Prof. Dr. Martin Weber (i.R.)
Prof. Dr. Martin Weber (i.R.)
Send encrypted email via the SecureMail portal (for TUD external users only).
Institut für Analysis
Institut für Analysis
Visiting address:
Sekretariat:
Willersbau
Zellescher Weg 12-14
01069 Dresden
Bücher
- Wulich, B.Z.
Geometrie der Kegel in normierten Räumen
Weber, Martin R. (Übersetzer und Herausgeber)
de Gruyter (2017), xvi+224 pp.
ISBN 978-3-11-047884-6 (pbk), 978-3-11-047888-4 (ebook) Flyer - Martin R. Weber
Finite Elements in Vector Lattices.
de Gruyter, Berlin (2014), ix+220 pp.
ISBN 978-3-11-035077-7 (hbk), 978-3-11-035078-4 (ebook) Flyer
Journals
-
Heinecke, A.; Weber, M.R.
Finite Elements in Ordered Banach Spaces with Positive Basis.
to appear in: J. Math. Sci. (2023) -
Gönüllü, Uğur; Polat, Faruk; Weber Martin R.
Cesàro vector lattices and their ideals of finite elements.
Positivity 27 (2023), no. 2, paper no. 27, 15 pp. DOI -
Gönüllü, Uğur; Polat, Faruk; Weber Martin R.
Duals of Cesàro sequence vector lattices, Cesàro sums of Banach lattices and their finite elements.
Arch. Math. (Basel) 120 (2023), no. 6, 619–630 DOI -
Weber, M.R.
Finite Funktionen und finite Elemente in Vektorverbänden.
Studia Germanica Napocensia (Deutschsprachige Wissenschaft in Siebenbürgen und die Klausenburger Universität. 25 Jahre deutschsprachige Studienrichtung an der Babeș-Bolyai-Universität Cluj/Klausenburg/Kolozsvár), Band 7 (2022)
Herausgeber: R. Gräf, Chr. Săcărea et.al. -
Glück, Jochen; Weber, Martin R.
Almost interior points in ordered Banach spaces and the long-term behaviour of strongly positive operator semigroups.
Studia Math. 254 (2020), no. 3, 237–263 DOI -
Pliev, Marat; Polat, Faruk; Weber, Martin
Narrow and C-compact orthogonally additive operators in lattice-normed spaces.
Results Math. 74 (2019), no. 4, paper no. 157, 19 pp. DOI -
Pliev, M.A., Weber, M.R.
Finite elements in some vector lattices of nonlinear operators.
Positivity 22 (2018), no. 1, 245–260 DOI - Pliev, M.A., Weber, M.R.
Disjointness and order projections in the vector lattices of abstract Uryson operators.
Positivity 20 (2016), no. 3, 695–707 DOI - Weber, M.R.
Finite functions in C(ℝ) and finite elements in vector lattices.
Mat. Forum 10 (2016), no. 1, 158–171
(Review of Science - South of Russia, ISBN 978-5-904695-21-7)
Herausgeber: Math. Institut des Wladikawkasischen wissenschaftlichen Zentrums der Russischen Akademie der Wissenschaften. Wladikawkaz, Nord-Ossetien-Alania. - Weber, Martin R.
The ECMI-programme Mathematics for Industry at the Technical University Dresden (1990–2013).
ECMI Newsletter, 55, 1–4 (2014) >pdf - Teichert, Katrin; Weber, Martin R.
On self-majorizing elements in Archimedean vector lattices.
Positivity 18 (2014), no. 4, 823–837 DOI - Malinowski, Helena; Weber, Martin R.
On Finite Elements in f-Algebras and in Product Algebras.
Positivity 17 (2013), no. 3, 819–840 DOI - Sivakumar, K.C.; Weber, M.R.
On Positive Invertibility and Splittings of Operators in Ordered Banach Spaces.
Vladikavkaz Mat. Zh. 15 (2013), no. 1, 41–50 >pdf - Weber, M.R.
On Positive Invertibility of Operators and their Decompositions.
Math. Nachr. 282 (2009), no. 10, 1478–1487 DOI >ps >pdf - Hahn, Norbert; Hahn, Siegfried; Weber, Martin R.
On some vector lattices of operators and their finite elements.
Positivity 13 (2009) , no. 1, 145–163 DOI >ps >pdf - Weber, M.
Funktionalanalysis. Kap. 12 in:
Bronstein, I.N.; Semendjajew, K.A.; Musiol, G.; Mühlig, H.
Taschenbuch der Mathematik. (deutsch)
Edition Harri Deutsch (2008) - Chen, Zi Li; Weber, Martin R.
On Finite Elements in Lattices of Regular Operators.
Positivity 11 (2007), no. 4, 563–574 DOI >ps >pdf - Chen, Z.L.; Weber, M.R.
On Finite Elements in Sublattices of Banach Lattices.
Math. Nachr. 280 (2007), no. 5-6, 485–494 DOI >ps >pdf - Chen, Z.L.; Weber, M.R.
On finite elements in vector lattices and Banach lattices.
Math. Nachr. 279 (2006), no.5-6, 495–501 DOI >ps >pdf - Weber, Marin R.
Finite Elements in Vector Lattices.
Positivity IV – Theory and Applications. (eds.: Weber, M.; Voigt, J.)
Technische Universität Dresen, Dresden (2006), 155–172 >pdf >ps - eds.: Weber, Martin R.; Voigt, Jürgen
Positivity IV – Theory and Applications.
Proceedings of the 4th International Conference held at the Technische Universität Dresden, Dresden, July 25–29, 2005.
Technische Universität Dresden, Dresden (2006), vi+184 pp.
ISBN 3-86005-512-7 MR >ps - Tzschichholtz, I.; Weber, M.R.
Generalized M-norms on ordered normed spaces.
Orlicz centenary volume II. Proceedings of the Conferences 'Władysław Orlicz Centenary Conference' and 'Function Spaces VII' held in Poznań, July 21–25, 2003. Contributed Papers. (eds.: Hudzik, H.; Musielak, J.; Skrzypczak, L.)
Banach Center Publ. 68 (2005), Polish Academy of Sciences, Institute of Mathematics, Warsaw; 115–123 >ps - Weber, M.R.
Ordered Normed Spaces, Positive Operators and some Applications. (edited by A. Heinecke).
Minisemester (Spring 2005): Numerical Aspects in Applied Mathematics. (ed.: Andrzej Cegielski)
University of Zielona Góra, Faculty of Mathematics, Computer Science and Econometrics (2007), 127–185 (ISBN 978-83-7481-074-6) - Weber, M.
Functional Analysis. Chap. 12 in:
Bronshtein, I.N.; Semendyayew, K.A.; Musiol, G.; Muehlig, H.
Handbook of Mathematics. (english)
Springer, Berlin, Heidelberg, New York (2004), 4th ed. - Bula, I.; Weber, M.R.
On discontinuous functions and their application to equilibria in some economic model.
Preprint MATH-AN-02-2002, TU Dresden (2002), 20 pp. pdf - Kalauch, A.; Weber, M.R.
On a certain Maximum Principle for Positively Invertible Matrices and Operators in an Ordered Normed Space.
Function spaces. Proceedings of the 5th International Conference held in Poznań, August 28–September 3, 1998. (eds.: Hudzik, H.; Skrzypczak,L.)
Lecture Notes in Pure and Appl. Math. 213 (2000), Marcel Dekker, Inc.; 217–230 ps - Kalauch, A.; Weber, M.R.
On a certain Maximum Principle for Positive Operators in an Ordered Normed Space.
Positivity 4 (2000), no. 2, 179–195 DOI >pdf - Makarow, B.M.; Weber, M.R.
On the asymptotic behaviour of some positive semigroups.
Preprint MATH-AN-09-2000, TU Dresden (2000), 20 pp. arXiv - Pühl, H.; Schirotzek, W.; Weber, M.R.
On matrices satisfying a maximum principle with respect to a cone.
Linear Algebra Appl. 277 (1998), 337–356 DOI ps - Weber, M.R.
On finite and totally finite elements in vector lattices.
Analysis Mathematica 21 (1995), no. 3, 237–244 DOI - Türke, C.; Weber, M.R.
On a Maximum Principle for Inverse Monotone Matrices.
Linear Algebra Appl. 218 (1995), 47–57 DOI pdf - Weber, Martin
On the Positiveness of the Inverse Operator.
Math. Nachr. 163 (1993), 145–149 DOI
Erratum: Math. Nachr. 171 (1995), 325–326 DOI - Weber, Martin
Finite Elemente im Vektorverband der Radonmaße.
Wiss. Z. Tech. Univ. Dresden 41 (1992), no. 5, 17–18 - Weber, M.
Finite Elements in the Space of Radon Measures. (russian)
Optimizatsiya 47(64) (1990), 110–115 pdf - Weber, Martin
Some properties of the realization space of vector lattices.
Proceedings of the Conference Topology and Measure II. Part 1. Held in Rostock and Warnemünde, October 24–November 2, 1977.
(eds.: Flachsmeyer, J.; Frolík, Z.; Terpe, F.)
Wiss. Beiträge Ernst-Moritz-Arndt-Universität Greifswald (1980), 169–172 MR - Weber, Martin
On the realization of vector lattices on locally compact topological spaces. MR
Proceedings of the Conference Topology and Measure I. Part 2. Held in Zinnowitz, October 21–25, 1974.
(eds.: Flachsmeyer, J.; Frolík, Z.; Terpe, F.)
Wiss. Beiträge Ernst-Moritz-Arndt-Universität Greifswald (1978), 393–402 - Makarow, B.M.; Weber, M.R.
Einige Untersuchungen des Raumes der maximalen Ideale eines Vektorverbandes mit Hilfe von finiten Elementen II.
Math. Nachr. 80 (1977), 115–125 DOI - Makarow, B.M.; Weber, M.R.
Einige Untersuchungen des Raumes der maximalen Ideale eines Vektorverbandes mit Hilfe von finiten Elementen I.
Math. Nachr. 79 (1977), 115–130 DOI - Makarow, B.M.; Weber, M.
Über die Realisierung von Vektorverbänden III.
Math. Nachr. 86 (1978), 7–14 DOI - Weber, M.
Über die Realisierung von Vektorverbänden II.
Math. Nachr. 65 (1975), 165–177 DOI - Weber, M.; Makarow, B.M.
Über die Realisierung von Vektorverbänden I. (russian)
Math. Nachr. 60 (1974), 281–296 DOI - Weber, M.
Über die Realisierung von Vektorverbänden mit abzählbarer fundamentaler Folge von Intervallen. (russian)
Vestn. Leningr. Univ. 1973, no. 7, Mat. Mekh. Astron. 1973, no. 2, 152–154 - Weber, M.
The inductive limit of a certain class of KB-lineals. (russian)
Vestn. Leningr. Univ. 1971, no. 13, Mat. Mekh. Astron. 1971, no. 3, 24–30
- 2017
Porto (Portugal). SYSTEC. International Workshop on Nonlinear Analysis and Optimization 19.04.2017 - 21.04.2017.
Cones in Normed Spaces - Application in Optimization Theory and the fate of Vulikh's book on cones - 2016
Cluj (Romania). Universitea Babeş-Bolyai. Fakultea de Matematicăşi Informatică.
November 2016.
Finite functions in C(Q) and finite elements in vector lattices >>pdf - 2015
Hamburg. DMV-Jahrestagung 2015. September 21.-25. 2015.
Finite Elements in some Vector Spaces of Nonlinear Operators' (gem.mit M.A. Pliev).
Milano. Universita Degli Studi Di Milano. February 6, 2015.
Novi Sad (Serbia).University of Novi Sad, Prirodno-Matemat\v{i}ci Fakultet.
May, 2015.
Wladikawkaz (Russia). International Conference Order Analysis and Related Problems of Mathematical Modelling.
Tsey Gorge (Kaukasus), July 2015.
Finite functions in C(R) and finite elements in vector lattices - 2014
Poznan. DMV-PTM Mathematical Meeting. September, 17-20, 2014.
On the space of maximal ideals of vector lattices >>pdf - 2013
Tartu (Estonia). Mathematical Modelling and Analysis - Approximation Methods and Orthogonal Expansions. May 27-30, 2013.
The ECMI-program Mathematics for Industry at the Technical University Dresden (1990-2013) >>pdf - 2012
Saarbrücken. DMV-Jahrestagung 2012. Über die positive Invertierbarkeit von Operatoren und Operatorintervallen in geordneten Banachräumen >>pdf - 2011
Athen. National Technical University of Athens. Intl. Conf. Ordered Spaces and Applications
1. Finite elements in lattices ordered algebras (together with Helena Malinowski) >>pdf
2. Self-majorizing elements in Archimedean vector lattices (together with Katrin Teichert) >>pdf - 2009
Graz. ÖMG-Kongress - DMV-Jahrestagung 2009.
On positive invertibility of operators in ordered Banach spaces >>ps
Chennai. Indian Institute of Technology Madras.
1. On positive invertibility of operators in ordered vector spaces
2. Finite elements in vector lattices, sublattices, Banach lattices and in vector lattices of operators - 2007
Belfast. Conference Positivity V.
On vector lattices of operators and their finite elements - 2006
Calgary. Summer 2006 meeting of the Canadian Mathematical Society.
On finite elements in vector lattices of regular operators
Novi Sad. University of Novi Sad. Finite elements in vector lattices - 2005
Dresden. Conference Positivity IV. Finite elements in vector lattices
Zielona Gora. University of Zielona Gora. Ordered Normed Spaces, Positive Operators and some Applications. (edited by A. Heinecke). Series of lectures during the Minisemester Numerical aspects in applied mathematics.
Athen. National Technical University of Athens. On continuous functions with compact support and their abstract analogon in vector lattices
Prag. Karls-Universität. Finite elements in vector lattices - 2004
Budva. XVI. Conference on Applied Mathematics, PRIM 2004. (organized by the University of Novi Sad).
On the ECMI postgraduate programme ,,Mathematics for Industry''- a common European approach in applied mathematics and industrial activities (together with A. Noack) - 2003
Poznan. Orlicz Centenary Conference and Function Spaces VII. Generalized m-norms on ordered normed spaces (together with I. Tzschichholtz) - 2002
Sankt Petersburg. State University of St. Petersburg.
On some maximum principle for positive operators. - 2001
Nijmegen. Conference Positivity III.
Wroclaw. Function Spaces VI.
On the asymptotic behavior of some positive semigroups (together with B. M. Makarov) >> ps - 1999
Chemnitz. Technische Universität Chemnitz.
On maximum principles for invertible matrices and operators - 1998
Sheffield. University of Sheffield.
Vector lattices, finite elements and their topological characterization
Wroclaw. Politechnika Wroclawska.
On a maximum principle for inverse monotone operators
Poznan. Function Spaces V.
On a certain Maximum Principle for Positively Invertible Matrices and Operators in an Ordered Normed Space (together with A. Kalauch)