Understanding negative gas adsorption in highly porous networks for the design of pressure amplifying materials
Table of contents
ERC Advanced Grant: “Amplipore”
ERC Advanced Grant: “Amplipore” ERC Advanced Grant: “Amplipore” ERC Advanced Grant: “Amplipore” ERC Advanced Grant: “Amplipore” ERC Advanced Grant: “Amplipore”
(GA No.: 742743)
Duration: 9/2017-8/2022
Negative gas adsorption (NGA) is a new and counterintuitive phenomenon, for the first time reported in 2016: Normal solid materials with significant outer or inner surface area always take up gas when the pressure in the surrounding reservoir is increased (adsorption). NGA networks instead react at a certain point in the opposite direction: They release gas upon external gas pressure increase, leading to an overall pressure amplification in a closed system (Fig. 1). Comparable phenomena have never been reported before.

Fig. 1: Counterintuitive NGA: When increasing external gas pressure (left), the MOF releases gas by contraction causing an overall pressure amplification (middle) in the closed system (right).
What is so exciting about NGA? We have a unique material in hand, that counteracts to an external force by force amplification. This phenomenon shows a characteristic negative step in the adsorption isotherm (Fig. 2).

Fig. 2: Methane adsorption isotherm at 111 K (DUT-49).
So far NGA has solely been observed in a handful of coordination polymers, featuring a colossal compression associated with a mesopore-to-micropore transformation (Fig. 3). Gas pressure amplifying materials could lead to important innovations in gas releasing rescue systems, pneumatic control systems (production, transportation), micropumps, microfluidic devices, pneumatic actuators, and artificial lungs.

Fig. 3: Structural transformation of DUT-49 (a dynamic MOF changing structure as a response to gas pressure changes).
A fundamental understanding of the physical mechanisms, structures, and thermodynamic boundary conditions is an essential prerequisite for any industrial application of this counterintuitive phenomenon.
People
Publications
- “A pressure-amplifying framework material with negative gas adsorption transitions”, S. Krause, V. Bon, I. Senkovska, U Stoeck, D. Wallacher, D. M. Többens, S. Zander, R. S. Pillai, G. Maurin, F.-X. Coudert and S. Kaskel, Nature, 2016, 532, 348–352.
- “Origins of Negative Gas Adsorption”, J. D. Evans, L. Bocquet and F.-X. Coudert, Chem, 2016, 1, 873–886.
- “In Situ Monitoring of Unique Switching Transitions in the Pressure-Amplifying Flexible Framework Material DUT-49 by High-Pressure 129Xe NMR Spectroscopy”, J. Schaber, S. Krause, S. Paasch, I. Senkovska, V. Bon, D. M. Többens, D. Wallacher, Stefan Kaskel and E. Brunner, J. Phys. Chem. C, 2017, 121, 5195–5200.
- “Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal-Organic Frameworks”, S. Krause, J. Evans, V. Bon, I. Senkovska, S. Ehrling, U Stoeck, P. Yot, P. Iacomi, P. Llewellyn, G. Maurin, F.-X. Coudert and S. Kaskel, J. Phys. Chem. C, 2018, 122 (33), 19171–19179.
- “The effect of crystallite size on pressure amplification in switchable porous solids”, S. Krause, V. Bon, I. Senkovska, D. M. Többens, D. Wallacher, R. S. Pillai, G. Maurin and S. Kaskel, Nat. Commun. 2018, 9, 1573.
- “Exploring the thermodynamic criteria for responsive adsorption processes”, J. Evans, S. Krause, S. Kaskel, M. Sweatman and L. Sarkisov, Chemical Science 2019, 10 (19), 5011-5017.
- “Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks”, S. Krause, J. D. Evans, V. Bon, I. Senkovska, P. Iacomi, F. Kolbe, S. Ehrling, E. Troschke, J. Getzschmann, D. M. Többens, A. Franz, D. Wallacher, P. G. Yot, G. Maurin, E. Brunner, P. L. Llewellyn, F.-X. Coudert and S. Kaskel, Under review, 10.26434/chemrxiv.7796543.Nature Communications 2019, 10 (1), 3632.
- "High-Pressure in Situ 129Xe NMR Spectroscopy: Insights into Switching Mechanisms of Flexible Metal–Organic Frameworks Isoreticular to DUT-49", F. Kolbe; S. Krause; V. Bon; I. Senkovska; S. Kaskel; E. Brunner,Chemistry of Materials 2019, 31 (16), 6193-6201.
-
"New insights into solvent-induced structural changes of 13C labelled metal–organic frameworks by solid state NMR", M. Rauche; S. Ehrling; S. Krause; I. Senkovska; S. Kaskel; E. Brunner,Chemical Communications 2019, 55 (62), 9140-9143.
-
"Tunable Flexibility and Porosity of the Metal–Organic Framework DUT-49 through Postsynthetic Metal Exchange", B. Garai; V. Bon; S. Krause; F. Schwotzer; M. Gerlach; I. Senkovska; S. Kaskel,Chemistry of Materials 2020, 32 (2), 889-896.
-
"The Role of Temperature and Adsorbate on Negative Gas Adsorption in the Mesoporous Metal-Organic Framework DUT-49", S. Krause, J. D., Evans, V. Bon, I. Senkovska, F.-X. Coudert, D. M. Többens, D. Wallacher, N. Grimm, S. Kaskel, , Under review, 2020. DOI: 10.26434/chemrxiv.11733408.v1
-
"Low Temperature Calorimetry Coupled with Molecular Simulations for an In-Depth Characterization of the Guest-Dependent Compliant Behaviour of MOFs", P. Iacomi, B. Zheng, S. Krause, S. Kaskel, G. Maurin, P. L. Llewellyn, Under review, 2020. DOI: 10.26434/chemrxiv.11770437.v1
-
"The impact of defects and crystal size on negative gas adsorption in DUT-49 analyzed by in situ 129Xe NMR spectroscopy", S. Krause, F. S. Reuter, S. Ehrling, V. Bon, I. Senkovska, S. Kaskel*, E. Brunner, Under review, 2020. DOI: 10.26434/chemrxiv.11962503.v1