Prof. Dr. Martin Weber (i.R.)
Prof. Dr. Martin Weber (i.R.)
Send encrypted mail via the SecureMail portal (for TUD external users only).
Institut für Analysis
Institut für Analysis
Visitor Address:
Sekretariat:
Willersbau
Zellescher Weg 12-14
01069 Dresden
- work Tel.
- +49 351 463-34633
- fax Fax
- +49 351 463-34664
Bücher
- Wulich, B.Z.
Geometrie der Kegel in normierten Räumen
Weber, Martin R. (Übersetzer und Herausgeber)
de Gruyter (2017), ISBN 978-3-11-047888-4, Seiten: 224
(Flyer) - Martin R. Weber
Finite Elements in Vector Lattices.
Walter de Gruyter GmbH, Berlin/Boston. 220 pp. (2014) >pdf
Journals
-
Pliev, M.A., Weber, M.R.
Finite elemente in some vector lattice s of nonlinear operators
Positivity (2018), 245–260 DOI - Pliev, M.A., Weber, M.R.
Disjointness and order projections in the vector lattices of abstract Uryson operators.
Positivity (2016), vol. 20, no. 3, 695-707 DOI - Weber, M. R.
Finite functions in C(ℝ) and finite elements in vector lattices.
Mathematical Forum (Review of Science - South of Russia, ISBN 978-5-904695-21-7),
v.10, no.1, 158-171 (2016)
Herausgeber: Math. Institut des Wladikawkasischen wissenschaftlichen Zentrums der Russischen Akademie der Wissenschaften. Wladikawkaz, Nord-Ossetien-Alania. - Martin R. Weber
The ECMI-programme Mathematics for Industry at the Technical University Dresden (1990 - 2013). ECMI Newsletter, 55, 1-4 (2014) >pdf - Katrin Teichert, Martin R. Weber
On selfmajorizing elements in Archimedean vector lattices.
Positivity (2014). vol. 18, no. 4, 823-837. (2014) DOI - Malinowski, H., Weber, M.R.
On Finite Elements in f-Algebras and in Product Algebras.
Positivity (2013), vol. 17, no. 3, 819-840,
DOI >pdf - Sivakumar, K.C., Weber, M.R.
On Positive Invertibility and Splittings of Operators in Ordered Banach Spaces.
Vladikawkaz Math. Journal, vol.15,, no.1, 41-50 (2013) >pdf - Weber, M.R.
On Positive Invertibility of Operators and their Decompositions.
Math. Nachr., 282, No.10, 1478-1487 (2009)
>ps >pdf - Hahn, N., Hahn, S., Weber, M.R.
On some vector lattices of operators and their finite elements.
Positivity (2009) , vol. 13, no. 1, 145-163 (2009)
DOI >ps >pdf - Chen, Z.L., Weber, M.R.
On Finite Elements in Lattices of Regular Operators.
Positivity (2007), vol 11, no. 4, 11, 563-574
DOI >ps >pdf - Weber, M.R.
Funktionalanalysis.
Kap. 12 in I.N. Bronstein, K.A. Semendjajew, G. Musiol, H. Mühlig:
Taschenbuch der Mathematik (deutsch)
Edition Harri Deutsch. (2008) - Chen, Z.L., Weber, M.R.
On Finite Elements in Sublattices of Banach Lattices.
Math. Nachr., 280, No.5-6, 485-494 (2007)
>ps >pdf - Chen, Z.L., Weber, M.R.
On finite elements in vector lattices and Banach lattices.
Math. Nachr., 279, No.5-6, 495-501 (2006)
>ps >pdf - Weber, M.R.
Finite Elements in Vector Lattices.
Proceedings of the Conference Positivity IV, 155-172 Dresden (2006)
>pdf >ps - eds.: Weber, Martin R. and Voigt, Jürgen
Positivity IV - Theory and Applications.
Proceedings of the 4th International Conference held at the Technische Universität Dresden, Dresden, July 25–29 (2005)
Technische Universität Dresden, Dresden, 2006. vi+184 pp. ISBN:3-86005-512-7, MR 2246248 >ps - Tzschichholtz, I., Weber, M.R.
Generalized M-norms on ordered normed spaces.
Proceedings of the Orlicz Centenary Conference and Function Spaces VII. Banach Center Publications, vol. 68, 115-123, Institute of Mathematics Polish Academy of Sciences, Warszawa (2005)
>ps - Weber, M.R.
Ordered Normed Spaces, Positive Operators and some Applications.
(edited by A.Heinecke). Minisemester (Spring 2005): Numerical Aspects in Applied Mathematics, pp.127-185. Editor: Andrzej Cegielski. ISBN 978-83-7481-074-6, University of Zielona Gora. Faculty of Mathematics, Computer Science and Econometrics. (2007) - Weber, M.R.
Funktionalanalysis.
Handbook of Mathematics (English)
Springer. Berlin, Heidelberg, New York. (2003) - Kalauch, A., Weber, M.R.
On a certain Maximum Principle for Positively Invertible Matrices and Operators in an Ordered Normed Space.
Function Spaces - the Fifth Conference (Poznan, 1998). Editors: H.Hudzik, and L.Skrzypczak, Lecture Notes in pure and appl. Math. Marcel Dekker, Inc., 213, 217-230 (2000) >ps - Kalauch, A., Weber, M.R.
On a certain Maximum Principle for Positive Operators in an Ordered Normed Space.
Positivity (2000), vol. 4, no. 2, 179-195
DOI >pdf - Pühl, H., Schirotzek, W., Weber, M.R.
On Matrices Satisfying a Maximum Principle with respect to a Cone.
Linear Algebra and Appl., 277, 337-356 (1998) >ps - Weber, M.R.
On Finite and Totally Finite Elements in Vector Lattices.
Analysis Mathematica, 21, 237-244 (1995) >pdf - Türke, C., Weber, M.R.
On a Maximum Principle for Inverse Monotone Matrices.
Linear Algebra and Appl., 218, 47-57 (1995) >pdf - Weber, M.R.
On the Positiveness of the Inverse Operator.
Math. Nachr., 163, 145-149 (1993). Erratum: Math. Nachr., 171, 325-326 (1995) - Weber, M.R.
Finite Elemente im Vektorverband der Radonmaße.
Wiss. Zeitschr. TU Dresden, 41 Heft 5, 21-22 (1992) - Weber, M. R.
Finite Elements in the Space of Radon Measures. (Russian)
Optimizaciya, 47 (64) 110-115, (1990) >pdf - Weber, M.
Some properties of the realization space of vector lattices. Proceedings of the Conference Topology and Measure II (Rostock-Warnemünde 1977).
Edited by J.Flachsmeyer, Z.Frolik, F.Terpe. Wiss. Beiträge Ernst-Moritz-Arndt-Universität Greifswald. Part 1, 169-172 (1980) MR0646269 (83a:00002a) - Weber, M.
On the Realization of Vector Lattices on Locally Compact Topological Spaces. Proceedings of the Conference Topology and Measure I (Zinnowitz 1974). Edited by J.Flachsmeyer, Z.Frolik, F.Terpe. Wiss. Beiträge Ernst-Moritz-Arndt-Universität Greifswald. Part 2, 393-402 (1978) MR0540571 (80d:28002b) - Makarow, B.M., Weber, M.R.
Einige Untersuchungen des Raumes der maximalen Ideale eines Vektorverbandes mit Hilfe von finiten Elementen II.
Math. Nachr., 80, 115-125 (1977) - Makarow, B.M., Weber, M.R.
Einige Untersuchungen des Raumes der maximalen Ideale eines Vektorverbandes mit Hilfe von finiten Elementen I.
Math. Nachr., 79, 115-130 (1977) - Weber, M.R., Makarow, B.M.
On the Representation of Vector Lattices III. (Russian)
Math. Nachr., 86, 7-14 (1978) - Weber, M.R.
Über die Realisierung von Vektorverbänden II.
Math. Nachr., 65, 165-177 (1975) - Makarow, B.M., Weber, M.R.
On the Representation of Vector Lattices I.
Math. Nachr., 60, 281-296 (1974) - Weber, M.
Über die Realisierung von Vektorverbänden mit abzählbarer fundamentaler Folge von Intervallen. (Russian)
Vestn. Leningr. Univ., No.7 (Mat. Mekh. Astron., No.2), 152-154 (1973) - Weber, M.
The inductive limit of a certain class of KB-lineals. (Russian)
Vestn. Leningr. Univ., No.13 (Mat. Mekh. Astron., No.3), 24-30 (1971)
- 2017
Porto (Portugal). SYSTEC. International Workshop on Nonlinear Analysis and Optimization 19.04.2017 - 21.04.2017.
Cones in Normed Spaces - Application in Optimization Theory and the fate of Vulikh's book on cones - 2016
Cluj (Romania). Universitea Babeş-Bolyai. Fakultea de Matematică şi Informatică.
November 2016.
Finite functions in C(Q) and finite elements in vector lattices >>pdf - 2015
Hamburg. DMV-Jahrestagung 2015. September 21.-25. 2015.
Finite Elements in some Vector Spaces of Nonlinear Operators' (gem.mit M.A. Pliev).
Milano. Universita Degli Studi Di Milano. February 6, 2015.
Novi Sad (Serbia).University of Novi Sad, Prirodno-Matemat\v{i}ci Fakultet.
May, 2015.
Wladikawkaz (Russia). International Conference Order Analysis and Related Problems of Mathematical Modelling.
Tsey Gorge (Kaukasus), July 2015.
Finite functions in C(R) and finite elements in vector lattices - 2014
Poznan. DMV-PTM Mathematical Meeting. September, 17-20, 2014.
On the space of maximal ideals of vector lattices >>pdf - 2013
Tartu (Estonia). Mathematical Modelling and Analysis - Approximation Methods and Orthogonal Expansions. May 27-30, 2013.
The ECMI-program Mathematics for Industry at the Technical University Dresden (1990-2013) >>pdf - 2012
Saarbrücken. DMV-Jahrestagung 2012. Über die positive Invertierbarkeit von Operatoren und Operatorintervallen in geordneten Banachräumen >>pdf - 2011
Athen. National Technical University of Athens. Intl. Conf. Ordered Spaces and Applications
1. Finite elements in lattices ordered algebras (together with Helena Malinowski) >>pdf
2. Self-majorizing elements in Archimedean vector lattices (together with Katrin Teichert) >>pdf - 2009
Graz. ÖMG-Kongress - DMV-Jahrestagung 2009.
On positive invertibility of operators in ordered Banach spaces >>ps
Chennai. Indian Institute of Technology Madras.
1. On positive invertibility of operators in ordered vector spaces
2. Finite elements in vector lattices, sublattices, Banach lattices and in vector lattices of operators - 2007
Belfast. Conference Positivity V.
On vector lattices of operators and their finite elements - 2006
Calgary. Summer 2006 meeting of the Canadian Mathematical Society.
On finite elements in vector lattices of regular operators
Novi Sad. University of Novi Sad. Finite elements in vector lattices - 2005
Dresden. Conference Positivity IV. Finite elements in vector lattices
Zielona Gora. University of Zielona Gora. Ordered Normed Spaces, Positive Operators and some Applications. (edited by A. Heinecke). Series of lectures during the Minisemester Numerical aspects in applied mathematics.
Athen. National Technical University of Athens. On continuous functions with compact support and their abstract analogon in vector lattices
Prag. Karls-Universität. Finite elements in vector lattices - 2004
Budva. XVI. Conference on Applied Mathematics, PRIM 2004. (organized by the University of Novi Sad).
On the ECMI postgraduate programme ,,Mathematics for Industry''- a common European approach in applied mathematics and industrial activities (together with A. Noack) - 2003
Poznan. Orlicz Centenary Conference and Function Spaces VII. Generalized m-norms on ordered normed spaces (together with I. Tzschichholtz) - 2002
Sankt Petersburg. State University of St. Petersburg.
On some maximum principle for positive operators. - 2001
Nijmegen. Conference Positivity III.
Wroclaw. Function Spaces VI.
On the asymptotic behavior of some positive semigroups (together with B. M. Makarov) >> ps - 1999
Chemnitz. Technische Universität Chemnitz.
On maximum principles for invertible matrices and operators - 1998
Sheffield. University of Sheffield.
Vector lattices, finite elements and their topological characterization
Wroclaw. Politechnika Wroclawska.
On a maximum principle for inverse monotone operators
Poznan. Function Spaces V.
On a certain Maximum Principle for Positively Invertible Matrices and Operators in an Ordered Normed Space (together with A. Kalauch)