Publikationen
Selected publications
For a full listing, see publications Michael Brand.
For ORCID ID: 0000-0001-5711-6512
2024
Restoration of Cone Circuit Functionality in the Regenerating Adult Zebrafish Retina. Abraham; Evelyn; Hella Hartmann, Takeshi Yoshimatsu, Tom Baden, Michael Brand, Hella Hartmann, Takeshi Yoshimatsu, Tom Baden, and Michael Brand (2024). Developmental Cell, in press, and bioRxiv 2023.11.11.566441; https://doi.org/10.1101/2023.11.11.566441
Fine-tuning of Fgf8 morphogen gradient by heparan sulfate proteoglycans in the extracellular matrix. Gupta, Mansi; Thomas Kurth, Fabian Heinemann, Petra Schwille, Sebastian Keil, Franziska Knopf and Brand, M. (2024). Biophysical Journal, in press, and BioRxiv. https://doi.org/10.1101/2023.11.02.565243.
Morphogen gradients are regulated by porous media characteristics of the developing tissue (2024). Justina Stark, Rohit Krishnan Harish, Ivo F. Sbalzarini, Michael Brand. In BioRxiv https://doi.org/10.1101/2024.04.05.588250
Successful regeneration of the adult zebrafish retina is dependent on inflammatory signaling. Bludau, Oliver, Anke Weber, Viktoria Bosak, Veronika Kuscha, Kristin Dietrich, Stefan Hans, and M. Brand (2024). Frontiers in CDB, https://doi.org/10.3389/fcell.2024.1332347 , and BioRxiv 2023.08.11.552956; doi: https://doi.org/10.1101/2023.08.11.552956
Blind but alive - congenital loss of atoh7 disrupts the visual system of adult zebrafish. Juliane Hammer; Paul Röppenack; Sarah Yousuf; Anja Machate; Marika Fischer; Stefan Hans; Michael Brand (2024). Investig Ophtal Vision Sci, In press, and BioRxiv DOI: 10.1101/2024.04.23.590799
Dose and dose rate dependence of the tissue sparing effect at ultra-high dose rate studied for proton and electron beams using the zebrafish embryo model
Felix Horst; Elisabeth Bodenstein; Michael Brand; Stefan Hans; Leonhard Karsch; Elisabeth Lessmann; Steffen Löck; Michael Schürer; Jörg Pawelke; Elke Beyreuther (2024). Radiotherapy and Oncology, DOI: 10.1016/j.radonc.2024.110197
2023
Restoration of Cone Circuit Functionality in the Regenerating Adult Zebrafish Retina.Abraham; Evelyn; Hella Hartmann, Takeshi Yoshimatsu, Tom Baden, Michael Brand, Hella Hartmann, Takeshi Yoshimatsu, Tom Baden, Michael Brand (2023). bioRxiv 2023.11.11.566441; doi: https://doi.org/10.1101/2023.11.11.566441
Fine-tuning of Fgf8 morphogen gradient by heparan sulfate proteoglycans in the extracellular matrix. Gupta, Mansi; Thomas Kurth, Fabian Heinemann, Petra Schwille, Sebastian Keil, Franziska Knopf and Brand, M. (2023). BioRxiv. https://doi.org/10.1101/2023.11.02.565243.
Successful regeneration of the adult zebrafish retina is dependent on inflammatory signaling. Bludau, Oliver, Anke Weber, Viktoria Bosak, Veronika Kuscha, Kristin Dietrich, Stefan Hans, and M. Brand (2023). BioRxiv 2023.08.11.552956; doi: https://doi.org/10.1101/2023.08.11.552956
Single cell RNA sequencing unravels the transcriptional network underlying zebrafish retina regeneration. Celotto, Laura; Rost, Fabian, Machate, Anja, Bläsche, Juliane, Dahl, Andreas, Weber, Anke, Hans, Stefan, and Brand, Michael (2023) eLife 12:RP86507 https://doi.org/10.7554/eLife.86507.1; doi.org/10.1101/2023.01.26.525679
Real-time monitoring of an endogenous Fgf8a gradient attests to its role as a morphogen during zebrafish gastrulation. Harish RK, Gupta M, Zöller D, Hartmann H, Gheisari A, Machate A, Hans S, Brand M. (2023). Development 150(19):dev201559. https://doi.org/10.1242/dev.201559. Epub 2023 Oct 3. PMID: 37665167.
The people behind the papers - Rohit Krishnan Harish and Michael Brand. Harish RK, and Brand M. (2023). Development. 150(19):dev202337. doi: 10.1242/dev.202337. Epub 2023 Oct 3. PMID: 37787121
2022
scRNAseq unravels the transcriptional network underlying zebrafish retina regeneration
2023-01-26 | Preprint. DOI: 10.1101/2023.01.26.525679 Laura Celotto; Fabian Rost; Anja Machate; Juliane Bläsche; Andreas Dahl; Anke Weber; Stefan Hans; Michael Brand
Visual function is gradually restored during retina regeneration in adult zebrafish.
Juliane Hammer, Paul Röppenack, Sarah Yousuf, Christian Schnabel, Anke Weber, Daniela Zöller, Edmund Koch, Stefan Hans and Michael Brand. Frontiers in Cell and Developmental Biology, in press. preprint - click here. https://pubmed.ncbi.nlm.nih.gov/35178408/
Vision-related convergent gene losses reveal SERPINE3's unknown role in the eye.
eLife 2022-06-21 | Journal articleDOI: 10.7554/elife.77999 PMID: 35727138 https://pubmed.ncbi.nlm.nih.gov/35727138/
Cerebellar Development and Neurogenesis in Zebrafish
Handbook of the Cerebellum and Cerebellar Disorders2022 | Book chapter. DOI: 10.1007/978-3-030-23810-0_63
Beam pulse structure and dose rate as determinants for the flash effect observed in zebrafish embryo.
Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology2022-05-31 | Journal article. DOI: 10.1016/j.radonc.2022.05.025 PMID: 35661675
Wnt/β-catenin signaling acts cell-autonomously to promote cardiomyocyte regeneration in the zebrafish heart
Developmental Biology 2022-01 | Journal article. DOI: 10.1016/j.ydbio.2021.11.001 Alberto Bertozzi; Chi-Chung Wu; Stefan Hans; Michael Brand; Gilbert Weidinger
Endothelial versus pronephron fate decision is modulated by the transcription factors Cloche/Npas4l, Tal1, and Lmo2.
Science advances 2022-08-31 | Journal article | Author. DOI: 10.1126/sciadv.abn2082 PMID: 36044573 PMC: PMC9432843 Kenny Mattonet; Frederike Riemslagh; Stefan Günther; Karin Prummel; Gokul Kesavan; Stefan Hans; Ingo Ebersberger; Michael Brand; Alexa Burger; Sven Reischauer et al.
2021
Cre-Controlled CRISPR mutagenesis provides fast and easy conditional gene inactivation in zebrafish
Hans S, Zöller D, Hammer J, Stucke J, Spieß S, Kesavan G, Kroehne V, Eguiguren JS, Ezhkova D, Petzold A, Dahl A, Brand M. Nature Communications 12(1):1125.
https://pubmed.ncbi.nlm.nih.gov/33602923/
Isthmin1, a secreted signaling protein, acts downstream of diverse embryonic patterning centers in development
Kesavan G, Raible F, Gupta M, Machate A, Yilmaz D, Brand M. Cell Tissue Research 383(3):987-1002.
https://pubmed.ncbi.nlm.nih.gov/33367974/
2020
Neurogenesis in the inner ear: the zebrafish statoacoustic ganglion provides new neurons from a Neurod/Nestin-positive progenitor pool well into adulthood
Schwarzer S, Asokan N, Bludau O, Chae J, Kuscha V, Kaslin J, Hans S. Development 147(7):dev176750.
https://pubmed.ncbi.nlm.nih.gov/32165493/
Reactive oligodendrocyte progenitor cells (re-)myelinate the regenerating zebrafish spinal cord
Tsata V, Kroehne V, Wehner D, Rost F, Lange C, Hoppe C, Kurth T, Reinhardt S, Petzold A, Dahl A, Loeffler M, Reimer MM, Brand M. Development, dev.193946.
https://pubmed.ncbi.nlm.nih.gov/33158923/
Cell-fate plasticity, adhesion and cell sorting complementarily establish a sharp midbrain-hindbrain boundary
Kesavan G, Machate A, Hans S, Brand M. Development 147:dev186882.
https://pubmed.ncbi.nlm.nih.gov/32439756/
Single cell sequencing of radial glia progeny reveals the diversity of newborn neurons in the adult zebrafish brain
Lange C, Rost F, Machate A, Reinhardt S, Lesche M, Weber A, Kuscha V, Dahl A, Rulands S, Brand M. Development 147:dev185595.
https://pubmed.ncbi.nlm.nih.gov/31908317/
2018
Targeted knock-in of CreERT2 in zebrafish using CRISPR/Cas9
Kesavan G, Hammer J, Hans S, Brand M. Cell Tissue Res. 372:41-50.
https://pubmed.ncbi.nlm.nih.gov/29435650/
Role of the immune response in initiating central nervous system regeneration in vertebrates: learning from the fish
Bosak V, Murata K, Bludau O, Brand M. Int J Dev Biol. 62:403-417.
https://pubmed.ncbi.nlm.nih.gov/29938753/
2017
CRISPR/Cas9-Mediated Zebrafish Knock-in as a Novel Strategy to Study Midbrain-Hindbrain Boundary Development
Kesavan G, Chekuru A, Machate A, Brand M. Front Neuroanat. 30;11:52.
https://pubmed.ncbi.nlm.nih.gov/28713249/
Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration
Kaslin J, Kroehne V, Ganz J, Hans S, Brand M. Development 144:1462-1471.
https://pubmed.ncbi.nlm.nih.gov/28289134/
Ligand-Controlled Site-Specific Recombination in Zebrafish
Chekuru A, Kuscha V, Hans S, Brand M. Methods Mol Biol. 1642:87-97.