Projects
Conventional robots usually consist of heavy and rigid components, such as motors, gearboxes, and linkages, that are made of high-density materials. Although they can perform complex movements and processes, they are typically not able to perform movements similar to those of biological models. Entirely soft robots with animal-like behaviour will open up totally new perspectives and applications. The MEiTNER project will investigate multifunctional dielectric elastomers (DEs), so-called artificial muscles. The aim is to equip these dielectric elastomers with inherent signal-processing capabilities in the form of dielectric elastomer electronics, only made of polymer materials and carbon. This will enable a totally new class of soft electronics, controlling autonomous, entirely soft robots, without the need of conventional, stiff silicon-based controllers.
Novel soft DE-electronics will be integrated onto dielectric elastomer membranes using compliant electrodes with different electrical properties, such as resistance, capacitance and percolation. All these components will consist only of mixtures of polymers and conductive fillers. To validate functionality of developed processes and subcomponents, there will be investigations in advancing soft biomimetic robotics in general to demonstrate the potential of multifunctional DEs. Those robotic structures will be based on compliant mechanical structures, having distributed dielectric sensor-, actuator- and signal-processing nodes embedded throughout their entire structure.
We will investigate biomimetic approaches for several tasks such as locomotion, wing-flapping or under-water propulsion and related interfaces to the environment such as direction friction or electrostiction structures. In a second research direction we will investigate human-machine interfacing in collaborative robotics, industrial and medical applications. The technologies and DE electronics and software design tools, developed in FAB-1, shall be used to investigate prospects for soft, multi-functional structures that shall serve as compliant interfaces for machine operators, medical products and industrial applications such as soft robotic grippers.
Minimal-invasive Verfahren haben die moderne Medizin revolutioniert und spielen mit mehr als 2 Millionen laparoskopischen Operationen und 6 Millionen gastrointestinalen Endoskopien pro Jahr in Deutschland eine bedeutende Rolle. Im endoskopischen Bereich hat sich das Design der Geräte und des Zubehörs für diese Eingriffe in den letzten 40 Jahren praktisch nicht verändert. Im Bereich der Laparoskopie sind die Instrumente zur besseren Sterilisierbarkeit als starre Metallschäfte ohne Gelenke ausgeführt. Bestimmte Blickwinkel auf das Operationsgeschehen können dadurch nur sehr schwer bzw. in manchen Fällen gar nicht eingestellt werden. Durch die fehlende elektronische Ansteuerung ist es derzeit auch nicht möglich, die Instrumente in moderne Assistenzsysteme („cybermedical systems“) einzubinden. Eine Alternative hierzu stellen aktuell nur große stationäre Robotersysteme (wie z.B. der Da Vinci Roboter) dar, welche zwar bewegliche Gelenke aufweisen, jedoch mit hohen Anschaffungs-, Betriebs- und Aufbereitungskosten verbunden sind und somit von kleineren Kliniken nicht wirtschaftlich betrieben werden können. An diesem Punkt setzt das Vorhaben EndoSMART an: Das Entwicklungsziel sind robotische Einweghandgeräte, die in digitale Assistenzsysteme integriert werden und so die Lücke zwischen nicht zeitgemäßen, manuellen Instrumenten und teuren robotischen Großgeräten schließen können.
Die Aktorbasis für diese Systeme bilden Drähte aus der Formgedächtnislegierung (engl. Shape Memory Alloys – SMAs) Nitinol. Sie bieten aufgrund ihrer Leistungsfähigkeit und ihrer hervorragenden Skalierbarkeit ein enormes Potenzial als Aktorplattform für laparoskopische und endoskopische Einweginstrumente. Im Verbundprojekt „NGScopes“ konnte bereits ein Demonstrator entwickelt werden, welcher die grundsätzliche Eignung von SMA-Aktoren für den Einsatz in derartigen Instrumenten aufzeigte. Im Rahmen des aktuellen Forschungsvorhabens „EndoSMART“ werden nun der gegenwärtige Entwicklungsstand aufgegriffen und weitere bzw. offene Probleme adressiert. Diese sind teils von grundlegender Natur und beinhalten beispielsweise die Implementierung eines Systems zum Wärmemanagement, sowie die Skalierung der Aktorplattform für den Einsatz in laparoskopischen Werkzeugen. Zentrale Fragestellungen hierfür bilden die Ausgestaltung eines biegeweichen, aber drucksteifen Miniaturgelenks sowie die anforderungsspezifische Anpassung der Aktorkraft. Um das Innovationspotenzial der SMA-betriebenen Instrumente zu verdeutlichen, spielt das Nutzerinterface eine herausragende Rolle. Hier sollen erste praxisrelevante digitale Assistenzfunktionen erforscht und anschließend hard- und softwareseitig implementiert und durch Anwender getestet werden.
Next Generation Endoscopy des EKFZ (Else Kröner Fresenius Center for Digital Health)
Capsule endoscopes are an attractive alternative to traditional endoscopic procedures, as they allow inspection of the entire gastrointestinal tract without inconvenience to the patient or sedation. In addition, the risk of injury is significantly reduced and time-consuming sterilization can be dispensed with due to the single use. However, the range of functions is still significantly behind that of established endoscopes.
Our vision is to develop an active, intelligent capsule endoscope with adaptive anchoring mechanisms and tissue and liquid biopsy harvesting capability, as well as in vivo microbiome analysis using gas sensing. In addition, secure communication through the body at high data rates must be ensured. Such a capsule has a wide range of applications and can replace or even surpass the use of conventional endoscopes in many areas.
The joint project "Active Intelligent Capsule Endoscopy" is being carried out by a consortium of chairs from the TU Dresden and industrial partners from Germany. The partners broadly cover the fields of biomedical engineering, microelectronics, microsystems engineering, microfluidics, packaging and medicine.
Die Nachwuchsforschungsgruppe MultiMOD beschäftigt sich mit den Grundlagen eines Schaltkreis- und Informationsverarbeitungskonzeptes auf Basis smarter Materialien. Dies ermöglicht die direkte Verarbeitung verschiedener physikalischer, chemischer und biologischer Informationsträger in unserer Umwelt, ohne dass elektronische Komponenten benötigt werden. Diese Schaltkreise ermöglichen die Integration von viel mehr Funktionen auf Chipebene, einschließlich Informationsverarbeitung, Energieversorgung, Sensorik und Aktorik. Sie sind äußerst energieeffizient und benötigen nur einen Bruchteil der Ressourcen, die in herkömmlichen mikroelektronischen Systemen verwendet werden, und sind in hohem Maße recycelbar.
Die Nachwuchsforschungsgruppe konzentriert sich auf drei spezifische Anwendungen in den Biowissenschaften, die in hohem Maße von den Fähigkeiten dieser multimodalen Schaltkreise profitieren können: Multi-Organ-on-Chip-Systeme mit komplexen chemisch-biologischen Regulationsmechanismen, multimodale Schaltkreise für die Krebsfrüherkennung und mikrorobotische Systeme mit naturgetreuen Fähigkeiten für den Einsatz als Operationsroboter.
In dem Verbundprojekt NGScopes wird eine Prinziplösung für eine universelle und skalierbare Aktorplattform auf der Basis von Formgedächtnislegierungen (engl. shape memory alloys – SMAs) für eine neue Generation von Endoskopen und endoskopischen Werkzeugen entwickelt und auf ihre Eignung für den Einsatz in medizinischen Instrumenten hin untersucht.
In ersten Arbeitsschritten des Projekts wurden zunächst die thermischen Belastungen endoskopischer Instrumente ermittelt. Die gewonnenen Erkenntnisse bildeten wichtige Basisparameter für die spätere Auswahl der Konstruktionswerkstoffe und wurden unter dem Titel „Temperature profile and residual heat of monopolar laparoscopic and endoscopic dissection instruments“ publiziert. Für die Auswahl der Aktoren und die Auslegung der Mechanik ist eine grundlegende Charakterisierung der Material- und Aktoreigenschaften der SMA-Drähte essenziell. Hierfür wurde ein multisensorischer Versuchsstand entwickelt und in Betrieb genommen. Anschließend konnte ein erstes Funktionsmuster mit separatem Nutzerinterface und Kamera erfolgreich in Betrieb genommen werden. Aufgrund der geringeren technologischen Hürden orientiert sich der erste Demonstrator an starren endoskopischen Instrumenten (auch „Laparoskop“).
Im vorliegenden Forschungsprojekt soll die Übertragung von Standardprozessen und Designkonzepten der Mikroelektronik- und Leiterplattenindustrie für die Fertigung hochintegrierter, hybrider Mikrofluidik-Systeme untersucht werden. Der Schwerpunkt des Forschungsvorhabens liegt dabei auf der Entwicklung und Optimierung einer Fertigungstechnologie solcher Systeme.
Konkret soll ein bestehendes Fertigungsverfahren für mehrlagige mikrofluidische Prototypen anhand in der Mikroelektronik etablierter Produktionsprozesse und –equipment für mehrlagige keramische Schaltungen skaliert und eine volumenunabhängige Prozesskette entwickelt werden. Dadurch können Design und Material über den gesamten Skalierungsprozess hinweg identisch bleiben und ein nahtloser Transfer vom Prototypen zum Produkt gewährleistet werden.
Betrachtet man Mikrofluidik-Systeme (MFSs) als „fluidische Leiterplatten,“ in der die mikrofluidischen Kanäle die Leiterbahnen repräsentieren, ist es konsequent, die in der Leiterplattenindustrie seit vielen Jahren etablierten Fertigungsprozesse zu adaptieren und auf die Herstellung von MFs für die medizinisch-biologische Forschung anzuwenden. Dazu sollen etablierte LTCC-Teilprozessabläufe (Low Temperature Cofired Ceramic) sowie Equipment für deren Fertigung übernommen und an die für polymere hochintegrierte MFSs verwendeten Materialien angepasst werden. Die aktiven Systemkomponenten und Substrate sollen dabei mittels etablierter Verfahren mikrostrukturiert, ausgerichtet, gestapelt und gefügt werden. Zum Erhalt der strukturellen Integrität der Kavitäten und Kanäle ist eine Verringerung der Prozesstemperaturen notwendig. Um dies zu erreichen, sollen die Substrate mit geeigneten Verfahren vorbehandelt (Haftvermittlerauftrag, VUV-Bestrahlung) werden. Am Projektende soll eine vollständig aufeinander abgestimmte Prozesskette entstehen, die eine flexible Fertigung hochkomplexer hybrider Mikrofluidik-Systeme bei geringen Temperaturen ermöglicht.
The Marie Skłodowska-Curie Actions Doctoral Network SOFTWEAR is a highly interdisciplinary Doctoral Network in the emerging and rapidly growing field of wearables, with a unique focus on soft actuators for wearables and exoskeletons. The primary objective of SOFTWEAR is to train young researchers in the multidisciplinary science of soft actuators for integration in wearables and augmenting textiles. This will be achieved by merging chemistry, physics, mechanics, electronics, textile technology, design, human-technology interaction and ethics in a truly interdisciplinary manner, while teaching essential skills in ethics, product development, IPR and industrial realisation, thus providing a unique added value to the careers of the Researchers. This ambitious aim will be accomplished by on-the-job training on innovative research projects developing beyond-the-state-of-the-art soft actuator technology and integrating this into active garments and soft exoskeletons. This will be carried out at leading academic groups and by immersion in applied projects at the industrial partners. SOFTWEAR will thus provide Europe with highly educated researchers in the emerging field of wearables, focused on integrating actuation. This will put Europe in a world-leading position in this field and will supply European companies with a highly skilled workforce in soft actuators and advanced smart textiles.
Dielectric elastomer switches (DESs) enable the embedding of some signal processing functions in soft structures. DESs will be used to develop a distributed and miniaturized network of soft DE actuator, sensor and signal processing nodes in a fully soft structure, enabling advanced wearable structures with reflexive functionality. They autonomously recognize the actuation and critical deflection of limbs and thus make autonomous decisions.
TU Dresden and the Technical University of Munich have joined forces to form the 6G-life research hub to drive cutting-edge research for future 6G communication networks with a focus on human-machine collaboration. The merger of the two universities of excellence combines their world-leading preliminary work in the field of Tactile Internet in the Cluster of Excellence CeTI, 5G communication networks, quantum communication, Post-Shannon theory, artificial intelligence methods, and adaptive and flexible hardware and software platforms.
A soft robotic continuum robot with a kinesthetic feedback system and a tactile feedback unit on the effectors is being developed. It has a repertoire of automatic and adaptive movement patterns, which gives it self-guidance and path-finding properties, and a sense of touch, which enables it to feel the mechanical properties and temperature of the operating field as well as the presence of certain chemical substances.
Priority programmes
Collaborative multi-actuator systems will be important components for visionary future applications, such as robotics, medical appliances and advanced user interfaces. The potential range of use of such devices spans from the nanoscale, where they operate at a scale where many phenomena have their origin, to the micro- and macroscale. Conceptually, they vary considerably across the size scales. The larger they become, the more the technical requirements approach human capabilities. They should be able to independently realise complex sequences of movements and tasks, perceive their environment, and act autonomously according to the situation. Appropriately powerful robotic multi-actuator sensor structures are among the significant, barely solved technical challenges, which are considerably amplified for small-scale systems by the functional, technological, and integrative constraints of the size limitation. Sensors with the necessary sensitivities, suitable actuators, hardware and software for controlling or regulating information processing, and strategies for assembly and system integration are required. For conventional rigid robots for instance, this inevitably leads to a significant increase in the complexity of hardware and software and a corresponding deterioration in the energy and sustainability balance, because even more information processing electronics, sensors and actuators are required. In this project we will develop interconnected, distributed HASEL-DET-DES actuator arrays that requires advanced methods. The classical process of product development and optimization through several cycles of design, prototyping and metrological investigations is no longer suitable. We will develop alternative simulation-based design methods that realize a large part of the development and optimization by a virtual design. Here, the term virtual design stands for a design by modelling and simulation of a technical system without being physically present. Based on the results of the virtual design, a pattern is built and its properties are verified. It is designed with the help of structural and behavioural models of the system. The influence of each parameter on the system behaviour can then be efficiently simulated on the computer to optimize the system for a desired behaviour. The computer-aided approach is also known as Electronic Design Automation (EDA). Prerequisites are clearly defined hierarchical system levels, hardware and software components, and interfaces between these components. The result of this simulation-based design is a model that satisfies the system requirements under typical operating conditions. Based on the model, characteristic parameters can be extracted and tested.
Couplings are machine elements whose primary function is to enable power transmission between two shafts by means of a mechanical connection. Form-fitting torsionally flexible couplings are considered to be very important in drive technology because, on the one hand, their design is comparatively simple and therefore inexpensive and, on the other hand, they can mitigate critical torque shocks and dampen system-related dynamic vibrations due to their torsional flexibility. In this project, flexible couplings such jaw couplings and wedge couplings will be equipped with sensors, in order to determine torques and forces during the run time durng operation. Such couplings have elastic elastomer elements to compensate for axial and radial misalignment and to absorb torque shocks. The sensors will be embedded directly in the flexible elastomer elements and should not, or only as little as possible, change them geometrically as well as mechanically, in their overall behaviour. For this reason, compliant, integrable sensor systems, including the necessary evaluation and communication electronics, are to be developed in the proposed project. In particular, piezoresistive and capacitive dielectric elastomer sensors are to be developed and integrated. The deformations that are expected in the elastomer elements under load, are in the percentage range and are, therefore, difficult to measure with conventional measuring systems, such as strain gauges. Instead, it seems advantageous to develop a measuring system whose mechanical properties are similar to those of the elastomer element. For this reason, dielectric elastomers are to be used as sensors in the project.
The project team consists of three working groups that contribute their respective expertise to the project. The Schlecht working group at the Institute for Machine Elements and Machine Design (IMM) deals with the investigation and determination of relevant system parameters on real coupling systems and provides necessary data for the Wallmersperger working group at the Institute for Solid Mechanics (IFKM) to deal with the simulation of the elastic components and the overall system. The data obtained is used by the Henke working group, MEiTNER junior research group at the Institute of Semiconductors and Microsystems (IHM), for the design and layout of the individual sensor elements and evaluation electronics. The sensor demonstrators built by IHM are then integrated into real couplings, their behaviour is simulated at IFKM and tested by IMM under real conditions on corresponding test benches.
Projekt BROADCAST will deliver a new class of powerful soft, biomimetic systems that can interact with their environment in a save, bio-inspired way. The approach is based on major advances in the production technology of dielectric elastomers (DE) circuitry, new soft electronic materials, and new approaches in signal processing. BROADCAST investigates multi-functional DEs that drive robotic structures based on bio-inspired electro-mechanical control strategies such as central pattern generators, autonomous peristalsis, locomotion and similar others. This requires new materials for flexible electrodes and sensors that provide curtailed electrical and electro-mechanical properties, such as Young's-modulus, conductivity and piezo-resistivity.
Completed projects
In the 1990s, the Lab-on-a-Chip (LoC) concept emerged to integrate fluid processing on a single chip. Initially used for basic tests, microfluidics has advanced, benefiting Point-of-Care (PoC) and Next Generation Sequencing. Programmable LoC and channel-based LoC dominate, with micropneumatics showing promise. The chemomechanical microfluidics concept at TU Dresden, utilizing valve-switching elements on the chip, reduces external control, providing decision functionality based on chemical information.
Automated single-cell sample preparation for molecular analysis is a challenge. Current approaches lack workflow coverage and capture efficiency. There is no commercial solution meeting the requirements for single-cell sample preparation in terms of throughput, capture efficiency, and population quality.
The project TransIC aims to evaluate a chemofluidic circuit concept's performance, focusing on single-cell sample preparation for AML (Acute Myeloid Leukemia) diagnosis. The technology aims for a 50 µm node for automated circuits and a 15 µm node for cell-related structures.
Design automation will be crucial for circuits with thousands of components. Passive and active components are characterized, and simulation models are used to design a microfluidic workflow, which is then experimentally verified.
Materials for integrated circuit components are selected for processability, durability, and environmental considerations.
Application-wise, the circuits' functionality is demonstrated under laboratory conditions, ensuring sensitivity, reproducibility, and robustness compared to commercial kits and chips.
Parallel tot he achieved miniaturization, the proof of approximately 600 reaction cascades for AML sample preparation and post-processing is demonstrated at a 15 µm node.
The research work demonstrates the potential of microfluidic approaches to enhance individual therapy and monitoring of blood cancer diseases such as AML. A modified Pachinko design yielded promising results for the isolation of leukemia cells, with the option to gently release specific target cells from capture structures for further single-cell analysis. This capability is not achievable with existing commercial platforms. Consequently, there is an opportunity to optimize individual therapy for patients with AML and other leukemia and lymphoma diseases. Recently, costly new immunotherapies have been developed, and their effectiveness needs to be individually assessed beforehand. This new technology could help determine, at the single-cell level, how effectively aberrant precursor cells in AML are targeted and eliminated by the therapy.
The Chair of Microsystems Technology develops dynamic systems based on dielectric elastomers. These are thin elastomer films coated on both sides with stretchable electrodes that deform when a voltage is applied.
These can be used to create artificial muscles that dynamically excited and are suitable as sources of force and deflection, e.g. for the realisation of loudspeakers.
On this basis, new types of headphone drivers using dielectric elastomer unimorph diaphragms (DEUM drivers) and loudspeakers with dielectric elastomer roller drives (DERA loudspeakers) have already been developed and presented. These were each awarded first prize at the EuroEAP‑Society Challenge.
Compared to conventional electrodynamic speakers, they offer significantly reduced weight and installation space requirements and considerably increased efficiency. In addition, they are robust and can be manufactured from inexpensive starting materials without the use of rare earths, piezoceramics or even ferroelectric metals.
Die Nachwuchsforschungsgruppe CoVGuard hat das Ziel, einen PCR-Schnelltest für Covid-19 und andere Erreger zu entwickeln. Dieser soll die Einfachheit und gute Verfügbarkeit von Antigen-Tests mit der hohen Sensitivität und Zuverlässigkeit von PCR-Tests kombinieren, sodass für künftige Pandemien ein effizientes Mittel für die flächendeckende Diagnose zur Verfügung steht.
Die Entwicklung des PCR-Schnelltests basiert auf dem Konzept eines mikrofluidischen Schaltkreises, der Patientenproben autonom prozessiert und mittels isothermaler Amplifikation Erreger nachweist. Hierfür arbeiten die Forschenden an den Schaltkreisdesigns, Steuerelementen auf Basis smarter Materialien, sowie den biochemischen Nachweismethoden.
An der Forschung sind das Institut für Halbleiter- und Mikrosystemtechnik, das Institut für Klinische Chemie und Laboratoriumsmedizin sowie das Institut für Mikrobiologie und Virologie der TU Dresden bzw. des Universitätsklinikums Dresden beteiligt. Diese Maßnahme wird durch den Europäischen Sozialfonds als Teil der Reaktion der EU auf die Covid-19 Pandemie finanziert und hat die Laufzeit 01.01.2022-31.12.2022.