S. Mayr: Plasma synthesized magnetic nano particles fixed in radiation optimized hydrogels: optimization towards a biologically degradable medical actuator (PARTACT)
Description
Magnetically adjustable materials that undergo a well-defined reversible shape change in an applied homogeneous magnetic field have enormous potential for use as contact-less active elements in areas of engineering to biomedicine [1,2]. This project explores composites of magnetic core-shell nanoparticles and gelatin hydrogels that are subsequently crosslinked with high energy electron irradiation, with the final aim of setting up a biocompatible and degradable actuator prototype for use in regenerative medicine. The key steps to achieve this goal are:
i) Employing pulsed-plasma assisted inert gas condensation, shape, size and structurally optimized particles are synthesized. Shapes that lead to high magnetic anisotropy are of particular interest, ranging from rods and discs to triangles [3]. Nanoparticle biocompatibility is optionally enhanced by suitable coating strategies to achieve a magnetic core-inert shell structure [4,5].
ii) Properties of the hydrogels are optimized with electron irradiation, investigating changes to crosslinking density, thermal and mechanical properties [6] as well as biocompatibility.
iii) Nanoparticle distribution and arrest within the hydrogel is optimized with respect to the desirable mechanical response within homogeneous and heterogeneous magnetic fields.
Within all areas, synthesis, characterization, interpretation and modelling are performed in close collaboration with other members of the SPP.
Project Manager
Prof. Dr. Stefan G. Mayr, Leibniz-Institut für Oberflächenmodifizierung e.V.(IOM)& Universität Leipzig
Staff
Emilia Wisotzki, Leibniz-Institut für Oberflächenmodifizierung e.V.(IOM)& Universität Leipzig
Grant period
2013 -
Publications
[1] Y. Ma, A. Setzer, J. W. Gerlach, F. Frost, P. Esquinazi, and S. G. Mayr. Adv. Funct. Mater., 22(12):2529–2534, 2012.
[2] M. Zink, F. Szillat, U. Allenstein, and S. G. Mayr. Adv. Funct. Mater., 23(11):1383-1391, 2012.
[3] R. Werner, T. Höche and S.G. Mayr, Cryst. Eng. Comm. 13 (2011) 3046.
[4] M. Hennes, J. Buchwald and S. G. Mayr. CrystEngComm, 14:7633–7638, 2012.
[5] M. Hennes, A. Lotnyk and S. G. Mayr. Beilstein J. Nanotechnol, 5:466-475, 2014.
[6] E. I. Wisotzki, M. Hennes, C. Schuldt, F. Engert, W. Knolle, U. Decker, J. A. Käs, M. Zink and S. G. Mayr. J. Mater. Chem. B., 2:4297-4309, 2014.
Contact
Universität Leipzig
Leibniz-Institut für Oberflächenmodifizierung
Permoserstr. 15
04318 Leipzig