abgeschlossene Promotionen & Habilitationen
Filter: Bereich Ingenieurwissenschaften, Fakultät Maschinenwesen, Abschlussarbeiten, Dissertation & Habilitation
Modellierung und Simulation von Hydrogelen und hydrogelbasierten Schichtsystemen
Art der Abschlussarbeit
Dissertation
Autoren
- Sobczyk, Martin
Betreuer
- Prof. Dr.-Ing. Thomas Wallmersperger
Abstract
Ziel der vorliegenden Arbeit ist es, das Verhalten polyelektrolytischer Gele und Hydrogelschichtsysteme auf Basis der Kontinuumsmechanik zu modellieren. Die Untersuchung des Materialverhaltens gegenüber externer Stimulation erfolgt anhand numerischer Simulationen, wodurch Einblicke in den komplexen Quellprozess und darin auftretende Phänomene gewährt werden. Die vorgenommene Modellierung und Simulation gestattet
dabei eine Optimierung der Systemeigenschaften für den Anwendungsfall. Anwendungsfehler und die Anzahl nötiger Versionen zur Systemgestaltung können hierdurch effektiv
verringert werden.
Hydrogele stellen wichtige Vertreter aus der Klasse intelligenter Materialien dar, d.h. sie sind in der Lage auf Umwelteinflüsse durch eine reversible Änderung ihrer Materialeigenschaften zu reagieren. Sie bestehen aus einer mit Wasser gefüllten Polymermatrix, in welcher ionische Ladungsträger vorliegen. Dabei sind mobile Ladungsträger im Wasser enthalten. Die Materialeigenschaften von Hydrogelen beruhen auf ihrer chemischen Zusammensetzung und können jeweils spezifisch für ihren Anwendungsfall angepasst werden. So reagieren polyelektrolytische Hydrogele mit einem reversiblen Quell- bzw. Schrumpfungsprozess auf externe elektrische Felder und die Änderung der chemischen Zusammensetzung im umgebenden Lösungsmittelbad.
Die reversible Volumenänderung gegenüber externer Stimuli eröffnet Hydrogelen ein breites Anwendungsfeld. Insbesondere sind sie für die Entwicklung neuer Messsysteme relevant, da über klassische Messgrößen hinaus auch sehr spezifische chemische Größen
untersucht werden können. Auch eignen sich Hydrogele als aktive Komponenten mikrofluidischer Ventile, welche auf die Zusammensetzung des Fluides reagieren. Da sie
keine externe Ansteuerung bzw. Energieversorgung benötigen, sind sie leichter miniaturisierbar als klassische Ventile. Aufgrund ihrer hohen Leistungsdichte sind Hydrogele prinzipiell auch für die Entwicklung leichter und energieeffizienter Aktoren geeignet. Hierbei stellt die von der Größe des Hydrogels abhängige Reaktionszeit bislang jedoch eine Hürde dar, wodurch ihr Einsatz in kleinskaligen Anwendungen wahrscheinlicher ist. Die Kombination mehrerer Schichten aus Hydrogelen ermöglicht hierbei die Anwendung als Biegeaktoren bzw. Messsysteme mit erhöhter Genauigkeit.
Da ein fundiertes Wissen über die komplexen Vorgänge im Hydrogel eine große Rolle bei der Weiterentwicklung neuartiger Anwendungen spielt, wird in dieser Arbeit das
komplexe Materialverhalten numerisch abgebildet. Hierbei wird insbesondere Wert auf die Interaktion der chemischen, elektrischen sowie der mechanischen Domäne gelegt. Dabei wird a priori angenommen, dass die komplizierte Mikrostruktur des porösen Hydrogels als Kontinuum darstellbar ist und die relevanten Phänomene über
Feldgleichungen abgebildet werden können.
Es wird eine Einführung über polyelektrolytische Hydrogele und Hydrogelschichtsysteme gegeben, wobei insbesondere auf deren mikrostrukturellen Aufbau und daraus
ableitbare Einsatzgebiete eingegangen wird. Mittels eines Überblicks über Modellierungsansätze in der publizierten Literatur werden die hier verwendeten Modellierungsansätze motiviert und in das Umfeld bestehender Vorarbeiten eingeordnet. Nach der Einführung
notwendiger Grundlagen der physikalischen Chemie wird die Modellbildung mit der gewählten Kinematik, den Bilanzgleichungen und den Materialgleichungen zur Beschreibung von Hydrogelen und Hydrogelschichtsystemen vorgestellt. Die Bilanzgleichungen
umfassen hierbei die Massenerhaltung des Polymers und der ionischen Spezies, die Impuls- und Drehimpulsbilanz sowie die Maxwell-Gleichungen. Nach der Beschreibung geeigneter Materialgleichungen folgt eine Zusammenstellung des gekoppelten
chemo-elektro-mechanischen Feldproblems. Zur Lösung des gekoppelten Feldproblems wird die Finite-Elemente-Methode (FEM) genutzt. Die Validierung des erstellten Mo-
dells wird anhand eines Quellexperiments von Frijns et al. durchgeführt. Durch den Vergleich mit einem auf der Theorie Poröser Medien (TPM) basierenden Modells kann
das hier verwendete Modell abgeglichen werden, wobei eine gute Übereinstimmung zwischen den Ergebnissen beider Modelle herrscht.
Basierend auf den Vorarbeiten von Wallmersperger et al. und Attaran et al. wurde das hier genutzte Modell um einen zeitlichen Term in der Beschreibung der Referenzkonzentration erweitert. Hieraus resultiert eine qualitative Verbesserung in der Darstellung des zeitlichen Quellverlaufes bei chemischer Stimulation. In Anlehnung
an vorhergehende Arbeiten auf dem Gebiet erfolgt die Kopplung von der mechanischen Domäne zur chemischen Domäne über eine vom Verzerrungszustand abhängige
Konzentration gebundener Ladungsträger. Hier durchgeführte Untersuchungen zeigen, dass diese Rückkopplung auch unter der Annahme kleiner Deformationen Relevanz besitzt und nicht vernachlässigt werden sollte. Anders als z. B. mit der TPM oder mit
dem Flory-Rehner Modell ist es unter Verwendung des hier entwickelten Modells möglich, Grenzschichtphänomene zwischen Gel und Lösungsmittelbad aufzulösen. Durch
die Untersuchung der Grenzschicht zeigt sich eine annähernd lineare Abhängigkeit der Grenzschichtdicke von der relativen Permittivität des Hydrogels. Auch lässt sich
ein Zusammenhang zwischen der Konzentration gebundener Ladungsträger und der Grenzschichtdicke identifizieren.
Um das Potential der gewählten Methode zu demonstrieren, wird anhand des Beispiels eines einfachen zweischichtigen Hydrogel-Biegebalkens eine Untersuchung über die inneren Vorgänge im Schichtsystem durchgeführt. Die Untersuchung gewährt hierbei Einblicke z. B. in den zeitlichen Verlauf des elektrischen Potentials, der Konzentration mobiler Ionen sowie der resultierenden Verzerrungen. In einem abschließenden numerischen Beispiel wird die Kontaktkraft sowie die auftretenden mechanischen Spannungen in einem Greifersystem, bestehend aus zwei hydrogelbasierten Biegeaktoren,
ausgewertet.
dabei eine Optimierung der Systemeigenschaften für den Anwendungsfall. Anwendungsfehler und die Anzahl nötiger Versionen zur Systemgestaltung können hierdurch effektiv
verringert werden.
Hydrogele stellen wichtige Vertreter aus der Klasse intelligenter Materialien dar, d.h. sie sind in der Lage auf Umwelteinflüsse durch eine reversible Änderung ihrer Materialeigenschaften zu reagieren. Sie bestehen aus einer mit Wasser gefüllten Polymermatrix, in welcher ionische Ladungsträger vorliegen. Dabei sind mobile Ladungsträger im Wasser enthalten. Die Materialeigenschaften von Hydrogelen beruhen auf ihrer chemischen Zusammensetzung und können jeweils spezifisch für ihren Anwendungsfall angepasst werden. So reagieren polyelektrolytische Hydrogele mit einem reversiblen Quell- bzw. Schrumpfungsprozess auf externe elektrische Felder und die Änderung der chemischen Zusammensetzung im umgebenden Lösungsmittelbad.
Die reversible Volumenänderung gegenüber externer Stimuli eröffnet Hydrogelen ein breites Anwendungsfeld. Insbesondere sind sie für die Entwicklung neuer Messsysteme relevant, da über klassische Messgrößen hinaus auch sehr spezifische chemische Größen
untersucht werden können. Auch eignen sich Hydrogele als aktive Komponenten mikrofluidischer Ventile, welche auf die Zusammensetzung des Fluides reagieren. Da sie
keine externe Ansteuerung bzw. Energieversorgung benötigen, sind sie leichter miniaturisierbar als klassische Ventile. Aufgrund ihrer hohen Leistungsdichte sind Hydrogele prinzipiell auch für die Entwicklung leichter und energieeffizienter Aktoren geeignet. Hierbei stellt die von der Größe des Hydrogels abhängige Reaktionszeit bislang jedoch eine Hürde dar, wodurch ihr Einsatz in kleinskaligen Anwendungen wahrscheinlicher ist. Die Kombination mehrerer Schichten aus Hydrogelen ermöglicht hierbei die Anwendung als Biegeaktoren bzw. Messsysteme mit erhöhter Genauigkeit.
Da ein fundiertes Wissen über die komplexen Vorgänge im Hydrogel eine große Rolle bei der Weiterentwicklung neuartiger Anwendungen spielt, wird in dieser Arbeit das
komplexe Materialverhalten numerisch abgebildet. Hierbei wird insbesondere Wert auf die Interaktion der chemischen, elektrischen sowie der mechanischen Domäne gelegt. Dabei wird a priori angenommen, dass die komplizierte Mikrostruktur des porösen Hydrogels als Kontinuum darstellbar ist und die relevanten Phänomene über
Feldgleichungen abgebildet werden können.
Es wird eine Einführung über polyelektrolytische Hydrogele und Hydrogelschichtsysteme gegeben, wobei insbesondere auf deren mikrostrukturellen Aufbau und daraus
ableitbare Einsatzgebiete eingegangen wird. Mittels eines Überblicks über Modellierungsansätze in der publizierten Literatur werden die hier verwendeten Modellierungsansätze motiviert und in das Umfeld bestehender Vorarbeiten eingeordnet. Nach der Einführung
notwendiger Grundlagen der physikalischen Chemie wird die Modellbildung mit der gewählten Kinematik, den Bilanzgleichungen und den Materialgleichungen zur Beschreibung von Hydrogelen und Hydrogelschichtsystemen vorgestellt. Die Bilanzgleichungen
umfassen hierbei die Massenerhaltung des Polymers und der ionischen Spezies, die Impuls- und Drehimpulsbilanz sowie die Maxwell-Gleichungen. Nach der Beschreibung geeigneter Materialgleichungen folgt eine Zusammenstellung des gekoppelten
chemo-elektro-mechanischen Feldproblems. Zur Lösung des gekoppelten Feldproblems wird die Finite-Elemente-Methode (FEM) genutzt. Die Validierung des erstellten Mo-
dells wird anhand eines Quellexperiments von Frijns et al. durchgeführt. Durch den Vergleich mit einem auf der Theorie Poröser Medien (TPM) basierenden Modells kann
das hier verwendete Modell abgeglichen werden, wobei eine gute Übereinstimmung zwischen den Ergebnissen beider Modelle herrscht.
Basierend auf den Vorarbeiten von Wallmersperger et al. und Attaran et al. wurde das hier genutzte Modell um einen zeitlichen Term in der Beschreibung der Referenzkonzentration erweitert. Hieraus resultiert eine qualitative Verbesserung in der Darstellung des zeitlichen Quellverlaufes bei chemischer Stimulation. In Anlehnung
an vorhergehende Arbeiten auf dem Gebiet erfolgt die Kopplung von der mechanischen Domäne zur chemischen Domäne über eine vom Verzerrungszustand abhängige
Konzentration gebundener Ladungsträger. Hier durchgeführte Untersuchungen zeigen, dass diese Rückkopplung auch unter der Annahme kleiner Deformationen Relevanz besitzt und nicht vernachlässigt werden sollte. Anders als z. B. mit der TPM oder mit
dem Flory-Rehner Modell ist es unter Verwendung des hier entwickelten Modells möglich, Grenzschichtphänomene zwischen Gel und Lösungsmittelbad aufzulösen. Durch
die Untersuchung der Grenzschicht zeigt sich eine annähernd lineare Abhängigkeit der Grenzschichtdicke von der relativen Permittivität des Hydrogels. Auch lässt sich
ein Zusammenhang zwischen der Konzentration gebundener Ladungsträger und der Grenzschichtdicke identifizieren.
Um das Potential der gewählten Methode zu demonstrieren, wird anhand des Beispiels eines einfachen zweischichtigen Hydrogel-Biegebalkens eine Untersuchung über die inneren Vorgänge im Schichtsystem durchgeführt. Die Untersuchung gewährt hierbei Einblicke z. B. in den zeitlichen Verlauf des elektrischen Potentials, der Konzentration mobiler Ionen sowie der resultierenden Verzerrungen. In einem abschließenden numerischen Beispiel wird die Kontaktkraft sowie die auftretenden mechanischen Spannungen in einem Greifersystem, bestehend aus zwei hydrogelbasierten Biegeaktoren,
ausgewertet.
Zugeordnete Forschungsschwerpunkte
- Multifunktionale Strukturen
- Gekoppelte Mehrfeldprobleme
Zugeordnete Forschungsprojekte
- Modellierung von Hydrogel-Schichtsystemen
Schlagwörter
Hydrogel, Simuluation, Smart Materials, chemo-elektro-mechanisch
Berichtsjahr
2018