Vorlesungsverzeichnis IAP
In folgenden finden Sie Titel und Inhalte regelmäßig (üblicherweise jährlich) am Institut für angewandte Physik angebotener Lehrveranstaltungen, die für das Vertiefungsgebiet "Angewandte Physik und Photonik" (Vert) oder den internationalen Master-Studiengang "Organic and Molecular Organic Electronics" (OME) verwendet werden können.
Die Vorlesungssprache in einigen Veranstaltungen ist Englisch, insbesondere in Lehrveranstaltungen, die dem Master-Studiengang OME zugeordnet sind.
In the field of Organic Electronics, this lecture attempts to bridge between the theoretical training in the field and the actual, current research. - close link to the lecture 'Organic Semiconductors' - attendance highly recommended - hands-on training of working with scientific literature - detailed introduction to experimental methods with the important reference to real scientific questions.
Requirements: solid state physics, basics of semiconductor physics, organic semiconductors recommended (or parallel)
Energetic ions produced by accelerators are not only for particle physics but also for materials science including semiconductors and magnetic materials. Contents: the interaction between ions and matter, ion beam analysis, doping semiconductors by ion implantation, ion beam synthesized new materials.
Requirements: solid state physics
Die Vorlesung behandelt einige moderne Aspekte der Optik und Photonik. Das Schwergewicht liegt auf der Physik des Lasers und deren Grundlagen.
Vorkenntnisse: Atom- und Molekülphysik, Quantenmechanik I
Die Vorlesung behandelt in erster Linie einige moderne Aspekte der Wechselwirkung von Licht mit Materie und geht dabei auch auf experimentelle Techniken sowie Anwendungen ein. Themen: Nichtlineare Optik, Erzeugung und Eigenschaften ultrakurzer Laserpulse, Kurzzeitspektroskopie, Photonische Kristalle und Metamaterialien.
Vorkenntnisse: Bachelor Physik oder gleichwertig
Nanooptics describes optical phenomena occurring on the length scale below the diffraction limit of approximately half the wavelength. Optical interaction between fluorescent molecules, between molecules and a metallic (plasmonic) or dielectric (phononic) surface such as a nanoparticle, or the effect of surface enhanced Raman scattering used for nanoscale surface analysis, all base on this optical far- and near-field coupling effects. As such, nanooptics has the power of providing optical characterization on the 10 nm length scale, thus being applicable in many new fields and nanodevices. Of importance, however, is the understanding and interplay of different physical effects such as damping, electric field enhancement, radiative and non-radiative transitions, and others more. This lecture will provide the necessary background, as well as the view into prospective applications.
Requirements: Atom- & Molecular Physics
Classical physics vs. quantum-mechanics, molecular basis, scaling laws, dimensionality, transport properties, building blocks of the Nanoworld, binding, el./mech./opt. nanosystems, nano tools, nanocharacterization, nanobiotechnology
Requirements: solid state physics, quantum mechanics I
This lecture introduces essential concepts of optics, including linear response functions for model systems like the harmonic oscillator, two level systems, and free electrons in metals. The electronic band structure of inorganic semiconductors is discussed as a basis for optical transitions and emissive devices like light-emitting diodes and lasers. The lecture is suitable for B.Sc. physics undergraduates in the 4th or 6th term, and for M.Sc. students with a completed B.Sc. degree. The course is compulsory for master students in 'Organic Molecular Electronics'.
Requirements: A previous participation in a course in Solid State Physics or Semiconductor Physics would be helpful, but not mandatory.
- basics: chemical bond structure, hybridisation - optical properties - electronic properties
- doping - Transition from organic semiconductor to device concepts (Example OLED) - lab tour
Requirements: solid state physics, basics in semiconductors physics
This course introduces the basic quantum mechanical formalism for electrons and applies it to one-dimensional model potentials, spherically symmetric potentials and periodic one-dimensional systems. Based on the variational principle, the description of the chemical bond and multi-electron atoms goes beyond the typical content of a course 'Quantum Mechanics I', whereas rather formal aspects of quantum physics are treated less explicitly. The lecture is accompanied by homework assignments discussed in exercise hours. The lecture is suitable for B.Sc. physics undergraduates in the 5th term, and for M.Sc. students with a completed B.Sc. degree. The course is compulsory for master students in 'Organic Molecular Electronics'.
Requirements: A previous participation in a course in Theoretical Physics would be helpful, e.g. in Classical Mechanics.
Aufbau und Strahlführung am REM; physikalische Ursachen für den Bildkontrast; Bestimmung der chemischen Zusammensetzung; Analyse der Kristallstruktur, der Phasenverteilung und der Orientierung des Kristallgitters; Bestimmung von Verzerrungsfeldern und inneren Spannungen; Untersuchung optischer und elektrischer Eigenschaften von Halbleitermaterialien; Abbildung ausgedehnter Defekte.
Voraussetzungen: Experimentalphysik III
Scanning tunneling microscopy, atomic force microscopy, and scanning near-field optical microscopy; physical principles (tunneling current, atomic forces, optical near field), instrumental realization (feedback system, vibration isolation, etc.), various modes of operation, applications in physics, chemistry, and biology (imaging and spectroscopy), nanomanipulation.
Requirements: 2 years study of physics
Overview and fundamental properties of Semiconductors/Statistics, Transport, Generation and Recombination of Charge Carriers/Principles of Devices/Simple Devices/New Semiconductor Materials.
Requirements: solid state physics
Moderne Abscheide- und Strukturierungsverfahren erlauben die Herstellung von Nanostrukturen mit immer kleinerer Ausdehnung, sodass Elektronen in einer o. mehreren Dimensionen "eingesperrt" werden. Inhalt: Herstellung, Quantentöpfe und Übergitter, Quantendrähte u. -punkte, Nano-Transport (Tunneln, Leitwert-Quantisierung), optische Uebergänge (Quantenkaskadenlaser), Quanten-Hall-Effekt, Graphen.
Voraussetzungen: Festkörperphysik, Quantenmechanik I
Power delivery by the sun, basics of solar cells, solar cell materials, thermal devices
Requirements: solid state physics, semiconductor physics