Dipl.-Ing. Lennart Linden

Dipl.-Ing. Lennart Linden
Send encrypted email via the SecureMail portal (for TUD external users only).
Chair of Computational and Experimental Solid Mechanics
Visiting address:
Zeunerbau, Room 350 George-Bähr-Straße 3c
01069 Dresden
Research
- Data-driven material modeling and simulation methods
- Application of neural networks in solid mechanics
- Embedding basic physical principles in neural networks
- ResearchGate, GoogleScholar
Teaching
- Tutorial Continuum Mechanics (main studies)
- Tutorial Finite Element Method (main studies)
- Tutorial Statics (basic studies)
Publications
Talks
- L. Linden, K. A. Kalina, J. Brummund, M. Kästner, Automated constitutive modeling of isotropic hyperelasticity based on artificial neural networks, 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics, Online, 2021
- L. Linden, K. A. Kalina, J. Brummund, M. Kästner, Constitutive modeling of isotropic and anisotropic hyperelastic solids based on physically informed artificial neural networks, 18th European Mechanics of Materials Conference, Oxford, 2022
- L. Linden, K. A. Kalina, J. Brummund, M. Kästner, An efficient data-driven multiscale scheme based on physics-constrained neural networks and autonomous data mining, 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics, Aachen, 2022
- L. Linden, K. A. Kalina, J. Brummund, M. Kästner, An automated data-driven multiscale scheme based on physically informed neural networks, 9th GACM Colloquium on Computational Mechanics 2022, Essen, 2022
Monographs
- L. Linden, Implementierung eines datengetriebenen Algorithmus zur Simulation von Fachwerken mit nicht linear elastischem Materialverhalten, Bachelor Thesis Mathematics, 2022
- L. Linden, Datengetriebene Modellierung anisotroper Elastizität bei finiten Deformationen mittels künstlicher neuronaler Netze, Diploma Thesis Mechanical Engineering, 2020