Collective motion and swarming in myxobacteria
One of the essential problems in developmental biology is how spatial patterns of differentiated cells (e.g. tissues) can arise from an initially uniform mass of identical cells. In this project, a group of biologists (Lotte Soegaard-Andersen, Max Planck Institute for Terrestrial Microbiology, Marburg), mathematicians (Andreas Deutsch, Technical Universitry Dresden) and physicists (Markus Bär, Physikalisch-Technische Bundesanstalt, Berlin) addresses this question using multicellular development in Myxococcus xanthus as a model system. The working group applies a highly interdisciplinary approach combining biological experiments and quantitative mathematical modeling and simulation. In response to starvation, cells of the gliding bacterium Myxococcus xanthus initiate a multicellular developmental program that leads to streaming and aggregation patterns and culminates in the formation of spore-filled fruiting bodies. The non-diffusible C-signal plays a key role in inducing and choreographing the aggregation and sporulation processes. This project promises new insights into pattern formation mechanisms in biological systems and a better understanding of how non-diffusible morphogens may induce and organize morphogenetic cell movements.
Partners
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg
- TU Dresden, Institut für Lebensmittel- und Bioverfahrenstechnik
ZIH Contact
Publications
- F. Peruani, J. Starruss, V. Jakovljevic, L. Sogaard-Andersen, A. Deutsch, M. Bär. Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria. Phys. Rev. Lett., 108, 9, 098102, 2012. [Link]
- J. Starruss, F. Peruani, V. Jakovljevic, L. Soogard-Andersen, A. Deutsch, M. Bär. Pattern-formation mechanisms in motility mutants of Myxococcus xanthus. Interface Focus, 2, 6, 774-785, 2012. [Link]
- T. Walther, H. Reinsch, K. Ostermann, A. Deutsch, T. Bley. Applying dimorphic yeasts as model organisms to study mycelial growth: part 2. Use of mathematical simulations to identify different construction principles in yeast colonies. Bioprocess. Biosyst. Eng., 34, 21-31, 2011. [Link]
- J. Starruß, T. Bley, L. Søgaard-Andersen, A. Deutsch. A new mechanism for collective migration in M. xanthus. J. Stat. Phys., 128, 269-286, 2007. [Link]
- U. Börner, A. Deutsch, M. Bär. A generalized discrete model linking rippling pattern formation and individual cell reversal statistics in colonies of myxobacteria. Phys. Biol., 3, 138-146, 2006. [Link]