29.04.2024
NEW PUBLICATION Artificial Neural Networks for Gas-Liquid Flow Regime Classification in Small Channels
The reliable design of multiphase micro-structured apparatus requires a precise knowledge of the internal flow regime. Previous research indicated that classifiers based on artificial neural networks (ANN) are relatively simple to develop and provide a reasonable accuracy when trained with data for specific inlet designs. This paper introduces advanced ANN classifiers capable of predicting all relevant flow regimes regardless of the inlet design with a recall of 94 % and above for Taylor, churn, dispersed, rivulet, and parallel flows, between 89 % and 94 % for annular and bubbly flows, and 83 % for Taylor-annular flow. These classifiers were trained and validated by using more than 13,000 experimental data points extracted from 97 flow maps.
Artificial Neural Networks for Gas-Liquid Flow Regime Classification in Small Channels