Drittmittelprojekte
Title | Duration | Funded by | Principal Investigators |
---|---|---|---|
Optimal Packing for Additive Manufacturing |
01-06-2022 31-05-2023 |
Volkswagen Foundation |
A. Fischer T. Romanova |
Optimization and Equilibrium Problems with Singular Solutions: Theory and Numerical Methods |
01-01-2021 31-12-2023 |
Volkswagen Foundation |
A. Fischer (Coordinator) P. Stetsyuk A. Arutyunov A. Izmailov |
Datengetriebene Generierung von Modellen und Sensitivitätsanalyse für Produktionsprozesse im Verbundprojekt Optimierung von Produktionsprozessen durch automatisierte Modellierung auf der Basis von Prozessdaten | 01-04-2020 30-09-2023 | BMBF |
A. Fischer (Coordinator) U. Hartung |
Accelerating Newton-type Methods in the Presence of Critical Solutions |
01-10-2019 30-09-2022 | DFG | A. Fischer |
Anspruchsvolle Freiformbeschichtung flächiger und 3-dimensionaler Substrate durch Inline-Sputtertechnick | 01-08-2019 30-06-2022 | Sächsische Aufbaubank | Consortium of Fraunhofer FEP, Companies, TU Dresden |
Newton-type Methods for Nonsmooth Equations with Nonisolated Solutions | 01-01-2017 31-12-2019 | DFG | A. Fischer |
Optimierungstechniken für Klassifikation und Regression, Teil II | 01-01-2017 31-12-2017 | Industry | A. Fischer |
Error Bounds, Critical Solutions and Numerical Methods for Smooth and Nonsmooth Optimization and Equilibrium Problems | 01-10-2016 30-09-2019 | Volkswagen Foundation | A. Fischer (Coordinator) P. Stetsyuk A. Arutyunov A. Izmailov |
Ultra High-Speed Wireless Board-to-Board Computer Communication: Project A02 within Phase II of Collaborative Research Center 912 (SFB 912) "Highly Adaptive Energy-Efficient Computing" (HAEC) | 01-07-2015 30-06-2020 | DFG |
M. Dörpinghaus G. Fettweis A. Fischer |
Optimierungstechniken für Klassifikation und Regression | 01-10-2014 31-12-2016 | Industry | A. Fischer |
Optimierung beim 2-stufigen Vollholzzuschnitt | 01-07-2013 30-06-2014 | Industry | G. Scheithauer |
TimesThreeApps | 01-06-2013 31-05-2014 | BMWi | A. Fischer |
Support-Vector-Methoden und multivariate Regression | 01-04-2013 30-09-2014 | Industry | A. Fischer |
Support Vector Methoden | 01-09-2011 31-08-2013 | Industry | A. Fischer |
Ultra High-Speed Wireless Board-to-Board Communication: Project A02 within Phase I of Collaborative Research Center 912 (SFB 912) "Highly Adaptive Energy-Efficient Computing" (HAEC) | 01-07-2011 30-06-2015 | DFG | G. Fettweis A. Fischer |
Rip- and Chop-Cut Optimization | 01-05-2010 31-12-2011 | Industry | G. Scheithauer |
Linear Programming-Based Algorithms for Orthogonal Packing |
01-04-2010 30-09-2011 | DFG | G. Belov |
Enhancement and Application of Approximation Approaches for Buckling Response Surfaces | 01-06-2009 31-12-2009 | Industry |
A. Fischer K. Wolf |
Support Vector Machines | 01-09-2008 31-08-2011 | Industry | A. Fischer |
Approximation of Buckling Reserve Factors, Parts I and II | 2007 and 2008 | Industry | A. Fischer K. Wolf |
Optimization and Equilibrium Problems with Singular Solutions: Theory and Numerical Methods
Abstract A concept of critical solutions of smooth equations, developed in the preceding project, and extending the related concept for equality-constrained optimization problems, turned out to be very useful for understanding stability properties of singular (and in particular nonisolated) solutions, as well as the behavior of Newton-type methods near them. The current project aims, in particular, at extensions of the criticality concept and related theories to new classes of variational problems, including equations with nonpolyhedral constraints, as well as problems with relaxed smoothness assumptions. To a great extent, these studies will rely upon mathematical tools to be developed in the project. In particular, the study of stability and sensitivity issues for constrained equations will much rely on covering results, while the study of singular optimal controls will use the global implicit function theorems. Theoretical developments in this project will be accompanied by design and analysis of new numerical methods for solving problems in question. To deal with singular solutions, it is planned to extend existing Newton-type techniques and to develop new algorithmic approaches that result from expected theoretical findings. For cases where Newton-type methods are not appropriate, the design of subgradient methods with space transformations is intended and shall aim at accelerating convergence speed and increasing reliability. Moreover, the range of applicability shall cover problems with possibly nonisolated solutions, nonsmooth convex programs, and saddle-point problems. In the project, these developments will be exploited for solving diffcult problems arising from applications in image processing and optimal packing.
Datengetriebene Generierung von Modellen und Sensitivitätsanalyse für Produktionsprozesse
im Verbundprojekt Optimierung von Produktionsprozessen durch automatisierte Modellierung auf der Basis von Prozessdaten
Aus der Beschreibung Im Verbundprojekt OptProDat werden Methoden entwickelt, um Prozessdaten mit Hilfe von datengetriebenen Modellen automatisiert zu verarbeiten und somit den Einfluss der Prozessparameter auf bestimmte Zielgrößen (z.B. die Produktqualität) zu beschreiben. Dabei sollen möglichst wenige Informationen über die konkrete Struktur und die physikalische Interpretation oder technische Bedeutung der Daten vorausgesetzt werden, um eine allgemeine Herangehensweise an die Problemstellung zu entwickeln.