Artikel und Scripte
Inhaltsverzeichnis
Artikel
- Bäcker, Schubert, Stifter: Rate of quantum ergodicity in Euclidean billiards [pdf]
- Goodman, T.N.T.: Relating topological entropy and measure entropy [pdf]
- Hasselblatt, B.: The Hartman-Grobman-theorem [pdf]
- Kuchment, P.: Quantum graphs I. Some basic structures [pdf]
- Kuchment, P.: Quantum graphs II. Some spectral properties [pdf]
- Lieb, E.H., Yngvason, J.: The physics and mathematics of the second law of thermodynamics [pdf]
- Liverani, C., Wojtkowski, M.: Ergodicity in Hamiltonian systems [pdf]
- Melsheimer, O.: Rigged Hilbert space formalism as an extended mathematical formalism for quantum systems. I. General theory, [pdf]; II. Transformation theory in nonrelativistic quantum mechanics, [pdf]
- Moser, J.: On invariant curves of area-preserving mappings of an annulus [pdf]
- Palm, G.: A common generalization of topological and measure-theoretic entropy [pdf]
- Salamon, D.A.: The Kolmogorov-Arnold-Moser theorem [pdf]
- Segal, I.E.: Postulates for general quantum mechanics [pdf]
- Witten, E.: A new proof of the positive energy theorem [pdf]
- Wojtkowski, M.: Principles for the design of billiards with nonvanishing Lyapunov exponents [pdf]
- Young, L.S.: What are SRB-measures and which dynamical systems have them? [pdf]
- Zelditch, S.: Ergodicity of eigenfunctions for ergodic billiards [pdf]
- Zelditch, S.: Quantum ergodicity of C* dynamical systems [pdf]
Scripte
- Abels: Pseudodifferential Operators [pdf]
- Barreira, Pesin: Lyapunov Exponents and Smooth Ergodic Theory [pdf]
(Seite 5-16) - (Errata unter http://www.math.psu.edu/pesin/booklyapun.html)
- Evans, Zworski: Lectures On Semiclassical Analysis (Version 0.2) [pdf]
- Fredenhagen, K.: Algebraische Quantenfeldtheorie [pdf]
- Fredenhagen, K.: Elektrodynamik [pdf]
- Fredenhagen, K.: Mechanik [pdf]
- Fredenhagen, K.: Quantenmechanik I [pdf]
- Fredenhagen, K.: Quantenmechanik II [pdf]
- Fredenhagen, K.: Thermodynamik und statistische Physik [pdf]
- Fritzsche, K.: Clifford-Algebren und Spin-Mannigfaltigkeiten (WS 2003/04) [zip]
- Keppeler, S.: Semiklassische Methoden in der Quantenmechanik [pdf]
- Ketzmerick: Chaos und Quantenchaos [pdf]
- Knauf, Seiler: Klassische Mechanik (Mathematische Physik 1) [pdf]
- Knauf, Seiler: Statistische Mechanik (Mathematische Physik 2) [pdf]
- Kuckert, B.: Mathematische Grundlagen der Quantenmechanik [pdf]
- Lein: Weyl Quantization and Semiclassics [pdf]
- Schubert, R.: Semiclassical localization in phase space [pdf]
- Touchette, H.: Elements of convex analysis [pdf]
- Touchette, H.: Legendre-Fenchel transforms in a nutshell [pdf]