B1 - Anisotropic damping in the concrete
Multi-scale simulation of the anisotropic damping properties in impact-loaded, reinforced concrete
Daniel Balzani / Wolfgang Weber (Institute of Mechanics and Shell Structures) in cooperation with Michael Kaliske (Institute of Structural Analysis), Viktor Mechtcherine (Institute of Construction Materials)
In this subproject, a method for the numerical calculation of the wave propagation in fiber-reinforced concrete on the fine meso scale is to be developed. For this, representative volume elements are, boundary conditions which represent the spectrum of the large-scale wave propagation, and models for microscopic damage are to be constructed.
A further focus is the homogenization of the fine meso scale, in order to determine parameters for the anisotropic attenuation on the larger scale. For the efficiency of reinforcing layers, a reinforcement orientation optimized to some extent can make a decisive contribution to setting an improved damping behavior. In the sense of a thorough approach, a method for the determination of an optimal virtual orientation of the strengthening elements in the reinforced concrete component is to be developed based on biological soft tissues, taking into account the requirements from the construction practice.