017 (2021) (strong and unconventional electron-phonon coupling, leading to anomalously high conductivity at low temperatures; Raman)
-
Y. Xu, L. Das, J. Z. Ma, C. J. Yi, S. M. Nie, Y. G. Shi, A. Tiwari, S. S. Tsirkin, T. Neupert, M. Medarde, M. Shi, J. Chang, and T. Shang, Unconventional Transverse Transport above and below the Magnetic Transition Temperature in Weyl Semimetal EuCd2As2, Phys. Rev. Lett. 126, 076602 (2021) (electric/thermoelectric transport, anomalous effects, i.e., due to intrinsic Berry curvature, distinct in antiferromagnetic and paramagnetic phase)
-
Y. Wu, B. C. Chakoumakos, M. A. McGuire, B. C. Sales, W. Wu, and J. Yan, Site Mixing for Engineering Magnetic Topological Insulators, Phys. Rev. X 11, 021033 (2021) (magnetically ordered topological insulator)
-
Y. Tian, N. Ghassemi, and J. H. Ross, Jr., Gap-Opening Transition in Dirac Semimetal ZrTe5, Phys. Rev. Lett. 126, 236401 (2021) (observe two thermal phase transitions, the higher, where a gap opens at the Dirac points, likely associated with excitonic pairing)
-
B. Jiang, L. Wang, R. Bi, J. Fan, J. Zhao, D. Yu, Z. Li, and X. Wu, Chirality-Dependent Hall Effect and Antisymmetric Magnetoresistance in a Magnetic Weyl Semimetal, Phys. Rev. Lett. 126, 236601 (2021) (antisymmetric in both magnetic field and magnetization)
-
Y. Kozuka, S. Isogami, K. Masuda, Y. Miura, Saikat Das, J. Fujioka, T. Ohkubo, and S. Kasai, Observation of Nonlinear Spin-Charge Conversion in the Thin Film of Nominally Centrosymmetric Dirac Semimetal SrIrO3 at Room Temperature, Phys. Rev. Lett. 126, 236801 (2021)
- I. M. Hayes, D. S. Wei, T. Metz, J. Zhang, Y. S. Eo, S. Ran, S. R. Saha, J. Collini, N. P. Butch, D. F. Agterberg, A. Kapitulnik, and J. Paglione, Multicomponent superconducting
order parameter in UTe2, Science 373, 797 (2021) (polar Kerr effect and two transitions in specific heat) -
Q. Zhang, S. Okamoto, G. D. Samolyuk, M. B. Stone, A. I. Kolesnikov, R. Xue, J. Yan, M. A. McGuire, D. Mandrus, and D. A. Tennant, Unusual Exchange Couplings and Intermediate Temperature Weyl State in Co3Sn2S2, Phys. Rev. Lett. 127, 117201 (2021) (ferromagnetic ground state, inelastic neutron scattering and DFT)
-
I. Belopolski, ..., C. Felser, T. Neupert, and M. Z. Hasan, Signatures of Weyl Fermion Annihilation in a Correlated Kagome Magnet, Phys. Rev. Lett. 127, 256403 (2021) (shandite Co3Sn2S2, ARPES, Weyl points annihilated as function of temperature)
-
X. Liu et al., Magnetic Weyl Semimetallic Phase in Thin Films of Eu2Ir2O7, Phys. Rev. Lett. 127, 277204 (2021) ((111) film in order to break cubic symmetry, thickness about 40 nm, all-in-all-out order, conclusion of Weyl phase based on anomalous Hall effect)
-
A. H. Mayo, H. Takahashi, M. S. Bahramy, A. Nomoto, H. Sakai, and S. Ishiwata, Magnetic Generation and Switching of Topological Quantum Phases in a Trivial Semimetal α−EuP3, Phys. Rev. X 12, 011033 (2022) (Weyl and nodal-line semimetal induced by applied magnetic field)
-
S. Nie, T. Hashimoto, and F. B. Prinz, Magnetic Weyl Semimetal in K2Mn3(AsO4)3 with the Minimum Number of Weyl Points, Phys. Rev. Lett. 128, 176401 (2022)
-
B. Jiang, J. Zhao, J. Qian, S. Zhang, X.-B. Qiang, L. Wang, R. Bi, J. Fan, H.-Z. Lu, E. Liu, and X. Wu, Antisymmetric Seebeck Effect in a Tilted Weyl Semimetal, Phys. Rev. Lett. 129, 056601 (2022) (transport experiments and theory: Boltzmann equation, including orbital magnetic moment)
- L. Wu, S. Chi, H. Zuo, G. Xu, L. Zhao, Y. Luo, and Z. Zhu, Field-induced Lifshitz transition in the magnetic Weyl semimetal candidate PrAlSi, npj Quantum Materials 8, 4 (2023)
-
J. Schusser, H. Bentmann, M. Ünzelmann, T. Figgemeier, C.-H. Min, S. Moser, J. N. Neu, T. Siegrist, and F. Reinert, Assessing Nontrivial Topology in Weyl Semimetals by Dichroic Photoemission, Phys. Rev. Lett. 129, 246404 (2022) (dichroic ARPES, experiment and theory, for TaAs and TaP)
-
F. Le Mardelé et al., Evidence for three-dimensional Dirac conical bands in TlBiSSe by optical and magneto-optical spectroscopy, Phys. Rev. B 107, L241101 (2023) (has a single Dirac cone with a 32 meV gap)
Topological insulators, superconductors, and metals - theory
- T. H. Hansson, V. Oganesyan, and S. L. Sondhi, Superconductors are topologically ordered, Annals of Physics 313, 497 (2004) (... in the sense of Wen; Ginzburg-Landau field theory)
- L. Fu and C. L. Kane, Topological Insulators with Inversion Symmetry, cond-mat/0611341 (also containing introduction to topological insulators, predictions for specific compounds)
- A. M. Essin and J. E. Moore, Topological insulators beyond the Brillouin zone via Chern parity, arXiv:0705.0172
- X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B 78, 195424 (2008) (long paper, exploring axion-like term in the electrodynamic equations for interfaces between topological and ordinary insulators), see also Viewpoint: M. Franz, High-energy physics in a new guise, Physics 1, 36 (2008) (with a nice introduction to axion physics), and F. Wilczek, Journal Club, Nature 458, 129 (2009)
- R. Shindou and S. Murakami, Effects of disorder in three-dimensional Z2 quantum spin Hall systems, Phys. Rev. B 79, 045321 (2009) (long paper, 3D topological insulator, effects of Coulomb disorder on the bulk properties, diagrammatic disorder-perturbation theory, diffuson and Cooperon, weak localization and antilocalization, robust extended states in the middle of bands)
- Q. Liu and T. Ma, Classical spins in topological insulators, Phys. Rev. B 80, 115216 (2009) (single magnetic impurity, strong limit)
- Y. Zhang, Y. Ran, and A. Vishwanath, Topological insulators in three dimensions from spontaneous symmetry breaking, arXiv:0904.0690 (main idea: spontaneously generated spin-orbit interactions)
- A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78, 195125 (2008); Classification of Topological Insulators and Superconductors, arXiv:0905.2029, AIP Conf. Proc. 1134, 10 (2009)
- C. Xu, Quantum critical points of helical Fermi liquids, Phys. Rev. B 81, 054403 (2010) (spontaneous ferromagnetic order of surface states of 3D topological insulator)
- C.-X. Liu, X.-L. Qi, H. J. Zhang, X. Dai, Z. Fang, and S.-C. Zhang, Model Hamiltonian for topological insulators, Phys. Rev. B 82, 045122 (2010) (detailed derivations, k.p Hamiltonian for Bi2Se3 class of materials)
- J. Cserti and G. Dávid, Relation between Zitterbewegung and the charge conductivity, Berry curvature, and the Chern number of multiband systems, Phys. Rev. B 82, 201405(R) (2010) (express conductivity in terms of diagonal and off-diagonal components of Zitterbewegung amplitudes in the time dependence of the Heisenberg position operator, note that Berry curvature and Chern number only depend on diagonal components)
- Z. Wang, X.-L. Qi, and S.-C. Zhang, Topological Order Parameters for Interacting Topological Insulators, Phys. Rev. Lett. 105, 256803 (2010) (how to define and experimentally characterize a topological insulator in the presense of interactions and disorder; title changed compared to preprint arXiv:1004.4229v1)
- D. Pesin and L. Balents, Mott physics and band topology in materials with strong spin-orbit interaction, Nature Phys. 6, 376 (2010) (pyrochlore iridates)
- R. Moessner and S. L. Sondhi, Irrational charge from topological order, arXiv:1004.2154 (generalization of the concept of induced gauge fields and gauge charges in spin ice) P
- E. G. Moon and C. Xu, Exciton condensations in thin film topological insulator, arXiv:1008.0097, EPL 97, 66008 (2012)
- A. A. Soluyanov and D. Vanderbilt, Wannier representation of Z2 topological insulators, arXiv:1009.1415 (2D, address problem of finding a representation respecting time-reversal symmetry)
- S. Ryu, J. E. Moore, and A. W. W. Ludwig, Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors, arXiv:1010.0936 (analogues of axion electrodynamics in thermal/graviational and magnetic-dipole response, field-theoretical anomalies and their relation to topology, also discuss robustness with respect to interactions)
- T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological characterization of periodically-driven quantum systems, arXiv:1010.6126 (Floquet formalism)
- V. Gurarie, Single particle Green's functions and interacting topological insulators, arXiv:1011.2273
- G. Y. Cho and J. E. Moore, Topological BF field theory description of topological insulators, arXiv:1011.3485, Ann. Phys. 326, 1515 (2011)
- K. Gregor, D. A. Huse, R. Moessner, and S. L. Sondhi, Diagnosing Deconfinement and Topological Order, arXiv:1011.4187
- K.-S. Kim and T. Takimoto, Eliashberg theory for ferromagnetic quantum criticality in the surface of three dimensional topological insulators, arXiv:1011.4851
- A. Yamakage, K. Nomura, K.-I. Imura, and Y. Kuramoto, Disorder-Induced Multiple Transition involving Z2 Topological Insulator, arXiv:1011.5576
- C. W. J. Beenakker, J. P. Dahlhaus, M. Wimmer, and A. R. Akhmerov, Random-matrix theory of Andreev reflection from a topological superconductor, arXiv:1012.0932
- A. Cortijo, A Superconducting instability in the surface of a topological insulator, arXiv:1012.2008 (due to electromagnetic interactions alone)
- J. Chang, P. Jadaun, L. F. Register, S. K. Banerjee, and B. Sahu, Intrinsic and extrinsic perturbations on the topological insulator Bi2Se3 surface states, arXiv:1012.2927
- G. Kells, J. Kailasvuori, J. Slingerland, and J. Vala, Kaleidoscope of topological phases in an exactly solvable spin model, arXiv:1012.5276
- G. E. Volovik, Flat band in the core of topological defects: Bulk-vortex correspondence in topological superfluids with Fermi points, JETP Lett. 93, 66 (2011)
- H. Wang, B. Bauer, M. Troyer, and V. W. Scarola, Identifying quantum topological phases through statistical correlation, Phys. Rev. B 83, 115119 (2011)
- P. Michetti and P. Recher, Bound states and persistent currents in topological insulator rings, Phys. Rev. B 83, 125420 (2011) (2D ring of QSH system, with inner and outer edge, also discuss limiting cases with a single edge, four-band model for the bulk, not only for the edge)
- L. Fu, Topological Crystalline Insulators, Phys. Rev. Lett. 106, 106802 (2011); see also supplemental material
- E. Prodan, Three-dimensional phase diagram of disordered HgTe/CdTe quantum spin-Hall wells, Phys. Rev. B 83, 195119 (2011) (phase diagram for gap, Fermi energy, and disorder strength, disorder does not change the nature of the QSH insulator)
- X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83, 205101 (2011) (LDA+U, can be a Weyl semi-metal in the bulk with Fermi arcs connecting projected Weyl points in the surface Brillouin zone, also suggest axion physics in a narrow phase; title changed compared to preprint) P
- S. Giraud and R. Egger, Electron-phonon scattering in topological insulators, Phys. Rev. B 83, 245322 (2011) (3D, phonons in elastic-continuum picture, lifetime and transport, Boltzmann theory); S. Giraud, A. Kundu, and R. Egger, Electron-phonon scattering in topological insulator thin films, Phys. Rev. B 85, 035441 (2012)
- D. Culcer and S. Das Sarma, Anomalous Hall response of topological insulators, Phys. Rev. B 83, 245441 (2011) (surface of topological insulator with additional magnetic dopants leading to perpendicular magnetization, intrinsic and extrinsic contributions to AHE; do not really show that the AHE can be a probe for the Z2 invariant, in particular since the magnization breaks the AII symmetry class) P
- K. Nomura and N. Nagaosa, Surface-Quantized Anomalous Hall Current and the Magnetoelectric Effect in Magnetically Disordered Topological Insulators, Phys. Rev. Lett. 106, 166802 (2011) (quenched magnetic disorder at surface, also meaning frozen spins, mass term from average magnetization of impurities plus Coulomb and Zeeman disorder; use Kubo formula with exact diagonalization of large finite systems and disorder averaging; predict localization of all surface states (diagonal conductivity goes to zero) and quantized anomalous Hall conductivity, complete localization means that an axion Lagrangian without source terms describes the magnetoelectric response)
- S.-L. Yu, X. C. Xie, and J.-X. Li, Mott Physics and Topological Phase Transition in Correlated Dirac Fermions, Phys. Rev. Lett. 107, 010401 (2011)
- E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. A. Fisher, Interaction effects in topological superconducting wires supporting Majorana fermions, Phys. Rev. B 84, 014503 (2011)
- G. Tkachov and E. M. Hankiewicz, Anomalous galvanomagnetism, cyclotron resonance, and microwave spectroscopy of topological insulators, Phys. Rev. B 84, 035405 (2011)
- G. Tkachov and E. M. Hankiewicz, Weak antilocalization in HgTe quantum wells and topological surface states: Massive versus massless Dirac fermions, Phys. Rev. B 84, 035444 (2011) (comparison of 3D topological-insulator surfaces and HgTe quantum wells, which are gapped)
- A. P. Schnyder and S. Ryu, Topological phases and flat surface bands in superconductors without inversion symmetry, Phys. Rev. B 84, 060504(R) (2011)
- P. Hosur, P. Ghaemi, R. S. K. Mong, and A. Vishwanath, Majorana Modes at the Ends of Superconductor Vortices in Doped Topological Insulators, Phys. Rev. Lett. 107, 097001 (2011)
- O. A. Tretiakov, Ar. Abanov, and J. Sinova, Holey topological thermoelectrics, Appl. Phys. Lett. 99, 113110 (2011) (topological insulator with many pores in the bulk)
- R. Takahashi and S. Murakami, Gapless Interface States between Topological Insulators with Opposite Dirac Velocities, Phys. Rev. Lett. 107, 166805 (2011)
- D.-H. Lee, Effects of Interaction on Quantum Spin Hall Insulators, Phys. Rev. Lett. 107, 166806 (2011) (Kane-Mele-Hubbard model, arbitrarily small Hubbard U leads to local moments at the edges, transition to AFM Mott insulator at larger U, discusses nature of this transition)
- D. M. Badiane, M. Houzet, and J. S. Meyer, Nonequilibrium Josephson Effect through Helical Edge States, Phys. Rev. Lett. 107, 177002 (2011) (conventional superconductor-QSH edge within magnetic barrier-conventional superconductor)
- V. M. Apalkov and T. Chakraborty, Interacting Dirac Fermions on a Topological Insulator in a Magnetic Field, Phys. Rev. Lett. 107, 186801 (2011)
- G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr2Se4, Phys. Rev. Lett. 107, 186806 (2011) (proposal of three-dimensional Weyl fermions in this known ferromagnetic compound, based on DFT)
- M. Barkeshli and X.-L. Qi, Topological response theory of doped topological insulators, Phys. Rev. Lett. 107, 206602 (2011) ("doped" meaning metallic, theory is applied to the Hall effect at the surface)
- L. Jiang, D. Pekker, J. Alicea, G. Refael, Y. Oreg, and F. von Oppen, Unconventional Josephson Signatures of Majorana Bound States, Phys. Rev. Lett. 107, 236401 (2011) (topological superconductor/conventional superconductor/topological superconductor, another unconventional Josephson effect, distinct from Kitaev's suggestion) P
- D. Tilahun, B. Lee, E. M. Hankiewicz, and A. H. MacDonald, Quantum Hall Superfluids in Topological Insulator Thin Films, Phys. Rev. Lett. 107, 246401 (2011) (condensation of excitons formed between the two surfaces of a thin topological-insulator film)
- P. Schwab, R. Raimondi, and C. Gorini, Spin-charge locking and tunneling into a helical metal, EPL 93, 67004 (2011) (semiclassical theory: kinetic equation for model with spin-momentum locking)
- K.-Y. Yang, Y.-M. Lu, and Y. Ran, Quantum Hall effects in a Weyl Semi-Metal: possible application in pyrochlore Iridates, Phys. Rev. B 84, 075129 (2011) (pressure-induced anomalous Hall effect and magnetic-field-induced CDW with wavevector connecting Weyl modes, also general theory of anomalous Hall effect in Weyl semi-metals)
- T. L. Hughes, R. G. Leigh, and E. Fradkin, Torsional Response and Dissipationless Viscosity in Topological Insulators, arXiv:1101.3541
- J.-M. Hou, W.-X. Zhang, and G.-X. Wang, Three-dimensional topological insulators in the octahedron-decorated cubic lattice, arXiv:1101.3652
- J. Vidal, X. Zhang, J.-W. Luo, and A. Zunger, GW identification of False-positive and False-negative assignments of Topological Insulators and Semimetals in Density-Functional Calculations, arXiv:1101.3734
- D. L. Bergman, Axion response in gapless systems, arXiv:1101.4233 (finds that the magnetoelectric response in bulk-gapless topological systems is generically non-trivial but not quantized)
- T. Yokoyama and S. Murakami, Transverse magnetic heat transport on the topological surface, arXiv:1101.5234 (ferromagnetic layer on a topological-insulator surface)
- H.-Z. Lu, J. Shi, and S.-Q. Shen, Competing weak localization and anti-localization in topological surface states, arXiv:1101.5437 (induced by magnetic impurities) P
- M. Wimmer, A. R. Akhmerov, J. P. Dahlhaus, and C. W. J. Beenakker, Quantum point contact as a probe of a topological superconductor, arXiv:1101.5795
- M. H. Freedman, L. Gamper, C. Gils, S. V. Isakov, S. Trebst, and M. Troyer, Topological Phases: An Expedition off Lattice, arXiv:1102.0270 (quantum graph models with fluctuating edges)
- M. Sato, Y. Tanaka, K. Yada, and T. Yokoyama, Topology of Andreev Bound States with Flat Dispersion, arXiv:1102.1322 (criterion for the existence of dispersionless Andreev bound states)
- F. Baroni, A toy model with continuous phase transition induced by topology, arXiv:1102.3276
- J. C. Budich and B. Trauzettel, Low energy theories describing topological properties of periodic systems, arXiv:1102.3282 (condition under which a topological invariant results from a local region in the Brillouin zone, close to a high-symmetry point)
- A. M. Black-Schaffer and J. Linder, Magnetization dynamics and Majorana fermions in ferromagnetic Josephson junctions along the quantum spin Hall edge, arXiv:1102.3403
- Y. Tanaka, A. Furusaki, and K. A. Matveev, Conductance of a helical edge liquid coupled to a magnetic impurity, arXiv:1102.4629
- A. A. Soluyanov and D. Vanderbilt, Computing topological invariants without inversion symmetry, arXiv:1102.5600 (use a special gauge, goal is implementation in DFT code packages)
- L. Isaev, Y. H. Moon, and G. Ortiz, Bulk-boundary correspondence in three dimensional topological insulators, arXiv:1103.0025 (discussing experimental distinguishability)
- A. C. Potter and P. A. Lee, Engineering a p+ip Superconductor: Comparison of Topological Insulator and Rashba Spin-Orbit Coupled Materials, arXiv:1103.2129
- X.-Y. Feng, H. Chen, C. Cao, and J. Dai, Topological insulators with perfect vacancy superstructure and possible implications for iron chalcogenide superconductors, arXiv:1103.2538
- M. Liu, J. Zhang, C.-Z. Chang, Z. Zhang, X. Feng, K. Li, K. He, L. Wang, X. Chen, X. Dai, Z. Fang, Q.-K. Xue, X. Ma, and Y. Wang, Crossover between weak localization and weak antilocalization in magnetically doped topological insulator, arXiv:1103.3353
- E. Prodan, Manifestly gauge independent Z2 invariants, arXiv:1103.4603
- Y. Ito, Y. Yamaji, and M. Imada, Stability of Unconventional Superconductivity on Surfaces of Topological Insulators, arXiv:1104.1232 (stability against non-magnetic scatterers, Abrikosov-Gor'kov approach)
- P. W. Brouwer, M. Duckheim, A. Romito, and F. von Oppen, Probability Distribution of Majorana End-State Energies in Disordered Wires, arXiv:1104.1531 (disorder effects on the distribution of the [exponentially small in L] energy of end states in length-L topological-superconductor wires)
- A. M. Essin and V. Gurarie, Bulk-boundary correspondence of topological insulators from their Green's functions, arXiv:1104.1602 (standard invariants expressed in terms of Green function, invariants for bulk and edge, allowing to test whether a proposed Hamiltonian describes an edge of a TI/TS)
- F. Virot, R. Hayn, M. Richter, and J. van den Brink, Metacinnabar (beta-HgS): a strong 3D topological insulator with highly anisotropic surface states, arXiv:1105.0501 (DFT)
- T. L. Schmidt, Current Correlations in Quantum Spin Hall Insulators, arXiv:1105.3872 (tunneling between edges, Luttinger-liquid picture)
- X.-L. Qi, Generic Wavefunction Description of Fractional Quantum Anomalous Hall States and Fractional Topological Insulators, arXiv:1105.4298 (generalization of FQHE concepts)
- Z. Ringel, Y. E. Kraus, and A. Stern, The strong side of weak topological insulators, arXiv:1105.4351 (claim that the surface states of weak topological insulators are in fact not fragile in the presence of time-reversal invariant disorder, as has previously been thought)
- X. Hu, M. Kargarian, and G. A. Fiete, Topological insulators and fractional quantum Hall effect on the ruby lattice, arXiv:1105.4381
- D.-H. Lee, The effects of interaction on quantum spin Hall insulators, arXiv:1105.4900 (field-theoretical approach, among other findings there is a Kosterlitz-Thouless nontrivial-trival transition)
- R. Shankar and A. Vishwanath, Equality of bulk wave functions and edge correlations in topological superconductors: A spacetime derivation, arXiv:1105.5214
- W. Witczak-Krempa and Y. B. Kim, Topological and magnetic phases of interacting electrons in the pyrochlore iridates, arXiv:1105.6108
- M. I. Katsnelson, F. Guinea, and M. A. H. Vozmediano, Gauge fields at the surface of topological insulators, arXiv:1105.6132
- K.-S. Park and H. Han, Index theorem, spin Chern Simons theory and fractional magnetoelectric effect in strongly correlated topological insulators, arXiv:1105.6316
- W. Wu, S. Rachel, W.-M. Liu, and K. Le Hur, Quantum Spin Hall Insulators with Interactions and Lattice Anisotropy, arXiv:1106.0943
- G. Tkachov and E. M. Hankiewicz, Two-dimensional topological insulators in quantizing magnetic fields, arXiv:1106.1059 (fate of the helical edge states)
- Y. J. Wang, H. Lin, Tanmoy Das, M. Z. Hasan, and A. Bansil, Topological insulators in the quaternary chalcogenide compounds and ternary famatinite compounds, arXiv:1106.3316
- A. M. DaSilva, The stability of the fractional quantum Hall effect in topological insulators, arXiv:1106.4418
- J. W. F. Venderbos, M. Daghofer, and J. van den Brink, Narrowing of topological bands due to electronic orbital degrees of freedom, arXiv:1106.4439
- T. Yokoyama, Current induced magnetization reversal on the surface of a topological insulator, arXiv:1107.0116
- Hai-Zhou Lu and Shun-Qing Shen, Weak localization of bulk channels in topological insulator thin film, arXiv:1107.3959 (weak antilocalization in 3D TI expected due to strong spin-orbit coupling, but bulk states may actually contribute weak localization; consequences for magnetotransport)
- D. Culcer, Interacting topological insulators out of equilibrium, arXiv:1107.4362 (transport at zero temperature, current-induced spin polarization is enhanced by interactions and disorder, but never becomes singular)
- H. K. Pal, V. I. Yudson, and D. L. Maslov, Effect of Electron-electron Interaction on Surface Transport in Three-Dimensional Topological Insulators, arXiv:1108.2435 (effect of interactions on transport at surface, importance of Fermi surface geometry: convex or concave)
- C. N. Varney, K. Sun, M. Rigol, and V. Galitski, Topological Phase Transitions for Interacting Finite Systems, arXiv:1108.2507
- T. Grover, A. M. Turner, and A. Vishwanath, Entanglement Entropy of Gapped Phases and Topological Order in Three dimensions, arXiv:1108.4038 (and in other numbers of dimensions)
- V. Aji, Adler-Bell-Jackiw anomaly in Weyl semi-metals: Application to Pyrochlore Iridates, Phys. Rev. B 85, 241101(R) (2012) (magnetotransport) P
- S. Deng, L. Viola, and G. Ortiz, Majorana modes in time-reversal invariant s-wave topological superconductors, arXiv:1108.4683 (multi-band superconductor)
- H.-J. Zhang, X. Zhang, and S.-C. Zhang, Quantum Anomalous Hall Effect in Magnetic Topological Insulator GdBiTe3, arXiv:1108.4857
- M. Levin, F. J. Burnell, M. Koch-Janusz, and A. Stern, Exactly soluble models for fractional topological insulators in 2 and 3 dimensions, arXiv:1108.4954
- H. Guo and S.-Q. Shen, Topological phase in one-dimensional interacting fermion system, arXiv:1108.4996
- K. Nomura, S. Ryu, A. Furusaki, and N. Nagaosa, Cross-Correlated Responses of Topological Superconductors and Superfluids, arXiv:1108.5054
- P. Nikolic, Charge and spin fractionalization in strongly correlated topological insulators, arXiv:1108.5388
- Q. Liu, Stationary phase approach to the quasiparticle interference on the surface of three dimensional strong topological insulators, arXiv:1108.6051; Q. Liu, X.-L. Qi, and S.-C. Zhang, Stationary phase approximation approach to the quasiparticle interference on the surface of a strong topological insulator, arXiv:1202.1611
- K.-T. Chen and P. A. Lee, An Unified Formalism for calculating Polarization, Magnetization, and more in a Periodic Insulator, arXiv:1108.6122 (here shown for non-interacting electrons, also gives magnetoelectric response relevant for topological insulators)
- R. Zitko and P. Simon, Quantum impurity coupled to Majorana edge fermions, arXiv:1108.6142
- Y.-M. Lu and Y. Ran, Symmetry protected fractional Chern insulators and fractional topological insulators, arXiv:1109.0226
- G. Strübi, W. Belzig, M.-S. Choi, and C. Bruder, Interferometric and noise signatures of Majorana fermion edge states in transport experiments, arXiv:1109.0393
- A. Rüegg and G. A. Fiete, Topological insulators from complex orbital order in transition-metal oxides heterostructures, arXiv:1109.1297 (topological state generated by local interactions)
- R. Citro, F. Romeo, and N. Andrei, Electrically Controlled Pumping of Spin Currents in Topological Insulators, arXiv:1109.1711 (proposal and theoretical analysis)
- S. Ryu and K. Nomura, Disorder-induced metal-insulator transitions in three-dimensional topological insulators and superconductors, arXiv:1109.2942 (classes AII, AIII, CI, DIII)
- T. H. Hsieh and L. Fu, Topological Superconductivity and Surface Andreev Bound States in Doped Semiconductors: Application to CuxBi2Se3, arXiv:1109.3464; superceded by Majorana Fermions and Exotic Surface Andreev Bound States in Topological Superconductors: Application to CuxBi2Se3, arXiv:1112.1951 P
- Y.-Z. You, I. Kimchi, and A. Vishwanath, Doping a spin-orbit Mott Insulator: Topological Superconductivity from the Kitaev-Heisenberg Model and possible application to (Na2/Li2)IrO3, arXiv:1109.4155
- S. Likun and K. Chang, Probing electron Zitterbewegung in Topological Insulators, arXiv:1109.4771
- O. F. Dayi, M. Elbistan, and E. Yunt, Effective field theory of topological insulator and the Foldy-Wouthuysen transformation, arXiv:1109.4808
- J. C. Budich, F. Dolcini, P. Recher, and B. Trauzettel, Phonon induced backscattering in helical edge states, arXiv:1109.5188 (QSH edge, inelastic backscattering by phonons in presence of spin-orbit coupling is not forbidden by symmetry but quantized conductivity is nevertheless protected to leading order, also with Coulomb interaction)
- Z. Davoudi and A. Karch, Surface plasmons on a thin film topological insulator, arXiv:1109.5723
- F. Dolcini, Signature of interaction in dc transport of ac gated Quantum Spin Hall edge states, arXiv:1109.5850 (tunneling between two QSH edges in the presence of ac gate potential)
- Z.-G. Fu, P. Zhang, Z. Wang, and S.-S. Li, Quasiparticle states and quantum interference induce by magnetic impurities on a two-dimensional topological superconductor, arXiv:1109.6198 (topological superconductor realized by s-wave superconducting film on topological insulator, 2D Bogoliubov-de Gennes model)
- L. Wang, H. Jiang, X. Dai, and X. C. Xie, Pole expansion of self-energy and interaction effect on topological insulators, arXiv:1109.6292
- T. Hyart, A. R. Wright, G. Khaliullin, and B. Rosenow, Competition between d-wave and topological p-wave superconductivity in the doped Kitaev-Heisenberg model, arXiv:1109.6681 (slave bosons)
- H. T. Ueda, A. Takeuchi, G. Tatara, and T. Yokoyama, Topological charge pumping effect by the magnetization dynamics on the Surface of Three-Dimensional Topological Insulators, arXiv:1109.6816
- A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal semimetals, arXiv:1110.1089
- M. Sitte, A. Rosch, E. Altman, and L. Fritz, Topological insulators in magnetic fields: Quantum Hall effect and edge channels with non-quantized θ-term, arXiv:1110.1363 (2D surface of cuboid 3D topological-insulator crystal, gapped by magnetic fields, leading to 1D edge channels)
- M. Hohenadler and F. F. Assaad, Luttinger Liquid Physics and Spin-Flip Scattering on Helical Edges, arXiv:1110.3322 (QSH edge, Kane-Mele-Hubbard model)
- C.-X. Liu, X.-L. Qi, and S.-C. Zhang, Half quantum spin Hall effect on the surface of weak topological insulators, arXiv:1110.3420
- D. Zhang and C. S. Ting, Impact of Step Defects on Surface States of Topological Insulators, arXiv:1110.3722
- D. K. Efimkin, Yu. E. Lozovik, and A. A. Sokolik, Collective excitations on a surface of topological insulator, arXiv:1110.4023 (coupled SDW/CDW)
- Y. Baum and A. Stern, Magnetic Instability on the Surface of Topological Insulators, arXiv:1110.4037 (magnetization appears above a critical interaction strength)
- J. D. Sau and S. Tewari, Topologically protected surface Majorana arcs and bulk Weyl fermions in ferromagnetic superconductors, arXiv:1110.4110
- G. E. Volovik, Flat band in topological matter: possible route to room-temperature superconductivity, arXiv:1110.4469 (these are the type of flat bands introduced by Schnyder and Ryu etc.)
- B. A. Bernevig and N. Regnault, Emergent Many-Body Translational Symmetries of Abelian and Non-Abelian Fractionally Filled Topological Insulators, arXiv:1110.4488
- I. Martin and A. F. Morpurgo, Majorana fermions in superconducting helical magnets, arXiv:1110.5637
- O. A. Tretiakov, Ar. Abanov, and J. Sinova, Thermoelectric efficiency of topological insulators in a magnetic field, arXiv:1110.5964 (figure of merit zT can be large if the system has a high concentration of pores)
- A. Romito, J. Alicea, G. Refael, and F. von Oppen, Manipulating Majorana fermions using supercurrents, arXiv:1110.6193
- C. M. Wang and F. J. Yu, Hexagonal Warping Effects on the Surface Transport in Topological Insulators, arXiv:1110.6486
- X. Zhang, H. Zhang, C. Felser, and S.-C. Zhang, Actinide Topological Insulator Materials with Strong Interaction, arXiv:1111.1267
- C. Weeks and M. Franz, Flat bands with non-trivial topology in three dimensions, arXiv:1111.1447 (nearly flat bands due to spin-orbit coupling, discuss effect of repulsive interaction)
- P. G. Silvestrov, P. W. Brouwer, and E. G. Mishchenko, Pseudo-Helical Surface States in Topological Insulators, arXiv:1111.3650
- R. Bianco and R. Resta, Mapping topological order in coordinate space, arXiv:1111.5697
- P. Rakyta, A. Palyi, and J. Cserti, Electronic standing waves on the surface of the topological insulator Bi2Te3, arXiv:1111.6184
- T. Yoshida, S. Fujimoto, and N. Kawakami, Correlation effects on a topological insulator at finite temperatures, arXiv:1111.6250
- M. S. Foster, LDOS Multifractal Hunter's Guide to Dirty Topological Insulators, arXiv:1111.6639
- J. Maciejko, X.-L. Qi, A. Karch, and S.-C. Zhang, Models of three-dimensional fractional topological insulators, arXiv:arXiv:1111.6816 (possible in the presense of strong correlations)
- Q. Meng, T. L. Hughes, M. J. Gilbert, and S. Vishveshwara, Gate controlled Spin-Density Wave and Chiral FFLO Superconducting phases in interacting Quantum Spin Hall edge states, arXiv:1112.0289
- T. Grover, Quantum Entanglement and Detection of Topological Order in Numerics, arXiv:1112.2215
- A. Yamakage, K. Yada, M. Sato, and Y. Tanaka, Theory of Tunneling Spectroscopy in Superconducting Topological Insulator, arXiv:1112.5036 (tunneling conductance is calculated from transmission probability obtained from the Bogoliubov-de Gennes equation, see also arXiv:1112.1951 cited above)
- R. W. Reinthaler and E. M. Hankiewicz, Interplay of bulk and edge states in transport of two-dimensional topological insulators, arXiv:1112.5414 (normal-metal/QSH insulator/normal-metal structure, no interaction)
- D. Schmeltzer, A geometrical approach to Topological Insulators with defects, arXiv:1112.5461 (involving spin connections)
- S. Nakosai, Y. Tanaka, and N. Nagaosa, Topological superconductivity in bilayer Rashba system, arXiv:1112.5822 (two-dimensional DIII case)
- X.-G. Wen, Symmetry-protected topological phases in noninteracting fermion systems, Phys. Rev. B 85, 085103 (2012) (includes global U(1) symmetry, various spin rotations, and fermion-number parity, in later section also discusses translational symmetries and lower-dimensional defects; includes but extends the tenfold way; contains typos)
- A. Rüegg and G. A. Fiete, Topological Order and Semions in a Strongly Correlated Quantum Spin Hall Insulator, Phys. Rev. Lett. 108, 046401 (2012) (on the honeycomb lattice)
- T. Neupert, L. Santos, S. Ryu, C. Chamon, and C. Mudry, Topological Hubbard Model and Its High-Temperature Quantum Hall Effect, Phys. Rev. Lett. 108, 046806 (2012)
- P. Hosur, S. A. Parameswaran, and A. Vishwanath, Charge Transport in Weyl Semimetals, Phys. Rev. Lett. 108, 046602 (2012) (theory including Coulomb interaction and disorder, compared to experiments on pyrochlore iridates)
- B. Dóra, J. Cayssol, F. Simon, and R. Moessner, Optically Engineering the Topological Properties of a Spin Hall Insulator, Phys. Rev. Lett. 108, 056602 (2012) (Floquet formalism)
- R. S. K. Mong, J. H. Bardarson, and J. E. Moore, Quantum Transport and Two-Parameter Scaling at the Surface of a Weak Topological Insulator, Phys. Rev. Lett. 108, 076804 (2012) (numerical calculation of the surface conductivity using a transfer-matrix approach by Bardarson et al. for non-interacting electrons on a lattice)
- C. H. Kim, H. S. Kim, H. Jeong, H. Jin, and J. Yu, Topological Quantum Phase Transition in 5d Transition Metal Oxide Na2IrO3, Phys. Rev. Lett. 108, 106401 (2012) (DFT-LDA)
- P. K. Ghosh, A note on the topological insulator phase in non-Hermitian quantum systems, J. Phys.: Condens. Matter 24, 145302 (2012) (non-Hermitian systems that are related to Hermitian ones by non-unitary similarity transforms; only real eigenvalues)
- B. M. Terhal, F. Hassler, and D. P. DiVincenzo, From Majorana fermions to topological order, Phys. Rev. Lett. 108, 260504 (2012)
- F. S. Nogueira and I. Eremin, Strong-coupling topological Josephson effect in quantum wires, J. Phys.: Condens. Matter 24, 325701 (2012)
- J. D. Sau and S. Das Sarma, Realizing a robust practical Majorana chain in a quantum-dot-superconductor linear array, Nature Commun. 3, 964 (2012)
- A. Medhi and V. B. Shenoy, Continuum theory of edge states of topological insulators: variational principle and boundary conditions, J. Phys.: Condens. Matter 24, 355001 (2012)
- B. Yan, L. Müchler, and C. Felser, Prediction of Weak Topological Insulators in Layered Semiconductors, Phys. Rev. Lett. 109, 116406 (2012) (DFT)
- Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, and Y. Ando, Experimental realization of a topological crystalline insulator in SnTe, Nature Phys. 8, 800 (2012) (topological crystalline insulator: protected by inversion symmetry, Dirac-type surface bands); P. Dziawa, B. J. Kowalski, K. Dybko, R. Buczko, A. Szczerbakow, M. Szot, E. Lusakowska, T. Balasubramanian, B. M. Wojek, M. H. Berntsen, O. Tjernberg, and T. Story, Toplogical crystalline insulator states in Pb1-xSnxSe, Nature Mater. doi:10.1038/nmat3449 (2012)
- A. M. Lobos, R. M. Lutchyn, and S. Das Sarma, Interplay of Disorder and Interaction in Majorana Quantum Wires, Phys. Rev. Lett. 109, 146403 (2012) (topological superconducting wire induced by proximity)
- J. Kim, J. Kim, K.-S. Kim, and S.-H. Jhi, Topological Phase Transition in the Interaction of Surface Dirac Fermions in Heterostructures, Phys. Rev. Lett. 109, 146601 (2012)
- F. Wang, Q. Liu, T. Ma, and X. Jiang, Impurity-induced bound states in superconductors with topological order, J. Phys.: Condens. Matter 24, 455701 (2012)
- R. Hützen, A. Zazunov, B. Braunecker, A. Levy Yeyati, and R. Egger, Majorana Single-Charge Transistor, Phys. Rev. Lett. 109, 166403 (2012)
- H. Wei, S.-P. Chao, and V. Aji, Excitonic Phases from Weyl Semimetals, Phys. Rev. Lett. 109, 196403 (2012) P
- N. R. Cooper and R. Moessner, Designing Topological Bands in Reciprocal Space, Phys. Rev. Lett. 109, 215302 (2012) (cold atoms in optical lattice, artificial uniform magnetic field)
- R. Ilan, J. Cayssol, J. H. Bardarson, and J. E. Moore, Non-Equilibrium Transport Through a Gate-Controlled Barrier on the Quantum Spin Hall Edge, Phys. Rev. Lett. 109, 216602 (2012) (QSH edge in applied magnetic field, Rashba spin-orbit coupling assumed to exist only on a finite interval, with strength tunable by gate voltage; non-interacting and interacting cases, treated with methods for Luttinger liquids, including the Bethe ansatz)
- H.-C. Jiang, Z. Wang, and L. Balents, Identifying topological order by entanglement entropy, Nature Physics 8, 902 (2012)
- F. Pientka, G. Kells, A. Romito, P. W. Brouwer, and F. von Oppen, Enhanced Zero-Bias Majorana Peak in the Differential Tunneling Conductance of Disordered Multisubband Quantum-Wire/Superconductor Junctions, Phys. Rev. Lett. 109, 227006 (2012)
- C.-K. Chiu, P. Ghaemi, and T. L. Hughes, Stabilization of Majorana Modes in Magnetic Vortices in the Superconducting Phase of Topological Insulators using Topologically Trivial Bands, Phys. Rev. Lett. 109, 237009 (2012)
- F. S. Nogueira and I. Eremin, Fluctuation-Induced Magnetization Dynamics and Criticality at the Interface of a Topological Insulator with a Magnetically Ordered Layer, Phys. Rev. Lett. 109, 237203 (2012)
- L. Fu and C. L. Kane, Topology, Delocalization via Average Symmetry and the Symplectic Anderson Transition, Phys. Rev. Lett. 109, 246605 (2012) (proliferation of vortexlike defects)
- M. S. Foster and E. A. Yuzbashyan, Interaction-Mediated Surface-State Instability in Disordered Three-Dimensional Topological Superconductors with Spin SU(2) Symmetry, Phys. Rev. Lett. 109, 246801 (2012) (arbitrarily weak interactions destabilize surface states of disordered CI topological superconductor)
- P. Delplace, J. Li, and M. Büttiker, Magnetic-Field-Induced Localization in 2D Topological Insulators, Phys. Rev. Lett. 109, 246803 (2012) (random magnetic flux due to random shape of QSH edge, for small B field, localization length scales with 1/B2)
- R.-J. Slager, A. Mesaros, V. Juricic, and J. Zaanen, The space group classification of topological band insulators, Nature Physics (2012), doi:10.1038/nphys2513, arXiv:1209.2610 (finer classification of AII, time-resersal-symmetric class including space groups, in two and three dimensions) P
- T. D. Stanescu, S. Tewari, J. D. Sau, and S. Das Sarma, To Close or Not to Close: The Fate of the Superconducting Gap Across the Topological Quantum Phase Transition in Majorana-Carrying Semiconductor Nanowires, Phys. Rev. Lett. 109, 266402 (2012) (on difficulty in interpreting experiments on Majorana states in induced topological superconducting wires); J. Liu, A. C. Potter, K. T. Law, and P. A. Lee, Zero-Bias Peaks in the Tunneling Conductance of Spin-Orbit-Coupled Superconducting Wires with and without Majorana End-States, Phys. Rev. Lett. 109, 267002 (2012) (concerned with similar problems)
- J. Hu, J. Alicea, R. Wu, and M. Franz, Giant Topological Insulator Gap in Graphene with 5d Adatoms, Phys. Rev. Lett. 109, 266801 (2012) (DFT predictions)
- N. Y. Yao, C. R. Laumann, A. V. Gorshkov, S. D. Bennett, E. Demler, P. Zoller, and M. D. Lukin, Topological Flat Bands from Dipolar Spin Systems, Phys. Rev. Lett. 109, 266804 (2012) (spin system, bosonization)
- D. Soriano, F. Ortmann, and S. Roche, Three-Dimensional Models of Topological Insulators: Engineering of Dirac Cones and Robustness of the Spin Texture, Phys. Rev. Lett. 109, 266805 (2012)
- C.-E. Bardyn, M. A. Baranov, E. Rico, A. Imamoglu, P. Zoller, and S. Diehl, Majorana Modes in Driven-Dissipative Atomic Superfluids With Zero Chern Number, arXiv:1201.2112 (p-wave-paired fermions)
- T. L. Schmidt, S. Rachel, F. von Oppen, and L. I. Glazman, Inelastic electron backscattering in a generic helical edge channel, arXiv:1201.0278
- I. Kuzmenko, A. Golub, and Y. Avishai, Kondo Tunneling into a Quantum Spin Hall Insulator, arXiv:1201.0583
- Y.-Y. Xiang, W.-S. Wang, Q.-H. Wang, and D.-H. Lee, Time reversal invariant topological superconductivity in correlated non-centrosymmetric systems, arXiv:1201.2003
- A. C. Potter and P. A. Lee, Topological Superconductivity and Majorana Fermions in Metallic Surface-States, arXiv:1201.2176
- M. M. Vazifeh and M. Franz, Spin Response of Electrons on the Surface of a Topological Insulator, arXiv:1201.2424
- Z.-C. Gu and X.-G. Wen, Symmetry-protected topological orders for interacting fermions - fermionic topological non-linear sigma-models and a group super-cohomology theory, arXiv:1201.2648 (long paper; develop the group super-cohomology theory and use it to construct interacting fermionic topological models)
- A. A. Zyuzin, Si Wu, and A. A. Burkov, Weyl semimetal with broken time reversal and inversion symmetries, arXiv:1201.3624
- S. Adam, E. H. Hwang, and S. Das Sarma, 2D transport and screening in topological insulator surface states, arXiv:1201.4433
- A. A. Soluyanov and D. Vanderbilt, Smooth gauge for topological insulators, arXiv:1201.5356
- J. Li, G. Fleury, and M. Büttiker, Scattering theory of chiral Majorana fermion interferometry, arXiv:1202.1018 (chiral mode at the edge of a 2D superconductor, e.g., chiral p-wave superconductors, contacted by several normal leads; one central idea is to describe the lead electrons also in terms of Majorana states)
- Y. Tada, R. Peters, M. Oshikawa, A. Koga, N. Kawakami, and S. Fujimoto, A study on correlation effects in two dimensional topological insulators, arXiv:1202.3203
- X.-L. Qi, A new class of (2+1)-d topological superconductor with Z8 topological classification, arXiv:1202.3983 (topological invariant for an interacting topological superconductor, argument is based on analysis of edge states: Under what conditions can a symmetry-allowed interaction open a gap in the edge spectrum?)
- A. Go, W. Witczak-Krempa, G. S. Jeon, K. Park, and Y. B. Kim, Correlated topological phases in 3D complex oxides via Green's functions, arXiv:1202.4460; Correlation Effects on 3D Topological Phases: From Bulk to Boundary, Phys. Rev. Lett. 109, 066401 (2012) (effect of correlations, cellular DMFT)
- S. Ryu and S.-C. Zhang, Interacting topological phases and modular invariance, arXiv:1202.4484 (interaction effects in 2D topological superconductors, Z8 topological invariant, related to arXiv:1202.3983 above); H. Yao and S. Ryu, Interaction effect on topological classification of superconductors in two dimensions, arXiv:1202.5805
- A. M. Black-Schaffer and A. V. Balatsky, Subsurface impurities and vacancies in a three-dimensional topological insulator, arXiv:1202.4872
- A. Narayan and S. Sanvito, Andreev reflection in two-dimensional topological insulators with either conserved or broken time-reversal symmetry, arXiv:1202.4874
- D. Bernard, E.-A. Kim, and A. LeClair, Edge states for topological insulators in two dimensions and their Luttinger-like liquids, arXiv:1202.5040 (more detailed classification of topological insulators and superconductors in two dimensions, starting from the "periodic table")
- T. Neupert, L. Santos, S. Ryu, C. Chamon, and C. Mudry, Density algebra for three-dimensional topological insulators, arXiv:1202.5188 (non-commuting real-space coordinates in analogy to lowest-Landau-level-projected states in the quantum Hall system; also discuss a model from class AIII that has a flat zero-energy band in the 3D bulk)
- Z. Wang and S.-C. Zhang, Simplified topological invariants for interacting insulators, arXiv:1203.1028; Correlated topological superconductors and topological phase transitions via Green's function, arXiv:1204.3149 (extension to topological superconductors; topological order parameters defined in terms of Green functions at zero frequency)
- M. Lasia and L. Brey, Temperature Induced Spin Density Wave in Magnetic Doped Topological Insulators, arXiv:1203.1436 (ferromagnetic order and SDW at surfaces of topological insulators with isovalent magnetic impurities)
- W. Beugeling, C. X. Liu, E. G. Novik, L. W. Molenkamp, and C. Morais Smith, Reentrant topological phases in Mn-doped HgTe quantum wells, arXiv:1203.1491 (as seen in quantum anomalous Hall effect)
- G. Schubert, H. Fehske, L. Fritz, and M. Vojta, The fate of topological-insulator surface states under strong disorder, arXiv:1203.2628 (disorder only at surface of cuboid with open boundary conditions, intermediate disorder destroys the Dirac cone of surface states, Dirac cone reappears at stronger disorder as the surface state is pushed into the bulk, purely 2D description does not work; numerical diagonalization)
- J. C. Budich, R. Thomale, G. Li, M. Laubach, and S.-C. Zhang, Fluctuation-induced Topological Quantum Phase Transitions in Quantum Spin Hall and Quantum Anomalous Hall Insulators, arXiv:1203.2928 (Mott MIT driven by Hubbard U in 2D quantum-spin-Hall insulator and 2D quantum-anomalous-Hall insulator, i.e., lattice version of IQH system)
- G. Y. Cho, C. Xu, J. E. Moore, and Y. B. Kim, Dyon condensation in topological Mott insulators, arXiv:1203.4593 (a possible additional transition in the topological Mott state; dyons are monopoles of an emergent gauge theory)
- L. Fidkowski, J. Alicea, N. Lindner, R. M. Lutchyn, and M. P. A. Fisher, Universal transport signatures of Majorana fermions in superconductor-Luttinger liquid junctions, arXiv:1203.4818
- A. Rosch, Unwinding of a one-dimensional topological insulators, arXiv:1203.5541
- F. Zhang, C. L. Kane, and E. J. Mele, Surface States of Topological Insulators, arXiv:1203.6382 (effective model)
- B. Seradjeh, Majorana edge modes of topological exciton condensate with superconductors, arXiv:1203.6628
- D. Asahi and N. Nagaosa, Topological indices, defects and Majorana fermion in chiral superconductors, arXiv:1203.6707
- X.-T. An, Y.-Y. Zhang, J.-J. Liu, and S.-S. Li, Pure spin current in a two-dimensional topological insulator, arXiv:1203.6726
- X.-J. Liu, Andreev Bound states in One Dimensional Topological Superconductor, arXiv:1204.0570
- J.-H. Yuan, Z. Cheng, J.-J. Zhang, Q.-J. Zeng, and J.-P. Zhang, Controllable electron transport on the surface of a topological insulator, arXiv:1204.0956 (FM-normal-FM tunnel junction on top of topological insulator, anomalous magnetoresistance, tunable by a gate voltage)
- S. Tewari, T. D. Stanescu, J. D. Sau, and S. Das Sarma, The return of the minigap: The delicate issue of a topological gap in semiconductor Majorana wires, arXiv:1204.3637
- Y. Asano and Y. Tanaka, Majorana Fermions and Odd-frequency Cooper Pairs in a Nano Wire, arXiv:1204.4226
- J. He, B. Wang, and S.-P. Kou, Ferromagnetism and Antiferromagnetism of Correlated Topological Insulator with Flat Band, arXiv:1204.4766
- T. Habe and Y. Asano, Interface Metallic States between a Topological Insulator and a Ferromagnetic Insulator, arXiv:1204.5562
- B. A. Bernevig and N. Regnault, Thin-Torus Limit of Fractional Topological Insulators, arXiv:1204.5682 (with flat bands)
- M. Levin and A. Stern, Classification and analysis of two dimensional abelian fractional topological insulators, arXiv:1205.1244
- B. Swingle, Experimental signatures of 3d fractional topological insulators, arXiv:1205.2085
- Y.-M. Lu and A. Vishwanath, Theory and classification of interacting 'integer' topological phases in two dimensions: A Chern-Simons approach, arXiv:1205.3156
- N. M. Vildanov, Effective field theory description of topological crystalline insulators, arXiv:1205.3560
- T. Sato, K. Segawa, K. Kosaka, S. Souma, K. Nakayama, K. Eto, T. Minami, Y. Ando, and T. Takahashi, Unexpected mass acquisition of Dirac fermions at the quantum phase transition of a topological insulator, arXiv:1205.3654 (Bi-based 3D topological insulator, spontaneous mass generation?)
- K.-I. Imura, Y. Yoshimura, Y. Takane, and T. Fukui, Spherical topological insulator, arXiv:1205.4878 (AII topological insulator of spherical shape)
- S. R. Manmana, A. M. Essin, R. M. Noack, and V. Gurarie, Topological invariants and interacting one-dimensional fermionic systems, arXiv:1205.5095
- T. Meng and L. Balents, Weyl superconductors, arXiv:1205.5202
- P. Adroguer, D. Carpentier, J. Cayssol, and E. Orignac, Diffusion at the Surface of Topological Insulators, arXiv:1205.5209 (class AII, uncorrelated point scatterers) P
- S. Yang, Z.-C. Gu, K. Sun, and S. Das Sarma, Topological flat band models with arbitrary Chern numbers, arXiv:1205.5792
- P. Nikolic, An effective theory of fractional topological insulators in two spatial dimensions, arXiv:1206.1055 (time-reversal-invariant class in 2D, Lagrangian description)
- J. Liu, A. C. Potter, K. T. Law, and P. A. Lee, Zero-bias peaks in spin-orbit coupled superconducting wires with and without Majorana end-states, arXiv:1206.1276 (on the experiments by Kouwenhowen et al. reported in Science; ZBP are possible even without Majorana states, how to distinguish them)
- B. Bauer, R. M. Lutchyn, M. B. Hastings, and M. Troyer, Effect of thermal fluctuations in topological p-wave superconductors, arXiv:1206.1326 (2D topological superconductor in class D, Kosterlitz-Thouless transition)
- T. Grover and A. Vishwanath, Quantum Criticality in Topological Insulators and Superconductors: Emergence of Strongly Coupled Majoranas and Supersymmetry, arXiv:1206.1332 (spontaneous breaking of the symmetry protecting the gapless edge/surface states); T. Grover, D. N. Sheng, and A. Vishwanath, A Lattice Model for Emergent Supersymmetry in D=2 Topological Superconductors, arXiv:1301.7449 (DIII topological superconductor with full bulk gap, spontaneous breaking of time-reversal symmetry by magnetic ordering can lead to gap in edge-state dispersion, study emergent supersymmetry of corresponding model)
- X.-L. Qi, E. Witten, and S.-C. Zhang, Axion topological field theory of topological superconductors, arXiv:1206.1407
- L. Jiang, D. Pekker, J. Alicea, G. Refael, Y. Oreg, A. Brataas, and F. von Oppen, Magneto-Josephson effects in junctions with Majorana bound states, arXiv:1206.1581 (exploit a duality between particle-hole pseudo-spin and real spin, spin Josephson effect with non-standard periodicity in the magnetic-field angle)
- D. Galanakis and T. D. Stanescu, Electrostatic effects and band-bending in doped topological insulators, arXiv:1206.2043
- B. Béri and N. R. Cooper, Topological Kondo effect with Majorana fermions, arXiv:1206.2224 (think of Majorana states at ends of topological-superconductor wires)
- P. Ponte and S.-S. Lee, Emergence of supersymmetry on the surface of three dimensional topological insulators, arXiv:1206.2340
- K. Duivenvoorden and T. Quella, On topological phases of spin chains, arXiv:1206.2462 (classification based on symmetry groups)
- T. Liu, C. Repellin, B. A. Bernevig, and N. Regnault, Fractional Chern Insulators beyond Laughlin states, arXiv:1206.2626
- M. J. Schmidt, Strong correlations at topological insulator surfaces and the breakdown of the bulk-boundary correspondence, arXiv:1206.2646 (3D AII class)
- S. Takei, B. M. Fregoso, V. Galitski, and S. Das Sarma, Topological superconductivity and Majorana fermions in hybrid structures involving cuprate high-Tc superconductors, arXiv:1206.3226 (ferromagnet-cuprate heterostructures involving various layer and wire geometries, Rashba spin-orbit coupling, exotic pairing at the interface, Majorana modes)
- Z. Liu, E. J. Bergholtz, H. Fan, and A. M. Laeuchli, Fractional topological insulators in flat bands with higher Chern number, arXiv:1206.3759
- A. M. Cook, M. M. Vazifeh, and M. Franz, Stability of Majorana Fermions in Proximity-Coupled Topological Insulator Nanowires, arXiv:1206.3829
- T. Yokoyama, Josephson and proximity effects on the surface of a topological insulator, arXiv:1206.3831
- T. Fukui, K. Shiozaki, T. Fujiwara, and S. Fujimoto, Bulk-edge correspondence for Chern topological phases: A viewpoint from a generalized index theorem, arXiv:1206.4410
- J. Yoo, T. Habe, and Y. Asano, Bulk-boundary correspondence in Josephson Junctions, arXiv:1206.4414 (junctions between topological superconductors with different values of topological invariants)
- Y.-L. Wu, N. Regnault, and B. A. Bernevig, Gauge-Fixed Wannier Wave-Functions for Fractional Topological Insulators, arXiv:1206.5773
- Z. Ringel and E. Altman, Persistence of phase boundaries between a topological and trivial Z2 insulator, arXiv:1207.0581 (... when time-reversal invariance is removed)
- J. C. Budich and B. Trauzettel, Z2 Green's function topology of Majorana wires, arXiv:1207.1104 (for classification of interacting and also disordered systems)
- M. Kargarian, A. Langari, and G. A. Fiete, Unusual magnetic phases in the strong interaction limit of two-dimensional topological band insulators in transition metal oxides, arXiv:1207.2156
- O. Viyuela, A. Rivas, and M. A. Martin-Delgado, Out-of-Equilibrium Thermal Effects in a 1D Topological Insulator, arXiv:1207.2198 (Creutz ladder as a 1D topological insulator in class AIII, coupled to a bosonic bath in equilibrium, study relaxational dynamics using a Markovian master equation, numerics for relatively short ladders) P
- A. Tagliacozzo, P. Lucignano, and F. Tafuri, Superconductive proximity in a Topological Insulator slab and excitations bound to an axial vortex, arXiv:1207.2554 (SC-TI-SC structure involving conventional superconductors)
- A. M. Lunde and G. Platero, Helical edge states coupled to a spin bath: Current-induced magnetization, arXiv:1207.2676
- P. Kotetes, A. Shnirman, and G. Schön, Engineering and manipulating topological qubits in 1D quantum wires, arXiv:1207.2691 (Majorana manipulation)
- T. Yoshida, R. Peters, S. Fujimoto, and N. Kawakami, Topological antiferromagnetic phase in a correlated Bernevig-Hughes-Zhang model, arXiv:1207.4547 (correlations beyond Hartree-Fock are crucial for the topological state)
- V. Zatloukal, L. Lehman, S. Singh, J. K. Pachos, and G. K. Brennen, Transport properties of anyons in random topological environments, arXiv:1207.5000
- J. Fröhlich and P. Werner, Gauge theory of topological phases of matter, arXiv:1207.5304 P
- M. Lababidi and E. Zhao, Nearly flat Andreev bound states in superconductor-topological insulator hybrid structures, arXiv:1207.5534 (conventional superconductor and 3D topological insulator)
- C. Fang, M. J. Gilbert, and B. A. Bernevig, Bulk Topological Invariants in Noninteracting Point Group Symmetric Insulators, arXiv:1207.5767 (classification, see also arXiv:1208.1472)
- D. Rainis, L. Trifunovic, J. Klinovaja, and D. Loss, Realistic transport modeling for a superconducting nanowire with Majorana fermions, arXiv:1207.5907 (including disorder and superconducting contacts)
- A. Sterdyniak, C. Repellin, B. A. Bernevig, and N. Regnault, Series of Abelian and Non-Abelian States in C>1 Fractional Chern Insulators, arXiv:1207.6385
- E. Perfetto, Dynamical formation and manipulation of Majorana fermions in driven quantum wires, arXiv:1207.6888
- K.-I. Imura, M. Okamoto, Y. Yoshimura, Y. Takane, and T. Ohtsuki, Finite-size energy gap in weak and strong topological insulators, arXiv:1208.0654
- R. Roy, Band geometry of fractional topological insulators, arXiv:1208.2055
- D. G. Rothe, E. M. Hankiewicz, B. Trauzettel, and M. Guigou, Spin-dependent thermoelectric transport in HgTe/CdTe quantum wells, arXiv:1208.2197 (2D structure, charge and spin transport, including the bulk, Landauer-Büttiker approach)
- Y. Baum and A. Stern, Density Waves Instability and a Skyrmion Lattice on the Surface of Strong Topological Insulators, arXiv:1208.2576
- Y.-Y. Zhao and S.-Qi. Shen, A magnetic monopole in topological insulator: exact solution and Witten effect, arXiv:1208.3027 (axion description)
- D. K. Efimkin and Yu. E. Lozovik, Resonant manifestations of chiral excitons in magnetooptical Faraday and Kerr effects in topological insulator film, arXiv:1208.3320
- L. Fu and C. L. Kane, Topology, Delocalization via Average Symmetry and the Symplectic Anderson Transition, arXiv:1208.3442 (2D AII class, transition through proliferation of vortices in non-linear sigma model)
- S. Kourtis, J. W. F. Venderbos, and M. Daghofer, Fractional Chern insulator on a triangular lattice of strongly correlated t2g electrons, arXiv:1208.3481
- S. B. Chung, J. Horowitz, and X.-L. Qi, Time-reversal anomaly and Josephson effect in time-reversal invariant topological superconductors, arXiv:1208.3928 (Josephson junction between topological and conventional superconductor)
- T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, Magnetic field tuned dimensional crossover in spin-orbit coupled semiconductor nanowires with induced superconducting pairing, arXiv:1208.4136 (on short nanowires)
- A. Alexandradinata, X. Dai, and B. A. Bernevig, Wilson-Loop Characterization of Inversion-Symmetric Topological Insulators, arXiv:1208.4234
- A. M. Black-Schaffer and A. V. Balatsky, Odd-frequency superconducting pairing in topological insulators, arXiv:1208.4315 (2D interface of conventional superconductor and topological insulator)
- B. Skinner, T. Chen, and B. I. Shklovskii, Why is the bulk resistivity of topological insulators so small?, arXiv:1208.4601 (Efros-Shklovskii puddle description and simulations)
- C. Fang, M. J. Gilbert, and B. A. Bernevig, Entanglement Spectrum Classification of Cn-invariant Noninteracting Topological Insulators in Two Dimensions, arXiv:1208.4603
- G. Chen and M. Hermele, Magnetic orders and topological phases from f-d exchange in pyrochlore iridates, arXiv:1208.4853 (R2Ir2O7, R = rare-earth element)
- C. W. von Keyserlingk, F. J. Burnell, and S. H. Simon, Three-dimensional topological lattice models with surface anyons, arXiv:1208.5128
- A. Yamakage, M. Sato, S. Kashiwaya, and Y. Tanaka, Anomalous Josephson current in superconducting topological insulator, arXiv:1208.5306 (Cu-doped Bi2Se3)
- D. S. Freed and G. W. Moore, Twisted equivariant matter, arXiv:1208.5055 (very long mathmatical-physics paper, finer classification of topological states compared to ten-fold way)
- J. P. Dahlhaus, M. Gibertini, and C. W. J. Beenakker, Scattering theory of topological invariants in nodal superconductors, arXiv:1208.5491 (obtain topological invariants in terms of Andreev reflection matrix instead of the bulk Hamiltonian)
- T. Hashimoto, K. Yada, A. Yamakage, M. Sato, and Y.Tanaka, Bulk electronic state of superconducting topological insulator, arXiv:1209.0656 (specific heat and susceptibility for various pairing symmetries)
- B. Swingle, Interplay between short and long-range entanglement in symmetry protected phases, arXiv:1209.0776 (related to topological insulators)
- J. You, C. H. Oh, and V. Vedral, Majorana fermions in s-wave noncentrosymmetric superconductor with Rashba and Dresselhaus (110) spin-orbit couplings, arXiv:1209.0930
- J.-H. She, J. Fransson, A. R. Bishop, and A. V. Balatsky, Inelastic Electron Tunneling Spectroscopy for Topological Insulators, arXiv:1209.2055 (theoretical predictions)
- G. Y. Cho, J. H. Bardarson, Y.-M. Lu, and J. E. Moore, Superconductivity of doped Weyl semimetals: finite-momentum pairing and electronic analogues of the 3He-A phase, arXiv:1209.2235 (systems with inversion symmetry)
- Y. Zhang and A. Vishwanath, Establishing non-Abelian topological order in Gutzwiller projected Chern insulators via Entanglement Entropy and Modular S-matrix, arXiv:1209.2424
- A. Vishwanath and T. Senthil, Physics of three dimensional bosonic topological insulators: Surface Deconfined Criticality and Quantized Magnetoelectric Effect, arXiv:1209.3058
- D. J. J. Marchand and M. Franz, Lattice model for the surface states of a topological insulator with applications to magnetic and exciton instabilities, arXiv:1209.4055
- H.-F. Lu, H.-Z. Lu, S.-Q. Shen, and T.-K. Ng, Quantum impurity in the bulk of topological insulator, arXiv:1209.4710 (slave-boson mean-field theory)
- R. W. Reinthaler, P. Recher, and E. M. Hankiewicz, All-electrical measurement of crossed Andreev reflection in topological insulators, arXiv:1209.5700 (rather, a 2D topological insulator-superconductor-2D topological insulator junction)
- H.-H. Hung, P. Ghaemi, T. L. Hughes, and M. J. Gilbert, Vortex Lattices in the Superconducting Phases of Doped Topological Insulators and Heterostructures, arXiv:1209.6373
- J. He, Y.-X. Zhu, Y.-J. Wu, L.-F. Liu, Y. Liang, and S.-P. Kou, Particle-Hole Symmetry Protected Zero Modes on Vacancies in the Topological Insulators and Topological Superconductors on the Honeycomb Lattice, arXiv:1210.0266
- Z. Liu, Z.-F. Wang, J.-W. Mei, Y.-S. Wu, and F. Liu, Topological Flat Band in a Two-Dimensional Organometallic Framework, arXiv:1210.1826 (Indium phenylene network, DFT, predicted to have nearly flat bands, which are topologically nontrivial)
- K. Shiozaki and S. Fujimoto, Electromagnetic and thermal responses of Z topological insulators and superconductors in odd spatial dimensions, arXiv:1210.2825 (how to observe the winding number in the response, in heterostructures with trivial materials and in the bulk; for the bulk introduce new concept of chiral polarization)
- J. M. Fonseca, W. A. Moura-Melo, and A. R. Pereira, Localized and polarized charged zero modes in three-dimensional topological insulators induced by a magnetic vortex, arXiv:1210.3100 (topological insulator covered by ferromagnetic film)
- L. Zhang, J. Ren, J.-S. Wang, and B. Li, Topological Magnon Insulator in Insulating Ferromagnet, arXiv:1210.3487
- A. Chan, T. L. Hughes, S. Ryu, and E. Fradkin, Effective field theories for topological insulators by functional bosonization, arXiv:1210.4305 (throughout the periodic table)
- T. Paananen and T. Dahm, Magnetically robust topological edge states and flat bands, arXiv:1210.4422 (3D AII topological insulator)
- I. A. Nechaev, R. C. Hatch, M. Bianchi, D. Guan, C. Friedrich, I. Aguilera, J. L. Mi, B. B. Iversen, S. Blügel, P. Hofmann, and E. V. Chulkov, Evidence for a direct band gap in the topological insulator Bi2Se3 from theory and experiment, arXiv:1210.4477
- K. Kobayashi, T. Ohtsuki, and K.-I. Imura, Disordered weak and strong topological insulators, arXiv:1210.4656 (3D topological insulator, lattice model, phase diagrams, robustness of transport properties)
- Z. Wang, F. Zheng, Z.-G. Fu, and P. Zhang, Fractional quantum Hall effect in topological insulators: The role of Zeeman effect, arXiv:1210.5137
- B. Zocher and B. Rosenow, Surface states and local spin susceptibility in doped three-dimensional topological insulators with odd-parity superconducting pairing symmetry, arXiv:1210.5445 (metallic normal state) P
- J. D. Sau, B. Swingle, and S. Tewari, A proposal to probe quantum non-locality of Majorana fermions in tunneling experiments, arXiv:1210.5514 (for topological superconductor due to proximity effect)
- Z. Huang, T. Das, A. V. Balatsky, and D. P. Arovas, Stability of Weyl metals under impurity scattering, arXiv:1210.6121 (bulk impurities, tight-binding theory)
- P. Goswami and S. Tewari, Axion field theory and anomalous non-dissipative transport properties of (3+1)-dimensional Weyl semi-metals and Lorentz violating spinor electrodynamics, arXiv:1210.6352
- D. Soriano, F. Ortmann, and S. Roche, Three-dimensional Models of Topological Insulator Films: Dirac Cone Engineering and Spin Texture Robustness, arXiv:1210.6534 (3D Fu-Kane-Mele model)
- D. S. L. Abergel and S. Das Sarma, 2D compressibility of surface states on 3D topological insulators, arXiv:1210.7241
- P. Nikolic and Z. Tesanovic, Interaction proximity effect at the interface between a superconductor and a topological insulator quantum well, arXiv:1210.7821
- O. P. Sushkov and A. H. Castro Neto, Topological Insulating States in Ordinary Semiconductors, arXiv:1210.8186
- A. K. Mitchell, D. Schuricht, M. Vojta, and L. Fritz, Kondo effect on the surface of 3D topological insulators: Signatures in scanning tunneling spectroscopy, arXiv:1211.0034 (noninteracting magnetic impurities on surface, quasi-particle interference)
- Y. Nagai, H. Nakamura, and M. Machida, Spin-polarized Majorana Bound States around a Vortex in Topological Superconductors, arXiv:1211.0125
- E. Cobanera, G. Ortiz, and Z. Nussinov, Holographic Symmetries and Generalized Order Parameters for Topological Matter, arXiv:1211.0564 (duality maps between Landau and non-Landau [topological] models, construction of order parameters for topological orders, mapping between bulk and boundary order; letter with extensive supplemental material)
- Q. Li, E. Rossi, and S. Das Sarma, Two-dimensional electronic transport on the surface of 3D topological insulator, arXiv:1211.1970 (Boltzmann equation; including disorder and electron-phonon scattering)
- J. S. Meyer and G. Refael, Disordered topological metals, arXiv:1211.1987 (topological insulator turned into a metal by strong bulk disorder)
- S. Nakosai, J. C. Budich, Y. Tanaka, B. Trauzettel, and N. Nagaosa, Majorana bound states and non-local spin correlations in a quantum wire on an unconventional superconductor, arXiv:1211.2307 (conventional wire on top of class-D or class-D III superconductor)
- J. C. Budich, B. Trauzettel, and G. Sangiovanni, Fluctuation driven topological Hund insulator, arXiv:1211.3059
- G. Go, J.-H. Park, and J. H. Han, Three-Band Model for Quantum Hall and Spin Hall Effects, arXiv:1211.3780
- T. Habe and Y. Asano, Gapped energy spectra around the Dirac node at the surface of a 3D topological insulator in the presence of the time-reversal symmetry, arXiv:1211.4663 (find that electron-electron interaction plus [time-reversal-invariant] disorder scattering opens a gap at the Dirac points, standard arguments regarding robustness of gapless spectrum do not apply due to presence of interactions; diagrammatic approach)
- A. Yamakage, K. Nomura, K.-I. Imura, and Y. Kuramoto, Quantum criticality of the disordered topological insulator, arXiv:1211.5026 (2D topological Anderson-Mott insulator)
- J. Cayssol, B. Dóra, F. Simon, and R. Moessner, Floquet topological insulators, arXiv:1211.5623
- A. Mesaros and Y. Ran, A classification of symmetry enriched topological phases with exactly solvable models, arXiv:1212.0835 (bosonic systems with long-range entanglement and global symmetries, long paper using homotopy theory)
- W. Bietenholz, M. Bögli, F. Niedermayer, M. Pepe, F. G. Rejón-Barrera, and U.-J. Wiese, Topological Lattice Actions for the 2d XY Model, arXiv:1212.0579 (BKT transition is rather robust if topological terms are added to the action, unless they completely suppress vortices)
- P. Ye and X.-G. Wen, 2D Lattice Model Construction of Symmetry-Protected Topological Phases, arXiv:1212.2121 (bosonic and spin models)
- C. Fang, M. J. Gilbert, S.-Y. Xu, B. A. Bernevig, and M. Z. Hasan, Surface State Quasiparticle Interference in Crystalline Topological Insulators, arXiv:1212.3285
- Z. Ringel and A. Stern, The Z2-anomaly and boundaries of topological insulators, arXiv:1212.3796 (anomaly shows up as diverging correlation between different boundaries, imposes constraints on effective theories)
- L. Hozoi, H. Gretarsson, J. P. Clancy, B.-G. Jeon, B. Lee, K. H. Kim, V. Yushankhai, P. Fulde, Y.-J. Kim, and J. van den Brink, Topological states in pyrochlore iridates: long-range anisotropy strongly competing with spin-orbit interaction, arXiv:1212.4009 (A2Ir2O7)
- M. Kargarian and G. A. Fiete, Topological Crystalline Insulators in Transition Metal Oxides, arXiv:1212.4162 (topological insulators protected by lattice symmetries, here by mirror symmetry, applied to A2M2O7)
- B. Béeri, Majorana-Klein hybridization in topological superconductor junctions, arXiv:1212.4465
- B.-J. Yang, M. S. Bahramy, and N. Nagaosa, Topological protection of bound states against the hybridization, arXiv:1212.5598 (the protected "bound states" are edge states of a quantum Hall system resonant with a continuum)
- P. P. Orth, D. Cocks, S. Rachel, M. Buchhold, K. Le Hur, and W. Hofstetter, Correlated Topological Phases and Exotic Magnetism with Ultracold Fermions, arXiv:1212.5607 (2D Hubbard model with staggered flux and Rashba spin-orbit coupling; real-space DMFT, MC, analytical arguments)
- I. C. Fulga, B. van Heck, J. M. Edge, and A. R. Akhmerov, Statistical Topological Insulators, arXiv:1212.6191 (focusing on the symmetries of ensembles of disordered systems; in how far is this distinct from standard classification?)
- J. Song, H. Liu, H. Jiang, Q. Sun, and X. C. Xie, The dependence of topological Anderson insulator on the type of disorder, arXiv:1212.6538 (bond vs. side disorder)
- B. Skinner and B. I. Shklovskii, Theory of the random potential at the surface of a topological insulator, arXiv:1212.6653
- H. P. Paudel and M. N. Leuenberger, A 3D topological insulator quantum dot, arXiv:1212.6772
- P. Jadaun, D. Xiao, Q. Niu, and S. K. Banerjee, Topological classification of crystalline insulators with space group symmetry, Phys. Rev. B 88, 085110 (2013) (classification, see also arXiv:1207.5767)
- Z. Xu, L. Sheng, R. Shen, B. Wang, and D. Y. Xing, Kosterlitz-Thouless transition in disordered two-dimensional topological insulators, J. Phys.: Condens. Matter 25, 065501 (2013) (argue that the metal-insulator transition in the quantum spin Hall system is of Kosterlitz-Thouless type; unbinding of current vortices)
- L. Fidkowski, X. Chen, and A. Vishwanath, Non-Abelian Topological Order on the Surface of a 3D Topological Supercoductor from an Exactly Solved Model, Phys. Rev. X 3, 041016 (2013) (explicit construction of 3D interacting topological superconductor [would be class DIII for free quasiparticles] with topological order nevertheless having a gap at the surface; interactions reduce domain of topological invariant from Z to Z16)
- A. Rüegg and C. Lin, Bound States of Conical Singularities in Graphene-Based Topological Insulators, Phys. Rev. Lett. 110, 046401 (2013) (electronic bound states at disclinations in honeycomb lattice)
- F. Zhang, C. L. Kane, and E. J. Mele, Surface State Magnetization and Chiral Edge States on Topological Insulators, Phys. Rev. Lett. 110, 046404 (2013) (Bi2Se3, surface states at quite general faces coupled to ferromagnetic insulator, which provides an exchange field)
- G. Dolcetto, F. Cavaliere, D. Ferraro, and M. Sassetti, Generating and controlling spin-polarized currents induced by a quantum spin Hall antidot, Phys. Rev. B 87, 085425 (2013)
- B.-J. Yang, M. S. Bahramy, R. Arita, H. Isobe, and N. Nagaosa, Theory of Topological Quantum Phase Transitions in 3D Noncentrosymmetric Systems, Phys. Rev. Lett. 110, 086402 (2013)
- Z. Wang and B. Yan, Topological Hamiltonian as an exact tool for topological invariants, J. Phys.: Condens. Matter 25, 155601 (2013) (the topological Hamiltonian is the bare one plus the self-energy at zero frequency, it is what determines zero-energy surface states in interacting systems)
- Y. Liu, Y. Y. Li, D. Gilks, V. K. Lazarov, M. Weinert, and L. Li, Charging Dirac States at Antiphase Domain Boundaries in the Three-Dimensional Topological Insulator Bi2Se3, Phys. Rev. Lett. 110, 186804 (2013)
- R. P. Tiwari, U. Zülicke, and C. Bruder, Majorana Fermions from Landau Quantization in a Superconductor and Topological-Insulator Hybrid Structure, Phys. Rev. Lett. 110, 186805 (2013)
- A. Altland and R. Egger, Multiterminal Coulomb-Majorana Junction, Phys. Rev. Lett. 110, 196401 (2013)
- C. Xu and A. W. W. Ludwig, Nonperturbative Effects of a Topological Theta Term on Principal Chiral Nonlinear Sigma Models in 2+1 Dimensions, Phys. Rev. Lett. 110, 200405 (2013)
- J. I. Väyrynen, M. Goldstein, and L. I. Glazman, Helical Edge Resistance Introduced by Charge Puddles, Phys. Rev. Lett. 110, 216402 (2013) (modeled by quantum dot side-coupled to the edge)
- M. P. Zaletel, R. S. K. Mong, and F. Pollmann, Topological Characterization of Fractional Quantum Hall Ground States from Microscopic Hamiltonians, Phys. Rev. Lett. 110, 236801 (2013)
- Y. X. Zhao and Z. D. Wang, Topological Classification of Fermi Surfaces, Phys. Rev. Lett. 110, 240404 (2013); see also Matsuura et al., New J. Phys. 15, 065001 (2013); An intrinsic connection between topological stabilities of Fermi surfaces and topological insulators/superconductors, arXiv:1305.1251; Searching for New Topological Types of Majorana Fermions from Boundary-bulk Correspondence of Topological Insulators/Superconductors, arXiv:1305.3791
- S. Zhang, W. Zhu, and Q. Sun, Josephson junction on one edge of a two dimensional topological insulator affected by magnetic impurity, J. Phys.: Condens. Matter 25, 295301 (2013)
- E. K.-H. Lee, S. Bhattacharjee, and Y. B. Kim, Magnetic excitation spectra in pyrochlore iridates, Phys. Rev. B 87, 214416 (2013) (includes tight-binding parametrization for pyrochlore iridates; magnetic excitations in the insulting all-in-all-out phase; use two complementary approaches: RPA and mapping onto a spin model with linear spin-wave theory) P
- D. T. Son and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B 88, 104412 (2013) (metals with Fermi pockets derived from Weyl points; semiclassical theory) P; see related journal-club commentary: P. Lee, Observation of the chiral anomaly in solids, JCCM_MAY_2015_03 (with clear discussion of chiral [Adler-Bell-Jackiw] anomaly)
- B. Zocher and B. Rosenow, Modulation of Majorana-Induced Current Cross-Correlations by Quantum Dots, Phys. Rev. Lett. 111, 036802 (2013) (lead-dot-topological_superconducting wire-dot-lead structure)
- C. J. Lin, X. Y. He, J. Liao, X. X. Wang, V. Sacksteder IV, W. M. Yang, T. Guan, Q. M. Zhang, L. Gu, G. Y. Zhang, C. G. Zeng, X. Dai, K. H. Wu, and Y. Q. Li, Parallel field magnetoresistance in topological insulator thin films, Phys. Rev. B 88, 041307(R) (2013) (magnetotransport experiments on Bi2Se3 and (Bi,Sb)2Te3, comparison with theory)
- F. Zhang, C. L. Kane, and E. J. Mele, Time-Reversal-Invariant Topological Superconductivity and Majorana Kramers Pairs, Phys. Rev. Lett. 111, 056402 (2013) (1D and 2D topological superconductors by proximity using iron-based superconductors)
- F. Zhang, C. L. Kane, and E. J. Mele, Topological Mirror Superconductivity, Phys. Rev. Lett. 111, 056403 (2013)
- A. A. Zyuzin, D. Rainis, J. Klinovaja, and D. Loss, Correlations between Majorana Fermions Through a Superconductor, Phys. Rev. Lett. 111, 056802 (2013)
- H. Zhang, C.-X. Liu, and S.-C. Zhang, Spin-Orbital Texture in Topological Insulators, Phys. Rev. Lett. 111, 066801 (2013) (Bi2Se3)
- B. L. Altshuler, I. L. Aleiner, and V. I. Yudson, Localization at the Edge of a 2D Topological Insulator by Kondo Impurities with Random Anisotropies, Phys. Rev. Lett. 111, 086401 (2013) (random anisotropy is in the exchange coupling to the local spins; Anderson localization by arbitrarily weak disorder)
- J. Wang, B. Lian, H. Zhang, and S.-C. Zhang, Anomalous Edge Transport in the Quantum Anomalous Hall State, Phys. Rev. Lett. 111, 086803 (2013) (thin films of Cr-doped (Bi,Sb)2Te3 have conventional edge states in addition to the chiral ones)
- Y. Ueno, A. Yamakage, Y. Tanaka, and M. Sato, Symmetry-Protected Majorana Fermions in Topological Crystalline Superconductors: Theory and Application to Sr2RuO4, Phys. Rev. Lett. 111, 087002 (2013)
- A. M. Läuchli, Zhao Liu, E. J. Bergholtz, and R. Moessner, Hierarchy of Fractional Chern Insulators and Competing Compressible States, Phys. Rev. Lett. 111, 126802 (2013)
- Jing-Min Hou, Hidden-Symmetry-Protected Topological Semimetals on a Square Lattice, Phys. Rev. Lett. 111, 130403 (2013) (noninteracting model)
- R. R. Biswas, Majorana Fermions in Vortex Lattices, Phys. Rev. Lett. 111, 136401 (2013) (Majoranas associated with vortices in p-wave superconductor, tunneling between them)
- A. Kundu and B. Seradjeh, Transport Signatures of Floquet Majorana Fermions in Driven Topological Superconductors, Phys. Rev. Lett. 111, 136402 (2013)
- L. Cano-Cortés, C. Ortix, and J. van den Brink, Fundamental Differences between Quantum Spin Hall Edge States at Zigzag and Armchair Terminations of Honeycomb and Ruby Nets, Phys. Rev. Lett. 111, 146801 (2013) (with regard to dependence on strength of spin-orbit coupling)
- H.-Z. Lu, A. Zhao, and S.-Q. Shen, Quantum Transport in Magnetic Topological Insulator Thin Films, Phys. Rev. Lett. 111, 146802 (2013) (theory for quantum anomalous Hall effect)
- F. Virot, R. Hayn, M. Richter, and J. van den Brink, Engineering Topological Surface States: HgS, HgSe, and HgTe, Phys. Rev. Lett. 111, 146803 (2013)
- X. Liu and J. Sinova, Reading Charge Transport from the Spin Dynamics on the Surface of a Topological Insulator, Phys. Rev. Lett. 111, 166801 (2013) (quantum Boltzmann equation)
- J. S. Hofmann, R. Queiroz, and A. P. Schnyder, Theory of quasiparticle scattering interference on the surface of topological superconductors, Phys. Rev. B 88, 134505 (2013) (how quasiparticle interference, i.e., Fourier-transformed STS, look like for flat bands, Fermi arcs, and helical Majorana modes at the surface) P
- X. Deng, K. Haule, and G. Kotliar, Plutonium Hexaboride is a Correlated Topological Insulator, Phys. Rev. Lett. 111, 176404 (2013)
- C. Qu, Z. Zheng, M. Gong, Y. Xu, L. Mao, X. Zou, G. Guo, and C. Zhang, Topological superfluids with finite-momentum pairing and Majorana fermions, Nature Commun. 4, 2710 (2013) (theory; FFLO superconductors supporting Majorana states); W. Zhang and W. Yi, Topological Fulde-Ferrell-Larkin-Ovchinnikov states in spin-orbit-coupled Fermi gases, Nature Commun. 4, 2711 (2013) (related paper)
- Y. Li, S.-C. Zhang, and C. Wu, Topological Insulators with SU(2) Landau Levels, Phys. Rev. Lett. 111, 186803 (2013)
- D. Wang, Z. Liu, J. Cao, and H. Fan, Tunable Band Topology Reflected by Fractional Quantum Hall States in Two-Dimensional Lattices, Phys. Rev. Lett. 111, 186804 (2013)
- J. Klinovaja, P. Stano, A. Yazdani, and D. Loss, Topological Superconductivity and Majorana Fermions in RKKY Systems, Phys. Rev. Lett. 111, 186805 (2013) (local spins embedded into s-wave superconducting wire, RKKY interaction leads to formation of spin helix, which in turn makes the superconductivity topological)
- B. Yan, M. Jansen, and C. Felser, A large-energy-gap oxide topological insulator based on the superconductor BaBiO3, Nature Physics 9, 709 (2013) (DFT-GGA)
- J. Klinovaja and D. Loss, Topological Edge States and Fractional Quantum Hall Effect from Umklapp Scattering, Phys. Rev. Lett. 111, 196401 (2013) (single and double strips)
- M. M. Vazifeh and M. Franz, Self-Organized Topological State with Majorana Fermions, Phys. Rev. Lett. 111, 206802 (2013) (engineered system of magnetic atoms on surface of s-wave superconductor)
- V. Alexandrov, M. Dzero, and P. Coleman, Cubic Topological Kondo Insulators, Phys. Rev. Lett. 111, 226403 (2013) (point out that all apparent topological Kondo insulators are cubic and develop a theory for these)
- S. Matsuura, P.-Y. Chang, A. P. Schnyder, and S. Ryu, Protected boundary states in gapless topological phases, New J. Phys. 15, 065001 (2013) (detailed topological classification of noninteracting systems without full gaps in the bulk [metals, semimetals, nodal superconductors]); see also Zhao and Wang (above)
- Z. Wang and S.-C. Zhang, Chiral anomaly, charge density waves, and axion strings from Weyl semimetals, Phys. Rev. B 87, 161107(R) (2013) (continuum model, chiral symmetry breaking leading to CDW formation, the corresponding Goldstone mode is the axion) PP
- B. Mazidian, J. Quintanilla, A. D. Hillier, and J. F. Annett, Anomalous thermodynamic power laws near topological transitions in nodal superconductors, Phys. Rev. B 88, 224504 (2013) (reconnection transitions of gap nodes for O point group, phase diagram for leading and first higher spin-orbit-coupling strength; effect on low-energy density of states; also note cited experimental papers)
- B. Ramachandhran, H. Hu, and H. Pu, Emergence of Topological and Strongly Correlated Ground States in trapped Rashba Spin-Orbit Coupled Bose Gases, arXiv:1301.0800 (exact diagonalization for few-boson system)
- P. Zhang and M. W. Wu, Hot-carrier transport and spin relaxation on the surface of topological insulator, arXiv:1301.1092 (semiclassical theory for strong electric field, transport far from equilibrium)
- T.-P. Choy, K. T. Law, and T.-K. Ng, Magnetic impurities on the surface of topological superconductor, arXiv:1301.2068 (Cu-doped Bi2Se3 with Dirac cones of surface states, single and few magnetic impurities and RKKY interaction, which is found to be always ferromagnetic)
- G. Palumbo and J. K. Pachos, Abelian Chern-Simons-Maxwell theory from a tight binding model of spinless fermions, arXiv:1301.2625
- M. Mulligan and F. J. Burnell, Topological Insulators Avoid the Parity Anomaly, arXiv:1301.4230
- A. Junck, G. Refael, and F. von Oppen, Photocurrent Response of Topological Insulator Surface States, arXiv:1301.4392
- A. Sekine and K. Nomura, Strong Coupling Expansion in a Correlated Three-Dimensional Topological Insulator, arXiv:1301.4424 (long-range Coulomb interaction, topological-insulator phase is destroyed by strong coupling in the present model)
- J. C. Budich, Charge conservation protected topological phases, arXiv:1301.5339 (in 4D and, due to dimensional reduction, also in 2D and 3D, any topologically nontrivial phases can be adiabatically deformed into a trivial state without closing the gap, through intermediate superconducting states; uses embedding of symmetry classes)
- T. Yokoyama and S. Murakami, Spintronics and spincaloritronics in topological insulators, arXiv:1301.5416
- J. Klinovaja and D. Loss, Fractional Fermions with Non-Abelian Statistics, arXiv:1301.5822
- C. Xu and T. Senthil, Wave Functions of Bosonic Symmetry Protected Topological Phases, arXiv:1301.6172 (duality picture)
- H. Li, L. Sheng, R. Shen, L. B. Shao, B. Wang, D. N. Sheng, and D. Y. Xing, Making Quantum Spin-Hall Effect Robust via Magnetic Manipulation, arXiv:1301.6460 (how to separate the counterpropagating edge modes)
- R. M. Lutchyn and J. H. Skrabacz, Transport properties of topological superconductor-Luttinger liquid junctions: a real-time Keldysh approach, arXiv:1302.0289
- F. Goth, D. J. Luitz, and F. F. Assaad, Single magnetic impurities in the Kane-Mele model, arXiv:1302.0856
- B. J. Wieder, F. Zhang, and C. L. Kane, Signatures of Majorana Fermions in Topological Insulator Josephson Junction Devices, arXiv:1302.2113
- Y.-M. Lu and A. Vishwanath, Classification and Properties of Symmetry Enriched Topological Phases: A Chern-Simons approach with applications to Z2 spin liquids, arXiv:1302.2634 (long paper; interacting systems, topological order)
- M. Gibertini, R. Fazio, M. Polini, and F. Taddei, Topological pumping in superconducting wires with Majorana fermions, arXiv:1302.2736
- A. Junck, K. W. Kim, D. L. Bergman, T. Pereg-Barnea, and G. Refael, Transport through a disordered topological-metal strip, arXiv:1302.3014
- X. Chen, F. Wang, Y.-M. Lu, and D.-H. Lee, Critical theories of phase transition between symmetry protected topological states and their relation to the gapless boundary theories, arXiv:1302.3121
- P. D. Sacramento, M. A. N. Araújo, and E. V. Castro, Hall conductivity as bulk signature of topological transitions in superconductors, arXiv:1302.3122
- C. De Beule and B. Partoens, Gapless interface states at the junction between two topological insulators, arXiv:1302.3359
- S. Gopalakrishnan, J. C. Y. Teo, T. L. Hughes, Disclination classes, fractional excitations, and the melting of quantum liquid crystals, arXiv:1302.3617 (what happens to fractional excitations bound to dilocations when these split into disclination pairs?)
- T. Das and A. V. Balatsky, Engineering three dimensional topological insulator in Rashba-type spin-orbit coupled heterostructure, arXiv:1302.4514
- T. Habe and Y. Asano, Robustness of Gapless Interface State in a Junction of Two Topological Insulators, arXiv:1302.4834
- A. Soori, O. Deb, K. Sengupta, and D. Sen, Transport across a junction of topological insulators and a superconductor, arXiv:1302.6024
- Z. Qiao, J. Jung, C. Lin, A. H. MacDonald, and Q. Niu, Current partition at topological zero-line intersections, arXiv:1302.6307 (gap-less boundaries between 2D topological insulator domains)
- H.-Z. Lu and S.-Q. Shen, Extrinsic anomalous Hall conductivity of topologically nontrivial conduction band, arXiv:1302.6688
- F. J. Burnell, X. Chen, L. Fidkowski, and A. Vishwanath, Exactly Soluble Model of a 3D Symmetry Protected Topological Phase of Bosons with Surface Topological Order, arXiv:1302.7072 (field-theoretical approach, based on three-fermion concept)
- G. Koren, T. Kirzhner, Y. Kalcheim, and O. Millo, Signature of proximity induced triplet superconductivity in junctions made of the doped topological insulator Bi2Se3 and the s-wave superconductor NbN, arXiv:1303.0652
- D. Schmeltzer, Interference and transport properties of conductions electrons on the surface of a topological insulator, arXiv:1303.1021
- J. Reuther, J. Alicea, and A. Yacoby, Gate defined wires in HgTe quantum wells: from Majorana fermions to spintronics, arXiv:1303.1207
- Y. Araki and T. Kimura, Phase structure of 2-dimensional topological insulators by lattice strong coupling expansion, arXiv:1303.1255 (... of QED on the honeycomb lattice)
- A. C. Potter and L. Fu, Anomalous Supercurrent from Majorana States in Topological Insulator Josephson Junctions, arXiv:1303.1524
- T. L. Hughes, H. Yao, and X.-L. Qi, Majorana zero modes in dislocations of Sr2RuO4, arXiv:1303.1539
- S. S. Hong, Y. Zhang, J. J. Cha, X.-L. Qi, and Y. Cui, Observation of helical surface transport in topological insulator nanowire interferometer, arXiv:1303.1601
- C.-K. Chiu, H. Yao, and S. Ryu, Classification of topological insulators and superconductors in the presence of reflection symmetry, arXiv:1303.1843 (extension of the ten-fold-way classification including mirror symmetries, consequences for zero-energy states at grain boundaries/domains walls invariant under these symmetries)
- Y. Takane and K.-I. Imura, Unified description of Dirac electrons on a curved surface of topological insulators, arXiv:1303.2179
- J. Motruk, A. M. Turner, E. Berg, and F. Pollmann, Topological Phases in Gapped Edges of Fractionalized Systems, arXiv:1303.2194
- L. Cano-Cortés, C. Ortix, and J. van den Brink, The fundamental differences between Quantum Spin Hall edge-states at zig-zag and armchair terminations of honeycomb and ruby nets, arXiv:1303.2252
- M. Thakurathi, A. A. Patel, D. Sen, and A. Dutta, Floquet generation of Majorana end modes and topological invariants, arXiv:1303.2300
- P. Virtanen and P. Recher, Microwave spectroscopy of Josephson junctions in topological superconductors, arXiv:1303.2353
- S. V. Eremeev, I. V. Silkin, T. V. Menshchikova, A. P. Protogenov, and E. V. Chulkov, New topological surface state in layered topological insulators: unoccupied Dirac cone, arXiv:1303.2472
- Y. Bahri and A. Vishwanath, Detecting Majorana fermions in quasi-1D topological phases using non-local order parameters, arXiv:1303.2600
- H.-H. Hung, L. Wang, Z.-C. Gu, and G. A. Fiete, Topological phase transition in a generalized Kane-Mele-Hubbard model: A combined Quantum Monte Carlo and Green's function study, arXiv:1303.2727
- B. Zocher, M. Horsdal, and B. Rosenow, Robustness of Topological Order in Semiconductor-Superconductor Nanowires in the Coulomb Blockade Regime, arXiv:1303.2940
- U. Khanna, S. Pradhan, and S. Rao, Transport and STM studies of hyperbolic surface states of topological insulators, arXiv:1303.3700 (three-dimensional AII system, continuum model)
- X. Chen, Y.-M. Lu, and A. Vishwanath, Symmetry protected topological phases from decorated domain walls, arXiv:1303.4301
- X. Liu and J. Sinova, Reading charge current from spin dynamics on the surface of topological insulator, arXiv:1303.4478
- C.-H. Lin and W. Ku, Create Dirac Cones in Your Favorite Materials, arXiv:1303.4822; E. Kogan, Comment, arXiv:1303.5933 (supporting clarification, shows that Dirac cones are possible in any lattice with a basis having space-time-inversion symmetry)
- M. Houzet, J. S. Meyer, and L. I. Glazman, Dynamics of Majorana States in a Topological Josephson Junction, arXiv:1303.4909
- D. Chowdhury, B. Swingle, and S. Sachdev, A signature of quantum spin liquids in superconductors with topological order, arXiv:1303.6288
- H. Lin and S.-T. Yau, On exotic sphere fibrations, topological phases, and edge states in physical systems, arXiv:1304.0046
- G. Tkachov, Suppression of surface p-wave superconductivity in disordered topological insulators, arXiv:1304.0631
- G. Tkachov and E. M. Hankiewicz, Helical Andreev bound states and superconducting Klein tunneling in topological insulator Josephson junctions, arXiv:1304.1893
- Y. Li, D. Wang, and C. Wu, Spontaneous time-reversal symmetry breaking in the boundary Majorana flat bands, arXiv:1304.4268
- C. Fang, M. J. Gilbert, and B. A. Bernevig, Topological Insulators with Commensurate Antiferromagnetism, arXiv:1304.6081 (3D); Chao-Xing Liu, Antiferromagnetic crystalline topological insulators, arXiv:1304.6455
- E. Orignac and S. Burdin, Kondo screening by the surface modes of a strong topological insulator, arXiv:1304.6828
- Z. Bi, A. Rasmussen, and C. Xu, Line defects in Three dimensional Symmetry Protected Topological Phases, arXiv:1304.7272 (3D topological state coupled to Z2 gauge field, line defects are vison loops)
- B. Rosenstein and M. Lewkowicz, Dynamics of electric transport in interacting Weyl semimetals, arXiv:1304.7506
- F. Pientka, L. Jiang, D. Pekker, J. Alicea, G. Refael, Y. Oreg, and F. von Oppen, Magneto-Josephson effects and Majorana bound states in quantum wires, arXiv:1304.7667
- A. Mesaros, Y. B. Kim, and Y. Ran, Changing topology by topological defects in three-dimensional topologically ordered phases, arXiv:1305.0214
- S. A. Parameswaran, A. M. Turner, D. P. Arovas, and A. Vishwanath, Topological order and absence of band insulators at integer filling in non-symmorphic crystals, Nature Phys. 9, 299 (2013) (show that normal band insulators are impossible for some integer filling fractions in non-symmorphic crystals, thus insulating states not breaking any symmetries must be topological)
- J. D. Sau and S. Das Sarma, Density of states of disordered topological superconductor-semiconductor hybrid nanowires, arXiv:1305.0554
- J. Maciejko and A. Rüegg, Topological order in a correlated Chern insulator, arXiv:1305.1290
- V. N. Men'shov, V. V. Tugushev, S. V. Eremeev, P. M. Echenique, and E. V. Chulkov, Magnetic proximity effect in the 3D topological insulator/ferromagnetic insulator heterostructure, arXiv:1305.1608 (using a k.p Hamiltonian)
- M. Sitte, A. Rosch, and L. Fritz, Interaction effects on almost flat surface bands in topological insulators, arXiv:1305.1788 (ferromagnetic instability in dispersing surface bands with small Fermi velocity)
- R. Ilan, J. H. Bardarson, H.-S. Sim, and J. E. Moore, Detecting Perfect Transmission in Josephson Junctions on the Surface of Three Dimensional Topological Insulators, arXiv:1305.2210
- I. Proskurin and M. Ogata, Thermoelectric Transport Coefficients for Massless Dirac Electrons in Quantum Limit, arXiv:1305.3343
- J. Wang and B.-F. Zhu, Elastic scattering of surface states on three-dimensional topological insulators, arXiv:1305.3369
- S. Das Sarma and Q. Li, Many-body effects and possible superconductivity in the 2D metallic surface states of 3D topological insulators, arXiv:1305.3605
- T. Karzig, G. Refael, and F. von Oppen, Boosting Majorana zero modes, arXiv:1305.3626 (Majorana fermions and the trivial/nontrivial domain walls of 1D engineered topological superconductors, effect of the constant speed of domain-wall motion on the stability of the Majoranas, find that they are stable as long as the speed is smaller than the Fermi velocity)
- A. M. Black-Schaffer and A. V. Balatsky, Proximity-induced unconventional superconductivity in topological insulators, arXiv:1305.4142
- B. M. Fregoso, Y. H. Wang, N. Gedik, and V. Galitski, Driven Electronic States at the Surface of a Topological Insulator, arXiv:1305.4145
- G. J. Ferreira and D. Loss, Magnetically-Defined Qubits on 3D Topological Insulators, arXiv:1305.5003 (introduced by exchange field due to insulating ferromagnetic layer, with domain walls to change orientation)
- Sheng-Nan Ji, Bang-Fen Zhu, and Ren-Bao Liu, Single Dirac point and helical states in a one-dimensional system, arXiv:1305.5289 (in a 1D bulk system, requiring a judiciously chosen spatially modulated magnetic field and spin-orbit coupling)
- V. Parente, A. Tagliacozzo, F. von Oppen, and F. Guinea, Electron-phonon interaction on the surface of a 3D topological insulator, arXiv:1305.6160 (continuum theory for clean surface, phonon-mediated electronic interaction can be attractive at low frequencies but is too weak to cause superconductivity)
- N. F. Q. Yuan, C. L.M. Wong, and K. T. Law, Probing Majorana Flat Bands in Nodal dx2-y2-wave Superconductors with Rashba Spin-Orbit Coupling, arXiv:1305.6446 (Majorana flat bands in addition to the usual Andreev bound states)
- M. B. Hastings, Classifying Quantum Phases With The Torus Trick, arXiv:1305.6625
- S. Kourtis and M. Daghofer, Combined topological and Landau order from strong correlations in Chern bands, arXiv:1305.6948
- H. Wei, S.-P. Chao, and V. Aji, Odd parity superconductivity in Weyl semimetals, arXiv:1305.7233
- B. Dóra, I. F. Herbut, and R. Moessner, Coupling, merging, and splitting Dirac points by electron-electron interaction, arXiv:1305.7320
- C. Fang, M.J. Gilbert, and B. A. Bernevig, Large Chern Number Quantum Anomalous Hall Effect In Thin-film Topological Crystalline Insulators, arXiv:1306.0888 (based on Bi compounds)
- F. Virot, R. Hayn, M. Richter, and J. van den Brink, Engineering topological surface-states: HgS, HgSe and HgTe, arXiv:1306.0999 (DFT)
- S. A. Parameswaran, T. Grover, D. A. Abanin, D. A. Pesin, and A. Vishwanath, Probing the chiral anomaly with nonlocal transport in Weyl semimetals, arXiv:1306.1234
- D. Baasanjav, O. A. Tretiakov, and K. Nomura, Magnetoelectric Effect in Topological Insulator Films beyond Linear Response Regime, arXiv:1306.1414
- E. Tang and X.-G. Wen, Superconductivity with intrinsic topological order induced by pure Coulomb interaction and time-reversal symmetry breaking, arXiv:1306.1528
- J. You, A. H. Chan, C. H. Oh, and V. Vedral, Topological quantum phase transitions in the spin-singlet superconductor with Rashba and Dresselhaus (110) spin-orbit couplings, arXiv:1306.2436
- T. Morimoto and A. Furusaki, Topological classification with additional symmetries from Clifford algebras, arXiv:1306.2505
- C. Wang, A. C. Potter, and T. Senthil, Gapped Symmetry Preserving Surface-State for the Electron Topological Insulator, arXiv:1306.3223 (show that these are possible in the presence of topological order at the surface, description not limited to effectively noninteracting electrons); P. Bonderson, C. Nayak, and X.-L. Qi, A Time-Reversal Invariant Topological Phase at the Surface of a 3D Topological Insulator, arXiv:1306.3230 (closely related idea); X. Chen, L. Fidkowski, and A. Vishwanath, Symmetry Enforced Non-Abelian Topological Order at the Surface of a Topological Insulator, arXiv:1306.3250 (another closely related paper); M. A. Metlitski, C. L. Kane, and M. P. A. Fisher, A symmetry-respecting topologically-ordered surface phase of 3d electron topological insulators, arXiv:1306.3286 (another closely related paper); see also commentary by A. Stern: JCCM_OCTOBER_2013_03
- C. Wang, A. C. Potter, and T. Senthil, Classification of interacting electronic topological insulators in three dimensions, arXiv:1306.3238 (with time-reversal symmetry)
- M. Legner and T. Neupert, Relating the entanglement spectrum of noninteracting band insulators to their quantum geometry and topology, arXiv:1306.4008
- R. Thomale, S. Rachel, and P. Schmitteckert, Tunneling spectra simulation of interacting Majorana wires, arXiv:1306.5127 (DMRG)
- Y. Chen, S. Wu, and A. A. Burkov, Axion response in Weyl semimetals, arXiv:1306.5344 (show that the axion theta term has the same form as in relativistic field theory and is not modified by the underlying lattice)
- A. P. Protogenov, E. V. Chulkov, and V. A. Verbus, Nonlocal Edge State Transport in Topological Insulators, arXiv:1306.5827 (short paper, Landauer-Büttiker theory)
- K. Landsteiner, Anomaly related transport of Weyl fermions for Weyl semi-metals, arXiv:1306.4932
- A. Zazunov, A. Altland, and R. Egger, Transport properties of the Coulomb-Majorana junction, arXiv:1307.0210
- D. A. Ivanov, P. M. Ostrovsky, and M. A. Skvortsov, Anderson localization of a Majorana fermion, arXiv:1307.0372
- C.-W. Huang, S. T. Carr, D. Gutman, E. Shimshoni, and A. D. Mirlin, Transport via double constrictions in integer and fractional topological insulators, arXiv:1307.0525 (coupling the two edges of a 2D strip)
- C. Qu, Z. Zheng, M. Gong, Y. Xu, L. Mao, X. Zou, G. Guo, and C. Zhang, Topological Superfluids with Finite Momentum Pairing and Majorana Fermions, arXiv:1307.1207
- M. S. Foster, M. Dzero, V. Gurarie, and E. A. Yuzbashyan, Quantum quench in a p + i p superfluid: Winding numbers and topological states far from equilibrium, arXiv:1307.1485
- T. Habe and Y. Asano, Three-dimensional symmetry breaking topological matters, arXiv:1307.1531
- M. S. Foster, V. Gurarie, M. Dzero, and E. A. Yuzbashyan, Far from equilibrium topological p-wave superfluids, arXiv:1307.2256 (in cold atomic gases after a quench)
- Y. Imai, K. Wakabayashi, and M. Sigrist, Topological and edge state properties of a three-band model for Sr2RuO4, arXiv:1307.2382 (self-consistent Bogoliubov-de Gennes, i.e., real-space mean-field, approach)
- K. A. Madsen, E. J. Bergholtz, and P. W. Brouwer, Topological equivalence of crystal and quasicrystal band structures, arXiv:1307.2577 (and end states in one-dimensional systems)
- J. J. He, J. Wu, T. P. Choy, X.-J. Liu, Y. Tanaka, and K. T. Law, BDI Class Topological Superconductors and Generating Entangled Spin Currents in Quantum Anomalous Hall Insulators, arXiv:1307.2764 (1D)
- S. Thomas, D.J. Kim, S. B. Chung, T. Grant, Z. Fisk, and Jing Xia, Weak Antilocalization and Linear Magnetoresistance in The Surface State of SmB6, arXiv:1307.4133 (experimental)
- M. Ye, J. W. Allen, and K. Sun, Topological crystalline Kondo insulators and universal topological surface states of SmB6, arXiv:1307.7191
- D.-L. Deng, S.-T. Wang, C. Shen, and L.-M. Duan, Hopf Insulators and Their Topologically Protected Surface States, arXiv:1307.7206 (3D TI without symmetries, unlike the standard TI protected by time-reversal invariance; require two bands, one of which is filled, then the homotopy theory of the Hopf map becomes relevant)
- M. Ezawa, Y. Tanaka, and N. Nagaosa, Topological Phase Transition without Gap Closing, arXiv:1307.7347 (but with symmetry change)
- R. R. Biswas and S. Ryu, Diffusive transport in Weyl semimetals, arXiv:1309.3278 (also derive the diffuson microscopically)
- K. Björnson and A. M. Black-Schaffer, Spin Skyrmion number classification for fully gapped topological superconductors, arXiv:1309.3411 (indeed using the standard Skyrmion number [Pontryagin index] of the spin structure instead of the Chern number, discussed for 2D, also said to work in 1D, said to be more intuitive than the Chern number)
- F. S. Nogueira and I. Eremin, Thermal screening on a topological surface and its interplay with proximity-induced ferromagnetism, arXiv:1309.3451
- S. Valentini, R. Fazio, and F. Taddei, Andreev levels spectroscopy of topological three-terminal junctions, arXiv:1311.1017 (DC Josephson junction between topological superconducting wires, probed by biased, narrow normal contact in center of junction P
- B. Sbierski, G. Pohl, E. J. Bergholtz, and P. W. Brouwer, Quantum transport of disordered Weyl semimetals at the nodal point, arXiv:1402.6653 (single Weyl cone, with Fermi energy at the Weyl point, noninteracting electrons, calculate transmission matrix)
- G. B. Halász, J. T. Chalker, and R. Moessner, Doping a topological quantum spin liquid: slow holes in the Kitaev honeycomb model, arXiv:1403.3377 (mobile holes in anisotropic Kitaev honeycomb model in the gapped phase)
- H.-Y. Hui, P. M. R. Brydon, J. D. Sau, S. Tewari, and S. Das Sarma, Majorana fermions in a ferromagnetic wire on the surface of a bulk spin-orbit coupled s-wave superconductor, arXiv:1407.7519 (ferromagnetic, metallic atomic chain on top of superconductor, superconductor is integrated out, BDI class)
- M. Cheng, M. Becker, B. Bauer, and R. M. Lutchyn, Interplay between Kondo and Majorana Interactions in Quantum Dots, Phys. Rev. X 4, 031051 (2014) (normal lead, quantum dot, topological superconducting wire) P
- C. Wang and T. Senthil, Interacting fermionic topological insulators/superconductors in three dimensions, Phys. Rev. B 89, 195124 (2014), note also erratum (minimal generalization of noninteracting topological phases by including interactions: symmetry protected topological phases; do not have intrinsic topological order; long paper relying on previous field-theoretical results, helpful introduction; also discusses breaking of TRS or of U(1) symmetry at the surface; chapter on DIII class)
- H. Weng, J. Zhao, Z. Wang, Z. Fang, and X. Dai, Topological Crystalline Kondo Insulator in Mixed Valence Ytterbium Borides, Phys. Rev. Lett. 112, 016403 (2014) (DFT, Gutzwiller projection, and DMFT: YbB6 is said to be a moderately correlated topological insulator, whereas YbB12 is strongly correlated and a topological chystalline Kondo insulator stabilized by mirror symmetry)
- J. Maciejko, V. Chua, and G. A. Fiete, Topological Order in a Correlated Three-Dimensional Topological Insulator, Phys. Rev. Lett. 112, 016404 (2014) (propose and discuss a state that is intermediate between a weak-coupling topological insulator and a topological Mott insulator, i.e. a TI of spinons; the new state is a TI of emergent charged fermions coupled to an emergent gauge field)
- F. Crépin and B. Trauzettel, Parity Measurement in Topological Josephson Junctions, Phys. Rev. Lett. 112, 077002 (2014) (formed by the two edges of a 2D topological insulator)
- C. Fang, M. J. Gilbert, and B. A. Bernevig, New Class of Topological Superconductors Protected by Magnetic Group Symmetries, Phys. Rev. Lett. 112, 106401 (2014) (3D topological superconductor, characterized by an antiunitary symmetry composed of reflection and time reversal, with integer (Z) topological invariant and Majorana surface states)
- X. Chen, Y.-M. Lu, and A. Vishwanath, Symmetry-protected topological phases from decorated domain walls, Nature Commun. 5, 3507 (2014) (strongly interacting, symmetry-protected topological phases, discuss construction of specific models)
- Y. Xu, R.-L. Chu, and C. Zhang, Anisotropic Weyl Fermions from the Quasiparticle Excitation Spectrum of a 3D Fulde-Ferrell Superfluid, Phys. Rev. Lett. 112, 136402 (2014)
- I. Pletikosic, G. D. Gu, and T. Valla, Inducing a Lifshitz Transition by Extrinsic Doping of Surface Bands in the Topological Crystalline Insulator Pb1-xSnxSe, Phys. Rev. Lett. 112, 146403 (2014) (ARPES)
- Hai-Zhou Lu and Shun-Qing Shen, Finite-Temperature Conductivity and Magnetoconductivity of Topological Insulators, Phys. Rev. Lett. 112, 146601 (2014) (surface states, weak localization vs. weak antilocalization)
- R. Vasseur and J. E. Moore, Edge Physics of the Quantum Spin Hall Insulator from a Quantum Dot Excited by Optical Absorption, Phys. Rev. Lett. 112, 146804 (2014) (quantum dot side coupled to QSH edge, described in Luttinger picture)
- A. G. Grushin, Á. Gómez-León, and T. Neupert, Floquet Fractional Chern Insulators, Phys. Rev. Lett. 112, 156801 (2014) (on honeycomb lattice; corresponding to Laughlin 1/3 state)
- D. I. Pikulin and T. Hyart, Interplay of Exciton Condensation and the Quantum Spin Hall Effect in InAs/GaSb Bilayers, Phys. Rev. Lett. 112, 176403 (2014) (related to Budich, Trauzettel, and Michetti)
- D. A. Kozlov, Z. D. Kvon, E. B. Olshanetsky, N. N. Mikhailov, S. A. Dvoretsky, and D. Weiss, Transport Properties of a 3D Topological Insulator based on a Strained High-Mobility HgTe Film, Phys. Rev. Lett. 112, 196801 (2014)
- L. Zhao, H. Deng, I. Korzhovska, Z. Chen, M. Konczykowski, A. Hruban, V. Oganesyan, and L. Krusin-Elbaum, Singular robust room-temperature spin response from topological Dirac fermions, Nature Mat. 13, 580 (2014) (experiments on 3D topological insulators)
- A. Altland, D. Bagrets, L. Fritz, A. Kamenev, and H. Schmiedt, Quantum Criticality of Quasi-One-Dimensional Topological Anderson Insulators, Phys. Rev. Lett. 112, 206602 (2014) (AIII and BDI)
- Y. Xu, Z. Gan, and S.-C. Zhang, Enhanced Thermoelectric Performance and Anomalous Seebeck Effects in Topological Insulators, Phys. Rev. Lett. 112, 226801 (2014) (2D TI, Landauer approach)
- B.-J. Yang and N. Nagaosa, Emergent Topological Phenomena in Thin Films of Pyrochlore Iridates, Phys. Rev. Lett. 112, 246402 (2014) (Weyl semimetal and how it is destroyed for increasing moment [proportional to U]: propose intermediate phase with hidden topological properties that only emerges for slab geometry and is discontinuous for thickness going to infinity)
- J. Maciejko and R. Nandkishore, Weyl semimetals with short-range interactions, Phys. Rev. B 90, 035126 (2014) P
- M. Brahlek, N. Koirala, M. Salehi, N. Bansal, and S. Oh, Emergence of Decoupled Surface Transport Channels in Bulk Insulating Bi2Se3 Thin Films, Phys. Rev. Lett. 113, 026801 (2014) (experimental, doping with Cu suppresses bulk conduction and decouples surfaces above 20 layers)
- S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, Experimental Realization of a Three-Dimensional Dirac Semimetal, Phys. Rev. Lett. 113, 027603 (2014) (in Cd3As2)
- B. Sbierski, G. Pohl, E. J. Bergholtz, and P. W. Brouwer, Quantum Transport of Disordered Weyl Semimetals at the Nodal Point, Phys. Rev. Lett. 113, 026602 (2014) (numerical calculation for large, finite block using Landauer approach, for a single Weyl cone) P
- S. A. Yang, H. Pan, and F. Zhang, Dirac and Weyl Superconductors in Three Dimensions, Phys. Rev. Lett. 113, 046401 (2014) (i.e., nodal points in the bulk; predict Majorana arcs at the surface, also discuss effect of breaking various symmetries)
- I. Mondragon-Shem, T. L. Hughes, J. Song, and E. Prodan, Topological Criticality in the Chiral-Symmetric AIII Class at Strong Disorder, Phys. Rev. Lett. 113, 046802 (2014)
- H. Liu, Hua Jiang, Q.-f. Sun, and X. C. Xie, Dephasing Effect on Backscattering of Helical Surface States in 3D Topological Insulators, Phys. Rev. Lett. 113, 046805 (2014)
- A. Altland, B. Béri, R. Egger, and A. M. Tsvelik, Multichannel Kondo Impurity Dynamics in a Majorana Device, Phys. Rev. Lett. 113, 076401 (2014); E. Eriksson, C. Mora, A. Zazunov, and R. Egger, Non-Fermi-Liquid Manifold in a Majorana Device, Phys. Rev. Lett. 113, 076404 (2014)
- Z. Huang and D. P. Arovas, Topological Indices for Open and Thermal Systems Via Uhlmann's Phase, Phys. Rev. Lett. 113, 076407 (2014) (generalization of topological classification to finite temperature or dephasing based on parallal transport applied to density matrix) P; O. Viyuela, A. Rivas, and M. A. Martin-Delgado, Two-Dimensional Density-Matrix Topological Fermionic Phases: Topological Uhlmann Numbers, Phys. Rev. Lett. 113, 076408 (2014) (related, two-dimensional fermion systems) P
- R. Wakatsuki, M. Ezawa, and N. Nagaosa, Majorana Fermions and Multiple Topological Phase Transition in Kitaev Ladder Topological Supercondutors, arXiv:1401.5192 (several coupled Kitaev chains)
- M. S. Foster, H.-Y. Xie, and Y.-Z. Chou, Topological protection, disorder, and interactions: Survival at the surface of 3D topological superconductors, arXiv:1403.6502 (CI and, mainly, AIII and DIII classes, employ conformal field theory)
- C.-K. Chiu and A. P. Schnyder, Classification of reflection symmetry protected topological semimetals and nodal superconductors, Phys. Rev. B 90, 205136 (2014) P
- N. F. Q. Yuan, K. F. Mak, and K. T. Law, Possible Topological Superconducting Phases of MoS2, Phys. Rev. Lett. 113, 097001 (2014)
- Y.-M. Lu, T. Xiang, and D.-H. Lee, Underdoped superconducting cuprates as topological superconductors, Nature Phys. 10, 634 (2014) (propose fully gapped topological superconducting state coexisting with antiferromagnetism in strongly underdoped cuprates)
- F. de Juan, R. Ilan, and J. H. Bardarson, Robust Transport Signatures of Topological Superconductivity in Topological Insulator Nanowires, Phys. Rev. Lett. 113, 107003 (2014)
- A. Alexandradinata, C. Fang, M. J. Gilbert, and B. A. Bernevig, Spin-Orbit-Free Topological Insulators without Time-Reversal Symmetry, Phys. Rev. Lett. 113, 116403 (2014) (classification is terms of the 32 point groups, for Cnv find topological insulator phases solely stabilized by lattice symmetries)
- W. Witczak-Krempa, M. Knap, and D. Abanin, Interacting Weyl Semimetals: Characterization via the Topological Hamiltonian and its Breakdown, Phys. Rev. Lett. 113, 136402 (2014) P
- J. Wu, J. Liu, and X.-J. Liu, Topological Spin Texture in a Quantum Anomalous Hall Insulator, Phys. Rev. Lett. 113, 136403 (2014)
- X. Kou et al., Scale-Invariant Quantum Anomalous Hall Effect in Magnetic Topological Insulators beyond the Two-Dimensional Limit, Phys. Rev. Lett. 113, 137201 (2014)
- B.-J. Yang, E.-G. Moon, H. Isobe, and N. Nagaosa, Quantum criticality of topological phase transitions in three-dimensional interacting electronic systems, Nature Phys. 10, 774 (2014) (system at critical point where two Weyl nodes merge, leading to quadratic dispersion in one direction, linear in the other two, this results in unconventional screening; RG)
- Q.-Z. Wang, X. Liu, H.-J. Zhang, N. Samarth, S.-C. Zhang, and C.-X. Liu, Quantum Anomalous Hall Effect in Magnetically Doped InAs/GaSb Quantum Wells, Phys. Rev. Lett. 113, 147201 (2014) (theoretical proposal, DMS quantum well)
- D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, Kitaev Chains with Long-Range Pairing, Phys. Rev. Lett. 113, 156402 (2014)
- A. A. Burkov, Anomalous Hall Effect in Weyl Metals, Phys. Rev. Lett. 113, 187202 (2014)
- S.-P. Lee, K. Michaeli, J. Alicea, and A. Yacoby, Revealing Topological Superconductivity in Extended Quantum Spin Hall Josephson Junctions, Phys. Rev. Lett. 113, 197001 (2014)
- S. Kourtis and M. Daghofer, Combined Topological and Landau Order from Strong Correlations in Chern Bands, Phys. Rev. Lett. 113, 216404 (2014)
- A. A. Burkov, Chiral Anomaly and Diffusive Magnetotransport in Weyl Metals, Phys. Rev. Lett. 113, 247203 (2014) (for multilayer model introduced earlier, two Weyl cones) P
- A. Narayan, D. Di Sante, S. Picozzi, and S. Sanvito, Topological Tuning in Three-Dimensional Dirac Semimetals, Phys. Rev. Lett. 113, 256403 (2014) (DFT)
- G. Young Cho, R. Soto-Garrido, and E. Fradkin, Topological Pair-Density-Wave Superconducting States, Phys. Rev. Lett. 113, 256405 (2014) (distinct from standard topological superconductors in that the order parameter is the average of a quartic fermionic operator)
- H. Wei, S.-P. Chao, and V. Aji, Long-range interaction induced phases in Weyl semimetals, Phys. Rev. B 89, 235109 (2014) P
- T. Hyart, A. R. Wright, and B. Rosenow, Zeeman field induced topological phase transitions in triplet superconductors, arXiv:1405.4113 (doped Kitaev-Heisenberg model) P
- Y. J. Park, S. B. Chung, and J. Maciejko, Surface Majorana fermions and bulk collective modes in superfluid 3He-B, Phys. Rev. B 91, 054507 (2015) (coupling of Goldstone modes to flat-band Majorana surface states induces interaction between the Majorana states, may lead to spontaneous breaking of time-reversal symmetry)
- S.-M. Huang et al., A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nature Commun. 6, 7373 (2015) (first theoretical prediction of Weyl semimetallic state in TaAs)
- P. Finch, J. de Lisle, G. Palumbo, and J. K. Pachos, Induced Topological Phases at the Boundary of 3D Topological Superconductors, Phys. Rev. Lett. 114, 016801 (2015) (class DIII in three dimensions, with applied magnetic field the surface becomes gapped and forms a two-dimensional topological superconductor in class D)
- E. J. Bergholtz, Z. Liu, M. Trescher, R. Moessner, and M. Udagawa, Topology and Interactions in a Frustrated Slab: Tuning from Weyl Semimetals to C > 1 Fractional Chern Insulators, Phys. Rev. Lett. 114, 016806 (2015) (pyrochlore lattice, Fermi arcs, interaction effects) P
- M. Ezawa, Antiferromagnetic Topological Superconductor and Electrically Controllable Majorana Fermions, Phys. Rev. Lett. 114, 056403 (2015) (generic honeycomb system with proximity-induced superconductivity, proposes to induce trivial-nontrivial phase boundaries at interface by applying electric field, each boundary carries one Majorana state)
- P. Titum, N. H. Lindner, M. C. Rechtsman, and G. Refael, Disorder-Induced Floquet Topological Insulators, Phys. Rev. Lett. 114, 056801 (2015)
- R. Li, X. Cheng, Q. Xie, Y. Sun, D. Li, Y. Li, and X.-Q. Chen, Topological Metal of NaBi with Ultralow Lattice Thermal Conductivity and Electron-phonon Superconductivity, Sci. Rep. 5, 8446 (2015) (ab-initio calculations; strong spin-orbit coupling, band inversion, Z2 topological invariant, phonon-induced superconductivity)
- T. Lan, J. C. Wang, and X.-G. Wen, Gapped Domain Walls, Gapped Boundaries, and Topological Degeneracy, Phys. Rev. Lett. 114, 076402 (2015)
- M. P. Zaletel and A. Vishwanath, Constraints on Topological Order in Mott Insulators, Phys. Rev. Lett. 114, 077201 (2015)
- B. Lu, K. Yada, M. Sato, and Y. Tanaka, Crossed Surface Flat Bands of Weyl Semimetal Superconductors, Phys. Rev. Lett. 114, 096804 (2015) (3D Weyl-semimetal model with s-wave gap, interplay of Fermi arcs and zero-energy Andreev bound states)
- J. Ruhman, E. Berg, and E. Altman, Topological States in a One-Dimensional Fermi Gas with Attractive Interaction, Phys. Rev. Lett. 114, 100401 (2015) (with Rashba spin-orbit coupling, Luttinger-liquid description; the main point is that zero-energy Majorana-fermion excitations can exist even though superconducting long-range order is absent in one dimension) P
- Y. Peng, F. Pientka, L. I. Glazman, and F. von Oppen, Strong Localization of Majorana End States in Chains of Magnetic Adatoms, Phys. Rev. Lett. 114, 106801 (2015) (on recent experiments on Fe chains on superconducting Pb; address why the Majorana states are so strongly localized)
- A. G. Grushin, J. W. F. Venderbos, and J. H. Bardarson, Coexistence of Fermi arcs with two-dimensional gapless Dirac states, Phys. Rev. B 91, 121109(R) (2015) (at interface of Weyl semimetal and topological insulator; also calculate optical conductivity using a simple model)
- G. Gupta, M. Bin Abdul Jalil, and G. Liang, Contact Effects in thin 3D-Topological Insulators: How does the current flow?, Sci. Rep. 5, 9479 (2015) (Meir-Wingreen approach)
- Y. Baum, T. Posske, I. C. Fulga, B. Trauzettel, and A. Stern, Coexisting Edge States and Gapless Bulk in Topological States of Matter, Phys. Rev. Lett. 114, 136801 (2015)
- A. Kamenev and Y. Gefen, Coulomb Blockade with Neutral Modes, Phys. Rev. Lett. 114, 156401 (2015) (for ν = 2/3 and 5/2, standard description involves neutral [in addition to fractionally charged] edge modes, which are relevant for the tunneling geometry considered here; non-diamond-like shape of Coulomb "diamonds")
- A. Haim, E. Berg, F. von Oppen, and Y. Oreg, Signatures of Majorana Zero Modes in Spin-Resolved Current Correlations, Phys. Rev. Lett. 114, 166406 (2015) (distinguishing Majorana states from ordinary Andreev bound states)
- H. Schomerus, M. Marciani, and C. W. J. Beenakker, Effect of Chiral Symmetry on Chaotic Scattering from Majorana Zero Modes, Phys. Rev. Lett. 114, 166803 (2015) (prevents splitting of overlapping zero modes)
- A. Amaricci, J. C. Budich, M. Capone, B. Trauzettel, and G. Sangiovanni, First-Order Character and Observable Signatures of Topological Quantum Phase Transitions, Phys. Rev. Lett. 114, 185701 (2015) (the transition QSH to trivial insulator in the plane of Hubbard U and band splitting becomes first order at some finite value of U, a quantum critical point is found there)
- M. Orlita, B. A. Piot, G. Martinez, N. K. Sampath Kumar, C. Faugeras, M. Potemski, C. Michel, E. M. Hankiewicz, T. Brauner, C. Drasar, S. Schreyeck, S. Grauer, K. Brunner, C. Gould, C. Brüne, and L. W. Molenkamp, Magneto-Optics of Massive Dirac Fermions in Bulk Bi2Se3, Phys. Rev. Lett. 114, 186401 (2015) (theory and experiment; in bulk Bi2Se3, the Landau-level splitting is twice the cyclotron energy, as has been observed experimentally before, this is here explained)
- M. Hirayama, R. Okugawa, S. Ishibashi, S. Murakami, and T. Miyake, Weyl Node and Spin Texture in Trigonal Tellurium and Selenium, Phys. Rev. Lett. 114, 206401 (2015) (GW approximation)
- Y. X. Zhao and Z. D. Wang, Disordered Weyl Semimetals and Their Topological Family, Phys. Rev. Lett. 114, 206602 (2015) (transport)
- K. Jiang, Y. Zhang, S. Zhou, and Z. Wang, Chiral Spin Density Wave Order on the Frustrated Honeycomb and Bilayer Triangle Lattice Hubbard Model at Half-Filling, Phys. Rev. Lett. 114, 216402 (2015) (non-coplanar order; slave-boson theory)
- D.-H. Choe and K. J. Chang, Universal Conductance Fluctuation in Two-Dimensional Topological Insulators, Sci. Rep. 5, 10997 (2015) (due to conduction if edge states)
- M. Claassen, C. H. Lee, R. Thomale, X.-L. Qi, and T. P. Devereaux, Position-Momentum Duality and Fractional Quantum Hall Effect in Chern Insulators, Phys. Rev. Lett. 114, 236802 (2015) (the model is dual to the fractional quantum-Hall system with position and momentum interchanged)
- S.-K. Jian, Y.-F. Jiang, and H. Yao, Emergent Spacetime Supersymmetry in 3D Weyl Semimetals and 2D Dirac Semimetals, Phys. Rev. Lett. 114, 237001 (2015) (SUSY emerges at the quantum critical point towards a pair-density-wave state induced by an attractive Hubbard interaction, this is claimed to be the leading instability in a certain parameter regime; the arguments relies on the observation that the RG flows of the velocities of Weyl fermions and of collective PDW fluctuations converge to the same value)
- X. Hu, Z. Zhong, and G. A. Fiete, First Principles Prediction of Topological Phases in Thin Films of Pyrochlore Iridates, Sci. Rep. 5, 11072 (2015)
- C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B. Yan, Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP, Nature Phys. 11, 645 (2015) (doped Weyl cone coexists with normal Fermi pockets; NbP is noncentrosymmetric but nonmagnetic)
- A. Altland and D. Bagrets, Effective Field Theory of the Disordered Weyl Semimetal, Phys. Rev. Lett. 114, 257201 (2015) P
- M. Trescher, B. Sbierski, P. W. Brouwer, and E. J. Bergholtz, Quantum transport in Dirac materials: Signatures of tilted and anisotropic Dirac and Weyl cones, Phys. Rev. B 91, 115135 (2015) (Landauer approach for sandwich structure; calculate conductance and noise, i.e., Fano factor) P
- J. Hofmann and S. Das Sarma, Plasmon signature in Dirac-Weyl liquids, Phys. Rev. B 91, 241108(R) (2015) (RPA; specific topological properties of Weyl semimetal compared to Dirac semimetal do not play a role here); D. E. Kharzeev, R. D. Pisarski, and H.-U. Yee, Universality of Plasmon Excitations in Dirac Semimetals, Phys. Rev. Lett. 115, 236402 (2015) (field-theoretical approach)
- T. Neupert, S. Rachel, R. Thomale, and M. Greiter, Interacting Surface States of Three-Dimensional Topological Insulators, Phys. Rev. Lett. 115, 017001 (2015) (exact diagonalization for spherical system)
- K. Mullen, B. Uchoa, and D. T. Glatzhofer, Line of Dirac Nodes in Hyperhoneycomb Lattices, Phys. Rev. Lett. 115, 026403 (2015) (three-dimensional lattice with coordination number 3, nearest-neighbor bonds form planar star with equal angles, line of Dirac points [in the other two directions] in momentum space, thus toroidal equal-energy surfaces)
- T. Yoshida, M. Sigrist, and Y. Yanase, Topological Crystalline Superconductivity in Locally Noncentrosymmetric Multilayer Superconductors, Phys. Rev. Lett. 115, 027001 (2015)
- J. H. Pixley, P. Goswami, and S. Das Sarma, Anderson Localization and the Quantum Phase Diagram of Three Dimensional Disordered Dirac Semimetals, Phys. Rev. Lett. 115, 076601 (2015) (different types of disorder, no interactions, QPTs)
- X.-Q. Sun, S.-C. Zhang, and Z. Wang, Helical Spin Order from Topological Dirac and Weyl Semimetals, Phys. Rev. Lett. 115, 076802 (2015) (Weyl-type dispersion is generically unstable towards interaction-induced mass generation, resulting state is characterized by helical spin polarization; show this for three models in one, two, and three dimensions within mean-field theory and also using Luttinger-liquid theory for the 1D case; point out that previous results by Goldstone and Wilczek imply that phase fluctuations of this helical order carry electrical charge, which should allow to manipulate the spin texture by gating; see also arXiv:1207.5234 and Phys. Rev. B 87, 161107(R) (2013))
- T. Scaffidi and S. H. Simon, Large Chern Number and Edge Currents in Sr2RuO4, Phys. Rev. Lett. 115, 087003 (2015) (RG method following Raghu et al.; find that leading gaps have Chern number -7 instead of usually assumed +1, belong to same irrep of tetragonal point group, but, unlike states with +1, states with -7 do not have ground-state edge currents, which reconciles experimental results)
- A. Farrell and T. Pereg-Barnea, Photon-Inhibited Topological Transport in Quantum Well Heterostructures, Phys. Rev. Lett. 115, 106403 (2015) (conductance falls below the universal value)
- S. Zhong, J. Orenstein, and J. E. Moore, Optical Gyrotropy from Axion Electrodynamics in Momentum Space, Phys. Rev. Lett. 115, 117403 (2015) P
- H. Shinaoka, S. Hoshino, M. Troyer, and P. Werner, Phase Diagram of Pyrochlore Iridates: All-in-All-out Magnetic Ordering and Non-Fermi-Liquid Properties, Phys. Rev. Lett. 115, 156401 (2015) (Y2Ir2O7; LDA+DMFT; do not find a Weyl state)
- F. Iemini, L. Mazza, D. Rossini, R. Fazio, and S. Diehl, Localized Majorana-Like Modes in a Number-Conserving Setting: An Exactly Solvable Model, Phys. Rev. Lett. 115, 156402 (2015)
- P. P. Baruselli and M. Vojta, Distinct Topological Crystalline Phases in Models for the Strongly Correlated Topological Insulator SmB6, Phys. Rev. Lett. 115, 156404 (2015)
- M. Legner, A. Rüegg, and M. Sigrist, Surface-State Spin Textures and Mirror Chern Numbers in Topological Kondo Insulators, Phys. Rev. Lett. 115, 156405 (2015)
- Q.-D. Jiang, H. Jiang, H. Liu, Q.-F. Sun, and X. C. Xie, Topological Imbert-Fedorov Shift in Weyl Semimetals, Phys. Rev. Lett. 115, 156602 (2015)
- S. A. Yang, H. Pan, and F. Zhang, Chirality-Dependent Hall Effect in Weyl Semimetals, Phys. Rev. Lett. 115, 156603 (2015) (semiclassical theory) P
- A. Rahmani, X. Zhu, M. Franz, and I. Affleck, Emergent Supersymmetry from Strongly Interacting Majorana Zero Modes, Phys. Rev. Lett. 115, 166401 (2015) (Majorana chain with nearest-neighbor bilinear/hopping term and positive interaction terms of four adjacent Majorana modes; fine tuning of the hopping leads to SUSY; analytical arguments are supported by DMRG calculations)
- R. Y. Chen, Z. G. Chen, X.-Y. Song, J. A. Schneeloch, G. D. Gu, F. Wang, and N. L. Wang, Magnetoinfrared Spectroscopy of Landau Levels and Zeeman Splitting of Three-Dimensional Massless Dirac Fermions in ZrTe5, Phys. Rev. Lett. 115, 176404 (2015) (IR spectroscopy in magnetic field; 3D Dirac semimetal)
- T. Kawakami and X. Hu, Evolution of Density of States and a Spin-Resolved Checkerboard-Type Pattern Associated with the Majorana Bound State, Phys. Rev. Lett. 115, 177001 (2015) (topological supercondutor induced in TI surface states by the proximity effect; Bogoliubov-de Gennes/envelope function approach)
- A. Cortijo, Y. Ferreirós, K. Landsteiner, and M. A. H. Vozmediano, Elastic Gauge Fields in Weyl Semimetals, Phys. Rev. Lett. 115, 177202 (2015) (coupling of deformations and electrons in 3D Weyl semimetals can be described by a gauge theory, similar to graphene)
- Y.-Z. Chou, A. Levchenko, and M. S. Foster, Helical Quantum Edge Gears in 2D Topological Insulators, Phys. Rev. Lett. 115, 186404 (2015) (Coulomb drag between the edges of two TIs)
- M. Pino, A. M. Tsvelik, and L. B. Ioffe, Unpaired Majorana Modes in Josephson-Junction Arrays with Gapless Bulk Excitations, Phys. Rev. Lett. 115, 197001 (2015) (quasi-one-dimensional arrays; their gapless "bulk" mediates an RKKY interaction between Majorana states at opposite ends, which falls off as a power law L-2)
- V. Kozii and L. Fu, Odd-Parity Superconductivity in the Vicinity of Inversion Symmetry Breaking in Spin-Orbit-Coupled Systems, Phys. Rev. Lett. 115, 207002 (2015) (pairing due to fluctuations associated with the parity-breaking transition)
- A. M. Tsvelik and O. M. Yevtushenko, Quantum Phase Transition and Protected Ideal Transport in a Kondo Chain, Phys. Rev. Lett. 115, 216402 (2015)
- A. Lau, C. Ortix, and J. van den Brink, Topological Edge States with Zero Hall Conductivity in a Dimerized Hofstadter Model, Phys. Rev. Lett. 115, 216805 (2015)
- I. Sodemann and L. Fu, Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials, Phys. Rev. Lett. 115, 216806 (2015)
- S.-L. Zhang, L.-J. Lang, and Q. Zhou, Chiral d-Wave Superfluid in Periodically Driven Lattices, Phys. Rev. Lett. 115, 225301 (2015)
- A. A. Soluyanov, D. Gresch, Z. Wang, Q. S. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Type-II Weyl semimetals, Nature 527, 495 (2015) (for which the Weyl cone is tilted so strongly that the equi-energy cut through the Weyl point consists of two intersecting lines; discuss surface states; title changed compared to preprint)
- Y. Qi and L. Fu, Anomalous Crystal Symmetry Fractionalization on the Surface of Topological Crystalline Insulators, Phys. Rev. Lett. 115, 236801 (2015) (interesting: excitations carry fractionalized, i.e., not normally possible, quantum numbers for crystal-symmetry transformations, in the specific example imaginary parity of a mirror symmetry)
- C. Schrade, A. A. Zyuzin, J. Klinovaja, and D. Loss, Proximity-Induced π Josephson Junctions in Topological Insulators and Kramers Pairs of Majorana Fermions, Phys. Rev. Lett. 115, 237001 (2015)
- C.-Z. Chen, J. Song, H. Jiang, Q.-f. Sun, Z. Wang, and X. C. Xie, Disorder and Metal-Insulator Transitions in Weyl Semimetals, Phys. Rev. Lett. 115, 246603 (2015) P
- P. Gentile, M. Cuoco, and C. Ortix, Edge States and Topological Insulating Phases Generated by Curving a Nanowire with Rashba Spin-Orbit Coupling, Phys. Rev. Lett. 115, 256801 (2015) (models with periodic spatial modulation of the spin-orbit vector)
- Y. Xu, F. Zhang, and C. Zhang, Structured Weyl Points in Spin-Orbit Coupled Fermionic Superfluids, Phys. Rev. Lett. 115, 265304 (2015)
- Y. Peng, F. Pientka, Y. Vinkler-Aviv, L. I. Glazman, and F. von Oppen, Robust Majorana Conductance Peaks for a Superconducting Lead, Phys. Rev. Lett. 115, 266804 (2015) (propose to use a superconducting instead of normal lead to observe tunneling into Majorana state)
- J. S. Hofmann, F. F. Assaad, and A. P. Schnyder, Edge instabilities of topological superconductors, Phys. Rev. B 93, 201116(R) (2016) (continuous-time QMC for 2D dxy-wave superconductor strip, spontaneous breaking of TRS and, for attrachtive interaction, translational symmetry at the (01) edge)
-
Y.-H. Chan, C.-K. Chiu, M. Y. Chou, and A. P. Schnyder, Ca3P2 and other topological semimetals with line nodes and drumhead surface states, Phys. Rev. B 93, 205132 (2016)
- Y. X. Zhao and Z. D. Wang, Novel Z2 Topological Metals and Semimetals, Phys. Rev. Lett. 116, 016401 (2016)
- S. Kourtis, J. Li, Z. Wang, A. Yazdani, and B. A. Bernevig, Universal signatures of Fermi arcs in quasiparticle interference on the surface of Weyl semimetals, Phys. Rev. B 93, 041109(R) (2016)
- T. Gulden, M. Janas, Y. Wang, and A. Kamenev, Universal Finite-Size Scaling around Topological Quantum Phase Transitions, Phys. Rev. Lett. 116, 026402 (2016) (conformal field theory)
- C.-K. Chan, P. A. Lee, K. S. Burch, J. H. Han, and Y. Ran, When Chiral Photons Meet Chiral Fermions: Photoinduced Anomalous Hall Effects in Weyl Semimetals, Phys. Rev. Lett. 116, 026805 (2016) (illumination by circularly polarized light; the light field cannot gap the Weyl nodes but rather shifts them)
- D. F. Mross, A. Essin, J. Alicea, and A. Stern, Anomalous Quasiparticle Symmetries and Non-Abelian Defects on Symmetrically Gapped Surfaces of Weak Topological Insulators, Phys. Rev. Lett. 116, 036803 (2016) (due to strong interactions)
- O. Erten, P. Ghaemi, and P. Coleman, Kondo Breakdown and Quantum Oscillations in SmB6, Phys. Rev. Lett. 116, 046403 (2016) (apparently conflicting experimental results—a Fermi surface from quantum oscillations and insulating behavior—are reconciled based on topological surface states); L. Zhang, X.-Y. Song, and F. Wang, Quantum Oscillation in Narrow-Gap Topological Insulators, Phys. Rev. Lett. 116, 046404 (2016) (related paper, theory for SmB6)
- G. Chang et al., Signatures of Fermi Arcs in the Quasiparticle Interferences of the Weyl Semimetals TaAs and NbP, Phys. Rev. Lett. 116, 066601 (2016) (calculation and analysis of QPI, based on DFT)
- C.-C. Liu, J.-J. Zhou, Y. Yao, and F. Zhang, Weak Topological Insulators and Composite Weyl Semimetals: β-Bi4X4 (X=Br,I), Phys. Rev. Lett. 116, 066801 (2016) (theoretical work based on DFT, predict various phases: weak and strong TI and two types of Weyl semimetals, one with a normal closed Fermi line coexisting with Fermi arcs at a certain surface)
- I. Belopolski et al., Criteria for Directly Detecting Topological Fermi Arcs in Weyl Semimetals, Phys. Rev. Lett. 116, 066802 (2016) (mostly geometrical criteria for ascertaining Fermi arcs in ARPES experiments; same group as previous paper) P
- H. Isobe, B.-J. Yang, A. Chubukov, J. Schmalian, and N. Nagaosa, Emergent Non-Fermi-Liquid at the Quantum Critical Point of a Topological Phase Transition in Two Dimensions, Phys. Rev. Lett. 116, 076803 (2016) (2D Weyl fermions with linear dispersion in one direction but quadratic in the other; RG and 1/N expansion) P
- A. Sekine and K. Nomura, Chiral Magnetic Effect and Anomalous Hall Effect in Antiferromagnetic Insulators with Spin-Orbit Coupling, Phys. Rev. Lett. 116, 096401 (2016) (dynamical axion field caused by spin fluctuations)
- H. Isobe and N. Nagaosa, Coulomb Interaction Effect in Weyl Fermions with Tilted Energy Dispersion in Two Dimensions, Phys. Rev. Lett. 116, 116803 (2016) (RG flow for anisotropic and tilted Weyl cones in presence of Coulomb interaction is towards the isotropic, non-tilted dispersion, even if the tilt makes the bare velocity negative in some directions)
- M. Ezawa, Loop-Nodal and Point-Nodal Semimetals in Three-Dimensional Honeycomb Lattices, Phys. Rev. Lett. 116, 127202 (2016) (loop-nodal semimetals with flat-band surface states are quite generic in the absence of spin-orbit coupling; become point-nodal semimetals with SOC)
- Y. Zhang, D. Bulmash, P. Hosur, A. C. Potter, and A. Vishwanath, Quantum oscillations from generic surface Fermi arcs and bulk chiral modes in Weyl semimetals, Sci. Rep. 6, 23741 (2016)
- A. Chen and M. Franz, Superconducting proximity effect and Majorana flat bands in the surface of a Weyl semimetal, arXiv:1601.01727 (proximity to s-wave superconductor, distinguish Weyl semimetal with and without time-reversal symmetry, also consider two superconducting electrodes side by side, with a π phase difference, in this case there are flat zero-energy bands) P
- Y. X. Zhao, A. P. Schnyder, and Z. D. Wang, Unified Theory of PT and CP Invariant Topological Metals and Nodal Superconductors, Phys. Rev. Lett. 116, 156402 (2016) (topological classification of Fermi surfaces of any codimension, based on theory of real Clifford algebras and KO theory)
- J. González and R. A. Molina, Macroscopic Degeneracy of Zero-Mode Rotating Surface States in 3D Dirac and Weyl Semimetals under Radiation, Phys. Rev. Lett. 116, 156803 (2016) (circularly polarized radiation; Floquet theory; no reference to standard, equilibrium Fermi arcs)
- H. Sumiyoshi and S. Fujimoto, Torsional Chiral Magnetic Effect in a Weyl Semimetal with a Topological Defect, Phys. Rev. Lett. 116, 166601 (2016) (screw or edge dislocation in a Weyl semimetal, minimal continuum TRS-breaking model with two Weyl points; uses Cartan formalism to treat curved space; dislocation leads to fictitious magnetic field that, through spin-momentum locking, causes a ground-state charge current; this current is carried by Fermi-arc-type states bound to the dislocation)
- P. M. R. Brydon, L. Wang, M. Weinert, and D. F. Agterberg, Pairing of j=3/2 Fermions in Half-Heusler Superconductors, Phys. Rev. Lett. 116, 177001 (2016)
- B. J. Wieder, Y. Kim, A. M. Rappe, and C. L. Kane, Double Dirac Semimetals in Three Dimensions, Phys. Rev. Lett. 116, 186402 (2016) (analysis of all 3D space groups; seven of them permit eightfold degenerate Dirac points; also tight-binding models and line defects)
- J.-T. Wang, H. Weng, S. Nie, Z. Fang, Y. Kawazoe, and C. Chen, Body-Centered Orthorhombic C16: A Novel Topological Node-Line Semimetal, Phys. Rev. Lett. 116, 195501 (2016) (DFT-GGA: predict new metastable three-dimensional, inversion-symmetric phase of carbon with only sp2 hybridization [but bonds of any carbon atom are not coplanar], should be a nodal topological semimetal with a single nodal ring in the bulk, also dispersing surface band)
- J. Behrmann, Z. Liu, and E. J. Bergholtz, Model Fractional Chern Insulators, Phys. Rev. Lett. 116, 216802 (2016) (construction of lattice models, flat bands)
- K. Yasuda et al., Geometric Hall effects in topological insulator heterostructures, Nature Phys. 12, 555 (2016)
- T. I. Vanhala, T. Siro, L. Liang, M. Troyer, A. Harju, and P. Törmä, Topological Phase Transitions in the Repulsively Interacting Haldane-Hubbard Model, Phys. Rev. Lett. 116, 225305 (2016) (DMFT and ED)
- J. Ruan et al., Ideal Weyl Semimetals in the Chalcopyrites CuTlSe2, AgTlTe2, AuTlTe2, and ZnPbAs2, Phys. Rev. Lett. 116, 226801 (2016) (DFT prediction of Weyl semimetals lacking inversion symmetry; 8 Weyl points)
- T. E. O'Brien, M. Diez, and C. W. J. Beenakker, Magnetic Breakdown and Klein Tunneling in a Type-II Weyl Semimetal, Phys. Rev. Lett. 116, 236401 (2016) (type-II Weyl points are viewed as topologically protected touching points of electron-like and hole-like pockets, theory for quantum oscillations in magnetic field)
- I. C. Fulga, D. I. Pikulin, and T. A. Loring, Aperiodic Weak Topological Superconductors, Phys. Rev. Lett. 116, 257002 (2016) (define weak invariants that do not require translational symmetry)
- G. Xu, B. Lian, P. Tang, X.-L. Qi, and S.-C. Zhang, Topological Superconductivity on the Surface of Fe-Based Superconductors, Phys. Rev. Lett. 117, 047001 (2016) (motivated by three-dimensional Fe(Se,Te); effective eight-band model; topological and trivial superconductivity, phase diagrams)
- Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, MoTe2: A Type-II Weyl Topological Metal, Phys. Rev. Lett. 117, 056805 (2016) (DFT and model calculations based on experimental structure; time-reversal-symmetric but not centrosymmetric system with four type-II Weyl cones)
- M. Xiao, Q. Lin, and S. Fan, Hyperbolic Weyl Point in Reciprocal Chiral Metamaterials, Phys. Rev. Lett. 117, 057401 (2016) (type-II Weyl system, theoretical proposal, time-reversal symmetry but not inversion symmetry)
- G. Autés, D. Gresch, M. Troyer, A. A. Soluyanov, and O. V. Yazyev, Robust Type-II Weyl Semimetal Phase in Transition Metal Diphosphides XP2 (X=Mo, W), Phys. Rev. Lett. 117, 066402 (2016)
- H.-Q. Wu, Y.-Y. He, C. Fang, Z. Y. Meng, and Z.-Y. Lu, Diagnosis of Interaction-driven Topological Phase via Exact Diagonalization, Phys. Rev. Lett. 117, 066403 (2016) (exact diagonalization of rather small systems, here two dimensional, conclusions for thermodynamik limit based on group-theoretical and topological arguments); W. Zhu et al., Interaction-Driven Spontaneous Quantum Hall Effect on a Kagome Lattice, Phys. Rev. Lett. 117, 096402 (2016) (exact diagonalization and DMRG); C.-C. Chen, L. Muechler, R. Car, T. Neupert, and J. Maciejko, Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model, Phys. Rev. Lett. 117, 096405 (2016) (exact diagonalization)
- W. Yang, Y. Li, and C. Wu, Topological Septet Pairing with Spin-3/2 Fermions: High-Partial-Wave Channel Counterpart of the 3He-B Phase, Phys. Rev. Lett. 117, 075301 (2016) P
- D. Di Sante, P. Barone, A. Stroppa, K. F. Garrity, D. Vanderbilt, and S. Picozzi, Intertwined Rashba, Dirac, and Weyl Fermions in Hexagonal Hyperferroelectrics, Phys. Rev. Lett. 117, 076401 (2016)
- M. Kargarian, D. K. Efimkin, and V. Galitski, Amperean Pairing at the Surface of Topological Insulators, Phys. Rev. Lett. 117, 076806 (2016) (pairing mediated by ferromagnetic fluctuations due to a ferromagnetic layer; pairing is between electrons with parallel, not antiparallel, momenta: "Amperean")
- Z.-M. Yu, Y. Yao, and S. A. Yang, Predicted Unusual Magnetoresponse in Type-II Weyl Semimetals, Phys. Rev. Lett. 117, 077202 (2016)
- M. Udagawa and E. J. Bergholtz, Field-Selective Anomaly and Chiral Mode Reversal in Type-II Weyl Materials, Phys. Rev. Lett. 117, 086401 (2016); S. Tchoumakov, M. Civelli, and M. O. Goerbig, Magnetic-Field-Induced Relativistic Properties in Type-I and Type-II Weyl Semimetals, Phys. Rev. Lett. 117, 086402 (2016)
- R. Li et al., Dirac Node Lines in Pure Alkali Earth Metals, Phys. Rev. Lett. 117, 096401 (2016) (DFT; lines of linear band crossings predicted for Be, Mg, Ca, Sr, leading to surface bands, which help to explain known anomalous surface properties of Be)
- N. F. Q. Yuan, W.-Y. He, and K. T. Law, Superconductivity-Induced Ferromagnetism and Weyl Superconductivity in Nb-doped Bi2Se3, arXiv:1608.05825 (mean-field and Ginzburg-Landau theory based on microscopic Hamiltonian; propose time-reversal-symmetry-breaking chiral superconducting order in agreement with recent experiments, gap has point/Weyl nodes, Fermi arcs at surfaces) P
- A. A. Burkov and Y. B. Kim, Z2 and Chiral Anomalies in Topological Dirac Semimetals, Phys. Rev. Lett. 117, 136602 (2016) (propose a new anomaly associated with Z2 topological charge)
- Y. Sun, Y. Zhang, C. Felser, and B. Yan, Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals, Phys. Rev. Lett. 117, 146403 (2016) (DFT/GGA combined with Kubo formula) P
- T. Morimoto and N. Nagaosa, Chiral Anomaly and Giant Magnetochiral Anisotropy in Noncentrosymmetric Weyl Semimetals, Phys. Rev. Lett. 117, 146603 (2016) (... such as TaAs; semiclassical theory is used to derive nonlinear term in the resistivity proportional to I·B) P
- J. Nasu, J. Knolle, D. L. Kovrizhin, Y. Motome, and R. Moessner, Fermionic response from fractionalization in an insulating two-dimensional magnet, Nature Physics 12, 912 (2016) (QMC for Raman response, re-evaluation of Raman data for α-RuCl3; argue that there is evidence for fermionic excitations as expected for a spin liquid)
- C. Fang, L. Lu, J. Liu, and L. Fu, Topological semimetals with helicoid surface states, Nature Physics 12, 936 (2016) (theory for surface states based on Riemann surfaces, generalizes Weyl semimetals)
- T. Bzdusek, Q. Wu, A. Rüegg, M. Sigrist, and A. A. Soluyanov, Nodal-chain metals, Nature 538, 75 (2016) (proposed new topological type of band structure with connected 1D Fermi loops in the 3D Brillouin zone, should apply to IrF4; also find surface states in the form of Fermi arcs connecting the projections of the touching points of the loops)
- T. H. Hsieh, G. B. Halász, and T. Grover, All Majorana Models with Translation Symmetry are Supersymmetric, Phys. Rev. Lett. 117, 166802 (2016)
- B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, Tunneling Planar Hall Effect in Topological Insulators: Spin Valves and Amplifiers, Phys. Rev. Lett. 117, 166806 (2016)
- F. S. Nogueira, Z. Nussinov, and J. van den Brink, Josephson Currents Induced by the Witten Effect, Phys. Rev. Lett. 117, 167002 (2016) (ac Josephson effect for a junction of a type-II superconductor and a topological insulator, in the absence of a bias voltage) P
- I. I. Naumov and R. J. Hemley, Topological Surface States in Dense Solid Hydrogen, Phys. Rev. Lett. 117, 206403 (2016)
- R. Queiroz, E. Khalaf, and A. Stern, Dimensional Hierarchy of Fermionic Interacting Topological Phases, Phys. Rev. Lett. 117, 206405 (2016) (dimensional reduction, bulk related to point defects at surface) P
- H. Ishizuka, T. Hayata, M. Ueda, and N. Nagaosa, Emergent Electromagnetic Induction and Adiabatic Charge Pumping in Noncentrosymmetric Weyl Semimetals, Phys. Rev. Lett. 117, 216601 (2016)
- E. Barnes, J. J. Heremans, and D. Minic, Electromagnetic Signatures of the Chiral Anomaly in Weyl Semimetals, Phys. Rev. Lett. 117, 217204 (2016) (fundamental properties, not specific material)
- Z. Wang, M. G. Vergniory, S. Kushwaha, M. Hirschberger, E. V. Chulkov, A. Ernst, N. P. Ong, R. J. Cava, and B. A. Bernevig, Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys, Phys. Rev. Lett. 117, 236401 (2016) (ferromagnets, just one pair of Weyl nodes and hence simple Fermi arc, DFT)
- G. Antonius and S. G. Louie, Temperature-Induced Topological Phase Transitions: Promoted versus Suppressed Nontrivial Topology, Phys. Rev. Lett. 117, 246401 (2016)
- J. Liu, S. Y. Park, K. F. Garrity, and D. Vanderbilt, Flux States and Topological Phases from Spontaneous Time-Reversal Symmetry Breaking in CrSi(Ge)Te3-Based Systems, Phys. Rev. Lett. 117, 257201 (2016) (DFT, single layers)
- D. Varjas, A. G. Grushin, R. Ilan, and J. E. Moore, Dynamical Piezoelectric and Magnetopiezoelectric Effects in Polar Metals from Berry Phases and Orbital Moments, Phys. Rev. Lett. 117, 257601 (2016)
- Y. Peng, Y. Vinkler-Aviv, P. W. Brouwer, L. I. Glazman, and F. von Oppen, Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions, Phys. Rev. Lett. 117, 267001 (2016)
-
M. Laubach, C. Platt, R. Thomale, T. Neupert, and S. Rachel, Density wave instabilities and surface state evolution in interacting Weyl semimetals, Phys. Rev. B 94, 241102(R) (2016) (simple model for a Weyl semimetal with Hubbard interaction, find CDW that opens gap at strong negative U and SDW at strong positive U; variational cluster approximation)
-
E. Witten, An SYK-Like Model Without Disorder, arXiv:1610.09758 (Majorana fermions with uniform q-particle interaction [four or larger], 0+1 dimensional model, nonrandom variant of the Sachdev-Ye-Kitaev model)
- L.-K. Lim and R. Moessner, Pseudospin Vortex Ring with a Nodal Line in Three Dimensions, Phys. Rev. Lett. 118, 016401 (2017) (also discuss Fermi arcs and relation to Weyl semimetals; continuum and tight-binding models)
- G. Tkachov, Magnetoelectric Andreev Effect due to Proximity-Induced Nonunitary Triplet Superconductivity in Helical Metals, Phys. Rev. Lett. 118, 016802 (2017) (helical metal: e.g., topological-insulator surface states)
- S. A. A. Ghorashi, S. Davis, M. S. Foster, Disorder-enhanced topological protection and universal quantum criticality in a spin-3/2 topological superconductor, arXiv:1701.02787 (effects of interactions and disorder)
- M. Kharitonov, J.-B. Mayer, and E. M. Hankiewicz, Universality and stability of the edge states of chiral nodal topological semimetals; Luttinger model for j=3/2 electrons as a 3D topological semimetal, arXiv:1701.01553 P; published as Universality and Stability of the Edge States of Chiral-Symmetric Topological Semimetals and Surface States of the Luttinger Semimetal, Phys. Rev. Lett. 119, 266402 (2017) (envelope-function approach to surface states)
- S. Ikegaya and Y. Asano, Stability of flat zero-energy states at the dirty surface of a nodal superconductor, arXiv:1701.05313 (single-band topological superconductors with time-reversal symmetry; determine how many flat-band surface states survive at zero energy in presence of surface disorder: only states at the same surface and with opposite chirality [S] are gapped out in pairs; numerical results for various models on two-dimensional strips) P
- N. Wennerdal and M. Eschrig, Theory of surface spectroscopy for noncentrosymmetric superconductors, arXiv:1701.05744 P
- I. Boettcher and I. Herbut, Unconventional Superconductivity in Luttinger Semimetals: Theory of Complex Tensor Order and Emergence of the Uniaxial Nematic State, Phys. Rev. Lett. 120, 057002 (2018) P
-
L. Savary, J. Ruhman, J. W. F. Venderbos, L. Fu, and P. A. Lee, Superconductivity in three-dimensional spin-orbit coupled semimetals, arXiv:1707.03831 P
-
W. Yang, T. Xiang, and C. Wu, Majorana surface modes of nodal topological pairings in spin-3/2 semi-metals, arXiv:1707.07261 P (exemplified by half-Heusler materials, A1 state, flat surface bands and quasi-particle interference, also dispersive surface bands for T and O groups)
- H. Zhang, K. Haule, and D. Vanderbilt, Metal-Insulator Transition and Topological Properties of Pyrochlore Iridates, Phys. Rev. Lett. 118, 026404 (2017) (DFT and DMFT at 50 K; find only topologically trivial insulating all-in-all-out and also trivial metallic paramagnetic phases, no topological or axion insulators and no Weyl semimetal, no detailed discussion of Weyl case)
- Y. X. Zhao and Y. Lu, PT-Symmetric Real Dirac Fermions and Semimetals, Phys. Rev. Lett. 118, 056401 (2017) (construct a real version of Dirac points; call it a real generalization of Weyl points)
- F. Liu and K. Wakabayashi, Novel Topological Phase with a Zero Berry Curvature, Phys. Rev. Lett. 118, 076803 (2017) (topologically nontrivial 2D model in spite of vanishing Berry curvature due to nontrivial Berry connection; analogy to Aharonov-Bohm effect)
-
F. Lambert, A. Akbari, P. Thalmeier, and I. Eremin, Surface State Tunneling Signatures in the Two-Component Superconductor UPt3, Phys. Rev. Lett. 118, 087004 (2017) (slab calculation of surface [and bulk] states and quasi-particle interference, tight-binding model incompatible with D6h point group) P
-
J. Knolle and N. R. Cooper, Excitons in topological Kondo insulators: Theory of thermodynamic and transport anomalies in SmB6, Phys. Rev. Lett. 118, 096604 (2017)
-
M. Hell, M. Leijnse, and K. Flensberg, Two-Dimensional Platform for Networks of Majorana Bound States, Phys. Rev. Lett. 118, 107701 (2017) (2DEG in proximity to structured superconductor)
-
S. T. Ramamurthy, Y. Wang, and T. L. Hughes, Electromagnetic Response of Three-Dimensional Topological Crystalline Insulators, Phys. Rev. Lett. 118, 146602 (2017)
-
Z. Yan, R. Bi, and Z. Wang, Majorana Zero Modes Protected by a Hopf Invariant in Topologically Trivial Superconductors, Phys. Rev. Lett. 118, 147003 (2017) (two-dimensional spinless p-wave model with n-fold vortex, Hopf invariant equals n)
-
J. Ahn and B.-J. Yang, Unconventional Topological Phase Transition in Two-Dimensional Systems with Space-Time Inversion Symmetry, Phys. Rev. Lett. 118, 156401 (2017) (2+1 dimensions, "space-time inversion symmetry" consists of time reversal and spatial twofold rotation; in its presence find a Weyl phase separating trivial and topological insulators)
-
S.-K. Jian, C.-H. Lin, J. Maciejko, and H. Yao, Emergence of Supersymmetric Quantum Electrodynamics, Phys. Rev. Lett. 118, 166802 (2017) (at quantum phase transition towards pair-density state, e.g., SmB6)
-
M. Heinrich, A. Jiménez-Alba, S. Moeckel, and M. Ammon, Surface States in Holographic Weyl Semimetals, Phys. Rev. Lett. 118, 201601 (2017) (strong coupling, uses QFT-AdS duality)
-
T. Micklitz and M. R. Norman, Symmetry-Enforced Line Nodes in Unconventional Superconductors, Phys. Rev. Lett. 118, 207001 (2017) P
-
C. Chan and X.-J. Liu, Non-Abelian Majorana Modes Protected by an Emergent Second Chern Number, Phys. Rev. Lett. 118, 207002 (2017) (FFLO pair-density wave breaking time-reversal symmetry, fully gapped, Majorana modes localized at vortices)
-
T. E. O’Brien, C. W. J. Beenakker, and İ. Adagideli, Superconductivity Provides Access to the Chiral Magnetic Effect of an Unpaired Weyl Cone, Phys. Rev. Lett. 118, 207701 (2017) (superconducting pairing gaps out a Weyl point but not its partner of opposite chirality)
-
T. Bzdušek and M. Sigrist, Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems, Phys. Rev. B 96, 155105 (2017) (with general classification of symmetry classes and topological invariants in presence of inversion symmetry in addition to the usual global C, T, S symmetries) P
-
H. Shapourian, K. Shiozaki, and S. Ryu, Many-Body Topological Invariants for Fermionic Symmetry-Protected Topological Phases, Phys. Rev. Lett. 118, 216402 (2017)
-
J. Ruhman, V. Kozii, and L. Fu, Odd-Parity Superconductivity near an Inversion Breaking Quantum Critical Point in One Dimension, Phys. Rev. Lett. 118, 227001 (2017) (stongly interacting 1D system, topological state is 1D analogue of spin-triplet superconductor)
-
B. Roy, Y. Alavirad, and J. D. Sau, Global Phase Diagram of a Three-Dimensional Dirty Topological Superconductor, Phys. Rev. Lett. 118, 227002 (2017) (potential disorder and random s-wave pairing, analyze weak and strong disorder regimes)
-
A. Agarwala and V. B. Shenoy, Topological Insulators in Amorphous Systems, Phys. Rev. Lett. 118, 236402 (2017) (random networks, topologically nontrivial in the sense that a nonzero Bott index can be defined; also has edge states)
- B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig, Topological quantum chemistry, Nature 547, 298 (2017) P
-
S. A. A. Ghorashi, S. Davis, and M. S. Foster, Disorder-enhanced topological protection and universal quantum criticality in a spin-3/2 topological superconductor, Phys. Rev. B 95, 144503 (2017) (RG, weak disorder) P
-
K. Patrick, T. Neupert, and J. K. Pachos, Topological Quantum Liquids with Long-Range Couplings, Phys. Rev. Lett. 118, 267002 (2017) (extension of Kitaev chain)
-
M.-T. Suzuki, T. Koretsune, M. Ochi, and R. Arita, Cluster multipole theory for anomalous Hall effect in antiferromagnets, Phys. Rev. B 95, 094406 (2017) (symmetries that prevent/allow nonzero anomalous Hall conductivity in certain planes, role of spin-orbit coupling for these; applied to cubic Oh and hexagonal D6h Mn3Z) P
-
T.-R. Chang et al., Type-II Symmetry-Protected Topological Dirac Semimetals, Phys. Rev. Lett. 119, 026404 (2017) (theoretical prediction for (V,Nb,Ta)(Al,Ga,Mn)3, no experiment)
-
B. Béri, Exact Nonequilibrium Transport in the Topological Kondo Effect, Phys. Rev. Lett. 119, 027701 (2017) (in a certain limit)
-
R. Yu, Q. Wu, Z. Fang, and H. Weng, From Nodal Chain Semimetal to Weyl Semimetal in HfC, Phys. Rev. Lett. 119, 036401 (2017) (ab initio and model theory)
-
J. F. Steiner, A. V. Andreev, and D. A. Pesin, Anomalous Hall Effect in Type-I Weyl Metals, Phys. Rev. Lett. 119, 036601 (2017) P
-
D. Liu and J. Shi, Circular Phonon Dichroism in Weyl Semimetals, Phys. Rev. Lett. 119, 075301 (2017) (predict strong effects of circular polarization of phonons)
-
A. Lau, K. Koepernik, J. van den Brink, and C. Ortix, Generic Coexistence of Fermi Arcs and Dirac Cones on the Surface of Time-Reversal Invariant Weyl Semimetals, Phys. Rev. Lett. 119, 076801 (2017)
-
J. Liu and L. Balents, Anomalous Hall Effect and Topological Defects in Antiferromagnetic Weyl Semimetals: Mn3Sn/Ge, Phys. Rev. Lett. 119, 087202 (2017) P
-
E. Khalaf and P. M. Ostrovsky, Localization Effects on Magnetotransport of a Disordered Weyl Semimetal, Phys. Rev. Lett. 119, 106601 (2017) (partially exact treatment of localization close to Weyl points)
-
Zhao Liu, Gunnar Möller, and Emil J. Bergholtz, Exotic Non-Abelian Topological Defects in Lattice Fractional Quantum Hall States, Phys. Rev. Lett. 119, 106801 (2017) (defects that effectively increase the genus of space)
-
Zi-Xiang Li, Yi-Fan Jiang, and Hong Yao, Edge Quantum Criticality and Emergent Supersymmetry in Topological Phases, Phys. Rev. Lett. 119, 107202 (2017) (QMC simulations)
-
I. Klich, D. Vaman, and G. Wong, Entanglement Hamiltonians for Chiral Fermions with Zero Modes, Phys. Rev. Lett. 119, 120401 (2017) (... due to ground-state degeneracy)
-
H. Yang, J. Yu, S. S. P. Parkin, C. Felser, C.-X. Liu, and B. Yan, Prediction of Triple Point Fermions in Simple Half-Heusler Topological Insulators, Phys. Rev. Lett. 119, 136401 (2017) (ab-initio calculations, band-touching points of twofold degenerate and nondegenerate band)
-
C. Wang and M. Levin, Anomaly Indicators for Time-Reversal Symmetric Topological Orders, Phys. Rev. Lett. 119, 136801 (2017) (anomaly here meaning 2D topological orders that can only be realized at the surface of a 3D bulk)
-
C. M. Wang, H.-P. Sun, H.-Z. Lu, and X. C. Xie, 3D Quantum Hall Effect of Fermi Arcs in Topological Semimetals, Phys. Rev. Lett. 119, 136806 (2017)
-
X.-Q. Sun, B. Lian, and S.-C. Zhang, Double Helix Nodal Line Superconductor, Phys. Rev. Lett. 119, 147001 (2017) (noncentrosymmetric single-band superconductors, conditions for complicated interlinked line nodes, implications for surface flat bands)
-
G. Chang et al., Topological Hopf and Chain Link Semimetal States and Their Application to Co2MnGa, Phys. Rev. Lett. 119, 156401 (2017) (nodal lines with nontrivial links, see previous paper by Sun et al.)
-
X. Dai, Z. Z. Du, and H.-Z. Lu, Negative Magnetoresistance without Chiral Anomaly in Topological Insulators, Phys. Rev. Lett. 119, 166601 (2017) (semiclassical)
-
C. Gneiting and F. Nori, Disorder-Induced Dephasing in Backscattering-Free Quantum Transport, Phys. Rev. Lett. 119, 176802 (2017) (e.g., topological-insulator edges)
-
A. A. Burkov, Giant planar Hall effect in topological metals, Phys. Rev. B 96, 041110(R) (2017) (see also following paper by Nandy et al.) P
-
S. Nandy, G. Sharma, A. Taraphder, and S. Tewari, Chiral Anomaly as the Origin of the Planar Hall Effect in Weyl Semimetals, Phys. Rev. Lett. 119, 176804 (2017) (see also previous paper by Burkov) P
-
Y. Wang and L. Fu, Topological Phase Transitions in Multicomponent Superconductors, Phys. Rev. Lett. 119, 187003 (2017), arXiv:1703.06880 (for centrosymmetric and noncentrosymmetric cases, also with or without rotational symmetry, time-reversal symmetry spontaneously broken in the bulk) P
-
J. Železný, Y. Zhang, C. Felser, and B. Yan, Spin-Polarized Current in Noncollinear Antiferromagnets, Phys. Rev. Lett. 119, 187204 (2017) (Mn3Sn and Mn3Ir, DFT, no mention of Weyl points)
-
G. Chang et al., Unconventional Chiral Fermions and Large Topological Fermi Arcs in RhSi, Phys. Rev. Lett. 119, 206401 (2017) (chiral space group 198, several band-touching points with large Chern numbers); P. Tang, Q. Zhou, and S.-C. Zhang, Multiple Types of Topological Fermions in Transition Metal Silicides, Phys. Rev. Lett. 119, 206402 (2017) (space group 198, include RhSi, DFT calculations, "Rarita-Schwinger-Weyl fermions")
-
A. Westström and T. Ojanen, Designer Curved-Space Geometry for Relativistic Fermions in Weyl Metamaterials, Phys. Rev. X 7, 041026 (2017) (general relativity by design)
-
J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W. Brouwer, Reflection-Symmetric Second-Order Topological Insulators and Superconductors, Phys. Rev. Lett. 119, 246401 (2017) (gapless dispersion only at crystal edges or corners)
-
J. Wang et al., Prediction of Ideal Topological Semimetals with Triply Degenerate Points in the NaCu3Te2 Family, Phys. Rev. Lett. 119, 256402 (2017) (intermediate between Weyl and Dirac cases)
-
C.-K. Chan and P. A. Lee, Emergence of gapped bulk and metallic side walls in the zeroth Landau level in Dirac and Weyl semimetals, Phys. Rev. B 96, 195143 (2017) (pairs of Weyl or Dirac points are gapped out by magnetic field perpendicular to their separation vector, no nonzero critical value, unlike in the following paper); P. Kim, J. H. Ryoo, and C.-H. Park, Breakdown of the Chiral Anomaly in Weyl Semimetals in a Strong Magnetic Field, Phys. Rev. Lett. 119, 266401 (2017) (DFT on TaAs family, pairs of Weyl points can be gapped out by strong magnetic field if their separation vector is perpendicular to the field [note breaking of momentum conservation], field must exceed a critical value)
-
F. Zhang, J. Zhou, D. Xiao, and Y. Yao, Tunable Intrinsic Plasmons due to Band Inversion in Topological Materials, Phys. Rev. Lett. 119, 266804 (2017)
-
J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and R.-J. Slager, Topological Classification of Crystalline Insulators through Band Structure Combinatorics, Phys. Rev. X 7, 041069 (2017) (exhaustive classification, also analyze phase transitions and in which cases a Weyl-semimetal phase intervenes)
-
J. Yu and C.-X. Liu, Singlet-Quintet Mixing in Spin-Orbit Coupled Superconductors with j=3/2 Fermions, arXiv:1801.00083 (singlet-s-wave mixed with quintet d-wave, linearized gap equation, Kohn-Luttinger model with normal, inverted, and partially inverted band touching point, model for half-Heusler compounds neglecting breaking of inversion symmetry [but the breaking term is considered in the supplement, find nodal lines on both Fermi surfaces])
-
A. A. Burkov, Mirror Anomaly in Dirac Semimetals, Phys. Rev. Lett. 120, 016603 (2018) (steps in dependence of anomalous Hall effect on magnetic-field direction, due to evolution of Weyl points with field direction)
-
J.-P. Sun, D. Zhang, and K. Chang, Molybdenum Carbide: A Stable Topological Semimetal with Line Nodes and Triply Degenerate Points, Chin. Phys. Lett. 34, 027102 (2017) (DFT, also discuss surface states)
-
J.-T. Wang, S. Nie, H. Weng, Y. Kawazoe, and C. Chen, Topological Nodal-Net Semimetal in a Graphene Network Structure, Phys. Rev. Lett. 120, 026402 (2018) (DFT, prediction of nodal-line network)
-
A. V. Andreev and B. Z. Spivak, Longitudinal Negative Magnetoresistance and Magnetotransport Phenomena in Conventional and Topological Conductors, Phys. Rev. Lett. 120, 026601 (2018) (these effects do not require Weyl or Dirac semimetals
-
M. Ezawa, Higher-Order Topological Insulators and Semimetals on the Breathing Kagome and Pyrochlore Lattices, Phys. Rev. Lett. 120, 026801 (2018) (having zero-energy states only at higher-order edges and corners; "breathing" means that the ratio of hopping amplitudes is tuned)
-
M. Cheng, Microscopic Theory of Surface Topological Order for Topological Crystalline Superconductors, Phys. Rev. Lett. 120, 036801 (2018) (interacting topological superconductor relying on mirror symmetry; field-theoretical discussion)
-
Z. Long, Y. Wang, M. Erukhimova, M. Tokman, and A. Belyanin, Magnetopolaritons in Weyl Semimetals in a Strong Magnetic Field, Phys. Rev. Lett. 120, 037403 (2018) (exotic plasmon-polariton properties)
-
R. Verresen, N. G. Jones, and F. Pollmann, Topology and Edge Modes in Quantum Critical Chains, Phys. Rev. Lett. 120, 057001 (2018) (BDI in 1D)
-
Y. Li and F. D. M. Haldane, Topological Nodal Cooper Pairing in Doped Weyl Metals, Phys. Rev. Lett. 120, 067003 (2018) (point nodes due to monopole charges inherited by the gap function from the normal-state Weyl dispersion) P
-
T. Cao, M. Wu, and S. G. Louie, Unifying Optical Selection Rules for Excitons in Two Dimensions: Band Topology and Winding Numbers, Phys. Rev. Lett. 120, 087402 (2018) (optical excitation of 2D semiconductors)
-
J. W. F. Venderbos, L. Savary, J. Ruhman, P. A. Lee, and L. Fu, Pairing States of Spin-3/2 Fermions: Symmetry-Enforced Topological Gap Functions, Phys. Rev. X 8, 011029 (2018) P
-
C. Gong, Y. Xie, Y. Chen, H.-S. Kim, and D. Vanderbilt, Symmorphic Intersecting Nodal Rings in Semiconducting Layers, Phys. Rev. Lett. 120, 106403 (2018)
-
W. Ji and X.-G. Wen, (e2/h)/2 Conductance Plateau without 1D Chiral Majorana Fermions, Phys. Rev. Lett. 120, 107002 (2018) (show that plateau is not conclusive evidence for chiral Majorana state and IQH-superconductor interface)
-
R. Thorngren and D. V. Else, Gauging Spatial Symmetries and the Classification of Topological Crystalline Phases, Phys. Rev. X 8, 011040 (2018)
-
Q.-R. Wang and Z.-C. Gu, Towards a Complete Classification of Symmetry-Protected Topological Phases for Interacting Fermions in Three Dimensions and a General Group Supercohomology Theory, Phys. Rev. X 8, 011055 (2018)
-
R. A. Molina and J. González, Surface and 3D Quantum Hall Effects from Engineering of Exceptional Points in Nodal-Line Semimetals, Phys. Rev. Lett. 120, 146601 (2018)
-
M. N. Chernodub, A. Cortijo, and M. A. H. Vozmediano, Generation of a Nernst Current from the Conformal Anomaly in Dirac and Weyl Semimetals, Phys. Rev. Lett. 120, 206601 (2018) P
-
J. H. Pixley, J. H. Wilson, D. A. Huse, and S. Gopalakrishnan, Weyl Semimetal to Metal Phase Transitions Driven by Quasiperiodic Potentials, Phys. Rev. Lett. 120, 207604 (2018)
-
J. Cano, B. Bradlyn, Z. Wang, L. Elcoro, M. G. Vergniory, C. Felser, M. I. Aroyo, and B. Andrei Bernevig, Topology of Disconnected Elementary Band Representations, Phys. Rev. Lett. 120, 266401 (2018) ("elementary": is not a sum of simpler band representations; if an elementary band rep is gapped it cannot be represented in terms of localized symmetric Wannier function and is thus topologically nontrivial)
-
S. A. A. Ghorashi, Y. Liao, and M. S. Foster, Critical Percolation without Fine-Tuning on the Surface of a Topological Superconductor, Phys. Rev. Lett. 121, 016802 (2018) (fully gapped, dispersive surface states, with disorder, exact diagonalization for supercell)
- B. J. Wieder, B. Bradlyn, Z. Wang, J. Cano, Y. Kim, H.-S. D. Kim, A. M. Rappe, C. L. Kane, and B. A. Bernevig, Wallpaper fermions and the nonsymmorphic Dirac insulator, Science 361, 246 (2018)
-
Y. Chen, H.-Z. Lu, and X. C. Xie, Forbidden Backscattering and Resistance Dip in the Quantum Limit as a Signature for Topological Insulators, Phys. Rev. Lett. 121, 036602 (2018)
-
J. L. Lado and M. Sigrist, Two-Dimensional Topological Superconductivity with Antiferromagnetic Insulators, Phys. Rev. Lett. 121, 037002 (2018)
-
M. J. Pacholski, C. W. J. Beenakker, and İ. Adagideli, Topologically Protected Landau Level in the Vortex Lattice of a Weyl Superconductor, Phys. Rev. Lett. 121, 037701 (2018)
-
T. Lan, L. Kong, and X.-G. Wen, Classification of (3+1)D Bosonic Topological Orders: The Case When Pointlike Excitations Are All Bosons, Phys. Rev. X 8, 021074 (2018)
-
T. T. Ong and N. Nagaosa, Spin Transport and Accumulation in a 2D Weyl Fermion System, Phys. Rev. Lett. 121, 066603 (2018) (at surface of 3D TI)
-
S. Yao and Z. Wang, Edge States and Topological Invariants of Non-Hermitian Systems, Phys. Rev. Lett. 121, 086803 (2018) (subtleties of the bulk-boundary correspondence in non-Hermitian models)
-
X. Ying and A. Kamenev, Symmetry-Protected Topological Metals, Phys. Rev. Lett. 121, 086810 (2018) (topological QPT between gapless states, protected by symmetries)
-
C. Xu and L. Balents, Topological Superconductivity in Twisted Multilayer Graphene, Phys. Rev. Lett. 121, 087001 (2018) (SU(4) Hubbard model, physical discussion of likely pairing states) P
-
X.-Q. Sun, S.-C. Zhang, and T. Bzdušek, Conversion Rules for Weyl Points and Nodal Lines in Topological Media, Phys. Rev. Lett. 121, 106402 (2018) (Weyl points of opposite chirality that are related by a mirror symmetry cannot annihilate but rather transform into a nodal loop)
-
H. Gao, Y. Kim, J. W. F. Venderbos, C. L. Kane, E. J. Mele, A. M. Rappe, and W. Ren, Dirac-Weyl Semimetal: Coexistence of Dirac and Weyl Fermions in Polar Hexagonal ABC Crystals, Phys. Rev. Lett. 121, 106404 (2018)
-
J. I. Väyrynen, D. I. Pikulin, and J. Alicea, Noise-Induced Backscattering in a Quantum Spin Hall Edge, Phys. Rev. Lett. 121, 106601 (2018) (allowed for electric potential fluctuating in time, which thus breaks time-reversal symmetry)
-
H. C. Po, H. Watanabe, and A. Vishwanath, Fragile Topology and Wannier Obstructions, Phys. Rev. Lett. 121, 126402 (2018)
-
M. Offidani and A. Ferreira, Anomalous Hall Effect in 2D Dirac Materials, Phys. Rev. Lett. 121, 126802 (2018) (also skew scattering)
-
B. Roy and V. Juričić, Collisionless Transport Close to a Fermionic Quantum Critical Point in Dirac Materials, Phys. Rev. Lett. 121, 137601 (2018) (Gross-Neveu-Yukawa model)
-
D. Chowdhury, Y. Werman, E. Berg, and T. Senthil, Translationally Invariant Non-Fermi-Liquid Metals with Critical Fermi Surfaces: Solvable Models, Phys. Rev. X 8, 031024 (2018) (lattice of Sachdev-Ye-Kitaev quantum dots with hopping between them)
-
E. Khalaf, H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry Indicators and Anomalous Surface States of Topological Crystalline Insulators, Phys. Rev. X 8, 031070 (2018) (analysis of all point groups and all space groups, include spin-orbit coupling)
-
B. Roy, R.-J. Slager, and V. Juričić, Global Phase Diagram of a Dirty Weyl Liquid and Emergent Superuniversality, Phys. Rev. X 8, 031076 (2018) (detailed analysis of phase diagram of Weyl semimetal with disorder)
-
M. Koshino, N. F. Q. Yuan, T. Koretsune, M. Ochi, K. Kuroki, and L. Fu, Maximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Graphene, Phys. Rev. X 8, 031087 (2018) (construct effective model in terms of "fidget spinners", assume twist about carbon site, leads to point group D3; twist about hexagon center with D6 symmetry discussed in supplement); J. Kang and O. Vafek, Symmetry, Maximally Localized Wannier States, and a Low-Energy Model for Twisted Bilayer Graphene Narrow Bands, Phys. Rev. X 8, 031088 (2018) (similar); H. C. Po, L. Zou, A. Vishwanath, and T. Senthil, Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene, Phys. Rev. X 8, 031089 (2018) (twist about hexagon center, gives sixfold rotation symmetry, position of twist axis should not affect low-energy properties)
-
A. Ramires and J. L. Lado, Electrically Tunable Gauge Fields in Tiny-Angle Twisted Bilayer Graphene, Phys. Rev. Lett. 121, 146801 (2018) (vertical electric field acts as artificial gauge field) P
-
M. H. Fischer, M. Sigrist, and D. F. Agterberg, Superconductivity without Inversion and Time-Reversal Symmetries, Phys. Rev. Lett. 121, 157003 (2018) (2D; symmetries in title not essential, only the product of one of them and Mz reflection required; energetic and topological analysis)
-
K. Ziegler and A. Sinner, Short Note on the Density of States in 3D Weyl Semimetals, Phys. Rev. Lett. 121, 166401 (2018) (... with disorder)
-
P. M. R. Brydon, D. S. L. Abeexirgel, D. F. Agterberg, and V. M. Yakovenko, Loop currents from nonunitary chiral superconductivity on the honeycomb lattice, arXiv:1802.02280 (nonunitarity from sublattice degree of freedom, pairing leads to an effective Haldane model in second-order perturbation theory) P
-
Q. Wang, C.-C. Liu, Y.-M. Lu, and F. Zhang, High-Temperature Majorana Corner States, Phys. Rev. Lett. 121, 186801 (2018) (at corners of 2D proximity-induced topological superconductor)
-
T. Kobayashi, T. Matsushita, T. Mizushima, A. Tsuruta, and S. Fujimoto, Negative Thermal Magnetoresistivity as a Signature of a Chiral Anomaly in Weyl Superconductors, Phys. Rev. Lett. 121, 207002 (2018) (quasiclassical Eilenberger equation plus quantum corrections)
-
M. Buchhold, S. Diehl, and A. Altland, Vanishing Density of States in Weakly Disordered Weyl Semimetals, Phys. Rev. Lett. 121, 215301 (2018) (weak disorder does not lead to nonzero DOS at the Weyl-point enerty in splite of presence of rare regions)
-
C.-C. Liu, L.-D. Zhang, W.-Q. Chen, and F. Yang, Chiral Spin Density Wave and d+id Superconductivity in the Magic-Angle-Twisted Bilayer Graphene, Phys. Rev. Lett. 121, 217001 (2018) (tight-binding model, degeneracies do not seem to agree with DFT; SDW; superconductivity induced by spin fluctuations)
-
D. A. Pesin, Two-Particle Collisional Coordinate Shifts and Hydrodynamic Anomalous Hall Effect in Systems without Lorentz Invariance, Phys. Rev. Lett. 121, 226601 (2018) (applied to Weyl semimetal, contribution to anomalous Hall effect)
-
S. B. Zhang, J. Erdmenger, and B. Trauzettel, Chirality Josephson Current Due to a Novel Quantum Anomaly in Inversion-Asymmetric Weyl Semimetals, Phys. Rev. Lett. 121, 226604 (2018)
-
F. S. Nogueira, Z. Nussinov, and J. van den Brink, Fractional Angular Momentum at Topological Insulator Interfaces, Phys. Rev. Lett. 121, 227001 (2018) (and fractional statistics, phase upon exchange is –π/4)
-
T. Kawakami, T. Okamura, S. Kobayashi, and M. Sato, Topological Crystalline Materials of J = 3/2 Electrons: Antiperovskites, Dirac Points, and High Winding Topological Superconductivity, Phys. Rev. X 8, 041026 (2018)
-
D. R. Candido, M. E. Flatté, and J. C. Egues, Blurring the Boundaries Between Topological and Nontopological Phenomena in Dots, Phys. Rev. Lett. 121, 256804 (2018) (Bernevig-Hughes-Zhang model on cylinder, surface states also in ttrivial phase)
-
J. Yu and C.-X. Liu, Spin Susceptibility, Upper Critical Field and Disorder Effect in j=3/2 Superconductors with Singlet-Quintet Mixing, arXiv:1809.04736 (both Oh and Td, isotropic quintet part: 5-vector g from symmetric spin-orbit coupling multiplied by 5-vector of quintet pairing matrices, not specifically on topology; linearized gap equation)
-
J. Yu and C.-X. Liu, Interaction and Impurity Effect on Surface Majorana Flat Bands in j=3/2 Superconductors with Singlet-Quintet Mixing, arXiv:1809.07455 (symmetry analysis of (111) surface, order parameters are momentum independent in each of the 6 flat-band patches)
-
G. B. Sim, A. Mishra, M. J. Park, Y. B. Kim, G. Y. Cho, and S. B. Lee, Topological d+s wave superconductors in a multi-orbital quadratic band touching system, Phys. Rev. B 100, 064509 (2019) (centrosymmetric system, Bogoliubov Fermi surfaces, repulsive interactions, spherically symmetric limit, microscopically derived Landau functional)
-
S. Kobayashi, A. Yamakage, Y. Tanaka, and M. Sato, Majorana Multipole Response of Topological Superconductors, arXiv:1812.01857 (of surface states)
-
W. Chen and J. L. Lado, Interaction-Driven Surface Chern Insulator in Nodal Line Semimetals, Phys. Rev. Lett. 122, 016803 (2019) (by Stoner instability of nearly flat drumhead surface band)
-
J. González and T. Stauber, Kohn-Luttinger Superconductivity in Twisted Bilayer Graphene, Phys. Rev. Lett. 122, 026801 (2019)
-
M.-X. Deng, G. Y. Qi, R. Ma, R. Shen, R.-Q. Wang, L. Sheng, and D. Y. Xing, Quantum Oscillations of the Positive Longitudinal Magnetoconductivity: A Fingerprint for Identifying Weyl Semimetals, Phys. Rev. Lett. 122, 036601 (2019) (semiclassical to quantum regimes)
-
L. Trifunovic and P. W. Brouwer, Higher-Order Bulk-Boundary Correspondence for Topological Crystalline Phases, Phys. Rev. X 9, 011012 (2019) (complete classification of topological systems with symmetries squaring to +-1 and with higher-order protected surface states)
-
T. Meng and J. C. Budich, Unpaired Weyl Nodes from Long-Ranged Interactions: Fate of Quantum Anomalies, Phys. Rev. Lett. 122, 046402 (2019) (designed, quite unnatural interaction that gaps out only one Weyl point)
-
Y. Ferreiros, Y. Kedem, E. J. Bergholtz, and J. H. Bardarson, Mixed Axial-Torsional Anomaly in Weyl Semimetals, Phys. Rev. Lett. 122, 056601 (2019)
-
B. W. Xia, Y. J. Jin, J. Z. Zhao, Z. J. Chen, B. B. Zheng, Y. J. Zhao, R. Wang, and H. Xu, Robust Twin Pairs of Weyl Fermions in Ferromagnetic Oxides, Phys. Rev. Lett. 122, 057205 (2019) (analyze symmetry conditions under which an even number of pairs of Weyl points can exist in ferromagnets)
-
U. Chattopadhyay, L.-k. Shi, B. Zhang, J. C. W. Song, and Y. D. Chong, Fermi-Arc-Induced Vortex Structure in Weyl Beam Shifts, Phys. Rev. Lett. 122, 066602 (2019) (of light beams impinging on surface from inside Weyl semimetal)
- T. Zhang et al., Catalogue of topological electronic materials, Nature 566, 475 (2019); M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, A complete catalogue of high-quality topological materials, Nature 566, 480 (2019); F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Comprehensive search for topological materials using symmetry indicators, Nature 566, 486 (2019)
-
G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Origin of Magic Angles in Twisted Bilayer Graphene, Phys. Rev. Lett. 122, 106405 (2019)
-
L. Trifunovic and P. W. Brouwer, Higher-Order Bulk-Boundary Correspondence for Topological Crystalline Phases, Phys. Rev. X 9, 011012 (2019) (for twofold unitary or antiunitary operator commuting or anticommuting with H)
-
T. Lan and X.-G. Wen, Classification of 3+1D Bosonic Topological Orders (II): The Case When Some Pointlike Excitations Are Fermions, Phys. Rev. X 9, 021005 (2019) (with gapped bulk, boundaries are crucial, technically uses fusion 2-categories, extension of Phys. Rev. X 8, 021074 (2018))
-
J. Ahn, S. Park, and B.-J. Yang, Failure of Nielsen-Ninomiya Theorem and Fragile Topology in Two-Dimensional Systems with Space-Time Inversion Symmetry: Application to Twisted Bilayer Graphene at Magic Angle, Phys. Rev. X 9, 021013 (2019)
-
M.-Y. Yao, N. Xu, Q. S. Wu, G. Autès, N. Kumar, V. N. Strocov, N. C. Plumb, M. Radovic, O. V. Yazyev, C. Felser, J. Mesot, and M. Shi, Observation of Weyl Nodes in Robust Type-II Weyl Semimetal WP2, Phys. Rev. Lett. 122, 176402 (2019) (points group C2v without inversion symmetry, nonsymmorphic space group, time-reversal symmetry preserved)
-
A. Lau and C. Ortix, Topological Semimetals in the SnTe Material Class: Nodal Lines and Weyl Points, Phys. Rev. Lett. 122, 186801 (2019) (prediction of semimetal phases in rhombohedral IV-VI componds)
-
S.-E. Han, C. Lee, E.-G. Moon, and H. Min, Emergent Anisotropic Non-Fermi Liquid at a Topological Phase Transition in Three Dimensions, Phys. Rev. Lett. 122, 187601 (2019) (interacting system with double Weyl points, QPTs)
-
V. Werner, B. Trauzettel, and O. Kashuba, Semiclassical Conservation of Spin and Large Transverse Spin Current in Dirac Systems, Phys. Rev. Lett. 122, 187703 (2019)
-
J. Kim, I. R. Klebanov, G. Tarnopolsky, and W. Zhao, Symmetry Breaking in Coupled SYK or Tensor Models, Phys. Rev. X 9, 021043 (2019) (two coupled interacting Majorana models on tetrahedral lattice, random and non-random versions, large-N Schwinger-Dyson equations)
-
Z. Song and X. Dai, Hear the Sound of Weyl Fermions, Phys. Rev. X 9, 021053 (2019)
-
A. Daido, T. Yoshida, and Y. Yanase, Z4 Topological Superconductivity in UCoGe, Phys. Rev. Lett. 122, 227001 (2019) (proposed to be a nonsymmorphic topological superconductor, also dicsuss CrAs)
-
S. Lett et al., Perfect Andreev reflection due to the Klein paradox in a topological superconducting state, Nature 570, 344 (2019)
-
Z. Song, Z. Wang, W. Shi, G. Li, C. Fang, and B. A. Bernevig, All Magic Angles in Twisted Bilayer Graphene are Topological, Phys. Rev. Lett. 123, 036401 (2019)
-
S. Liu, A. Vishwanath, and E. Khalaf, Shift Insulators: Rotation-Protected Two-Dimensional Topological Crystalline Insulators, Phys. Rev. X 9, 031003 (2019)
-
P. M. R. Brydon, D. S. L. Abergel, D. F. Agterberg, and V. M. Yakovenko, Loop Currents and Anomalous Hall Effect from Time-Reversal Symmetry-Breaking Superconductivity on the Honeycomb Lattice, Phys. Rev. X 9, 031025 (2019) (motivated by twisted bilayer graphene; polarKerr effect)
-
Y. Zhang, Cyclotron orbit knot and tunable-field quantum Hall effect, Phys. Rev. Research 1, 022005(R) (2019) (trefoil knot formed by Fermi arcs and perpendicular tunneling paths in Weyl semimetal)
-
K. Kawabata, T. Bessho, and M. Sato, Classification of Exceptional Points and Non-Hermitian Topological Semimetals, Phys. Rev. Lett. 123, 066405 (2019) (complete classification of degeneracies)
-
M. Breitkreiz and P. W. Brouwer, Large Contribution of Fermi Arcs to the Conductivity of Topological Metals, Phys. Rev. Lett. 123, 066804 (2019)
-
Y.-B. Yang, T. Qin, D.-L. Deng, L.-M. Duan, and Y. Xu, Topological Amorphous Metals, Phys. Rev. Lett. 123, 076401 (2019)
- Q.-S. Wu, A. A. Soluyanov, and T. Bzdušek, Non-Abelian band topology in noninteracting metals, Science 365, 1273 (2019) (PT-symmetric nodal semimetals, non-Abelian topological invariants of line nodes)
-
P. Kotetes, M. T. Mercaldo, and M. Cuoco, Synthetic Weyl Points and Chiral Anomaly in Majorana Devices with Nonstandard Andreev-Bound-State Spectra, Phys. Rev. Lett. 123, 126802 (2019) (Josephson junction)
-
E. Sela, Y. Oreg, S. Plugge, N. Hartman, S. Lüscher, and J. Folk, Detecting the Universal Fractional Entropy of Majorana Zero Modes, Phys. Rev. Lett. 123, 147702 (2019) (entropy change when one Majorana of a spatially separated pair is coupled to an environment)
-
R.-X. Zhang, W. S. Cole, X. Wu, and S. Das Sarma, Higher-Order Topology and Nodal Topological Superconductivity in Fe(Se,Te) Heterostructures, Phys. Rev. Lett. 123, 167001 (2019) (quasi-2D, Majorana zero modes at corners)
-
Z. Wang, B. J. Wieder, J. Li, B. Yan, and B. A. Bernevig, Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides XTe2 (X=Mo,W), Phys. Rev. Lett. 123, 186401 (2019)
-
S. S.-L. Zhang, A. A. Burkov, I. Martin, and O. G. Heinonen, Spin-to-Charge Conversion in Magnetic Weyl Semimetals, Phys. Rev. Lett. 123, 187201 (2019)
-
D. Varjas, A. Lau, K. Pöyhönen, A. R. Akhmerov, D. I. Pikulin, and I. C. Fulga, Topological Phases without Crystalline Counterparts, Phys. Rev. Lett. 123, 196401 (2019) (higher order two-dimensional topological superconductor with an eightfold improper rotation axis, Majorana modes at corners of octagonal flake)
-
K. Kudo, T. Yoshida, and Y. Hatsugai, Higher-Order Topological Mott Insulators, Phys. Rev. Lett. 123, 196402 (2019)
-
S. Ikegaya, Y. Asano, and D. Manske, Anomalous Nonlocal Conductance as a Fingerprint of Chiral Majorana Edge States, Phys. Rev. Lett. 123, 207002 (2019) (2D chiral p-wave superconductor)
-
Q.-R. Wang, Y.Qi, and Z.-C. Gu, Anomalous Symmetry Protected Topological States in Interacting Fermion Systems, Phys. Rev. Lett. 123, 207003 (2019) (nontrivial surface of trivial fermionic bulk)
-
S. Sur and B. Roy, Unifying Interacting Nodal Semimetals: A New Route to Strong Coupling, Phys. Rev. Lett. 123, 207601 (2019)
-
J. Böttcher, C. Tutschku, L. W. Molenkamp, and E. M. Hankiewicz, Survival of the Quantum Anomalous Hall Effect in Orbital Magnetic Fields as a Consequence of the Parity Anomaly, Phys. Rev. Lett. 123, 226602 (2019)
-
V. Ivanov, X. Wan, and S. Y. Savrasov, Topological Insulator-to-Weyl Semimetal Transition in Strongly Correlated Actinide System UNiSn, Phys. Rev. X 9, 041055 (2019) (DFT)
-
O. Matsyshyn and I. Sodemann, Nonlinear Hall Acceleration and the Quantum Rectification Sum Rule, Phys. Rev. Lett. 123, 246602 (2019) (due to the Berry-curvature dipole in systems that break inversion symmetry)
-
A. C. Balram, K. Flensberg, J. Paaske, and M. S. Rudner, Current-Induced Gap Opening in Interacting Topological Insulator Surfaces, Phys. Rev. Lett. 123, 246803 (2019) (edge current means imbalance between left and right movers, due to SOC this leads to a spin polarization at the surface, which at the mean-field level breaks time-reversal symmetry and thereby destroys the topological-insulator state)
-
R. Queiroz, I. C. Fulga, N. Avraham, H. Beidenkopf, and J. Cano, Partial Lattice Defects in Higher-Order Topological Insulators, Phys. Rev. Lett. 123, 266802 (2019) (electronic helical modes bound to dislocation with fractional Burgers vector)
-
S. Ono, H. C. Po, and H. Watanabe, Refined symmetry indicators for topological superconductors in all space groups, arXiv:1909.09634 (see this journal club)
-
M. Geier, P. W. Brouwer, and L. Trifunovic, Symmetry-based indicators for topological Bogoliubov-de Gennes Hamiltonians, arXiv:1910.11271 (see this journal club)
-
C. Setty, S. Bhattacharyya, A. Kreisel, and P. Hirschfeld, Topological ultranodal pair states in iron-based superconductors, Nature Commun. 11, 523 (2020) (with Bogoliubov Fermi surfaces)
-
K. Sadhukhan, A. Politano, and A. Agarwal, Novel Undamped Gapless Plasmon Mode in a Tilted Type-II Dirac Semimetal, Phys. Rev. Lett. 124, 046803 (2020) (from antiphase oscillations of charge density in electron and hole Fermi pockets)
-
C. Niu, H. Wang, N. Mao, B. Huang, Y. Mokrousov, and Y. Dai, Antiferromagnetic Topological Insulator with Nonsymmorphic Protection in Two Dimensions, Phys. Rev. Lett. 124, 066401 (2020) (tight-binding models and DFT/GGA)
-
L. Dong, C. Xiao, B. Xiong, and Q. Niu, Berry Phase Effects in Dipole Density and the Mott Relation, Phys. Rev. Lett. 124, 066601 (2020) (semiclassical theory, thermoelectric response of rather general observables)
-
T. C. Wu, H. K. Pal, P. Hosur, and M. S. Foster, Power-Law Temperature Dependence of the Penetration Depth in a Topological Superconductor Due to Surface States, Phys. Rev. Lett. 124, 067001 (2020) (full gapped bulk)
-
C. Wang, L. Gioia, and A. A. Burkov, Fractional Quantum Hall Effect in Weyl Semimetals, Phys. Rev. Lett. 124, 096603 (2020) (interaction effects can gap out the Weyl points without destroying U(1) charge conservation and translation symmetries)
-
J. Nissinen, Emergent Spacetime and Gravitational Nieh-Yan Anomaly in Chiral p+ip Weyl Superfluids and Superconductors, Phys. Rev. Lett. 124, 117002 (2020) (emergent Weyl fermions in spacetime with curvature and torsion)
-
F. Xie, Z. Song, B. Lian, and B. A. Bernevig, Topology-Bounded Superfluid Weight in Twisted Bilayer Graphene, Phys. Rev. Lett. 124, 167002 (2020)
-
G. Chang, J.-X. Yin, T. Neupert, D. S. Sanchez, I. Belopolski, S. S. Zhang, T. A. Cochran, Z. Chéng, M.-C. Hsu, S.-M. Huang, B. Lian, S.-Y. Xu, H. Lin, and M. Z. Hasan, Unconventional Photocurrents from Surface Fermi Arcs in Topological Chiral Semimetals, Phys. Rev. Lett. 124, 166404 (2020) (theory, photogalvanic effect, "Weyl-like" semimetal RhSi as example)
-
A. Avdoshkin, V. Kozii, and J. E. Moore, Interactions Remove the Quantization of the Chiral Photocurrent at Weyl Points, Phys. Rev. Lett. 124, 196603 (2020) (circular photogalvanic effect, first-order corrections from Coulomb and Hubbard interactions)
-
F. Schindler, B. Bradlyn, M. H. Fischer, and T. Neupert, Pairing Obstructions in Topological Superconductors, Phys. Rev. Lett. 124, 247001 (2020) (real-space picture, polynomial decay of Cooper-pair wave function)
-
Z. Yan, Z. Wu, and W. Huang, Vortex End Majorana Zero Modes in Superconducting Dirac and Weyl Semimetals, Phys. Rev. Lett. 124, 257001 (2020) (s-wave superconductivity, vortex lines realize 1D topological superconductors)
-
M. F. Lapa and M. Levin, Rigorous Results on Topological Superconductivity with Particle Number Conservation, Phys. Rev. Lett. 124, 257002 (2020) (rigorous theorems for a toy model, results are similar to BCS theory)
-
B. Sbierski, J. F. Karcher, and M. S. Foster, Spectrum-Wide Quantum Criticality at the Surface of Class AIII Topological Phases: An “Energy Stack” of Integer Quantum Hall Plateau Transitions, Phys. Rev. X 10, 021025 (2020) (2D surface with topological Dirac cone of 3D AIII topological insulator with disorder; numerical evidence for extended states with QHPT criticality)
-
M. Kheirkhah, Z. Yan, Y. Nagai, and F. Marsiglio, First- and Second-Order Topological Superconductivity and Temperature-Driven Topological Phase Transitions in the Extended Hubbard Model with Spin-Orbit Coupling, Phys. Rev. Lett. 125, 017001 (2020) (BCS mean-field theory)
-
H. Oh and E.-G. Moon, Instability of j = 3/2 Bogoliubov Fermi surfaces, Phys. Rev. B 102, 020501(R) (2020) (purely electronic instability) P; S.-T. Tamura, S. Iimura, and S. Hoshino, Electronic multipoles and multiplet pairs induced by Pomeranchuk and Cooper instabilities of Bogoliubov Fermi surfaces, Phys. Rev. B 102, 024505 (2020) (purely electronic instability; Pomeranchuk is diagonal in Bogoliubov quasiparticle number and thus does not open a gap, whereas Cooper is off-diagonal and opens a gap)
-
Z.-D. Song, L. Elcoro, Y.-F. Xu, N. Regnault, and B. A. Bernevig, Fragile Phases as Affine Monoids: Classification and Material Examples, Phys. Rev. X 10, 031001 (2020) (classification for all space groups; also general discussion of topological bands; very extensive tables in Supplemental Material) P
-
Y. J. Jin, B. B. Zheng, X. L. Xiao, Z. J. Chen, Y. Xu, and H. Xu, Two-Dimensional Dirac Semimetals without Inversion Symmetry, Phys. Rev. Lett. 125, 116402 (2020)
-
H.-X. Wang, Z.-K. Lin, B. Jiang, G.-Y. Guo, and J.-H. Jiang, Higher-Order Weyl Semimetals, Phys. Rev. Lett. 125, 146401 (2020) (fine-tuned phase between ordinary Weyl semimetal and higher-order topological insulator; with Fermi arcs and topological hinge states)
-
S. Sengupta, M. N. Y. Lhachemi, and I. Garate, Phonon Magnetochiral Effect of Band-Geometric Origin in Weyl Semimetals, Phys. Rev. Lett. 125, 146402 (2020) (prediction of effect of electronic origin via the Berry curvature and orbital magnetic moment, not due to hybridization with magnons)
-
T. Haidekker Galambos, S. Hoffman, P. Recher, J. Klinovaja, and D. Loss, Superconducting Quantum Interference in Edge State Josephson Junctions, Phys. Rev. Lett. 125, 157701 (2020) (normal region is either the non-helical edge of a trivial insulator or the helical edge of a topological insulator, these setups show different interference patterns)
-
S. Liu, C. Wang, L. Liu, J.-H. Choi, H.-J. Kim, Y. Jia, C. H. Park, and J.-H. Cho, Ferromagnetic Weyl Fermions in Two-Dimensional Layered Electride Gd2C, Phys. Rev. Lett. 125, 187203 (2020) (DFT; an electride is a compound in which electrons play the role of anions)
-
Y. Nagai, Y. Qi, H. Isobe, V. Kozii, and L. Fu, DMFT Reveals the Non-Hermitian Topology and Fermi Arcs in Heavy-Fermion Systems, Phys. Rev. Lett. 125, 227204 (2020) (effective noninteracting but also non-Hermitian description of strongly interacting systems)
-
X. Wu, W. A. Benalcazar, Y. Li, R. Thomale, C.-X. Liu, and J. Hu, Boundary-Obstructed Topological High-Tc Superconductivity in Iron Pnictides, Phys. Rev. X 10, 041014 (2020) (with edge and hinge states, 112 pnictides as example)
-
E. Cornfeld and S. Carmeli, Tenfold Topology of Crystals, arXiv:2009.04486 (extensive paper; classification of crystalline topological systems for key space, layer, and rod groups; uses the concept of equivariant spectra)
-
S. A. A. Ghorashi, T. Li, and T. L. Hughes, Higher-Order Weyl Semimetals, Phys. Rev. Lett. 125, 266804 (2020) (with Fermi arcs at surfaces and hinges)
-
Z. Ning, B. Fu, Q. Shi, and X. Wang, Universal Minimum Conductivity in Disordered Double-Weyl Semimetal, Chin. Phys. Lett. 37 117201 (2020) (quadratic in two directions, universal value in the third)
-
Y. X. Zhao and S. A. Yang, Index Theorem on Chiral Landau Bands for Topological Fermions, Phys. Rev. Lett. 126, 046401 (2021)
-
A. Samanta, D. P. Arovas, and A. Auerbach, Hall Coefficient of Semimetals, Phys. Rev. Lett. 126, 076603 (2021) (Weyl and nodal-line semimetals)
-
V. Kornich, X. Huang, E. Repin, and Y. V. Nazarov, Braiding and All Quantum Operations with Majorana Modes in 1D, Phys. Rev. Lett. 126, 117701 (2021)
-
C. Rylands, A. Parhizkar, A. A. Burkov, and V. Galitski, Chiral Anomaly in Interacting Condensed Matter Systems, Phys. Rev. Lett. 126, 185303 (2021)
-
N. Wagner, S. Ciuchi, A. Toschi, B. Trauzettel, and G. Sangiovanni, Resistivity Exponents in 3D Dirac Semimetals From Electron-Electron Interaction, Phys. Rev. Lett. 126, 206601 (2021) (unconventional power law T6)
-
A. Prakash and J. Wang, Boundary Supersymmetry of (1+1)D Fermionic Symmetry-Protected Topological Phases, Phys. Rev. Lett. 126, 236802 (2021) (the (0+1)D boundary is supersymmetric without fine tuning)
-
J. J. He, Y. Tanaka, and N. Nagaosa, Optical Responses of Chiral Majorana Edge States in Two-Dimensional Topological Superconductors, Phys. Rev. Lett. 126, 237002 (2021) (optical conductivity)
-
G. Palumbo, Non-Abelian Tensor Berry Connections in Multiband Topological Systems, Phys. Rev. Lett. 126, 246801 (2021)
-
J. H. Cullen, P. Bhalla, E. Marcellina, A. R. Hamilton, and D. Culcer, Generating a Topological Anomalous Hall Effect in a Nonmagnetic Conductor: An In-Plane Magnetic Field as a Direct Probe of the Berry Curvature, Phys. Rev. Lett. 126, 256601 (2021) (2D, spin-3/2 holes, "anomalous planar Hall effect)
-
T. Wang, N. F. Q. Yuan, and L. Fu, Moiré Surface States and Enhanced Superconductivity in Topological Insulators, Phys. Rev. X 11, 021024 (2021) (due to twisted layers; divergent DOS at van Hove singularities leading to strong [phonon-induced] pairing)
-
J. Yang, C. Fang, and Z.-X. Liu, Symmetry-protected nodal points and nodal lines in magnetic materials, Phys. Rev. B 103, 245141 (2021) (magnetic space groups with PT symmetry)
-
D. Wawrzik, J.-S. You, J. I. Facio, J. van den Brink, and I. Sodemann, Infinite Berry Curvature of Weyl Fermi Arcs, Phys. Rev. Lett. 127, 056601 (2021) (generic for Weyl points tilted toward the surface) P
-
T.-S. Deng, L. Pan, Y. Chen, and H. Zhai, Stability of Time-Reversal Symmetry Protected Topological Phases, Phys. Rev. Lett. 127, 086801 (2021) (... against time-reversal-symmetric coupling to a time-reversal-symmetric environment, show that Kramers pairs can be split; non-Hermitian Hamiltonian with noise)
-
P. O. Sukhachov, E. V. Gorbar, and I. A. Shovkovy, Entropy Wave Instability in Dirac and Weyl Semimetals, Phys. Rev. Lett. 127, 176602 (2021)
-
R. Giwa and P. Hosur, Fermi Arc Criterion for Surface Majorana Modes in Superconducting Time-Reversal Symmetric Weyl Semimetals, Phys. Rev. Lett. 127, 187002 (2021) (indicates whether a vortex has gapless modes, gapped vortices can permit Majorana modes at the surface)
-
P. Bhalla, M.-X. Deng, R.-Q. Wang, L. Wang, and D. Culcer, Nonlinear Ballistic Response of Quantum Spin Hall Edge States, Phys. Rev. Lett. 127, 206801 (2021) (determine the dispersion of edge states)
-
C.-Y. Chen, M.-C. Hsu, C. D. Hu, and Y. C. Lin, Natural Negative-Refractive-Index Materials, Phys. Rev. Lett. 127, 237401 (2021) (in Dirac semimetals with ideal dispersion, from log singularity at ω = vFk)
- M. A. Wilde, M. Dodenhöft, A. Niedermayr, A. Bauer, M. M. Hirschmann, K. Alpin, A. P. Schnyder, and C. Pfleiderer, Symmetry-enforced topological nodal planes at the Fermi surface of a chiral magnet, Nature 594, 374 (2021)
- Y. Jia et al., Evidence for a monolayer excitonic insulator, Nature Phys. 18, 87 (2022) (WTe2 transport and STS experiments and theory)
-
C. Wang, T. Cheng, Z. Liu, F. Liu, and H. Huang, Structural Amorphization-Induced Topological Order, Phys. Rev. Lett. 128, 056401 (2022) (model driven through topological phase transition by disorder; first Born approximation)
-
A. M. Turner, E. Berg, and A. Stern, Gapping Fragile Topological Bands by Interactions, Phys. Rev. Lett. 128, 056801 (2022) (two-dimensional model with local DOFs, stabilized by product of twofold axis and an antiunitary symmetry, at half filling, unstable if interactions are included, involving formation of trions)
-
A. C. Keser, Y. Lyanda-Geller, and O. P. Sushkov, Nonlinear Quantum Electrodynamics in Dirac Materials, Phys. Rev. Lett. 128, 066402 (2022)
-
S. Ono and K. Shiozaki, Symmetry-Based Approach to Superconducting Nodes: Unification of Compatibility Conditions and Gapless Point Classifications, Phys. Rev. X 12, 011021 (2022)
-
S. Qin, C. Fang, F.-C. Zhang, and J. Hu, Topological Superconductivity in an Extended s-Wave Superconductor and Its Implication to Iron-Based Superconductors, Phys. Rev. X 12, 011030 (2022)
-
P. O. Sukhachov and L. I. Glazman, Anomalous Electromagnetic Field Penetration in a Weyl or Dirac Semimetal, Phys. Rev. Lett. 128, 146801 (2022)
-
F. Gerken, T. Posske, S. Mukamel, and M. Thorwart, Unique Signatures of Topological Phases in Two-Dimensional THz Spectroscopy, Phys. Rev. Lett. 129, 017401 (2022) (1D topological superconductors)
-
N. Huber, K. Alpin, G. L. Causer, L. Worch, A. Bauer, G. Benka, M. M. Hirschmann, A. P. Schnyder, C. Pfleiderer, and M. A. Wilde, Network of Topological Nodal Planes, Multifold Degeneracies, and Weyl Points in CoSi, Phys. Rev. Lett. 129, 026401 (2022)
-
F. Tang, S. Ono, X. Wan, and H. Watanabe, High-Throughput Investigations of Topological and Nodal Superconductors, Phys. Rev. Lett. 129, 027001 (2022) (for all pairing symmetries described by one-dimensional irreps, nonmagnetic, using symmetry indicators and DFT)
-
M. A. Rampp, E. J. König, and J. Schmalian, Topologically Enabled Superconductivity, Phys. Rev. Lett. 129, 077001 (2022) (topological zero modes can enhance superconductivity)
-
W. L. Liu et al., Spontaneous Ferromagnetism Induced Topological Transition in EuB6, Phys. Rev. Lett. 129, 166402 (2022) (ARPES and Kerr, also DFT calculations, ferromagnetic phase is a topological semimetal; Dirac nodal line split by SOC)
-
J. P. Santos Pires, S. M. João, A. Ferreira, B. Amorim, and J. M. V. Parente Lopes, Anomalous Transport Signatures in Weyl Semimetals with Point Defects, Phys. Rev. Lett. 129, 196601 (2022) (electronic structure and linear response theory)
-
Y. Nishida, Chiral Light Amplifier with Pumped Weyl Semimetals, Phys. Rev. Lett. 130, 096903 (2023)
Other systems with non-trivial topology such as spin liquids, topological systems in general
- S. Yan, D. A. Huse, and S. R. White, Spin Liquid Ground State of the S = 1/2 Kagome Heisenberg Model, arXiv:1011.6114 (DMRG)
- B. Dóra, J. Kailasvuori, and R. Moessner, Lattice generalization of the Dirac equation to arbitrary spin: the role of the flat bands, arXiv:1104.0416
- S. Bravyi and J. Haah, On the energy landscape of 3D spin Hamiltonians with topological order, arXiv:1105.4159
- J. Dziarmaga, W. H. Zurek, and M. Zwolak, Topological Schrödinger cats, arXiv:1106.2823 ("blurry" topological defects due to superpositions of different symmetry-broken states)
- Y. Huh, M. Punk, and S. Sachdev, Vison states and confinement transitions of Z2 spin liquids on the kagome lattice, arXiv:1106.3330 (analysis based on projective symmetry groups)
- Y. C. Hu and T. L. Hughes, Absence of topological insulator phases in non-Hermitian PT-symmetric Hamiltonians, arXiv:1107.1064
- K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Edge states and topological phases in non-Hermitian systems, arXiv:1107.2079 (study two particular forms of non-Hermitian Hamiltonians, for which H(k) is represented by a 2*2 and a 4*4 matrix, respectively) P
- D. Meidan, T. Micklitz, and P. W. Brouwer, Topological classification of adiabatic processes, arXiv:1107.2215 (introducing "topological pumps") P
- P. K. Ghosh, A note on topological insulator phase in non-hermitian quantum systems, arXiv:1109.1697 (Hamiltonians that are related to hermitian ones by non-unitary similarity transformations)
- V. Gritsev and A. Polkovnikov, Detecting Berry curvature in the dynamical Hall effect, arXiv:1109.6024 (starts with nice introduction; proposes non-adiabatic observation of Berry curvature)
- M. Greiter, Mapping of Parent Hamiltonians: from Abelian and non-Abelian Quantum Hall States to Exact Models of Critical Spin Chains, arXiv:1109.6104 (monograph containing pedagogical introduction to the relevant concepts)
- S. Kobayashi, M. Kobayashi, Y. Kawaguchi, M. Nitta, and M. Ueda, Abe homotopy classification of topological excitations under the topological influence of vortices, arXiv:1110.1478
- L. Messio, B. Bernu, and C. Lhuillier, The kagome antiferromagnet: a chiral topological spin liquid?, arXiv:1110.5440 (cf. CMT/MPI talk 10/2011)
- V. Y. Chernyak, J. R. Klein, and N. A. Sinitsyn, Quantization and Fractional Quantization of Currents in Periodically Driven Stochastic Systems II: Full Counting Statistics, arXiv:1112.0528 (topological classification of counting statistics, relies on the following paper); Quantization and Fractional Quantization of Currents in Periodically Driven Stochastic Systems I: Average Currents, arXiv:1112.0529
- H.-C. Jiang, H. Yao, and L. Balents, Spin Liquid Ground State of the Spin-1/2 Square J1-J2 Heisenberg Model, arXiv:1112.2241 (DMRG), see also following reference
- L. Wang, Z.-C. Gu, X.-G. Wen, and F. Verstraete, Possible spin liquid state in the spin 1/2 J1-J2 antiferromagnetic Heisenberg model on square lattice: A tensor product state approach, arXiv:1112.3331, see also previous reference
- J. Dziarmaga, W. H. Zurek, and M. Zwolak, Non-local quantum superpositions of topological defects, Nature Phys. 8, 49 (2012) (such as vortices, illustrated using kinks in the 1D transverse-field Ising model), see also feature: K. B. Whaley, Topological defects: Topology in superposition, Nature Phys. 8, 9 (2012)
- Y, E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, Topological States and Adiabatic Pumping in Quasicrystals, Phys. Rev. Lett. 109, 106402 (2012); A. Quandt, Viewpoint: Quasicrystals, Meet Topological Insulators, Physics 5, 99 (2012)
- P. Li and S.-P. Kou, Topological edge states in the spin 1 bilinear-biquadratic model, J. Phys.: Condens. Matter 24, 446001 (2012)
- M. Unsal, Theta dependence, sign problems and topological interference, arXiv:1201.6426 (long paper, studies the theta term in a field-theoretical framework)
- F. Pollmann and A. M. Turner, Detection of Symmetry Protected Topological Phases in 1D, arXiv:1204.0704 (projective representations, definition of non-local order parameters)
- Y. Tenenbaum Katan and D. Podolsky, Modulated Floquet Topological Insulators, Phys. Rev. Lett. 110, 016802 (2013) (trivial insulator with irradiated uniformly by light)
- T. Senthil and M. Levin, Integer Quantum Hall Effect for Bosons, Phys. Rev. Lett. 110, 046801 (2013)
- A. Gómez-León and G. Platero, Floquet-Bloch Theory and Topology in Periodically Driven Lattices, Phys. Rev. Lett. 110, 200403 (2013)
- C. L. Kane and T. C. Lubensky, Topological boundary modes in isostatic lattices, Nature Physics (2013), doi:10.1038/nphys2835 (floppy modes proposed to be of topological origin localized at the boundaries of isostatic [i.e., just rigid] lattice)
- X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Symmetry protected topological orders in interacting bosonic systems, arXiv:1301.0861 (systematic construction of such states)
- A. Rivas, O. Viyuela, and M. A. Martin-Delgado, Density Matrix Topological Insulators, arXiv:1301.4872 (concepts from topology extended to open quantum systems) P
- D. Poilblanc and N. Schuch, Simplex Z2 spin liquids on the Kagome lattice with Entangled Pair States: spinon and vison coherence lengths, topological entropy and gapless edge modes, arXiv:1302.0306
- H. Ju and L. Balents, Finite size effects in the Z2 spin liquid on the kagome lattice, arXiv:1302.2636
- C.-E. Bardyn, M. A. Baranov, C. V. Kraus, E. Rico, A. Imamoglu, P. Zoller, and S. Diehl, Topology by dissipation, arXiv:1302.5135
- C. Wang and T. Senthil, Boson topological insulators: A window into highly entangled quantum phases, arXiv:1302.6234 (using the concept of symmetry-protected topological phases)
- H.-C. Jiang, R. R. P. Singh, and L. Balents, Accuracy of topological entanglement entropy on finite cylinders, arXiv:1304.0780
- D. V. Else, S. D. Bartlett, and A. C. Doherty, The hidden symmetry-breaking picture of symmetry-protected topological order, arXiv:1304.0783 (spin chains)
- R. Orus, T.-C. Wei, O. Buerschaper, and M. Van den Nest, Topological Order from Geometric Entanglement, arXiv:1304.1339
- M. Kolodrubetz, V. Gritsev, and A. Polkovnikov, Classifying and measuring the geometry of the quantum ground state manifold, arXiv:1305.0568
- K. P. Schmidt, Persisting topological order via geometric frustration, arXiv:1305.1521
- W. Li, A. Weichselbaum, and J. von Delft, Identifying Symmetry-Protected Topological Order by Entanglement Entropy, arXiv:1306.5671 (spin-1 chain)
- S. R. Behbahani, C. Chamon, and E. Katz, Electrons turn into anyons under an elastic membrane, arXiv:1307.1473 (membrane is magnetic and charged)
- Y. Bahri, R. Vosk, E. Altman, and A. Vishwanath, Localization and topology protected quantum coherence at the edge of 'hot' matter, arXiv:1307.4092 (localization can stabilize topological edge states at elevated temperatures; illustrated for a one-dimensional spin model)
- S. Kobayashi, N. Tarantino, and M. Ueda, Topological influence and back-action between topological excitations, arXiv:1307.5573
-
M. Hermanns and S. Trebst, Quantum spin liquid with a Majorana Fermi surface on the three-dimensional hyperoctagon lattice, Phys. Rev. B 89, 235102 (2014)
- M. Punk, D. Chowdhury, and S. Sachdev, Topological excitations and the dynamic structure factor of spin liquids on the kagome lattice, Nature Phys. 10, 289 (2014) (explanation of neutron-scattering experiments based on visons)
- T. Isono et al., Gapless Quantum Spin Liquid in an Organic Spin-1/2 Triangular-Lattice kappa-H3(Cat-EDT-TTF)2, Phys. Rev. Lett. 112, 177201 (2014) (SQUID)
- B. Normand and Z. Nussinov, Hubbard Model on the Pyrochlore Lattice: A 3D Quantum Spin Liquid, Phys. Rev. Lett. 112, 207202 (2014) P
- J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner, Dynamics of a Two-Dimensional Quantum Spin Liquid: Signatures of Emergent Majorana Fermions and Fluxes, Phys. Rev. Lett. 112, 207203 (2014) (Kitaev model)
- A. Chandran, V. Khemani, and S. L. Sondhi, How Universal Is the Entanglement Spectrum?, Phys. Rev. Lett. 113, 060501 (2014) (answer: not at all; entanglement spectrum can be highly misleading)
- A. M. Tsvelik, Integrable Model with Parafermion Zero Energy Modes, Phys. Rev. Lett. 113, 066401 (2014)
- B. Lian and S. Zhang, Spin-Liquid Condensate of Spinful Bosons, Phys. Rev. Lett. 113, 080402 (2014)
- Y. Yamaji, Y. Nomura, M. Kurita, R. Arita, and M. Imada, First-Principles Study of the Honeycomb-Lattice Iridates Na2IrO3 in the Presence of Strong Spin-Orbit Interaction and Electron Correlations, Phys. Rev. Lett. 113, 107201 (2014) (find anisotropic exchange interaction, in addition to Kitaev and Heisenberg terms)
- L. Clark, G. J. Nilsen, E. Kermarrec, G. Ehlers, K. S. Knight, A. Harrison, J. P. Attfield, and B. D. Gaulin, From Spin Glass to Quantum Spin Liquid Ground States in Molybdate Pyrochlores, Phys. Rev. Lett. 113, 117201 (2014)
- J. Knolle, G.-W. Chern, D. L. Kovrizhin, R. Moessner, and N. B. Perkins, Raman Scattering Signatures of Kitaev Spin Liquids in A2IrO3 Iridates with A=Na or Li, Phys. Rev. Lett. 113, 187201 (2014)
- A. Biffin, R. D. Johnson, I. Kimchi, R. Morris, A. Bombardi, J. G. Analytis, A. Vishwanath, and R. Coldea, Noncoplanar and Counterrotating Incommensurate Magnetic Order Stabilized by Kitaev Interactions in γ-Li2IrO3, Phys. Rev. Lett. 113, 197201 (2014) (x-ray diffraction, also theory)
- G. Chen, H.-Y. Kee, and Y. B. Kim, Fractionalized Charge Excitations in a Spin Liquid on Partially Filled Pyrochlore Lattices, Phys. Rev. Lett. 113, 197202 (2014)
- J. Nasu, M. Udagawa, and Y. Motome, Vaporization of Kitaev Spin Liquids, Phys. Rev. Lett. 113, 197205 (2014) (argue that spin liquids are always separated from the high-temperature phase by a phase transition)
- P. Roushan et al., Observation of topological transitions in interacting quantum circuits, Nature 515, 241 (2014)
- Y. Chen and C. Tian, Planck's Quantum-Driven Integer Quantum Hall Effect in Chaos, Phys. Rev. Lett. 113, 216802 (2014)
- A. Kundu, H. A. Fertig, and B. Seradjeh, Effective Theory of Floquet Topological Transitions, Phys. Rev. Lett. 113, 236803 (2014)
- R. Dally, T. Hogan, A. Amato, H. Luetkens, C. Baines, J. Rodriguez-Rivera, M. J. Graf, and S. D. Wilson, Short-Range Correlations in the Magnetic Ground State of Na4Ir3O8, Phys. Rev. Lett. 113, 247601 (2014) (is not a spin liquid; may be disorder dominated)
- R. Lundgren, J. Blair, M. Greiter, A. Läuchli, G. A. Fiete, and R. Thomale, Momentum-Space Entanglement Spectrum of Bosons and Fermions with Interactions, Phys. Rev. Lett. 113, 256404 (2014)
- Z. Alpichshev, F. Mahmood, G. Cao, and N. Gedik, Confinement-Deconfinement Transition as an Indication of Spin-Liquid-Type Behavior in Na2IrO3, Phys. Rev. Lett. 114, 017203 (2015)
- M. Barkeshli, H.-C. Jiang, R. Thomale, and X.-L. Qi, Generalized Kitaev Models and Extrinsic Non-Abelian Twist Defects, Phys. Rev. Lett. 114, 026401 (2015)
- J. C. Wang, Z.-C. Gu, and X.-G. Wen, Field-Theory Representation of Gauge-Gravity Symmetry-Protected Topological Invariants, Group Cohomology, and Beyond, Phys. Rev. Lett. 114, 031601 (2015)
- Y.-C. He and Y. Chen, Distinct Spin Liquids and Their Transitions in Spin-1/2 XXZ Kagome Antiferromagnets, Phys. Rev. Lett. 114, 037201 (2015)
- T. A. Sedrakyan, L. I. Glazman, and A. Kamenev, Spontaneous Formation of a Nonuniform Chiral Spin Liquid in a Moat-Band Lattice, Phys. Rev. Lett. 114, 037203 (2015) (means degenerate minima of bands along lines in momentum space; here for hard-core bosons)
- B. Liu, X. Li, L. Yin, and W. V. Liu, Weyl Superfluidity in a Three-Dimensional Dipolar Fermi Gas, Phys. Rev. Lett. 114, 045302 (2015)
- J. Paulose, B. G. Chen, and V. Vitelli, Topological modes bound to dislocations in mechanical metamaterials, Nature Phys. 11, 153 (2015), see also News and Views: T. Witten, Topological protection: Of bagels and Burgers, Nature Phys. 11, 95 (2015)
- T. Takayama, A. Kato, R. Dinnebier, J. Nuss, H. Kono, L. S. I. Veiga, G. Fabbris, D. Haskel, and H. Takagi, Hyperhoneycomb Iridate β-Li2IrO3 as a Platform for Kitaev Magnetism, Phys. Rev. Lett. 114, 077202 (2015)
- L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljacic, Experimental observation of Weyl points, arXiv:1502.03438 (observation in three-dimensional so-called double-gyroid photonic crystals, large structures, operating at microwave frequencies; transmission spectroscopy); see also Journal Club article by A. Vishwanath
- D. Carpentier, P. Delplace, M. Fruchart, and K. Gawedzki, Topological Index for Periodically Driven Time-Reversal Invariant 2D Systems, Phys. Rev. Lett. 114, 106806 (2015)
- A. V. Nalitov, D. D. Solnyshkov, and G. Malpuech, Polariton Z Topological Insulator, Phys. Rev. Lett. 114, 116401 (2015) (photonic lattice plus exciton polaritons)
- R. Schaffer, E. K.-H. Lee, Y.-M. Lu, and Y. B. Kim, Topological Spinon Semimetals and Gapless Boundary States in Three Dimensions, Phys. Rev. Lett. 114, 116803 (2015) (in Kitaev spin models realizing spin liquids)
- M. F. Maghrebi and M. T. H. Reid, Entanglement Entropy of Dispersive Media from Thermodynamic Entropy in One Higher Dimension, Phys. Rev. Lett. 114, 151602 (2015)
- M. Hermanns, K. O'Brien, and S. Trebst, Weyl Spin Liquids, Phys. Rev. Lett. 114, 157202 (2015) (Kitaev model on hyperhoneycomb lattice, mapped onto Majorana fermions that are shown to have a band structure with Weyl points ["Weyl superconductor"])
- T. Dubcek, C. J. Kennedy, L. Lu, W. Ketterle, M. Soljacic, and H. Buljan, Weyl Points in Three-Dimensional Optical Lattices: Synthetic Magnetic Monopoles in Momentum Space, Phys. Rev. Lett. 114, 225301 (2015) (theory, proposed realization)
- Y. Yoshida et al., Spin-disordered quantum phases in a quasi-one-dimensional triangular lattice, Nature Phys. (2015), doi:10.1038/nphys3359 (κ-(ET)2B(CN)4)
- A. Sen and R. Moessner, Topological Spin Glass in Diluted Spin Ice, Phys. Rev. Lett. 114, 247207 (2015)
- J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte, M. S. Rudner, M. Segev, and A. Szameit, Observation of a Topological Transition in the Bulk of a Non-Hermitian System, Phys. Rev. Lett. 115, 040402 (2015)
- A. C. Shockley, F. Bert, J.-C. Orain, Y. Okamoto, and P. Mendels, Frozen State and Spin Liquid Physics in Na4Ir3O8: An NMR Study, Phys. Rev. Lett. 115, 047201 (2015) (dynamics freeze below 7 K, much smaller than exchange energy scale, spin-liquid state above)
- R. Sibille, E. Lhotel, V. Pomjakushin, C. Baines, T. Fennell, and M. Kenzelmann, Candidate Quantum Spin Liquid in the Ce3+ Pyrochlore Stannate Ce2Sn2O7, Phys. Rev. Lett. 115, 097202 (2015) (antiferromagnetic interactions favoring all-in-all-out order, which however seems to be absent down to 0.02 K)
- T. Karzig, C.-E. Bardyn, N. H. Lindner, and G. Refael, Topological Polaritons, Phys. Rev. X 5, 031001 (2015) (theory: exciton polaritons with topologically nontrivial band structure, which leads to edge states; the separate exciton and photon dispersions are topologically trivial; topological properties are induced by the exciton-photon coupling having a phase that winds in momentum space, somewhat ad hoc; possible realizations are discussed) P
- R. K. Kaul, Spin Nematics, Valence-Bond Solids, and Spin Liquids in SO(N) Quantum Spin Models on the Triangular Lattice, Phys. Rev. Lett. 115, 157202 (2015)
- M. Hermanns, S. Trebst, and A. Rosch, Spin-Peierls Instability of Three-Dimensional Spin Liquids with Majorana Fermi Surfaces, Phys. Rev. Lett. 115, 177205 (2015)
- M. Fu, T. Imai, T.-H. Han, and Y. S. Lee, Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet, Science 350, 655 (2015) (herbertsmithite: ZnCu3(OH)6Cl2])
- L. D. C. Jaubert, O. Benton, J. G. Rau, J. Oitmaa, R. R. P. Singh, N. Shannon, and M. J. P. Gingras, Are Multiphase Competition and Order by Disorder the Keys to Understanding Yb2Ti2O7?, Phys. Rev. Lett. 115, 267208 (2015) (spin-ice candidate, theory, various numerical techniques, meant to be more general)
- Y.-C. He, S. Bhattacharjee, F. Pollmann, and R. Moessner, Kagome Chiral Spin Liquid as a Gauged U(1) Symmetry Protected Topological Phase, Phys. Rev. Lett. 115, 267209 (2015)
- D. S. Hall, M. W. Ray, K. Tiurev, E. Ruokokoski, A. H. Gheorghe, and M. Möttönen, Tying quantum knots, Nature Phys. (2016), doi:10.1038/nphys3624 (experiments on spinor BEC)
- D. Z. Rocklin, B. G. Chen, M. Falk, V. Vitelli, and T. C. Lubensky, Mechanical Weyl Modes in Topological Maxwell Lattices, Phys. Rev. Lett. 116, 135503 (2016) (2D systems; phononic Weyl modes; Maxwell lattices are defined as having the same number of constraints as of degrees of freedom)
- K. Meichanetzidis, J. Eisert, M. Cirio, V. Lahtinen, and J. K. Pachos, Diagnosing Topological Edge States via Entanglement Monogamy, Phys. Rev. Lett. 116, 130501 (2016)
- S. Rachel, L. Fritz, and M. Vojta, Landau Levels of Majorana Fermions in a Spin Liquid, Phys. Rev. Lett. 116, 167201 (2016) (triaxialy strained Kitaev model)
- J. Klinovaja, P. Stano, and D. Loss, Topological Floquet Phases in Driven Coupled Rashba Nanowires, Phys. Rev. Lett. 116, 176401 (2016)
- A. Smerald, S. Korshunov, and F. Mila, Topological Aspects of Symmetry Breaking in Triangular-Lattice Ising Antiferromagnets, Phys. Rev. Lett. 116, 197201 (2016) (classical Monte Carlo simulations)
- M. P. Zaletel, Z. Zhu, Y.-M. Lu, A. Vishwanath, and S. R. White, Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet, Phys. Rev. Lett. 116, 197203 (2016) (spin liquid with fractional quantum numbers for space group transformations)
- H. Takatsu, S. Onoda, S. Kittaka, A. Kasahara, Y. Kono, T. Sakakibara, Y. Kato, B. Fâle;k, J. Ollivier, J. W. Lynn, T. Taniguchi, M. Wakita, and H. Kadowaki, Quadrupole Order in the Frustrated Pyrochlore Tb2+xTi2-xO7+y, Phys. Rev. Lett. 116, 217201 (2016) (relevant for spin liquid)
- G. Engelhardt, M. Benito, G. Platero, and T. Brandes, Topological Instabilities in ac-Driven Bosonic Systems, Phys. Rev. Lett. 117, 045302 (2016)
- S. Petit, E. Lhotel, B. Canals, M. Ciomaga Hatnean, J. Ollivier, H. Mutka, E. Ressouche, A. R. Wildes, M. R. Lees, and G. Balakrishnan, Observation of magnetic fragmentation in spin ice, Nature Phys. 12, 746 (2016) (Nd2Zr2O7, neutron scattering)
- Y. Li et al. (partially P. Gegenwart group), Muon Spin Relaxation Evidence for the U(1) Quantum Spin-Liquid Ground State in the Triangular Antiferromagnet YbMgGaO4, Phys. Rev. Lett. 117, 097201 (2016)
- A. Mook, J. Henk, and I. Mertig, Tunable Magnon Weyl Points in Ferromagnetic Pyrochlores, Phys. Rev. Lett. 117, 157204 (2016) (with arcs at surfaces)
- Z. A. Kelly, M. J. Gallagher, and T. M. McQueen, Electron Doping a Kagome Spin Liquid, Phys. Rev. X 6, 041007 (2016) (electron-doped Herbertsmithite, found to remain insulating, not, as predicted, to become superconducting; disorder is too strong?)
- Y. Shen et al., Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate, Nature 540, 559 (2016) (neutron scattering for YbMgGaO4)
- Y. Xu, S.-T. Wang, and L.-M. Duan, Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas, Phys. Rev. Lett. 118, 045701 (2017) (coexistence of Chern number and quantized Berry phase)
- D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori, Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems, Phys. Rev. Lett. 118, 040401 (2017) (Dirac-type non-hermitian models)
- J. Rehn, A. Sen, and R. Moessner, Fractionalized Z2 Classical Heisenberg Spin Liquids, Phys. Rev. Lett. 118, 047201 (2017) (note the "classical"!)
-
J. A. M. Paddison, M. Daum, Z. Dun, G. Ehlers, Y. Liu, M. B. Stone, H. Zhou, and M. Mourigal, Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4, Nature Phys. 13, 117 (2017) (neutron-scattering experiments)
-
W. Witczak-Krempa, L. E. Hayward Sierens, and R. G. Melko, Cornering Gapless Quantum States via Their Torus Entanglement, Phys. Rev. Lett. 118, 077202 (2017)
-
J. C. Budich, Y. Hu, and P. Zoller, Helical Floquet Channels in 1D Lattices, Phys. Rev. Lett. 118, 105302 (2017) (1D helical, linear, spin-momentum-locked band structure for the stroboscopic dynamics; special driving protocol inducing one-side-per-period hopping in spin-dependent direction) P
-
K. Ran et al., Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline α−RuCl3, Phys. Rev. Lett. 118, 107203 (2017) (inelastic neutron scattering)
-
I. A. Leahy, C. A. Pocs, P. E. Siegfried, D. Graf, S.-H. Do, K.-Y. Choi, B. Normand, and M. Lee, Anomalous Thermal Conductivity and Magnetic Torque Response in the Honeycomb Magnet α-RuCl3, Phys. Rev. Lett. 118, 187203 (2017) (suggestion spin-liquid physics)
-
L. Messio, S. Bieri, C. Lhuillier, and B. Bernu, Chiral Spin Liquid on a Kagome Antiferromagnet Induced by the Dzyaloshinskii-Moriya Interaction, Phys. Rev. Lett. 118, 267201 (2017) (herbertsmithite, Schwinger-boson mean-field theory)
-
J.-J. Miao, H.-K. Jin, F.-C. Zhang, and Y. Zhou, Exact Solution for the Interacting Kitaev Chain at the Symmetric Point, Phys. Rev. Lett. 118, 267701 (2017) (Jordan-Wigner transformation)
-
S.-H. Baek, S.-H. Do, K.-Y. Choi, Y. S. Kwon, A. U. B. Wolter, S. Nishimoto, J. van den Brink, and B. Büchner, Evidence for a Field-Induced Quantum Spin Liquid in α-RuCl3, Phys. Rev. Lett. 119, 037201 (2017)
-
Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann, Signatures of Dirac Cones in a DMRG Study of the Kagome Heisenberg Model, Phys. Rev. X 7, 031020 (2017) (DMRG)
-
M. G. Yamada, H. Fujita, and M. Oshikawa, Designing Kitaev Spin Liquids in Metal-Organic Frameworks, Phys. Rev. Lett. 119, 057202 (2017)
-
I. Martin, G. Refael, and B. Halperin, Topological Frequency Conversion in Strongly Driven Quantum Systems, Phys. Rev. X 7, 041008 (2017) (relies on driving at multiple incommensurate frequencies, leading to multidimensional Floquest space)
-
G. B. Halász, T. H. Hsieh, and L. Balents, Fracton Topological Phases from Strongly Coupled Spin Chains, Phys. Rev. Lett. 119, 257202 (2017) (fractons are fractionalized, immobile excitations)
-
M. Lohse, C. Schweizer, H. M. Price, O. Zilberberg, and I. Bloch, Exploring 4D quantum Hall physics with a 2D topological charge pump, Nature 553, 55 (2018) (cold atoms); O. Zilberberg, S. Huang, J. Guglielmon, M. Wang, K. P. Chen, Y. E. Kraus, and M. C. Rechtsman, Photonic topological boundary pumping as a probe of 4D quantum Hall physics, Nature 553, 59 (2018) (photonic wave guides)
-
Z. Huang, W. Zhu, D. P. Arovas, J.-X. Zhu, and A. V. Balatsky, Invariance of Topological Indices Under Hilbert Space Truncation, Phys. Rev. Lett. 120, 016403 (2018) (relevant both if the physical Hilbert space is larger or smaller than one used in the description)
-
Y. Hu and C. L. Kane, Fibonacci Topological Superconductor, Phys. Rev. Lett. 120, 066801 (2018)
-
Y. Baum and G. Refael, Setting Boundaries with Memory: Generation of Topological Boundary States in Floquet-Induced Synthetic Crystals, Phys. Rev. Lett. 120, 106402 (2018) (design of potential and even of boundaries in synthetic Floquet dimension)
-
N. P. Mitchell, L. M. Nash, D. Hexner, A. M. Turner, and W. T. M. Irvine, Amorphous topological insulators constructed from random point sets, Nature Phys. 14, 380 (2018) (random system of gyroscopes, showing chiral edge states)
-
C.-E. Bardyn, L. Wawer, A. Altland, M. Fleischhauer, and S. Diehl, Probing the Topology of Density Matrices, Phys. Rev. X 8, 011035 (2018)
-
D.-L. Deng, S.-T. Wang, K. Sun, and L.-M. Duan, Probe Knots and Hopf Insulators with Ultracold Atoms, Chin. Phys. Lett. 35, 013701 (2018)
-
Y. Kasahara, K. Sugii, T. Ohnishi, M. Shimozawa, M. Yamashita, N. Kurita, H. Tanaka, J. Nasu, Y. Motome, T. Shibauchi, and Y. Matsuda, Unusual Thermal Hall Effect in a Kitaev Spin Liquid Candidate α−RuCl3, Phys. Rev. Lett. 120, 217205 (2018) (experimental)
-
M. McGinley and N. R. Cooper, Topology of One-Dimensional Quantum Systems Out of Equilibrium, Phys. Rev. Lett. 121, 090401 (2018) (time-dependent state may break symmetries possessed by the initial state and the Hamiltonian)
-
A. Prem, S.-J. Huang, H. Song, and M. Hermele, Cage-Net Fracton Models, Phys. Rev. X 9, 021010 (2019) (gapped 3D models)
-
N. Okuma and M. Sato, Topological Phase Transition Driven by Infinitesimal Instability: Majorana Fermions in Non-Hermitian Spintronics, Phys. Rev. Lett. 123, 097701 (2019) (model with non-Hermitian, spin-dependent hopping)
-
K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Symmetry and Topology in Non-Hermitian Physics, Phys. Rev. X 9, 041015 (2019) (analogue of the tenfold-wave classification of hermitian matrices based on fundamental antiunitarian and unitarian symmetries, here gives "38-fold way")
-
S. Hu, W. Zhu, S. Eggert, and Y.-C. He, Dirac Spin Liquid on the Spin-1/2 Triangular Heisenberg Antiferromagnet, Phys. Rev. Lett. 123, 207203 (2019) (DMRG: U(1) spin liquid)
-
J. Y. Lee, J. Ahn, H. Zhou, and A. Vishwanath, Topological Correspondence between Hermitian and Non-Hermitian Systems: Anomalous Dynamics, Phys. Rev. Lett. 123, 206404 (2019) (... with regard to boundary modes)
-
W. Choi, T. Mizoguchi, and Y. B. Kim, Nonsymmorphic-Symmetry-Protected Topological Magnons in Three-Dimensional Kitaev Materials, Phys. Rev. Lett. 123, 227202 (2019) (nodal magnons)
-
F. Song, S. Yao, and Z. Wang, Non-Hermitian Topological Invariants in Real Space, Phys. Rev. Lett. 123, 246801 (2019)
-
M. M. Wauters, A. Russomanno, R. Citro, G. E. Santoro, and L. Privitera, Localization, Topology, and Quantized Transport in Disordered Floquet Systems, Phys. Rev. Lett. 123, 266601 (2019)
-
T. Schuster, S. Gazit, J. E. Moore, and N. Y. Yao, Floquet Hopf Insulators, Phys. Rev. Lett. 123, 266803 (2019) (not a "standard" Floquet TI)
-
S. Lieu, M. McGinley, and N. R. Cooper, Tenfold Way for Quadratic Lindbladians, Phys. Rev. Lett. 124, 040401 (2020) P
-
D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Non-Hermitian Boundary Modes and Topology, Phys. Rev. Lett. 124, 056802 (2020)
-
A. Chew, D. F. Mross, and J. Alicea, Time-Crystalline Topological Superconductors, Phys. Rev. Lett. 124, 096802 (2020) (1+1 dimensional, Floquet theory)
- P. Khuntia, M. Velazquez, Q. Barthélemy, F. Bert, E. Kermarrec, A. Legros, B. Bernu, L. Messio, A. Zorko, and P. Mendels, Gapless ground state in the archetypal quantum kagome antiferromagnet ZnCu3(OH)6Cl2, Nature Phys. 16, 469 (2020) (NMR shows spin-liquid state for herbertsmithite)
-
H. Hu and E. Zhao, Topological Invariants for Quantum Quench Dynamics from Unitary Evolution, Phys. Rev. Lett. 124, 160402 (2020) (classification)
-
F. Sun and J. Ye, Periodic Table of the Ordinary and Supersymmetric Sachdev-Ye-Kitaev Models, Phys. Rev. Lett. 124, 244101 (2020) (N Majorana modes with random q-body interactions, classification, Bott periodicities in N and q)
-
S. Yu, X. Piao, and N. Park, Topological Hyperbolic Lattices, Phys. Rev. Lett. 125, 053901 (2020) (on spaces with negative curvature, also short introduction)
-
T.-C. Lu, T. H. Hsieh, and T. Grover, Detecting Topological Order at Finite Temperature Using Entanglement Negativity, Phys. Rev. Lett. 125, 116801 (2020) (applied to toric-code model in 2, 3, and 4 dimensions)
-
R. Unanyan, M. Kiefer-Emmanouilidis, and M. Fleischhauer, Finite-Temperature Topological Invariant for Interacting Systems, Phys. Rev. Lett. 125, 215701 (2020) (1D)
-
W.-H. Kao, J. Knolle, G. B. Halász, R. Moessner, and N. B. Perkins, Vacancy-Induced Low-Energy Density of States in the Kitaev Spin Liquid, Phys. Rev. X 11, 011034 (2021)
-
A. K. Daniel and A. Miyake, Quantum Computational Advantage with String Order Parameters of One-Dimensional Symmetry-Protected Topological Order, Phys. Rev. Lett. 126, 090505 (2021) (1D systems, not toric code/compass models)
-
I. Hagymási, R. Schäfer, R. Moessner, and D. J. Luitz, Possible Inversion Symmetry Breaking in the S = 1/2 Pyrochlore Heisenberg Magnet, Phys. Rev. Lett. 126, 117204 (2021) (DMRG)
-
K. Kawabata, K. Shiozaki, and S. Ryu, Topological Field Theory of Non-Hermitian Systems, Phys. Rev. Lett. 126, 216405 (2021) (formulated in space, not in space-time)
-
H.-G. Zirnstein, G. Refael, and B. Rosenow, Bulk-Boundary Correspondence for Non-Hermitian Hamiltonians via Green Functions, Phys. Rev. Lett. 126, 216407 (2021)
-
A. Altland, M. Fleischhauer, and S. Diehl, Symmetry Classes of Open Fermionic Quantum Matter, Phys. Rev. X 11, 021037 (2021) P
- T. Yokoi, S. Ma, Y. Kasahara, S. Kasahara, T. Shibauchi, N. Kurita, H. Tanaka, J. Nasu, Y. Motome, C. Hickey, S. Trebst, and Y. Matsuda, Half-integer quantized anomalous thermal Hall effect in the Kitaev material candidate α-RuCl3, Science 373, 568 (2021) (signature of Majorana fermions like expected for pure Kitaev spin liquid)
-
K. Sun and X. Mao, Fractional Excitations in Non-Euclidean Elastic Plates, Phys. Rev. Lett. 127, 098001 (2021) (classical analogue to Haldane chain, with fractional excitations)
-
W. Zhang, X. Ouyang, X. Huang, X. Wang, H. Zhang, Y. Yu, X. Chang, Y. Liu, D.-L. Deng, and L.-M. Duan, Observation of Non-Hermitian Topology with Nonunitary Dynamics of Solid-State Spins, Phys. Rev. Lett. 127, 090501 (2021)
-
C. Lehmann, M. Schüler, and J. C. Budich, Dynamically Induced Exceptional Phases in Quenched Interacting Semimetals, Phys. Rev. Lett. 127, 106601 (2021) (robust non-Hermitian topological phase, whereas the Hermitian counterpart is fine tuned)
-
S. D. Pace, S. C. Morampudi, R. Moessner, and C. R. Laumann, Emergent Fine Structure Constant of Quantum Spin Ice Is Large, Phys. Rev. Lett. 127, 117205 (2021)
-
I. Mandal and E. J. Bergholtz, Symmetry and Higher-Order Exceptional Points, Phys. Rev. Lett. 127, 186601 (2021)
-
P. Delplace, T. Yoshida, and Y. Hatsugai, Symmetry-Protected Multifold Exceptional Points and Their Topological Characterization, Phys. Rev. Lett. 127, 186602 (2021) (symmetry-protected n-fold exceptional points in n - 1 dimensions)
-
M. Iqbal and N. Schuch, Entanglement Order Parameters and Critical Behavior for Topological Phase Transitions and Beyond, Phys. Rev. X 11, 041014 (2021) (constructing order parameters where a Landau theory is not applicable, unifying description of conventional and topological phase transitions)
-
T. Liu, J. J. He, Z. Yang, and F. Nori, Higher-Order Weyl-Exceptional-Ring Semimetals, Phys. Rev. Lett. 127, 196801 (2021) (non-Hermitian Hamiltonian)
-
D. V. Else, S.-J. Huang, A. Prem, and A. Gromov, Quantum Many-Body Topology of Quasicrystals, Phys. Rev. X 11, 041051 (2021)
-
H. Watanabe and H. C. Po, Fractional Corner Charge of Sodium Chloride, Phys. Rev. X 11, 041064 (2021) (of 1/8)
-
E. M. Smith et al., Case for a U(1)π Quantum Spin Liquid Ground State in the Dipole-Octupole Pyrochlore Ce2Zr2O7, Phys. Rev. X 12, 021015 (2022) (neutron diffraction and thermodynamics)
-
R. Verresen and A. Vishwanath, Unifying Kitaev Magnets, Kagomé Dimer Models, and Ruby Rydberg Spin Liquids, Phys. Rev. X 12, 041029 (2022)
-
D. M. Urwyler, P. M. Lenggenhager, I. Boettcher, R. Thomale, T. Neupert, and T. Bzdušek, Hyperbolic Topological Band Insulators, Phys. Rev. Lett. 129, 246402 (2022)
-
M. D. Horner, A. Hallam, and J. K. Pachos, Chiral Spin-Chain Interfaces Exhibiting Event-Horizon Physics, Phys. Rev. Lett. 130, 016701 (2023) (1D chain with chirality introduced via a three-spin interaction with coefficient tuned through zero as function of position to create the interface; at the mean-field level, this interface is analogous to a black-hole event horizon)
Disordered systems not included elsewhere
- J. P. Straley, Critical exponents for the conductivity of random resistor lattices, Phys. Rev. B 15, 5733 (1977)
- A. B. Harris and R. Fisch, Critical Behavior of Random Resistor Networks, Phys. Rev. Lett. 38, 796 (1977)
- J. Brndiar and P. Markos, Universality of the metal-insulator transition in three-dimensional disordered systems, cond-mat/0606056
- P. B. Chakraborty, P. J. H. Denteneer, and R. T. Scalettar, Determinant Quantum Monte Carlo Study of the Screening of the One Body Potential near a Metal-Insulator Transition, cond-mat/0609717 (2D Hubbard model with random site disorder)
- S. Redner, Fractal and Multifractal Scaling of Electrical Conduction in Random Resistor Networks, arXiv:0710.1105
- M. Schechter and P. C. E. Stamp, Low temperature universality in disordered solids, arXiv:0910.1283 (argue that strong disorder and specifically symmetric tunneling states are responsible for universal elastic properties)
- I. Neri, N. Kern, and A. Parmeggiani, Totally Asymmetric Simple Exclusion Process on Networks, Phys. Rev. Lett. 107, 068702 (2011) (irregular networks)V. Mastropietro, Universality, exponents and anomaly cancellation in disordered Dirac fermions, arXiv:1306.4023
- D. N. Arnold, G. David, D. Jerison, S. Mayboroda, and M. Filoche, Effective Confining Potential of Quantum States in Disordered Media, Phys. Rev. Lett. 116, 056602 (2016)
- S. Kettemann, Exponential Orthogonality Catastrophe at the Anderson Metal-Insulator Transition, Phys. Rev. Lett. 117, 146602 (2016)
- N. B. Murphy, E. Cherkaev, and K. M. Golden, Anderson Transition for Classical Transport in Composite Materials, Phys. Rev. Lett. 118, 036401 (2017) (random matrix theory)
-
E. S. Sørensen, A. Catuneanu, J. S. Gordon, and H.-Y. Kee, Heart of Entanglement: Chiral, Nematic, and Incommensurate Phases in the Kitaev-Gamma Ladder in a Field, Phys. Rev. X 11, 011013 (2021) (complex phase diagram)
-
A. Scheie, P. Laurell, P. A. McClarty, G. E. Granroth, M. B. Stone, R. Moessner, and S. E. Nagler, Dirac Magnons, Nodal Lines, and Nodal Plane in Elemental Gadolinium, Phys. Rev. Lett. 128, 097201 (2022)
Condensed matter: other subfields and general
- J.-H. She, D. Sadri, and J. Zaanen, Statistics, Condensation and the Anderson-Higgs Mechanism: The Worldline Path Integral View, arXiv:0807.1279 (showing that the Anderson-Higgs mechanism does not work for charged [unpaired] fermions)
- K. G. Libbrecht, Crystal Growth in the Presence of Surface Melting and Impurities: An Explanation of Snow Crystal Growth Morphologies, arXiv:0810.0689
- Z. Wang, F. Gao, N. Li, N. Qu, H. Gou, and X. Hao, Density functional theory study of hexagonal carbon phases, J. Phys.: Condens. Matter 21, 235401 (2009) (predicting hardless exceeding that of cubic diamond)
- M. Lazar, The gauge theory of dislocations: a uniformly moving screw dislocation, arXiv:0904.4578, Proc. Royal Soc. A
- E. Bekaroglu, M. Topsakal, S. Cahangirov, and S. Ciraci, First-principles study of defects and adatoms in silicon carbide honeycomb structures, Phys. Rev. B 81, 075433 (2010) (including various vacancy and double C-Si antisite defects; material not synthesized yet)
- N. Argaman, Can elemental bismuth be a liquid crystal?, arXiv:1003.5369
- D. Sytnyk, S. Patil, and R. Melnik, Multiband Hamiltonians of the Luttinger-Kohn Theory and Ellipticity Requirements, arXiv:1004.4152 (show that the k.p Hamiltonian for some standard Luttinger-Kohn parameter sets is not elliptic)
- S. A. Parameswaran, R. Shankar, and S. L. Sondhi, The Renormalization Group and the Superconducting Susceptibility of a Fermi Liquid, arXiv:1008.2492 (while the free Fermi gas shows diverging superconducting response for T to 0, the interacting Fermi liquid does not)
- S. Lounis, P. Zahn, A. Weismann, M. Wenderoth, R. G. Ulbrich, I. Mertig, P. H. Dederichs, and S. Blügel, Theory of real space imaging of Fermi surfaces, arXiv:1010.2112 (applied to STM)
- P. Briet, H. D. Cornean, and B. Savoie, A rigorous proof of the Landau-Peierls formula and much more, arXiv:1011.6499 (rigorous derivation of the magnetic susceptibility of degenerate Bloch electrons)
- O. O. Kurakevych, Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review), arXiv:1101.2954, J. Superhard Mater. 31, 139 (2009)
- K. H. Bennemann, Photoinduced phase transitions, J. Phys.: Condens. Matter 23, 073202 (2011)
- V. Gopalan and D. B. Litvin, New Symmetries in Crystals and Handed Structures, arXiv:1007.3544 (for chiral systems)
- V. Gopalan and D. B. Litvin, Rotation-reversal symmetries in crystals and handed structures, Nature Materials 10, 376 (2011) (new symmetry operations in crystals such as staggered rotations of building blocks, discuss the resulting symmetry groups); see also M. Fiebig, Crystallography: Let's do the twist, Nature Materials 10, 339 (2011)
- C. W. Li, X. Tang, J. A. Muñoz, J. B. Keith, S. J. Tracy, D. L. Abernathy, and B. Fultz, Structural Relationship between Negative Thermal Expansion and Quartic Anharmonicity of Cubic ScF3, Phys. Rev. Lett. 107, 195504 (2011) (certain vibrational modes are related to rocking of octohedra, which is also responsible for negative thermal expansion coefficient, and have approximately quartic potential)
- S. A. Parameswaran, A. M. Turner, D. P. Arovas, and A. Vishwanath, Topological Order and Absence of Band Insulators at Integer Filling in Non-Symmorphic Crystals, arXiv:1212.0557 (non-symmorphic symmetry may prevent formation of a [trivial] band insulator at certain integer fillings)
- H. Watanabe and H. Murayama, Redundancies in Nambu-Goldstone Bosons, arXiv:1302.4800 (explains why spontaneously broken rotational symmetry does not lead to gapless modes)
- I. Pletikosic, M. N. Ali, A. V. Fedorov, R. J. Cava, and T. Valla, Electronic Structure Basis for the Extraordinary Magnetoresistance in WTe2, Phys. Rev. Lett. 113, 216601 (2014) (ARPES, find nearly perfect compensation of electrons and holes; motivated by huge magnetoresistance that does not saturate up to high magnetic fields)
- G. Algara-Siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser, H. A. Wu, A. K. Geim, and I. V. Grigorieva, Square ice in graphene nanocapillaries, Nature 519, 443 (2015) (water ice on a square lattice, realization of the square-lattice ice model)
- J. Knolle and N. R. Cooper, Quantum Oscillations without a Fermi Surface and the Anomalous de Haas-van Alphen Effect, Phys. Rev. Lett. 115, 146401 (2015) (in systems with a flat band, such as SmB6)
- J. Hlinka, J. Privratska, P. Ondrejkovic, and V. Janovec, Symmetry Guide to Ferroaxial Transitions, Phys. Rev. Lett. 116, 177602 (2016) (complete analysis of ferroaxial character for all possible structural transition that reduce the point-group symmetry)
- H. Watanabe, H. C. Po, M. P. Zaletel, and A. Vishwanath, Filling-Enforced Gaplessness in Band Structures of the 230 Space Groups, Phys. Rev. Lett. 117, 096404 (2016) (complete solution for noninteracting electrons; the interesting aspect is unavoidable crossings for nonsymmorphic space groups); H. C. Po, H. Watanabe, M. P. Zaletel, and A. Vishwanath, Filling-enforced quantum band insulators in spin-orbit coupled crystals, Sci. Adv. 2, e1501782 (2016) (some space groups allow band insulators that cannot be understood as "atomic insulators" consisting of filled and empty localized Wannier orbitals of appropriate symmetry); L. Fu, Closing the Gap in Band Theory, Journal Club for Condensed Matter Physics August 2017; R. Chen, H. C. Po, J. B. Neaton, and A. Vishwanath, Topological materials discovery using electron filling constraints, Nature Phys. 14, 55 (2018)
-
A. Alase, E. Cobanera, G. Ortiz, and L. Viola, Generalization of Bloch's theorem for arbitrary boundary conditions: Theory, Phys. Rev. B 96, 195133 (2017)
-
L. Peng, S. A. Wells, C. R. Ryder, M. C. Hersam, and M. Grayson, All-Electrical Determination of Crystal Orientation in Anisotropic Two-Dimensional Materials, Phys. Rev. Lett. 120, 086801 (2018) (anisotropy of resistivity)
-
M. Xie and A. H. MacDonald, Electrical Reservoirs for Bilayer Excitons, Phys. Rev. Lett. 121, 067702 (2018)
-
D. V. Efremov, A. Shtyk, A. W. Rost, C. Chamon, A. P. Mackenzie, and J. J. Betouras, Multicritical Fermi Surface Topological Transitions, Phys. Rev. Lett. 123, 207202 (2019) (stronger than van Hove singularities due to parallel sections of Fermi surface at high-symmetry points)
- M. Fruchart, Y. Zhou, and V. Vitelli, Dualities and non-Abelian mechanics, Nature 577, 636 (2020) (how dualities can lead to additional symmetries of a Hamiltonian, beyond standard spatial symmetries)
-
C. S. Weber, K. Piasotski, M. Pletyukhov, J. Klinovaja, D. Loss, H. Schoeller, and D. M. Kennes, Universality of Boundary Charge Fluctuations, Phys. Rev. Lett. 126, 016803 (2021) (at bulk-gap closing/deopening transitions)
-
V. K. Kozin, V. A. Shabashov, A. V. Kavokin, and I. A. Shelykh, Anomalous Exciton Hall Effect, Phys. Rev. Lett. 126, 036801 (2021) (in applied magnetic field but zero electric field)
-
D. V. Else and T. Senthil, Strange Metals as Ersatz Fermi Liquids, Phys. Rev. Lett. 127, 086601 (2021)
-
P.-J. Guo, Y.-W. Wei, K. Liu, Z.-X. Liu, and Z.-Y. Lu, Eightfold Degenerate Fermions in Two Dimensions, Phys. Rev. Lett. 127, 176401 (2021) (for gray space groups, on high-symmetry lines, but neglecting spin-orbit coupling)
-
P. Liu, J. Li, J. Han, X. Wan, and Q. Liu, Spin-Group Symmetry in Magnetic Materials with Negligible Spin-Orbit Coupling, Phys. Rev. X 12, 021016 (2022) (group theory decoupled real-space and spin transformations)
-
Z.-D. Song and B. A. Bernevig, Magic-Angle Twisted Bilayer Graphene as a Topological Heavy Fermion Problem, Phys. Rev. Lett. 129, 047601 (2022)
- H. M. L. Noad, K. Ishida, Y.-S. Li, E. Gati, V. Stangier, N. Kikugawa, D. A. Sokolov, M. Nicklas, B. Kim, I. I. Mazin, M. Garst, J. Schmalian, A. P. Mackenzie, and C. W. Hicks, Giant lattice softening at a Lifshitz transition in Sr2RuO4, Science 382, 447 (2023) (electronic Lifshitz transition significantly softens lattice [reduce Young's modulus])
- N. Seiberg and S.-H. Shao, Majorana chain and Ising model - (non-invertible) translations, anomalies, and emanant symmetries, arXiv:2307.02534; T. Senthil, Symmetries without an inverse: An illustration through the 1+1-D Ising model, 10.36471/JCCM_February_2024_03
Chemical and molecular physics (not transport)
- M. R. Pederson and A. A. Quong, Polarizabilities, charge states, and vibrational modes of isolated fullerene molecules, Phys. Rev. B 46, 13584 (1992) (DFT, Jahn-Teller effect not included)
- E. Tosatti, N. Manini, and O. Gunnarsson, Surprises in the orbital magnetic moment and g factor of the dynamic Jahn-Teller ion C60-, Phys. Rev. B 54, 17184 (1996) (explains why the orbital moment of charged C60 is quenched)
- Y. Ni, R. R. Puthenkovilakom, and Q. Huo, Synthesis and Supramolecular Self-Assembly Study of a Novel Porphyrin Molecule in Langmuir and Langmuir-Blodgett Films, Langmuir 20, 2765 (2004) ("For example, transition-metal complexes of porphyrins are well-known paramagnetic materials. It has been reported that such paramagnetic materials may become ferro- or ferrimagnetic due to a strong metal-metal coupling when aligned in ordered structures." Potential for spintronics)
- C. P. Massen and J. P. K. Doye, Power-law distributions for the areas of the basins of attraction on a potential energy landscape, cond-mat/0509185 (high-dimensional potential landscapes, fractal basins of attraction)
- C. T. Chang, J. P. Sethna, A. N. Pasupathy, J. Park, D. C. Ralph, and P. L. McEuen, Phonons in Molecular Quantum Dots: Density Functional Calculation of Franck-Condon Emission Rates in External Fields, cond-mat/0605671
- M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. J. Frechet, D. Trauner, S. G. Louie, and M. F. Crommie, Reversible Photomechanical Switching of Individual Engineered Molecules at a Surface, cond-mat/0612202 (using azobenzene derivates)
- R. F. Sabirianov, W. N. Mei, J. Lu, Y. Gao, X. C. Zeng, R. D. Bolskar, P. Jeppson, N. Wu, A. N. Caruso, and P. A. Dowben, Correlation effects and electronic structure of Gd@C60, J. Phys.: Condens. Matter 19, 082201 (2007) (experiment and DFT)
- T. Körzdörfer, M. Mundt, and S. Kümmel, Electrical response of molecular systems: the power of self-interaction corrected Kohn-Sham theory, arXiv:0708.2870 (SIC optimized effective potential compared to other functionals)
- Y. Mokrousov, N. Atodiresei, G. Bihlmayer, S. Heinze, and S. Blügel, Interplay of structure and spin-orbit strength in magnetism of metal-benzene sandwiches: from single molecules to infinite wires, arXiv:0710.5413, Nanotechnology 18 495402 (2007) (cf. Maslyuk et al., Phys. Rev. Lett. on benzene-vanadium wires)
- K. S. Thygesen and A. Rubio, Renormalization of Molecular Quasiparticle Levels at Metal-Molecule Interfaces: Trends across Binding Regimes, Phys. Rev. Lett. 102, 046802 (2009) (Hartree-Fock, DFT, and GW results are compared)
- J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, A single-molecule optical transistor, Nature 460, 76 (2009) (a single molecule attenuates or amplifies a laser beam, controlled by a second "gate" beam)
- N. Baadji et al., Electrostatic spin crossover effect in polar magnetic molecules, see under spin crossover
- H. Weng, T. Ozaki, and K. Terakura, Maximally localized Wannier function within linear combination of pseudo-atomic orbital method: Implementation and applications to transition-metal-benzene complex, arXiv:0902.1584 (V2Bz3 and infinite VBz chain)
- O. Shafir and A. Keren, Electromagnetic radiation emanating from the molecular nanomagnet Fe8, arXiv:0902.2540 (evidence for superradiance)
- D. I. Schuster, L. S. Bishop, I. L. Chuang, D. DeMille, and R. J. Schoelkopf, Cavity QED in a molecular ion trap, arXiv:0903.3552 (proposal to study questions concerning quantum information using rotational states of molecular ions in an RF trap)
- C. Wäckerlin, D. Chylarecka, A. Kleibert, K. Müller, C. Iacovita, F. Nolting, T. A. Jung, and N. Ballav, Controlling spins in adsorbed molecules by a chemical switch, Nature Commun. 1, 61 (2010) (Co(II)-tetraphenylporphyrin on Ni(001), is switched between magnetic and non-magnetic state by NO)
- R. Xiao, D. Fritsch, M. D. Kuz'min, K. Koepernik, M. Richter, K. Vietze, and G. Seifert, Prediction of huge magnetic anisotropies of transition-metal dimer-benzene complexes, arXiv:1009.0170
- M. Abel, S. Clair, O. Ourdjini, M. Mossoyan, and L. Porte, Single Layer of Polymeric Fe-Phthalocyanine: An Organometallic Sheet on Metal and Thin Insulating Film, J. Am. Chem. Soc. 133, 1203 (2011) (chemistry and STM experiments)
- M. J. Martínez-Pérez et al., Gd-Based Single-Ion Magnets with Tunable Magnetic Anisotropy: Molecular Design of Spin Qubits, Phys. Rev. Lett. 108, 247213 (2012)
Few-body physics
- B. Huang, L. A. Sidorenkov, R. Grimm, and J. M. Hutson, Observation of the Second Triatomic Resonance in Efimov's Scenario, Phys. Rev. Lett. 112, 190401 (2014); see also Viewpoint: G. Modugno, Giant Efimov States Now Observed, Physics 7, 51 (2014) (with good introduction to Efimov states)
Quantum mechanics and quantum information
- R. M. Cavalcanti, Exact Green's functions for delta-function potentials and renormalization in quantum mechanics, arXiv:quant-ph/9801033, Rev. Bras. Ens. Fis. 21, 336 (1999) (bound states of and scattering from δ-function potentials in two and three dimensions, requiring renormalization of coupling strength, which is worked out explicitly)
- M. Requardt, An Alternative to Decoherence by Environment and the Appearance of a Classical World, arXiv:1009.1220 (very interesting modern discussion of the measurement problem, also includes a concise review of the decoherence-by-environment paradigm, with references)
- M. J. W. Hall, Local Deterministic Model of Singlet State Correlations Based on Relaxing Measurement Independence, Phys. Rev. Lett. 105, 250404 (2010) (... by 14%)
- D. Poulin, A. Qarry, R. Somma, and F. Verstraete, Quantum Simulation of Time-Dependent Hamiltonians and the Convenient Illusion of Hilbert Space, Phys. Rev. Lett. 106, 170501 (2011) (many-body systems with arbitrary local Hamiltonians can only reach a small fraction of the Hilbert space within a time scaling like a power law of the system size)
- J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C, Bamber, Direct measurement of the quantum wavefunction, Nature 474, 188 (2011) (measurement of the full wave function using weak [and strong] measurements on an ensemble of identical systems)
- G. Chiribella, G. M. D'Ariano, and P. Perinotti, Informational derivation of quantum theory, Phys. Rev. A 84, 012311 (2011) (establish quantum mechanics for finite-dimensional Hilbert spaces based on six axioms formulated in information-theory language)
- D. Braak, Integrability of the Rabi Model, Phys. Rev. Lett. 107, 100401 (2011), see also Viewpoint (the quantum Rabi model describes a two-level system coupled to a bosonic mode, it is here solved exactly, a generalized model is also solved, although it is proved not to be integrable)
- R. N. Costa Filho, M. P. Almeida, G. A. Farias, and J. S. Andrade Jr., Displacement operator for quantum systems with position-dependent mass, arXiv:1110.1582
- E. A. Yuzbashyan and B. S. Shastry, Quantum integrability in systems with finite number of levels, arXiv:1111.3375
- D. S. Freed, On Wigner's theorem, arXiv:1112.2133 (two mathematical proofs)
- M. F. Pusey, J. Barrett, and T. Rudolph, On the reality of the quantum state, Nature Phys. doi:10.1038/nphys2309 (2012) (essentially show that a theory based on the assumption that the state vector only represents information about a physical state has to lead to predictions that conflict with standard quantum mechanics)
- P. Bruno, Quantum Geometric Phase in Majorana's Stellar Representation: Mapping onto a Many-Body Aharonov-Bohm Phase, Phys. Rev. Lett. 108, 240402 (2012) (a rigorous theory built upon the geometrical Bloch-Majorana description of spins of any length in terms of points on a sphere), see also Viewpoint by Q. Niu, A Quantum Constellation, Physics 5, 65 (2012) (clear pedagogical introduction)
- J. Eisert, M. P. Müller, and C. Gogolin, Quantum measurement occurrence is undecidable, Phys. Rev. Lett. 108, 260501 (2012) (making use of rigorous results on decidability for products of integer matrices)
- A. Shapere and F. Wilczek, Branched Quantization, Phys. Rev. Lett. 109, 200402 (2012) (multivalued Hamiltonians, also mapping on quantum graphs)
- R. Requist, Hamiltonian formulation of nonequilibrium quantum dynamics: geometric structure of the BBGKY hierarchy, arXiv:1206.3863 (Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy)
- X.-Q. Zhou, P. Kalasuwan, T. C. Ralph, and J. L. O'Brien, Calculating unknown eigenvalues with a quantum algorithm, Nature Photonics 7, 223 (2013)
- T. Fritz, A. B. Sainz, R. Augusiak, J. Bohr Brask, R. Chaves, A. Leverrier, and A. Acín, Local orthogonality as a multipartite principle for quantum correlations, Nature Commun. 4, 2263 (2013)
- T. N. Ikeda, N. Sakumichi, A. Polkovnikov, and M. Ueda, Emergent Second Law in Pure Quantum States, arXiv:1303.5471
- P. Sekatski, N. Gisin, and N. Sangouard, How Difficult Is It to Prove the Quantumness of Macroscropic States?, Phys. Rev. Lett. 113, 090403 (2014) (distinguishability of two quantum states using imperfect measurements, relation to observability of their superposition [possible Schrödinger cat state])
- Y.-C. Liang, F. J. Curchod, J. Bowles, and N. Gisin, Anonymous Quantum Nonlocality, Phys. Rev. Lett. 113, 130401 (2014)
- H. M. Price, T. Ozawa, and I. Carusotto, Quantum Mechanics with a Momentum-Space Artificial Magnetic Field, Phys. Rev. Lett. 113, 190403 (2014) (exploits the fact that the Berry curvature can be understood as a magnetic field in momentum space; clearly written introduction)
- H. D. Liu and L. B. Fu, Representation of Berry Phase by the Trajectories of Majorana Stars, Phys. Rev. Lett. 113, 240403 (2014) (also briefly reviews Majorana stars as a representation of spins larger than 1/2 by multiple points on a Bloch sphere, can be generalized)
- L. Diósi, Testing Spontaneous Wave-Function Collapse Models on Classical Mechanical Oscillators, Phys. Rev. Lett. 114, 050403 (2015)
- M. Mierzejewski, P. Prelovsek, and T. Prosen, Identifying Local and Quasilocal Conserved Quantities in Integrable Systems, Phys. Rev. Lett. 114, 140601 (2015) (systematic construction of all conserved observables defined on M sites)
- C. Schwemmer, L. Knips, M. C. Tran, A. de Rosier, W. Laskowski, T. Paterek, and H. Weinfurter, Genuine Multipartite Entanglement without Multipartite Correlations, Phys. Rev. Lett. 114, 180501 (2015)
- I. Pikovski, M. Zych, F. Costa, and C. Brukner, Universal decoherence due to gravitational time dilation, Nature Phys. (2015), doi:10.1038/nphys3366, see also News: E. Gibney, How gravity kills Schrödinger's cat
- O. Oreshkov and N. J. Cerf, Operational formulation of time reversal in quantum theory, Nature Phys. 11, 853 (2015) (employing a circuit description in the framework of operational probabilistic theories; the justification for a probabilistic interpretation is not the issue here)
- D. Goyeneche, G. Cañas, S. Etcheverry, E. S. Gömez, G. B. Xavier, G. Lima, and A. Delgado, Five Measurement Bases Determine Pure Quantum States on Any Dimension, Phys. Rev. Lett. 115, 090401 (2015) (... of the Hilbert space)
- L. Clemente and J. Kofler, No Fine Theorem for Macrorealism: Limitations of the Leggett-Garg Inequality, Phys. Rev. Lett. 116, 150401 (2016) (macrorealism is fundamentally different from local realism)
- G. S. Thekkadath, L. Giner, Y. Chalich, M. J. Horton, J. Banker, and J. S. Lundeen, Direct Measurement of the Density Matrix of a Quantum System, Phys. Rev. Lett. 117, 120401 (2016) (density matrix of a photon entangled with the environment)
- T. Tilma, M. J. Everitt, J. H. Samson, W. J. Munro, and K. Nemoto, Wigner Functions for Arbitrary Quantum Systems, Phys. Rev. Lett. 117, 180401 (2016) (including spin systems)
- A. Andreassen, D. Farhi, W. Frost, and M. D. Schwartz, Direct Approach to Quantum Tunneling, Phys. Rev. Lett. 117, 231601 (2016) P
-
B. Dakić and M. Radonjić, Macroscopic Superpositions as Quantum Ground States, Phys. Rev. Lett. 119, 090401 (2017) (macroscopic systems with Schrödinger-cat ground states are typically gapless)
-
S. Hacohen-Gourgy, L. P. García-Pintos, L. S. Martin, J. Dressel, and I. Siddiqi, Incoherent Qubit Control Using the Quantum Zeno Effect, Phys. Rev. Lett. 120, 020505 (2018) (experimental, steering by repeated measurement, circuit QED)
- R. Verresen, R. Moessner, and F. Pollmann, Avoided quasiparticle decay from strong quantum interactions, Nature Phys. 15, 750 (2019) (also discuss avoided decay in a noninteracting resonant-level model)
-
L. Maccone and K. Sacha, Quantum Measurements of Time, Phys. Rev. Lett. 124, 110402 (2020) (defining a Hermitian time-of-arrival operator)
-
Z. Li, L. Zou, and T. H. Hsieh, Hamiltonian Tomography via Quantum Quench, Phys. Rev. Lett. 124, 160502 (2020) (can generically reconstruct many-body Hamiltonian from just one initial-final-state pair, also discuss using multiple pairs)
-
P. W. Claeys and A. Polkovnikov, Quantum eigenstates from classical Gibbs distributions, arXiv:2007.07264 (from classical mechanics to quantum mechanics); see also D. Arovas, A New Approach to the Classical-Quantum Correspondence, 10.36471/JCCM_October_2020_01
-
D. Girolami and F. Anzà, Quantifying the Difference between Many-Body Quantum States, Phys. Rev. Lett. 126, 170502 (2021)
-
M. Buchhold, Y. Minoguchi, A. Altland, and S. Diehl, Effective Theory for the Measurement-Induced Phase Transition of Dirac Fermions, Phys. Rev. X 11, 041004 (2021)
-
I. J. Arnquist et al. (Majorana Collaboration), Search for Spontaneous Radiation from Wave Function Collapse in the Majorana Demonstrator, Phys. Rev. Lett. 129, 080401 (2022) (bounds on objective-collapse quantum mechanics [continuous spontaneous localization])
- C. Berke, E. Varvelis, S. Trebst, A. Altland, and D. P. DiVincenzo, Transmon platform for quantum computing challenged by chaotic fluctuations, Nature Commun. 13, 2495 (2022) (concept of many-body localization applied to transmon qubits); see comment: M. Silveri and T. Orell, Many-qubit protection-operation dilemma from the perspective of many-body localization, Nature Commun. 13, 5825 (2022)
Field theory
- A. Manjavacas and F. J. García de Abajo, Thermal and vacuum friction acting on rotating particles, Phys. Rev. A 82, 063827 (2010) (damping of rotation in vacuum)
- M. N. Chernodub, Can nothing be a superconductor and a superfluid?, arXiv:1104.4404 (the vacuum becomes superconducting in high magnetic fields due to condensation of charged [spin-1] rho mesons)
- D. B. Kaplan and S. Sun, Spacetime as a Topological Insulator: Mechanism for the Origin of the Fermion Generations, Phys. Rev. Lett. 108, 181807 (2012) (four-dimensional spacetime as a surface of a five-dimensional system, low-energy fermions emerge as topologically protected surface states, toy model showing that realization of exactly three families is possible)
- H. Watanabe and H. Murayama, Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance, Phys. Rev. Lett. 108, 251602 (2012) (number of Nambu-Goldstone modes is less than number of generators belonging to broken symmetries if these form conjugate pairs, also geometrical interpretation)
-
Hong-Hao Tu, Universal Entropy of Conformal Critical Theories on a Klein Bottle, Phys. Rev. Lett. 119, 261603 (2017) (relevant for edges of topological systems)
-
I. Boettcher, P. Bienias, R. Belyansky, A. J. Kollár, and A. V. Gorshkov, Quantum simulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry, Phys. Rev. A 102, 032208 (2020) (field theoretical description of superconducting circuits on effectively hyperbolic surfaces)
Statistical physics (mostly non-equilibrium)
Master equation and other density-operator descriptions
- F. Sanda, The instability in the long-time regime behaviour of a kinetic model, J. Phys. A 35, 5815 (2002) (using time-convolusionless master equation for system coupled to bosonic bath, not transport)
- H.-P. Breuer, D. Burgarth, and F. Petruccione, Non-Markovian dynamics in a spin star system: Exact solution and approximation techniques, Phys. Rev. B 70, 045323 (2004) (useful discussion of various methods for obtaining dynamics of the reduced density matrix)
- S. Maniscalco, F. Intravaia, J. Piilo, and A. Messina, Misbeliefs and misunderstandings about the non-Markovian dynamics of a damped harmonic oscillator, J. Opt. B 6, S98 (2004) (clarifying some confusing issues concerning dynamics of a system coupled to a bath) P
- W. Zhu and H. Rabitz, Perturbative and nonperturbative master equations for open quantum systems, J. Math. Phys. 46, 022105 (2005) (variational principles for master equation, not time-convolutionless, obtain WBR master equation as special case) P
- R. Romano, Impact of positivity and complete positivity on accessibility of Markovian dynamics, J. Phys. A: Math. Gen. 38, 9105 (2005) (contains clear definition of positivity vs. complete positivity)
- S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi, Canonical Typicality, cond-mat/0511091 (show that the reduced density matrix of a system corresponds to the canonical ensemble if the system plus a bath is in a pure quantum state, for nearly all such states)
- J. L. García-Palacios and D. Zueco, Solving spin quantum-master equations with matrix continued-fraction methods: application to superparamagnets, cond-mat/0603730, J. Phys. A (with Markov approximation, interesting special-purpose method explained in detail)
- V. F. Los, Nonlinear generalized master equations and accounting for initial correlations, cond-mat/0603770 (uses superoperator formalism, not time-convolutionless)
- C. F. Huang and K.-N. Huang, On the quantum master equation for fermions, quant-ph/0604054
- R. K. P. Zia and B. Schmittmann, A possible classification of nonequilibrium steady states, cond-mat/0605301, J. Phys. A: Math. Gen. 39, L407 (2006) (reviews older method to construct stationary solution of master equation using graphs, shows how to find all master equations giving the same stationary state [after discussing what "same state" means], gives generalization of concept of detailed balance to general master equations); R. K. P. Zia and B. Schmittmann, Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states, cond-mat/0701763, JSTAT special issue
- A. Pereverzev and E. R. Bittner, Time-convolutionless master equation for mesoscopic electron-phonon systems, cond-mat/0606497, J. Chem. Phys. 125, 104906 (2006)
- R. Grunwald and R. Kapral, Decoherence and Quantum-Classical Master Equation Dynamics, cond-mat/0612203 (not time-convolutionless master equation) P
- S. Maniscalco, Complete positivity of a spin-1/2 master equation with memory, Phys. Rev. A 75, 062103 (2007)
- J. L. McCauley, Markov vs. non-Markovian processes: A comment on the paper "Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker-Planck equations" by T. D. Frank, cond-mat/0701589
- F. Rossi, Quantum Fermi's Golden Rule, quant-ph/0702233, Phys. Rev. Lett. (discussion of how the standard Markov approximation violates positivity of the probabilities and proposal of an alternative approximation not suffering from this problem)
- S. Herminghaus, Tackling master equations with a loop transform, arXiv:0710.4913 (mapping of non-equilibrium master equation without detailed balance onto a master equation for current loops that does satisfy detailed balance)
- R. S. Whitney, Staying completely positive: going beyond Lindblad with perturbative master equations, arXiv:0711.0074, J. Phys. A: Math. Theor. 41, 175304 (2008) P
- H. Weimer, M. Michel, J. Gemmer, and G. Mahler, Transport in anisotropic model systems analyzed by a correlated projection superoperator technique, Phys. Rev. E 77, 011118 (2008) (TCL master equation for energy transport in a 3D Heisenberg-type system)
- T. Prosen, Third quantization: a general method to solve master equations for quadratic open Fermi systems, New J. Phys. 10, 043026 (2008); slightly corrected version in arXiv:0801.1257
- M. W. Y. Tu and W.-M. Zhang, Non-Markovian decoherence theory for a double-dot charge qubit, Phys. Rev. B 78, 235311 (2008) (exact master equation based on a generalization of the Feynman-Vernon influence functional for fermionic baths, equation is local in time [time-convolutionless], but time-dependent renormalizations appear in the dot Hamiltonian)
- S. Pigolotti and A. Vulpiani, Coarse graining of master equations with fast and slow states, arXiv:0801.3628
- D. Lacroix, Exact stochastic simulation of dissipation and non-Markovian effects in open quantum systems, arXiv:0802.1981 (idea: writing the density operator of the full system as an average over density operators of product form, said to be exact)
- B. Kraus, S. Diehl, A. Micheli, A. Kantian, H. P. Büchler, and P. Zoller, Preparation of Entangled States by Dissipative Quantum Markov Processes, arXiv:0803.1463
- G. Schaller and T. Brandes, Preservation of Positivity by Dynamical Coarse-Graining, arXiv:0804.2374
- D. W. Hone, R. Ketzmerick, and W. Kohn, Statistical mechanics of Floquet systems: the pervasive problem of near degeneracies, arXiv:0811.3243 (why the proliferation of near degeneracies for large Hilbert-space dimensions does not lead to qualitative changes)
- A. D. Jackson and S. Pigolotti, Statistics of trajectories in two-state master equations, arXiv:0812.0498
- I. Mazilu and H. T. Williams, Non-equilibrium statistical mechanics: a solvable model, arXiv:0812.1956 (contains pedagogical introduction)
- H.-P. Breuer and B. Vacchini, Structure of completely positive quantum master equations with memory kernel, Phys. Rev. E 79, 041147 (2009) (quantum master equation for semi-Markov processes: states form a Markov chain but waiting times need not be exponentially distributed)
- R. Ketzmerick and W. Wustmann, Switching mechanism in periodically driven quantum systems with dissipation, Phys. Rev. E 80, 021117 (2009) (using Floquet theory and a rate equation); Statistical Mechanics of Floquet Systems with Regular and Chaotic States, arXiv:1005.0757
- H. Ge, Time-dependent Nonequilibrium Thermodynamics: A Master-equation Approach, arXiv:0904.2241
- B. Vacchini and K. Hornberger, Quantum linear Boltzmann equation, arXiv:0904.3911, Phys. Rep. 478, 71 (2009) (long paper; relation to Lindblad master equation)
- D. Taj and F. Rossi, Completely Positive Markovian Quantum Dynamics in the Weak-Coupling Limit, arXiv:0905.1020, Phys. Rev. A 78, 052113 (2008); D. Taj, R. C. Iotti, and F. Rossi, Dissipation and Decoherence in Nanodevices: a Generalized Fermi's Golden Rule, arXiv:0905.1026, Semicond. Sci. Technol. 24, 065004 (2009) (alternative derivation of the master equation in the sequential-tunneling approximation that leads to an equation of Lindblad form and therefore ensures complete positivity)
- M. Assaf and B. Meerson, Extinction of metastable stochastic populations, arXiv:0907.0070
- M. H. S. Amin and Frederico Brito, Non-Markovian incoherent quantum dynamics of a two-state system, arXiv:0907.4797
- S. R. Clark, J. Prior, M. J. Hartmann, D. Jaksch, and M. B. Plenio, Exact matrix product solutions in the Heisenberg picture of an open quantum spin chain, arXiv:0907.5582 (Lindblad master equation)
- T. Prosen and B. Zunkovic, Exact solution of Markovian master equations for quadratic fermi systems: thermal baths, open XY spin chains, and non-equilibrium phase transition, arXiv:0910.0195 (assuming weak coupling and making the "Born-Markov" approximation)
- E. Van der Straeten, Maximum entropy estimation of transition probabilities of reversible Markov chains, arXiv:0910.3829 (discrete Markov chains satisfying detailed balance, the transition rates are determined [and can thus be eliminated] using a maximum-entropy approach based on measured averages of a few observables; also contains a concise review of the maximum-entropy concept)
- R. Requist and O. Pankratov, Adiabatic approximation in time-dependent reduced-density-matrix functional theory, arXiv:0911.0945 (single-particle reduced density matrix)
- H. Ge and H. Qian, The Physical Origins of Entropy Production, Free Energy Dissipation and their Mathematical Representations, arXiv:0911.3984 (based on the Pauli master equations, i.e., rate equations)
- A. Prados and J. J. Brey, The Kovacs effect: a master equation analysis, arXiv:0911.4015 (Kovacs effect: non-monotonic relaxation of certain observables)
- C. Gogolin, Einselection without pointer states, arXiv:0908.2921 (shows that almost all off-diagonal components of the reduced density matrix become small under rather general conditions)
- R. Chetrite and K. Mallick, Fluctuation Relations for Quantum Markovian Dynamical System, arXiv:1002.0950 (based on Lindblad master equation, generalization of Jarzynski and Crooks relations and the fluctuation-dissipation theorem)
- H. C. Öttinger, Nonlinear thermodynamic quantum master equation: Properties and examples, arXiv:1004.0652
- L. F. Lafuerza and R. Toral, On the Gaussian approximation for master equations, arXiv:1004.1361 (related to van Kampen's cumulant expansion)
- H. C. Öttinger, Stochastic process behind nonlinear thermodynamic quantum master equation, arXiv:1005.1190
- A. Smirne and B. Vacchini, Nakajima-Zwanzig versus time-convolutionless master equation for the non-Markovian dynamics of a two-level system, arXiv:1005.1604 (use the superoperator formalism to express NZ kernel and TCL generator in terms of the general time evolution [completely positive map], give exact equations for the Jaynes-Cummings model for a two-level system coupled to a radiation mode, give explicit results if this mode is initially in the vacuum state) P
- C.-F. Huang and K.-N. Huang, On the quantum master equation for Bogoliubov-BCS quasiparticles, arXiv:1006.1088
- F. Liu and H. Lei, Splitting rate matrix as a definition of time reversal in master equation systems, arXiv:1010.5082
- R. Nakano, N. Hatano, and T. Petrosky, Nontrivial eigenvalues of the Liouvillian of an open quantum system, arXiv:1010.5302 (projection-operator method applied to the Liouvillian, applied to a non-interacting fermionic system; related to master-equation ideas)
- A. O. Bolivar, The dynamical-quantization approach to open quantum systems, arXiv:1010.5378
- T. H. Seligman and H. A. Weidenmueller, Fourier's Law in Quantum Mechanics, arXiv:1011.1339 (for heat transport)
- A. A. Dzhioev and D. S. Kosov, Super-fermion representation of the Lindblad master equation for the electron transport problem, J. Chem. Phys. 134, 044121 (2011) (superoperator formalism)
- M. Znidaric, Solvable quantum nonequilibrium model exhibiting a phase transition and a matrix product representation, Phys. Rev. E 83, 011108 (2011) (XX spin chain, Lindblad master equation)
- N. A. Sinitsyn, A. Akimov, and V. Y. Chernyak, Supersymmetry and fluctuation relations for currents in closed networks, Phys. Rev. E 83, 021107 (2011) (periodic driving, no transients, supersymmetry here involves the complementary descriptions in terms of probabilities and currents)
- R. K. P. Zia, General Properties of a System of S Species Competing Pairwise, arXiv:1101.0018
- O. Lychkovskiy, Entanglement, decoherence and thermal relaxation in exactly solvable models, arXiv:1101.2535 (reduced dynamics of a single spin in an integrable spin chain)
- I. Kim, Non-equilibrium dynamics in the quantum Brownian oscillator and the second law of thermodynamics: An exact treatment, arXiv:1101.2733 (harmonic oscillator coupled to heat bath, spring constant or mass of the oscillator are given but arbitary functions of time, obtains reduced density operator)
- M. Colangeli, C. Maes, and B. Wynants, A meaningful expansion around detailed balance, arXiv:1101.3487
- A. N. Gorban and G. S. Yablonsky, Detailed Balance for Systems with Irreversible Reactions, arXiv:1101.5280 (one example is a master equation)
- A. Croy and U. Saalmann, Propagation of Time-Nonlocal Quantum Master Equations for Time-Dependent Electron Transport, arXiv:1103.0185 (Nakajima-Zwanzig master equation, for arbitrary time dependence of the dot or tunneling Hamiltonians, using an auxiliary-operator approach)
- T. Kawamoto and N. Hatano, A test of "fluctuation theorem" in non-Markovian open quantum systems, arXiv:1105.3579
- D. P. S. McCutcheon, N. S. Dattani, E. M. Gauger, B. W. Lovett, and A. Nazir, A variational master equation approach to quantum dot Rabi rotations, arXiv:1105.6015; D. P. S. McCutcheon and A. Nazir, Consistent treatment of coherent and incoherent energy transfer dynamics using a variational master equation, arXiv:1107.0734
- M. Polettini, System/environment duality of nonequilibrium observables, arXiv:1106.1280 (rate equations, results are discussed in relation to gauge description of Timm (2007))
- E. Barnes, L. Cywinski, and S. Das Sarma, Master equation approach to the central spin decoherence problem: the uniform coupling model and the role of projection operators, arXiv:1108.1199 (central spin coupled to reservoir of nuclear spins, Nakajima-Zwanzig master equation, compared to effective-Hamiltonian calculation)
- I. Kamleitner and A. Shnirman, A time dependent Markovian master equation for adiabatic systems, arXiv:1108.3216 (Hamiltonian of small system is time-dependent, use Floquet theory, derive a Markovian master equation, which has Lindblad form, but with time-dependent Lindblad operators)
- D. Mandal and C. Jarzynski, A proof by graphical construction of the no-pumping theorem of stochastic pump, arXiv:1109.2871 (rate equations with time-dependent, periodic rates satisfying detailed balance at all times; derive conditions under which directed probability flow on average can occur)
- M. Hnatich, J. Honkonen, and T. Lucivjansky, Field Theory Approach In Kinetic Reaction: Role Of Random Sources And Sinks, arXiv:1109.6435
- M. Polettini, Nonequilibrium thermodynamics as a gauge theory, arXiv:1110.0608 (Pauli master equation, gauge transformations involving the rates, unlike Timm (2007))
- J. Salmilehto, P. Solinas, and M. Möttönen, Conservation law of operator current in open quantum systems, arXiv:1110.5427 (the "operator current" is here defined as the total time derivative of a given observable, it is not a transport current)
- R. Chetrite and K. Mallick, Quantum Fluctuation Relations for the Lindblad Master Equation, arXiv:1112.1303 P
- V. Giovannetti and G. M. Palma, Master Equations for Correlated Quantum Channels, Phys. Rev. Lett. 108, 040401 (2012) (several subsystems interacting consecutively with the same subenvironments)
- B. Altaner, J. Vollmer, S. Grosskinsky, L. Katthän, M. Timme, and S. Herminghaus, Network representations of non-equilibrium steady states: Cycle decompositions, symmetries and dominant paths, Phys. Rev. E 85, 041133 (2012) (significantly changed compared to first preprint version)
- T. Barthel and M. Kliesch, Quasilocality and Efficient Simulation of Markovian Quantum Dynamics, Phys. Rev. Lett. 108, 230504 (2012)
- T. Prosen, PT-Symmetric Quantum Liouvillean Dynamics, Phys. Rev. Lett. 109, 090404 (2012) (Lindblad master equation with additional mastersymmetry, leads to double mirror symmetry of spectrum of generator, also discusses an example of an XXZ spin chain driven at the ends; note that the antiunitary T superoperator is defined to describe hermitian conjugation of superoperators) P
- E. Barnes, L. Cywinski, and S. Das Sarma, Nonperturbative Master Equation Solution of Central Spin Dephasing Dynamics, Phys. Rev. Lett. 109, 140403 (2012) (one spin coupled to many others [spin bath], resummation of the TCL master equation to all orders in the coupling, obtain an exact closed-form result in the large-bath limit)
- W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W.-Y. Tu, and F. Nori, General Non-Markovian Dynamics of Open Quantum Systems, Phys. Rev. Lett. 109, 170402 (2012) (noninteracting fermions or bosons with hopping to noninteracting reservoirs, rigorous treatment employing a time-convolutionless master equation expressed using NEGF)
- R. Salgado-Garcia, Resonant Response in Non-equilibrium Steady States, arXiv:1201.0204 (analyses complex eigenvalues of generator of Markovian dynamics of a distribution function, in particular resonant behavior if the imaginary part of such an eigenvalue agrees with a weak periodic perturbation)
- M. Ringel and V. Gritsev, Liouville coherent states, arXiv:1201.5661 (Lindblad master equation)
- P. G. Kirton, A. D. Armour, M. Houzet, and F. Pistolesi, Quantum current noise from a Born-Markov master equation, arXiv:1201.6238
- J. E. Avron, M. Fraas, and G. M. Graf, Adiabatic response for Lindblad dynamics, arXiv:1202.5750
- B. Buca and T. Prosen, A note on symmetry reductions of the Lindblad equation: transport in constrained open spin chains, arXiv:1203.0943
- M. Chen and J. Q. You, Non-Markovian quantum state diffusion for an open quantum system in fermionic environments, arXiv:1203.2217 (Grassmannian noise, also derive non-Markovian master equation) P; W. Shi, X. Zhao, and T. Yu, Non-Markovian Fermionic Stochastic Schrödinger Equation for Open System Dynamics, arXiv:1203.2219 (similar paper, also derive a purportedly exact master equation for a fermionic system strongly coupled to fermionic reservoirs) P
- A. Sugita, Perturbative Analysis of Nonequilibrium Steady States in Quantum Systems, arXiv:1203.3817 (apparently standard Markovian master-equation theory, without reference to previous literature)
- J. Lee and S. Pressé, A derivation of the master equation from path entropy maximization, arXiv:1206.1416 (instead of from frist principles)
- O. Karlström, C. Emary, P. Zedler, J. N. Pedersen, C. Bergenfeldt, P. Samuelsson, T. Brandes, and A. Wacker, A diagrammatic description of the equation of motion, current, and noise within the second-order von Neumann approach, arXiv:1206.1744 (discuss the exact nature of the approach in the real-time diagrammatic language)
- X. Hao, X. Xu, and X. Wang, Indivisible quantum evolution of a driven open spin-S system, arXiv:1208.1546 (second-order secular master equation, is TCL due to second-order truncation, bath initially is in thermal equilibrium)
- M. Mierzejewski, T. Prosen, D. Crivelli, and P. Prelovsek, Eigenvalue Statistics of Reduced Density Matrix during Driving and Relaxation, Phys. Rev. Lett. 110, 200602 (2013) (1D interacting chain, statistics of eigenvalues of the reduced density matrix of subsystem [N consecutive sites], found to be consistent with GOE for equilibrium but with GUE for system driven by constant electromotive force)
- M. Moliner and P. Schmitteckert, Adiabatic Tracking of a State: A New Route to Nonequilibrium Physics, Phys. Rev. Lett. 111, 120602 (2013) (track state of system as perturbation is slowly switched on, DMRG)
- A. A. Dzhioev and D. S. Kosov, Configuration interaction method for out-of-equilibrium correlated many-body systems - admixing nonequilibrium quasiparticle excitations to density matrix, arXiv:1302.6469
- M. Fagotti and F. H. L. Essler, Reduced Density Matrix after a Quantum Quench, arXiv:1302.6944 (1D transverse-field Ising model)
- P. Mai and S. Yin, Derivation of Lindblad master equation for the quantum Ising model interacting with a heat bath, arXiv:1303.3366 (transverse-field Ising model coupled uniformly to a bosonic bath, illustrates known results)
- M. Polettini and M. Esposito, Nonconvexity of the relative entropy for Markov dynamics: A Fisher information approach, arXiv:1304.6262 (the relative entropy between the time-dependent probability vector and the steady state need not be convex, refuting earlier suggestions; shown by counter examples using rate equations)
- T. Prosen, E. Ilievski, and V. Popkov, Exterior integrability: Yang-Baxter form of nonequilibrium steady state density operator, arXiv:1304.7944 (Lindblad master equation for spin-1/2 Heisenberg chain)
- H. Ness, Nonequilibrium density matrix for quantum transport: Hershfield approach as a McLennan-Zubarev form of the statistical operator, arXiv:1305.4479
- S. Prolhac, Spectrum of the totally asymmetric simple exclusion process on a periodic lattice - bulk eigenvalues, arXiv:1306.2263 (exact calculation of the eigenvalue spectrum of the generator)
- S. Genway, A. F. Ho, and D. K. K. Lee, Dynamics of thermalization and decoherence of a nanoscale system, arXiv:1306.4986 (bath is described by random Hamiltonian matrix, coupling between system and bath is also random)
- J. Thingna, J.-S. Wang, and P. Hänggi, Reduced density matrix for nonequilibrium steady states: A modified Redfield solution approach, arXiv:1307.2512 (system coupled to multiple bosonic baths; also comparison between various flavors of master equation)
- T. Prosen, Exact Nonequilibrium Steady State of an Open Hubbard Chain, Phys. Rev. Lett. 112, 030603 (2014) (particles added at one end, extracted at the other end with same rate, Lindblad master equation, uses mapping to spin ladder); B. Buca and T. Prosen, Exactly Solvable Counting Statistics in Open Weakly Coupled Interacting Spin Systems, Phys. Rev. Lett. 112, 067201 (2014) (spin current through spin system coupled to two baths, full counting statistics, to leading order in the coupling)
- J. Cerrillo and J. Cao, Non-Markovian Dynamical Maps: Numerical Processing of Open Quantum Trajectories, Phys. Rev. Lett. 112, 110401 (2014) (propose non-Markovian transfer-tensor method, which is equivalent to time-discretized version of Nakajima-Zwanzig master equation)
- N. Lanatà, H. U. R. Strand, Y. Yao, and G. Kotliar, Principle of Maximum Entanglement Entropy and Local Physics of Strongly Correlated Materials, Phys. Rev. Lett. 113, 036402 (2014) (apply "typicality theorem" to small part of strongly correlated system)
- D. Suess, A. Eisfeld, and W. T. Strunz, Hierarchy of Stochastic Pure States for Open Quantum System Dynamics, Phys. Rev. Lett. 113, 150403 (2014) (a hierarchy of stochastic equations of motion can describe quantum state diffusion exactly, in principle, but has to be truncated in practice; single bosonic bath)
- L. Diósi and L. Ferialdi, General Non-Markovian Structure of Gaussian Master and Stochastic Schrödinger Equations, Phys. Rev. Lett. 113, 200403 (2014) (Gaussian refers to temporal correlations of bosonic bath); L. Ferialdi, Exact Closed Master Equation for Gaussian Non-Markovian Dynamics, Phys. Rev. Lett. 116, 120402 (2016)
- H. Weimer, Variational Principle for Steady States of Dissipative Quantum Many-Body Systems, Phys. Rev. Lett. 114, 040402 (2015) (based on minimization of the trace norm of the time derivative of the full density operator, and thus equivalently of the right-hand side of the master equation, for a variational ansatz for the stationary density operator)
- V. Popkov and T. Prosen, Infinitely Dimensional Lax Structure for the One-Dimensional Hubbard Model, Phys. Rev. Lett. 114, 127201 (2015) (on the integrability of the 1D Hubbard model with Markovian (Lindbladian) driving at the ends)
- F. Haddadfarshi, J. Cui, and F. Mintert, Completely Positive Approximate Solutions of Driven Open Quantum Systems, Phys. Rev. Lett. 114, 130402 (2015) (for master equation of Lindblad form but with time-periodic generator; construct perturbative series that respects complete positivity to any order in multiples of the driving frequency)
- J. Cui, J. I. Cirac, and M. C. Banuls, Variational Matrix Product Operators for the Steady State of Dissipative Quantum Systems, Phys. Rev. Lett. 114, 220601 (2015) (Lindblad master equation)
- S. V. Mironov, A. S. Mel'nikov, and A. I. Buzdin, Double Path Interference and Magnetic Oscillations in Cooper Pair Transport through a Single Nanowire, Phys. Rev. Lett. 114, 227001 (2015)
- J. Marino and S. Diehl, Driven Markovian Quantum Criticality, Phys. Rev. Lett. 116, 070407 (2016)
- M. Carrega, P. Solinas, M. Sassetti, and U. Weiss, Energy Exchange in Driven Open Quantum Systems at Strong Coupling, Phys. Rev. Lett. 116, 240403 (2016) (influence-functional approach)
- K. Macieszczak, M. Guta, I. Lesanovsky, and J. P. Garrahan, Towards a Theory of Metastability in Open Quantum Dynamics, Phys. Rev. Lett. 116, 240404 (2016) (Lindblad master equation)
- M. Znidaric, A. Scardicchio, and V. K. Varma, Diffusive and Subdiffusive Spin Transport in the Ergodic Phase of a Many-Body Localizable System, Phys. Rev. Lett. 117, 040601 (2016) (1D disordered Heisenberg chain; Lindblad master equation solved using DMRG)
- M. V. Medvedyeva, F. H. L. Essler, and T. Prosen, Exact Bethe Ansatz Spectrum of a Tight-Binding Chain with Dephasing Noise, Phys. Rev. Lett. 117, 137202 (2016) (mapping between noise and Hubbard interaction; exact spectrum of the Liouvillian in 1D)
- B. Vacchini, Generalized Master Equations Leading to Completely Positive Dynamics, Phys. Rev. Lett. 117, 230401 (2016) (constructs classes of non-time-local master equations that are completely positive) P
- S. Restrepo, J. Cerrillo, V. M. Bastidas, D. G. Angelakis, and T. Brandes, Driven Open Quantum Systems and Floquet Stroboscopic Dynamics, Phys. Rev. Lett. 117, 250401 (2016) (expansion in inverse driving frequency, to first order)
-
A. A. Gangat, T. I, and Y.-J. Kao, Steady States of Infinite-Size Dissipative Quantum Chains via Imaginary Time Evolution, Phys. Rev. Lett. 119, 010501 (2017)
-
V. Cavina, A. Mari, and V. Giovannetti, Slow Dynamics and Thermodynamics of Open Quantum Systems, Phys. Rev. Lett. 119, 050601 (2017) (perturbation theory for slowly varying parameters in a master equation, application to efficiency)
-
D. V. Zhdanov, D. I. Bondar, and T. Seideman, No Thermalization without Correlations, Phys. Rev. Lett. 119, 170402 (2017) (proof that completely positive Markovian open quantum systems cannot thermalize, under certain conditions including translational invariance)
-
V. Link and W. T. Strunz, Stochastic Feshbach Projection for the Dynamics of Open Quantum Systems, Phys. Rev. Lett. 119, 180401 (2017)
-
D. Tamascelli, A. Smirne, S. F. Huelga, and M. B. Plenio, Nonperturbative Treatment of non-Markovian Dynamics of Open Quantum Systems, Phys. Rev. Lett. 120, 030402 (2018) (conditions for equivalence of dynamics of reduced density operator for unitary and non-unitary, Lindbladian environments; bosonic)
-
J. Schulenborg, J. Splettstoesser, and M. R. Wegewijs, Duality for open fermion systems: energy-dependent weak coupling and quantum master equations, arXiv:1808.10223 (generalization of theory of fermion duality in open quantum systems to energy-dependent tunneling [with illustrations] and the full quantum master equation)
-
S. Denisov, T. Laptyeva, W. Tarnowski, D. Chruściński, and K. Życzkowski, Universal Spectra of Random Lindblad Operators, Phys. Rev. Lett. 123, 140403 (2019) (random-matrix theory for full quantum generator; cf. Timm, Phys. Rev. E 80, 021140 (2009) for Pauli case) P
-
C. Bertrand, S. Florens, O. Parcollet, and X. Waintal, Reconstructing Nonequilibrium Regimes of Quantum Many-Body Systems from the Analytical Structure of Perturbative Expansions, Phys. Rev. X 9, 041008 (2019)
-
K. Wang, F. Piazza, and D. J. Luitz, Hierarchy of Relaxation Timescales in Local Random Liouvillians, Phys. Rev. Lett. 124, 100604 (2020) (for the example of coupled-spin systems, Lindblad equation with less-than-n-body Lindblad operators, also discuss spatial locality)
-
V. Popkov, T. Prosen, and L. Zadnik, Exact Nonequilibrium Steady State of Open XXZ/XYZ Spin-1/2 Chain with Dirichlet Boundary Conditions, Phys. Rev. Lett. 124, 160403 (2020) (Lindblad master equation)
-
A. Smirne, M. Caiaffa, and J. Piilo, Rate Operator Unraveling for Open Quantum System Dynamics, Phys. Rev. Lett. 124, 190402 (2020) (unraveling a QME using quantum jumps, also for systems for which this was not done so far)
-
L. Sá, P. Ribeiro, and T. Prosen, Complex Spacing Ratios: A Signature of Dissipative Quantum Chaos, Phys. Rev. X 10, 021019 (2020) (also applied to random Lindblad generators for driven spin chains)
-
K. Luoma, W. T. Strunz, and J. Piilo, Diffusive Limit of Non-Markovian Quantum Jumps, Phys. Rev. Lett. 125, 150403 (2020) (unraveling of master equations)
-
T. V. Vu and Y. Hasegawa, Geometrical Bounds of the Irreversibility in Markovian Systems, Phys. Rev. Lett. 126, 010601 (2021) (systems with detailed balance; entropy production); Y. Hasegawa, Thermodynamic Uncertainty Relation for General Open Quantum Systems, Phys. Rev. Lett. 126, 010602 (2021)
-
K. Nestmann, V. Bruch, and M. R. Wegewijs, How Quantum Evolution with Memory is Generated in a Time-Local Way, Phys. Rev. X 11, 021041 (2021) P
-
D. Chruściński, G. Kimura, A. Kossakowski, and Y. Shishido, Universal Constraint for Relaxation Rates for Quantum Dynamical Semigroup, Phys. Rev. Lett. 127, 050401 (2021)
-
J. Meibohm and M. Esposito, Finite-Time Dynamical Phase Transition in Nonequilibrium Relaxation, Phys. Rev. Lett. 128, 110603 (2022)
-
T. Becker, A. Schnell, and J. Thingna, Canonically Consistent Quantum Master Equation, Phys. Rev. Lett. 129, 200403 (2022) (correction to standard Redfield-type master equation based on knowledge of the stationary state of the coupled system)
Statistical physics of active matter
- J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E 58, 4828 (1998)
- N. F. Johnson, D. M. D. Smith, and P. M. Hui, Multi-agent Complex systems and many-body physics, Europhys. Lett. 74, 923 (2006)
- A. Czirok, H. E. Stanley, and T. Vicsek, Spontaneously ordered motion of self-propelled particles, cond-mat/0611741, J. Phys. A: Math. Gen. 30, 1375 (1997); A. Czirok and T. Vicsek, Collective behavior of interacting self-propelled particles, cond-mat/0611742, Physica A 281, 17 (2000); T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Sochet, Novel type of phase transition in a system of self-driven particles, cond-mat/0611743, Phys. Rev. Lett. 75, 1226 (1995) (group of older articles)
- M. Aldana, H. Larralde, and B. Vázquez, Phase transitions in swarming systems: A recent debate, arXiv:0907.3434
- A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, and M. Viale, Scale-free correlations in bird flocks, arXiv:0911.4393
- C. Huepe, G. Zschaler, A.-L. Do, and T. Gross, Adaptive network models of swarm dynamics, arXiv:1009.2349
- T. Mora and W. Bialek, Are biological systems poised at criticality?, arXiv:1012.2242
- W. Bialek, A. Cavagna, I. Giardina, T. Mora, E. Silvestri, M. Viale, and A. M. Walczak, Statistical mechanics for natural flocks of birds, arXiv:1107.0604
- A. Gopinath, M. F. Hagan, M. C. Marchetti, and A. Baskaran, Dynamical Self-regulation in Self-propelled Particle Flows, arXiv:1112.6011 (phase diagram)
- A. Attanasi, A. Cavagna, L. Del Castello, I. Giardina, T. S. Grigera, A. Jelic, S. Melillo, L. Parisi, O. Pohl, E. Shen, and M. Viale, Superfluid transport of information in turning flocks of starlings, arXiv:1303.7097 (observation and theory); W. Bialek, A. Cavagna, I. Giardina, T. Mora, O. Pohl, E. Silvestri, M. Viale, and A. Walczak, Social interactions dominate speed control in driving natural flocks toward criticality, arXiv:1307.5563
- A. Attanasi, A. Cavagna, L. Del Castello, I. Giardina, S. Melillo, L. Parisi, O. Pohl, B. Rossaro, E. Shen, E. Silvestri, and M. Viale, Wild swarms of midges linger at the edge of an ordering phase transition, arXiv:1307.5631
- P. W. Miller and N. T. Ouellette, Impact fragmentation of model flocks, Phys. Rev. E 89, 042806 (2014)
- A. P. Solon, J. Stenhammar, R. Wittkowski, M. Kardar, Y. Kafri, M. E. Cates, and J. Tailleur, Pressure and Phase Equilibria in Interacting Active Brownian Spheres, Phys. Rev. Lett. 114, 198301 (2015) (derive an equation of state); see also Viewpoint
- A. Cavagna, I. Giardina, T. S. Grigera, A. Jelic, D. Levine, S. Ramaswamy, and M. Viale, Silent Flocks: Constraints on Signal Propagation Across Biological Groups, Phys. Rev. Lett. 114, 218101 (2015)
- T. Mora, A. M. Walczak, L. Del Castello, F. Ginelli, S. Melillo, L. Parisi, M. Viale, A. Cavagna, and I. Giardina, Local equilibrium in bird flocks, Nature Phys. 12, 1153 (2016).
- L. Barberis and F. Peruani, Large-Scale Patterns in a Minimal Cognitive Flocking Model: Incidental Leaders, Nematic Patterns, and Aggregates, Phys. Rev. Lett. 117, 248001 (2016) (active particles without memory)
-
K. Sone and Y. Ashida, Anomalous Topological Active Matter, Phys. Rev. Lett. 123, 205502 (2019) (analogy to quantum anomalous Hall effect)
-
H. Tasaki, Hohenberg-Mermin-Wagner-Type Theorems for Equilibrium Models of Flocking, Phys. Rev. Lett. 125, 220601 (2020) (suggests that symmetry breaking is due to non-equilibrium effects)
Statistical physics, other studies
- L. Jacobs and H. Kleinert, Monte Carlo study of defect melting in three dimensions, J. Phys. A: Math. Gen. 17, L361 (1984) (contains a concise review of Kleinert's previous work on melting, e.g., topological arguments why melting in 3D is a first-order transition)
- M. Kamal and G. Murthy, New O(3) transition in three dimensions, Phys. Rev. Lett. 71, 1911 (1993) (phase transition of Heisenberg model variant and hedgehog unbinding)
- C. Jarzynski, Nonequilibrium Equality for Free Energy Differences, Phys. Rev. Lett. 78, 2690 (1997); Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach, Phys. Rev. E 56, 5018 (1997) (the original papers on what is now called the Jarzynski theorem)
-
P. Bordone, M. Pascoli, R. Brunetti, A. Bertoni, C. Jacoboni, and A. Abramo, Quantum transport of electrons in open nanostructures with the Wigner-function formalism, Phys. Rev. B 59, 3060 (1999) (single-electron Wigner function)
- G. E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E 60, 2721 (1999) (seminal work on the nonequilibrium fluctuation theorem)
- H. Kleinert, Criterion for Dominance of Directional over Size Fluctuations in Destroying Order, Phys. Rev. Lett. 84, 286 (2000) (analogue of the Ginzburg criterion for transverse fluctuations)
- G. v. Gersdorff and C. Wetterich, Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition, Phys. Rev. B 64, 054513 (2001) ("KT theory without vortices")
- M. Rechtsman, F. Stillinger, and S. Torquato, Optimized Interactions for Targeted Self-Assembly: Application to Honeycomb Lattice, cond-mat/0508495
- H. Kleinert, Vortex Origin of Tricritical Point in Ginzburg-Landau Theory, cond-mat/0509430
- M. Hasenbusch, A. Pelissetto, and E. Vicari, Critical behavior of two-dimensional fully frustrated XY systems, cond-mat/0509511 (Monte Carlo)
- S. Popescu, A. J. Short, and A. Winter, Entanglement and the Foundations of Statistical Mechanics, quant-ph/0511225 (alternative foundation of statistical mechanics, not requiring ensemble averaging, but assuming the system plus bath to be in a pure quantum state)
- M. M. Wolf, G. Ortiz, F. Verstraete, and J. I. Cirac, Quantum phase transitions in matrix product systems, quant-ph/0512180 (construct quantum critical points with predetermined properties)
- R. Agra, F. van Wijland, and E. Trizac, On the free energy within the mean-field approximation, cond-mat/0601125 (partly pedagogical paper warning that the mean-field solution does not always correspond to a minimum of the mean-field free energy)
- W. Janke, D. Johnston, and R. Kenna, Critical Exponents from General Distributions of Zeroes, cond-mat/0601351, Comp. Phys. Commun. 169, 457 (2005) (complex zeroes of the partition function)
- A. Kopp, X. Jia, and S. Chakravarty, Replacing energy by von Neumann entropy in quantum phase transitions, cond-mat/0604152 (a new criterion for QPT, which also works for the Anderson metal-insulator transition)
- V. V. Brazhkin, Metastable phases and "metastable" phase diagrams, cond-mat/0604512 (many simple compounds are metastable, stable polymerized phases exist and are reached in a relaxation crossover [not a phase transition] by applying, e.g., high pressure - generic properties of phase diagrams for such compounds are studied)
- V. Elgart and A. Kamenev, Towards Classification of Phase Transitions in Reaction-Diffusion Models, cond-mat/0605041 (contains discussion of doubling of degrees of freedom and the resulting Hamiltonian action)
- T. Ohira, Predictive Dynamical Systems, cond-mat/0605500 (time evolution depends on prediction of future state)
- P. Nikolic and S. Sachdev, Renormalization group fixed points, universal phase diagram, and 1/N expansion for quantum liquids with interactions near the unitarity limit, cond-mat/0609106
- G. Tellez, Equation of state in the fugacity format for the two-dimensional Coulomb gas, cond-mat/0609356 (long paper containing a good review, mainly concerns the high-temperature phase)
- E. H. Lieb, R. Seiringer, and J. Yngvason, Bose-Einstein Condensation and Spontaneous Symmetry Breaking, math-ph/06100034
- B. Nachtergaele and R. Sims, A Multi-Dimensional Lieb-Schultz-Mattis Theorem, Commun. Math. Phys. 276, 437 (2007), math-ph/0608046
- F. Canfora, Kallen-Lehman approach to 3D Ising model, cond-mat/0701154, Phys. Lett. B (phenomenological approach to the partition function inspired by Regge field-theory)
- D. Janzing, On causally asymmetric versions of Occam's Razor and their relation to thermodynamics, arXiv:0708.3411
- H. Arisue, High-Temperature Expansion of the Free Energy in the Two-Dimensional XY Model, arXiv:0708.4084
- C. Vignat and S. Bhatnagar, An extension of Wick's theorem, arXiv:0709.1999 (...to spherical and elliptical instead of gaussian distributions)
- M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic, Interaction Ruling Animal Collective Behaviour Depends on Topological rather than Metric Distance: Evidence from a Field Study, arXiv:0709.1916
- G. Parisi, On the most compact regular lattice in large dimensions: A statistical mechanical approach, arXiv:0710.0882
- T. Reichenbach, M. Mobilia, and E. Frey, Self-Organization of Mobile Populations in Cyclic Competition, arXiv:0801.1798 (rock-paper-scissors competition model)
- M. Campisi, On a new definition of quantum entropy, arXiv:0803.0282
- T. Rohlf, N. Gulbahce, and C. Teuscher, When correlations matter - response of dynamical networks to small perturbations, arXiv:0804.4498 (such as biological process networks)
- S. Bhattacharya, S. K. Banik, S. Chattopadhyay, and J. R. Chaudhuri, Time dependent current in a nonstationary environment: A microscopic approach, arXiv:0805.1852
- E. G. D. Cohen, Properties of Nonequilibrium Steady States: a Path Integral Approach, arXiv:0805.4619
- J. Tailleur, J. Kurchan, and V. Lecomte, Mapping out of equilibrium into equilibrium in one-dimensional transport models: see here
- G. De las Cuevas, W. Dür, M. Van den Nest, and H. J. Briegel, Completeness of classical spin models and universal quantum computation, arXiv:0812.2368 (long paper discussing mappings between different but equivalent classical spin models, using a correspondence between these models and quantum information theory)
- C. Tian, Manifestly covariant classical correlation dynamics I. General theory, arXiv:0901.1425; Manifestly covariant classical correlation dynamics II. Transport equations and Hakim equilibrium conjecture, arXiv:0905.4796
- H. Schoeller, A perturbative nonequilibrium renormalization group method for dissipative quantum mechanics: Real-time RG in frequency space (RTRG-FS), arXiv:0902.1449, Eur. Phys. J. Special Topics 168, 179 (2009)
- G. L. Sewell, Statistical Thermodynamics of Moving Bodies, arXiv:0902.3881 (the zeroth law of thermodynamics is restricted to systems in the same frame of inertia so that the concept of temperature is also so restricted)
- D. J. Evans, D. J. Searles, and S. R. Williams, A simple mathematical proof of Boltzmann's equal a priori probability hypothesis, arXiv:0903.1480
- P. O. Fedichev and L. I. Men'shikov, BKT phase transition in a 2d system with long range dipole-dipole interaction, arXiv:0904.2176
- G. C. Paquette, Thermodynamics of non-equilibrium steady states, arXiv:0905.3565 (detailed arguments why such a theory is probably impossible to construct)
- S. G. Abaimov, General formalism of non-equilibrium statistical mechanics, a path approach, arXiv:0906.0190
- C. Wetterich, Quantum mechanics from classical statistics, arXiv:0906.4919 (shows how standard quantum mechanics, including entanglement etc., for a subsystem results from coupling to a bath and purely classical statistics)
- J. Xing and K. S. Kim, Application of the projection operator formalism to non-Hamiltonian dynamics, arXiv:0908.4340, J. Chem. Phys. 134 044132(2011)
- F. Saija, S. Prestipino, and G. Malescio, Anomalous phase behavior of a soft-repulsive potential with a strictly monotonic force, arXiv:0909.0468, Phys. Rev. E (despite a simple monotonic force or convex pair potential, the phase diagram is very rich)
- P. H. Chavanis and R. Mannella, Self-gravitating Brownian particles in two dimensions: the case of N=2 particles, arXiv:0911.1022 (related to the problem of vortex-pair diffusion in superfluids)
- G. De las Cuevas, W. Dür, H. J. Briegel, and M. A. Martin-Delgado, Unifying All Classical Spin Models in a Lattice Gauge Theory, Phys. Rev. Lett. 102, 230502 (2009); Mapping all classical spin models to a lattice gauge theory, arXiv:0911.2096 (prove a completeness result: for any classical spin model with discrete states [e.g., Ising or Potts models] and any discrete lattice gauge theory, a 4D discrete lattice gauge theory with the same partition function can be constructed)
- M. Esposito, K. Lindenberg, and I. M. Sokolov, On the relation between event-based and time-based current statistics, arXiv:0909.4120
- M. Pleimling, B. Schmittmann, and R. K. P. Zia, Convection cells induced by spontaneous symmetry breaking, arXiv:0912.2790 (non-equilibrium Ising model)
- A. Rapp, S. Mandt, and A. Rosch, Equilibration Rates and Negative Absolute Temperatures for Ultracold Atoms in Optical Lattices, Phys. Rev. Lett. 105, 220405 (2010) P
- V. Branchina, M. Di Liberto, and I. Lodato, Mapping Fermion and Boson systems onto the Fock space of harmonic oscillators, arXiv:1001.3041
- P. Reimann, Canonical thermalization, arXiv:1005.5625
- P. P. Orth, D. Roosen, W. Hofstetter, and K. Le Hur, Dynamics, Synchronization and Quantum Phase Transitions of Two Dissipative Spins, arXiv:1007.2857 (two spins with Ising interaction, coupled to a bosonic bath)
- K. Jensen, A. Karch, D. T. Son, and E. G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless Transitions, Phys. Rev. Lett. 105, 041601 (2010) (using holographic duality to string models)
- S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano, Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality, Nature Phys. 6, 988 (2010)
- F. Poderoso, J. J. Arenzon, and Y. Levin, New ordered phases in a class of generalized XY models, arXiv:1008.0868 (two dimensions; BKT, Ising, and Potts universality classes)
- M. D. Reichl, C. I. Del Genio, and K. E. Bassler, Phase Diagram for a 2-D Two-Temperature Diffusive XY Model, arXiv:1008.0894 (MC, Metropolis, different temperatures for update rates for horizontal and vertical bonds; shows long-range order in stationary state, equilibrium BKT phase sits at the boundary between two different long-range-ordered stationary states)
- A. C. Cassidy, C. W. Clark, and M. Rigol, Generalized Thermalization in Integrable Systems, arXiv:1008.4794
- R. Pakter and Y. Levin, Universality of collisionless relaxation: Core-halo distribution in the Hamiltonian Mean-Field Model, arXiv:1012.0035 (prototype for a system not relaxing towards a Boltzmann distribution)
- T. A. Sedrakyan and V. M. Galitski, Majorana path integral for nonequilibrium dynamics of two-level systems, arXiv:1012.2005
- T. Jacqmin, J. Armijo, T. Berrada, K. Kheruntsyan, and I. Bouchoule, In situ observation of sub-Poissonian atom-number fluctuations in a repulsive 1D Bose gas: quantum quasi-condensate and strongly interacting regimes, arXiv:1103.3028
- H. Touchette, Ensemble equivalence for general many-body systems, arXiv:1106.2979
- M. A. M. Versteegh and D. Dieks, The Gibbs Paradox and the Distinguishability of Identical Particles, arXiv:1012.4111, Am. J. Phys. 79, 741 (2011) (claim that quantum mechanics is irrelevant for the resolution of the Gibbs paradox)
- E. Edlund, O. Lindgren, and M. Nilsson Jacobi, Novel Self-Assembled Morphologies from Isotropic Interactions, Phys. Rev. Lett. 107, 085501 (2011); Designing Isotropic Interactions for Self-Assembly of Complex Lattices, Phys. Rev. Lett. 107, 085503 (2011) (how to find an isotropic interaction that results in a predetermined lattice structure)
- Y. Meroz, I. M. Sokolov, and J. Klafter, Unequal Twins: Probability Distributions Do Not Determine Everything, Phys. Rev. Lett. 107, 260601 (2011) (statement is illustrated by comparing two models with the same probability distribution as function of time and space, but otherwise different behavior)
- D. Podolsky, A. Auerbach, and D. P. Arovas, Visibility of the Amplitude (Higgs) Mode in Condensed Matter, arXiv:1108.5207
- J. H. Wei and Y. J. Yan, Linear response theory for quantum open systems, arXiv:1108.5955 (using Feynman influence functional, short paper)
- B. Swingle and T. Senthil, Entanglement Structure of Deconfined Quantum Critical Points, arXiv:1109.3185
- J. C. Budich, S. Walter, and B. Trauzettel, Failure of protection of Majorana based qubits against decoherence, arXiv:1111.1734
- D. W. Snoke, G. Liu, and S. M. Girvin, The Basis of the Second Law of Thermodynamics in Quantum Field Theory, arXiv:1112.3009
- M. Santillán and H. Qian, Stochastic Free Energies, Conditional Probability and Legendre Transform for Ensemble Change, arXiv:1112.3075
- L. Ferialdi and A. Bassi, Exact Solution for a Non-Markovian Dissipative Quantum Dynamics, Phys. Rev. Lett. 108, 170404 (2012) (stochastic Schrödinger equation with both dissipation and memory [colored noise], exact solution for harmonic oscillator, not analytical in that it involves solutions of three coupled integrodifferential equations)
- E.-M. Laine, H.-P. Breuer, J. Piilo, C.-F. Li, and G.-C. Guo, Nonlocal Memory Effects in the Dynamics of Open Quantum Systems, Phys. Rev. Lett. 108, 210402 (2012)
- S. Sugiura and A. Shimizu, Thermal Pure Quantum States at Finite Temperature, Phys. Rev. Lett. 108, 240401 (2012) (microcanonical ensemble, in the thermodynamic limit, the equilibrium state can be represented by a pure state [the "thermal pure quantum state"] with an error small in system size, authors give a numerical method to construct it and to evaluate thermal averages); Canonical Thermal Pure Quantum State, arXiv:1302.3138
- N. S. Dattani, F. A. Pollock, and D. M. Wilkins, Analytic influence functionals for numerical Feynman integrals in most open quantum systems, arXiv:1203.4551 (give expressions for the discretized influence functional in terms of integrals of the bath response function, also useful if the latter is not known analytically)
- P. Gaspard, Time-reversal symmetry relations for currents in quantum and stochastic nonequilibrium systems, arXiv:1203.5507 (open systems coupled to reservoirs, also with time-dependent forcing, rigorous relations)
- V. Karimipour and M. H. Zarei, An algorithmic proof for the completeness of two-dimensional Ising model, arXiv:1207.6891 (state that any lattice model can be mapped onto an Ising model)
- B. Swingle, Entanglement sum rules in exactly solvable models, arXiv:1209.0769
- J. S. Lee, C. Kwon, and H. Park, Threshold for everlasting initial memory in equilibration processes, arXiv:1209.5815 (Langevin equation)
- C. Strunk, Thermodynamics and the Quantum Transport of Particles and Entropy, arXiv:1210.0344 (long paper, transport in systems locally close to equilibrium)
- Y. Komura and Y. Okabe, Large-scale Monte Carlo simulation of two-dimensional classical XY model using multiple GPUs, arXiv:1210.6116 (study of Kosterlitz-Thouless transition for very large systems, L = 65536)
- A. Pelissetto and E. Vicari, Renormalization-group flow and asymptotic behaviors at the Berezinskii-Kosterlitz-Thouless transitions, arXiv:1212.2322
- C. E. Fiore and M. G. E. da Luz, Exploiting a semi-analytic approach to study first order phase transitions, arXiv:1212.3442, J. Chem. Phys.
- D. M. Kennes, O. Kashuba, M. Pletyukhov, H. Schoeller, and V. Meden, Oscillatory Dynamics and Non-Markovian Memory in Dissipative Quantum Systems, Phys. Rev. Lett. 110, 100405 (2013) (time evolution after a quench, strong dependence on state before the quench; FRG and real-time RG)
- R. Chetrite and H. Touchette, Nonequilibrium Microcanonical and Canonical Ensembles and Their Equivalence, Phys. Rev. Lett. 111, 120601 (2013)
- E. H. Lieb and J. Yngvason, The entropy concept for non-equilibrium states, Proc. R. Soc. A 469, 20130408 (2013) (based on their axiomatic formulation of thermodynamics, which is reviewed); Entropy meters and the entropy of non-extensive systems, Proc. R. Soc. A 470, 20140192 (2014) (extension to finite systems)
- M. Mazars, Melting in Monolayers: Hexatic and Fluid Phases, arXiv:1301.1571 (extensive Monte Carlo simulations, power-law repulsion with any power)
- J. Dunkel and S. Hilbert, Consistent thermostatistics forbids negative absolute temperatures, Nature Physics (2013), doi:10.1038/nphys2815 (detailed, clear derivation using Gibbs' definition of entropy in microcanonical ensemble; temperatures are necessarily positive if entropy is treated consistently)
- Y.-D. Hsieh, Y.-J. Kao, and A. W. Sandvik, Finite-size scaling method for the Berezinskii-Kosterlitz-Thouless transition, arXiv:1302.2900
- A. Erez and Y. Meir, How to measure the spatial correlations in disordered Berezinski-Kosterlitz-Thouless transition?, arXiv:1303.5130
- E. H. Lieb and J. Yngvason, The entropy concept for non-equilibrium states, arXiv:1305.3912 (conclude that an entropy with all desirable properties cannot be defined in nonequilibrium)
- O. Kashuba, D. M. Kennes, M. Pletyukhov, V. Meden, and H. Schoeller, The quench dynamics of a dissipative quantum system: a renormalization group study, arXiv:1307.3191
- T. Vojta and J. A. Hoyos, Criticality and Quenched Disorder: Harris Criterion Versus Rare Regions, Phys. Rev. Lett. 112, 075702 (2014) (unified classification of phase transitions in disordered systems, with examples)
- A. Lazarides, A. Das, and R. Moessner, Periodic Thermodynamics of Isolated Quantum Systems, Phys. Rev. Lett. 112, 150401 (2014) (periodic driving, exact extremal principle involving constraints, for a class of integrable systems)
- H. Barghathi and T. Vojta, Phase Transitions on Random Lattices: How Random is Topological Disorder?, Phys. Rev. Lett. 113, 120602 (2014)
- P. Nataf and F. Mila, Exact Diagonalization of Heisenberg SU(N) Models, Phys. Rev. Lett. 113, 127204 (2014) (allows to extend exact diagonalization to larger clusters)
- M. Heyl and M. Vojta, Dynamics of Symmetry Breaking during Quantum Real-Time Evolution in a Minimal Model System, Phys. Rev. Lett. 113, 180601 (2014) (in the ferromagnetic Kondo model)
- M. Marcuzzi, E. Levi, S. Diehl, J. P. Garrahan, and I. Lesanovsky, Universal Nonequilibrium Properties of Dissipative Rydberg Gases, Phys. Rev. Lett. 113, 210401 (2014)
- D. Lacoste and P. Gaspard, Isometric Fluctuation Relations for Equilibrium States with Broken Symmetry, Phys. Rev. Lett. 113, 240602 (2014) (fingerprints of spontaneously broken symmetries in order-parameter fluctuations)
- P. Reimann, Generalization of von Neumann's Approach to Thermalization, Phys. Rev. Lett. 115, 010403 (2015)
- E. Dieterich, J. Camunas-Soler, M. Ribezzi-Crivellari, U. Seifert, and F. Ritort, Single-molecule measurement of the effective temperature in non-equilibrium steady states, Nature Phys. 11, 971 (2015) (experiment and theory; effective temperature is defined in terms of a quasi-fluctuation-dissipation theorem, which apparently only pertains to a accessable part of state space)
- S. Goldstein, D. A. Huse, J. L. Lebowitz, and R. Tumulka, Thermal Equilibrium of a Macroscopic Quantum System in a Pure State, Phys. Rev. Lett. 115, 100402 (2015)
- V. Lahtinen and E. Ardonne, Realizing All so(N)1 Quantum Criticalities in Symmetry Protected Cluster Models, Phys. Rev. Lett. 115, 237203 (2015)
- H. Tasaki, Quantum Statistical Mechanical Derivation of the Second Law of Thermodynamics: A Hybrid Setting Approach, Phys. Rev. Lett. 116, 170402 (2016)
- V. Khemani, A. Lazarides, R. Moessner, and S. L. Sondhi, Phase Structure of Driven Quantum Systems, Phys. Rev. Lett. 116, 250401 (2016) (periodic driving, Floquet theory, many-body localization)
- D. V. Else, B. Bauer, and C. Nayak, Floquet Time Crystals, Phys. Rev. Lett. 117, 090402 (2016) (construct a driven spin model for which typical long-time behavior breaks the discrete Floquet time translation symmetry); see also Journal Club
- B. Altaner, M. Polettini, and M. Esposito, Fluctuation-Dissipation Relations Far from Equilibrium, Phys. Rev. Lett. 117, 180601 (2016)
- M. Weilenmann, L. Kraemer, P. Faist, and R. Renner, Axiomatic Relation between Thermodynamic and Information-Theoretic Entropies, Phys. Rev. Lett. 117, 260601 (2016) (based on axiomatic formulation by Lieb and Yngvason)
-
Y. Ashida, T. Shi, M. C. Bañuls, J. I. Cirac, and E. Demler, Solving Quantum Impurity Problems in and out of Equilibrium with the Variational Approach, Phys. Rev. Lett. 121, 026805 (2018)
-
F. Tonielli, J. C. Budich, A. Altland, and S. Diehl, Topological Field Theory Far from Equilibrium, Phys. Rev. Lett. 124, 240404 (2020) (example of a driven Chern insulator)
-
C. Klöckner, C. Karrasch, and D. M. Kennes, Nonequilibrium Properties of Berezinskii-Kosterlitz-Thouless Phase Transitions, Phys. Rev. Lett. 125, 147601 (2020)
-
M. Gau, R. Egger, A. Zazunov, and Y. Gefen, Driven Dissipative Majorana Dark Spaces, Phys. Rev. Lett. 125, 147701 (2020) (stabilizing degenerate Majorana modes in driven dissipative devices consisting of end states of topological superconducting wires and quantum dots)
-
P. Kos, B. Bertini, and T. Prosen, Chaos and Ergodicity in Extended Quantum Systems with Noisy Driving, Phys. Rev. Lett. 126, 190601 (2021)
-
M. Hu, Y. Deng, and J.-P. Lv, Extraordinary-Log Surface Phase Transition in the Three-Dimensional XY Model, Phys. Rev. Lett. 127, 120603 (2021) (Monte Carlo, power-of-log scaling, propose new logarithmic universisality classses)
-
G. Giachetti, N. Defenu, S. Ruffo, and A. Trombettoni, Berezinskii-Kosterlitz-Thouless Phase Transitions with Long-Range Couplings, Phys. Rev. Lett. 127, 156801 (2021) (for a range of power-law-decaying interactions find LRO, QRLO, and disordered phases, interesting phase transitions)
-
S. Flannigan, F. Damanet, and A. J. Daley, Many-Body Quantum State Diffusion for Non-Markovian Dynamics in Strongly Interacting Systems, Phys. Rev. Lett. 128, 063601 (2022)
Other physics - experiment
- K. T. Tsen, S.-W. D. Tsen, O. F. Sankey, and J. G. Kiang, Selective inactivation of micro-organisms with near-infrared femtosecond laser pulses, J. Phys.: Condens. Matter 19, 472201 (2007) (using mechanical properties of microorganism to selectively kill certain types)
- D. E. Chang, V. Gritsev, G. Morigi, V. Vuletic, M. D. Lukin, and E. A. Demler, Crystallization of strongly interacting photons in a nonlinear optical fiber, arXiv:0712.1817; Nature Phys. 4, 884 (2008) (possible mechanism for fermionization of the light field in highly nonlinear optical media)
- A. Loidl, S. Krohns, J. Hemberger, and P. Lunkenheimer, Bananas go paraelectric, J. Phys.: Condens. Matter 20, 191001 (2008) (show that inhomogeneous paraelectric materials such as bananas can show a spurious ferroelectric response)
- T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, Fiber-Optical Analog of the Event Horizon, Science 319, 1367 (2008) (another approach to probe black-hole physics in the lab, includes short review)
- S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, Reverse Doppler Effect of Sound, arXiv:0901.2772 (using an acoustic metamaterial)
- J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Bose-Einstein condensation of photons in an optical microcavity, Nature 468, 545 (2010) (using a thermalization technique that conserves photon number, at room temperature)
- H. C. Mayer and R. Krechetnikov, Walking with coffee: Why does it spill?, Phys. Rev. E 85, 046117 (2012)
- J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, Dynamically encircling an exceptional point for asymmetric mode switching, Nature 537, 76 (2016); H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Topological energy transfer in an optomechanical system with exceptional points, Nature 537, 80 (2016)
Other physics - theory
- E. Nelson, Derivation of the Schrödinger Equation from Newtonian Mechanics, Phys. Rev. 150, 1079 (1966) (claims equivalence between the single-particle Schrödinger equation and a certain diffusion problem)
- W. H. Zurek, Environment-induced superselection rules, Phys. Rev. D 26, 1862 (1982) (discussion of quantum-mechanical measurement process)
- A. A. Berezin, Two- and three-dimensional Kronig-Penney model with delta-function-potential wells of zero binding energy, Phys. Rev. B 33, 2122 (1986) P
- D. Giulini, C. Kiefer, and H. D. Zeh, Symmetries, superselection rules, and decoherence, Phys. Lett. A 199, 291 (1995) (focus on origin of charge superselectron rule)
- J. R. Borysowicz, Localization without disorder: The Kronig-Penney model in the presence of an electric field, Phys. Lett. A 231, 240 (1997) (shows that all states in the 1D periodic Kronig-Penney model become localized for an arbitrarily small electric field - what does that mean for an unbounded potential?)
- P. P. Divakaran, Quantum Theory as the Representation Theory of Symmetries , Phys. Rev. Lett. 79, 2159 (1997)
- G. Date, P. K. Ghosh, and M. V. N. Murthy, Novel Classical Ground State of a Many Body System in Arbitrary Dimensions, Phys. Rev. Lett. 81, 3051 (1998) (for certain 2- and 3-body interactions that do not break rotational invariance the ground state is shown to be particles on a straight line)
- K. Morawetz, Relation between classical and quantum particle systems, Phys. Rev. E 66, 022103 (2002) (exact mapping between quantum and classical many-particle systems)
- U. R. Fischer and M. Visser, Warped space-time for phonons moving in a perfect nonrelativistic fluid, gr-qc/0211029, Europhys. Lett. 62, 1 (2003) (a condensed-matter model for superluminal travel)
- Y. Levin and J. J. Arenzon, Why charges go to the surface: a generalized Thomson problem, cond-mat/0302524
- A. Sütö, Crystalline Ground States for Classical Particles, Phys. Rev. Lett. 95, 265501 (2005)
- E. L. Altschuler and A. Perez-Garrido, Defect free global minima in Thomson's problem of charges on a sphere, cond-mat/0509501
- G. Rosenberg and D. Cohen, Quantum stirring of particles in closed devices, cond-mat/0510289
- V. Vitelli, J. B. Lucks, and D. R. Nelson, Crystallography on Curved Surfaces, cond-mat/0604203
- G. E. Volovik, Vacuum Energy: Myths and Reality, gr-qc/0604062 (uses analogy with condensed-matter system to discuss common but possibly false views on dark energy)
- P. D. Mannheim, Conformal Gravity Challenges String Theory, arXiv:0707.2283 (general relativity is not the only theory of gravity consistent with local tests; proposes an alternative theory based on conformal invariance with additional nice features)
- F. Brito and A. O. Caldeira, Dissipative dynamics of a two - level system resonantly coupled to a harmonic mode, New J. Phys. 10, 115014 (2008)
- H. Cohn and A. Kumar, Counterintuitive ground states in soft-core models, Phys. Rev. E 78, 061113 (2008) (classical ground states of systems of Gaussian-core particles in higher dimensions)
- J. C. Hernández Herrejón, F. M. Izrailev, and L. Tessieri, Anomalous properties of the Kronig-Penney model with compositional and structural disorder, arXiv:0801.2208 (one-dimensional KP model with slightly shifted positions and strengths of delta-function potential peaks, problem is mapped onto a time process)
- V. Molinero and E. B. Moore, Water modeled as an intermediate element between carbon and silicon, arXiv:0809.2811 (modeling water with focus on tetrahedral coordination)
- C. Beck, Axiomatic approach to the cosmological constant, arXiv:0810.0752 (obtains an expression of the cosmological constant in terms of other constants of nature [and the electron mass] based on desirability axioms; the result is in agreement with data)
- T. M. Nieuwenhuizen, Where Bell went wrong, arXiv:0812.3058 (argues why violation of Bell inequalities does not allow to draw a conclusion on the local realism of quantum mechanics) Q
- H. Nastase, Pushing the envelope of general relativity, Physics 2, 71 (2009) and references therein (a nice, short introduction to new ideas on a modified theory of gravity, with implications for its quantization)
- G. Baym and T. Ozawa, Two-slit diffraction with highly charged particles: Niels Bohr's consistency argument that the electromagnetic field must be quantized, arXiv:0902.2615 (review a gedanken experiment due to Bohr and argue that the analogous argument for quantization of the gravitational field does not hold)
- R. Y. Chiao, K. Wegter-McNelly, and S. J. Minter, Do Mirrors for Gravitational Waves Exist?, arXiv:0903.0661 (proposal involving a superconducting film, reviewing and using the weak-field Maxwell-type approximation to Einstein's field equations)
- P. Nägele and U. Weiss, Dynamics of coupled spins in the white- and quantum-noise regime, arXiv:0903.1809
- J. Xing, Mori-Zwanzig projection formalism: from linear to nonlinear, arXiv:0904.2691
- R. Tsekov, Dissipative and Quantum Mechanics, arXiv:0903.0283 (compares different interpretations of quantum mechanics due to Heisenberg, Bohm, and Madelung with an eye on how dissipation can be treated by "quantizing" a non-conservative classical system); Bohmian Mechanics versus Madelung Quantum Hydrodynamics, arXiv:0904.0723
- P. Sikivie and Q. Yang, Bose-Einstein Condensation of Dark Matter Axions, arXiv:0901.1106 (the main problem is not the density of cold axions, which is sufficiently high if they exist at all, but their thermalization rate)
- C. Wetterich, Probabilistic time, arXiv:1002.2593 (... and its relation to quantum theory)
- D. Minic and M. Pleimling, The Jarzynski Identity and the AdS/CFT Duality, arXiv:1007.3970, Phys. Rev. Lett.
- L. J. Suoranta, Generalized Spin-Statistics Theorem, arXiv:1008.5382
- K. Y. Bliokh and F. Nori, Relativistic Hall Effect, arXiv:1112.5618
- E. Edlund, O. Lindgren, and M. Nilsson Jacobi, Chiral Surfaces Self-Assembling in One-Component Systems with Isotropic Interactions, Phys. Rev. Lett. 108, 165502 (2012)
- C. R. Galley, Classical Mechanics of Nonconservative Systems, Phys. Rev. Lett. 110, 174301 (2013) (an extension of Hamilton's principle to initial instead of boundary-value problems, leading to an extension of Lagrange mechanics including general nonconservative forces [rather, not following from a generalized potential])
- E. Akkermans, Statistical Mechanics and Quantum Fields on Fractals, arXiv:1210.6763
- P. Schijven, L. Mühlbacher, and O. Muelken, Energy transfer properties and absorption spectra of the FMO complex: from exact PIMC calculations to TCL master equations, arXiv:1301.0839 (on a large biological molecular complex)
- G. E. Volovik and M. A. Zubkov, Higgs bosons in particle physics and in condensed matter, arXiv:1305.7219 (lessons for standard-model Higgs particles from condensed matter, in particular He3-A and He3-B, predictions of masses of additional Higgs particles)
- H. Kedia, D. Foster, M. R. Dennis, and W. T. M. Irvine, Weaving Knotted Vector Fields with Tunable Helicity, Phys. Rev. Lett. 117, 274501 (2016) (classical real vector field based on complex scalar fields, construction of knotted configurations)
Non-physics
Metaphysics (and metamathematics) and policy
- M. V. Simkin and V. P. Roychowdhury, Re-inventing Willis, cond-mat/0601192, Physics Reports (2011) (studies how the same idea is rediscovered many times)
- S. Still and J. P. Crutchfield, Structure or Noise?, arXiv:0708.0654 (on optimally predictive theories and complexity)
- M. Schmidt and H. Lipson, Distilling Free-Form Natural Laws from Experimental Data, Science 324, 81 (2009)
- T. Gowers and M. Nielsen, Massively collaborative mathematics, Nature 461, 879 (2009) (description of a successful open, blog-based collaboration on finding an elementary proof of a certain theorem from combinatorics)
- M. Pawlowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, M. Zukowski, Information causality as a physical principle, Nature 461, 1101 (2009) (... which is violated in alternative theories with stronger correlations than quantum mechanics)
-
I. Mazin, Inverse Occam's razor, Nature Phys. 18, 367 (2022) (on fancy explanations being preferred)
Mathematics
Packing and tiling problems
- S. Torquato and F. H. Stillinger, Exactly Solvable Disordered Sphere-Packing Model in Arbitrary-Dimension Euclidean Spaces, cond-mat/0603316, Phys. Rev. E (among other results conjecture that the densest packings in high dimensions may be disordered)
- S. Torquato and Y. Jiao, Dense packings of the Platonic and Archimedean solids, Nature 460, 876 (2009), also arXiv:0908.4107 (with erratum)
- A. Haji-Akbari, M. Engel, A. S. Keys, X. Zheng, R. G. Petschek, P. Palffy-Muhoray, and S. C. Glotzer, Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra, Nature 462, 773 (2009); E. R. Chen, A Dense Packing of Regular Tetrahedra, arXiv:0908.1884, Discrete Comput. Geom. 40, 214 (2008); E. R. Chen, M. Engel, and S. C. Glotzer, Dense crystalline dimer packings of regular tetrahedra, arXiv:1001.0586
- A. B. Hopkins, F. H. Stillinger, and S. Torquato, Densest local sphere-packing diversity: General concepts and application to two dimensions, arXiv:1002.0604 (mostly packings of hard circles inside larger circles of various sizes, with one of the small circles fixed in the center)
- J. E. S. Socolar and J. M. Taylor, An aperiodic hexagonal tile, arXiv:1003.4279 (present two hexagonal tiles, which are mirror images of one another, with rather complicated matching rules involving next-nearest neighbors, that allow aperiodic, hierarchical space-filling tilings of 2D space but not periodic tilings; also contains a brief review) !, note that version 2 is significantly changed
- A. B. Hopkins, Y. Jiao, F. H. Stillinger, and S. Torquato, Phase Diagram and Structural Diversity of the Densest Binary Sphere Packings, Phys. Rev. Lett. 107, 125501 (2011) (numerical determination of phase diagram in radius ratio and relative concentration, find many phases, also determine maximum packing fraction); A. B. Hopkins, F. H. Stillinger, and S. Torquato, On the densest binary sphere packings, arXiv:1111.4917 (long paper with detailed structures)
- T. Ras, R. Schilling, and M. Weigel, Regular Packings on Periodic Lattices, Phys. Rev. Lett. 107, 215503 (2011)
- A. Haji-Akbari, M. Engel, and S. C. Glotzer, Degenerate Quasicrystal of Hard Triangular Bipyramids, Phys. Rev. Lett. 107, 215702 (2011)
- A. Haji-Akbari, M. Engel, and S. C. Glotzer, Phase Diagram of Hard Tetrahedra, arXiv:1106.4765
- Y. Jiao and S. Torquato, Analytical Construction of A Dense Packing of Truncated Tetrahedra, arXiv:1107.2300 (note the "truncated")
- D. Blair, C. D. Santangelo, and J. Machta, Packing Squares in a Torus, arXiv:1110.5348 (a flat torus, i.e., commensurate or incommensurate periodic boundary conditions in two dimensions)
- S. Heitkam, W. Drenckhan, and J. Fröhlich, Packing Spheres Tightly: Influence of Mechanical Stability on Close-Packed Sphere Structures, Phys. Rev. Lett. 108, 148302 (2012)
- C. L. Phillips, J. A. Anderson, G. Huber, and S. C. Glotzer, Optimal Filling of Shapes, Phys. Rev. Lett. 108, 198304 (2012) (define what they mean by "filling", then study filling of two-dimensional polygons by circles of arbitrary size)
- A. Andreanov and A. Scardicchio, Random perfect lattices and the sphere packing problem, arXiv:1202.5673
- E. Bendito, M. J. Bowick, A. Medina, and Z. Yao, Crystalline Particle Packings on Constant Mean Curvature (Delaunay) Surfaces, arXiv:1305.1551
- E. R. Chen, D. Klotsa, M. Engel, P. F. Damasceno, and S. C. Glotzer, Complexity in Surfaces of Densest Packings for Families of Polyhedra, Phys. Rev. X 4, 011024 (2014) (several continuous classes of polyhedra, detailed numerical study) !
-
F. Turci, G. Tarjus, and C. P. Royall, From Glass Formation to Icosahedral Ordering by Curving Three-Dimensional Space, Phys. Rev. Lett. 118, 215501 (2017) (relieving frustration by curving space)
Other mathematics
- D. H. Bailey and S. Plouffe, Recognizing Numerical Constants, http://www.lacim.uqam.ca/~plouffe/articles/Recognizing.pdf (experimental mathematics: how to detect simple mathematical constants in numerical results)
- E. Bertin and M. Clusel, Generalised extreme value statistics and sum of correlated variables, cond-mat/0601189, J. Phys. A (contains some review on extreme value statistics)
- J.-B. Zuber, On the large N limit of matrix integrals over the orthogonal group, arXiv:0805.0315 (gives results for certain integrals over O(N) for large N and compares them to corresponding results for U(N))
- Y. Kabashima, H. Takahashi, and O. Watanabe, Cavity approach to the first eigenvalue problem in a family of symmetric random sparse matrices, arXiv:1001.3935
- H. Watanabe, Difficult Sudoku Puzzles Created by Replica Exchange Monte Carlo Method, arXiv:1303.1886
-
C. M. Bender, D. C. Brody, and M. P. Müller, Hamiltonian for the Zeros of the Riemann Zeta Function, Phys. Rev. Lett. 118, 130201 (2017) (towards a proof of the Riemann hypothesis, using a PT-symmetric nonhermitian Hamiltonian)
-
S. N. Majumdar and E. Trizac, When Random Walkers Help Solving Intriguing Integrals, Phys. Rev. Lett. 123, 020201 (2019) (understand sequences of integrals that suddenly deviate from a simple pattern)
Informatics
- F. L. Traversa and M. Di Ventra, Universal Memcomputing Machines, arXiv:1405.0931 (define the eponymous computer architecture, show that it is Turing complete, that it can solve NP-complete problems in polynomial time, and that it only needs a polynomial number of memprocessors to do so; the information is stored in exponentially many connections between them, however); F. L. Traversa, C. Ramella, F. Bonani, and M. Di Ventra, Memcomputing NP-complete problems in polynomial time using polynomial resources, arXiv:1411.4798 (experimental demonstration of the previous idea, use conventional-electronics components)
- F. L. Traversa and M. Di Ventra, Polynomial-time solution of prime factorization and NP-hard problems with digital memcomputing machines, arXiv:1512.05064 (long paper with many formal results for model machines, detailed suggestions on how to build such machines in practice, also numerical simulations; these simulations and theoretical arguments give strong support to the claim that NP=P, but no proof since existence of a fixed point for the relevant process was not shown in general)
Hardware, software, and algorithms
- F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. Koerner, A. Laeuchli, S. R. Manmana, I. P. McCulloch, F. Michel, R. M. Noack, G. Schmid, U. Schollwöck, F. Stoeckli, S. Todo, S. Trebst, M. Troyer, P. Werner, and S. Wessel, The ALPS project: open source software for strongly correlated systems, cond-mat/0410407, J. Phys. Soc. Jap. Suppl. 74, 30 (2005); A. F. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Guertler, A. Honecker, R. Igarashi, M. Koerner, A. Kozhevnikov, A. Laeuchli, S. R. Manmana, M. Matsumoto, I. P. McCulloch, F. Michel, R. M. Noack, G. Pawlowski, L. Pollet, T. Pruschke, U. Schollwöck, S. Todo, S. Trebst, M. Troyer, P. Werner, and S. Wessel (for the ALPS collaboration), The ALPS project release 1.3: open source software for strongly correlated systems, arXiv:0801.1765, J. Magn. Magn. Mat. 310, 1187 (2007); B. Bauer, L. D. Carr, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P.N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner, and S. Wessel, The ALPS project release 2.0: Open source software for strongly correlated systems, arXiv:1101.2646; ALPS web page
- A. K. Hartmann and H. Rieger, A practical guide to computer simulations, cond-mat/0111531, in Optimization Algorithms in Physics (Wiley-VCH, Berlin, 2001)
- B. A. Berg and R. C. Harris, From Data to Probability Densities without Histograms, arXiv:0712.3852
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, I. Dabo, A. Dal Corso, R. Gebauer, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin Samos Colomer, N. Marzari, F. Mauri, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials, arXiv:0906.2569, J. Phys.: Condens. Matter (DFT package based on plane waves and pseudopotentials)
- P. H. Colberg and F. Höfling, Accelerating glassy dynamics using graphics processing units, arXiv:0912.3824
- M. N. Bannerman, R. Sargant, and L. Lue, An O(N) general event-driven simulator: DYNAMO, arXiv:1004.3501, download from http://marcusbannerman.co.uk/dynamo (public-domain software for molecular-dynamics simulations with hard, "discrete", potentials)
- R. Gamillscheg, G. Haase, and W. von der Linden, A numerical projection technique for large-scale eigenvalue problems, arXiv:1008.1208
- I. Rychkova, V. Rychkov, K. Kazymyrenko, S. Borlenghi, and X. Waintal, KNIT: An open source code for quantum transport in multi-terminal systems, arXiv:1010.2627 (tight-binding modelling, using a Landauer-Büttiker approach); download from http://inac.cea.fr/Pisp/xavier.waintal/KNIT.php
- Z. Feng, Q. Sun, L. Wan, and H. Guo, SymGF: a symbolic tool for quantum transport analysis and its application to a double quantum dot system, J. Phys.: Condens. Matter 23, 415301 (2011)
- J. R. Johansson, P. D. Nation, and F. Nori, QuTiP: An open-source Python framework for the dynamics of open quantum systems, arXiv:1110.0573
- J. G. Wright and B. S. Shastry, DiracQ: A Quantum Many-Body Physics Package, arXiv:1301.4494 (Mathematica package for algebraic manipulations in condensed matter theory, code at http://diracq.org/)
- G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, and N. Marzari, BoltzWann: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis, arXiv:1305.1587
- D. Biolek, M. Di Ventra, and Y. V. Pershin, Reliable SPICE Simulations of Memristors, Memcapacitors and Meminductors, arXiv:1307.2717 (including codes)
Other fields
- G. B. West, J. H. Brown, and B. J. Enquist, A General Model for the Origin of Allometric Scaling Laws in Biology, Science 276, 122 (1997) (explain why metabolic rates of organisms approximately scale like body mass to the power 3/4); The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms, Science 284, 1677 (1999)
- D. H. Zanette, Self-similarity in the taxonomic classification of human languages, nlin.AO/0103005
- P. Ao, Laws in Darwinian Evolutionary Theory, q-bio.PE/0605020
- C. Teuscher, On Irregular Interconnect Fabrics for Self-Assembled Nanoscale Electronics, cond-mat/0606584, 2nd IEEE International Workshop on Default and Fault Tolerant Nanoscale Architectures, NANOARCH'06, Boston
- R. A. Blythe and A. J. McKane, Stochastic Models of Evolution in Genetics, Ecology and Linguistics, cond-mat/0703478, JSTAT Special Issue
- A. K. Hartmann, A. Mann, and W. Radenbach, Solution-space structure of (some) optimization problems, arXiv:0711.3912
- M. Doebeli and I. Ispolatov, A model for the evolutionary diversification of religions, arXiv:0810.0296 (employ methods of epidemiology to study the dynamics of religious memes)
- P. Klimek, S. Thurner, and R. Hanel, Evolutionary dynamics from a variational principle, arXiv:0911.4032
- B. Waclaw, Random matrices and localization in the quasispecies theory, arXiv:1105.1069
- A. A. Saberi, Percolation Description of the Global Topography of Earth and the Moon, Phys. Rev. Lett. 110, 178501 (2013)
- E. D. Lee, C. P. Broedersz, and W. Bialek, Statistical mechanics of the US Supreme Court, arXiv:1306.5004 (successful modeling based on an Ising spin glass, some of the interaction have to be assumed to be antiferromagnetic, although collective effects make all pairwise correlations ferromagnetic)
- D. Silver et al., A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play, Science 362, 1140 (2018)
Various Links
- Journal Club for Condensed Matter Physics (mounthly selection with commentary)
- Condensed Matter Theory: Review articles on the web
- Journal Club for Condensed Matter Physics with commentaries by distinguished physicists
- Condensed Matter Physics Bibliography by A. Melikidze, Net Adv. Phys. Spec. Bibliog. 2:4 (2002)
- Periodic Tables
- Talks at the KITP
- Rapid Single-Flux-Quantum Laboratory at SUNY/Stony Brook
- Cosmology in the Laboratory (COSLAB) program of the ESF 2001-2006
- Ferromagnetic Semiconductor Spintronics Web Project
- Molecular Magnetism Web
- MIT OpenCourseWare, Physics (many excellent sets of lecture notes)
- Matrix Properties (many definitions and identities concerning matrices and eigenvalue problems)
- APS: Careers & Employment (the Professional Development Guide contains lots of useful links)
- T. Kennedy and B. Nachtergaele, The Heisenberg Model - a Bibliography (including references up to about 1996)
- P. J. Mohr, B. N. Taylor, and D. B. Newell, CODATA recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys. 84, 1527 (2012)