Publications
* denotes corresponding author, & denotes equal contribution.
1. Koutsoumparis A., Welp L. M., Wulf A., Urlaub H., Meierhofer D., Börno S., Timmermann B., Busack I., and Bringmann, H.* (2022). Sleep neuron depolarization promotes protective gene expression changes and FOXO activation. Current Biology 32, doi.org/10.1016/j.cub.2022.04.012.
2. Sinner, M.P., Masurat, F., Ewbank, J.J., Pujol, N., and Bringmann, H.* (2021). Innate Immunity Promotes Sleep through Epidermal Antimicrobial Peptides. Curr Biol 31, 564-577 e512.
3. Hu, Y., Korovaichuk, A., Astiz, M., Schroeder, H., Islam, R., Barrenetxea, J., Fischer, A., Oster, H., and Bringmann, H.* (2020). Functional Divergence of Mammalian TFAP2a and TFAP2b Transcription Factors for Bidirectional Sleep Control. Genetics 216, 735-752.
4. Busack, I., Jordan, F., Sapir, P., and Bringmann, H.* (2020). The OptoGenBox - a device for long-term optogenetics in C. elegans. J Neurogenet, 1-9.
5. Maluck, E., Busack, I., Besseling, J., Masurat, F., Turek, M., Busch, K.E., and Bringmann, H.* (2020). A wake-active locomotion circuit depolarizes a sleep-active neuron to switch on sleep. PLoS Biology 18, e3000361.
6. Konietzka, J., Fritz, M., Spiri, S., McWhirter, R., Leha, A., Palumbos, S., Costa, W.S., Oranth, A., Gottschalk, A., Miller, D.M., 3rd, Hajnal, A., Bringmann, H.* (2020). Epidermal Growth Factor Signaling Promotes Sleep through a Combined Series and Parallel Neural Circuit. Curr Biol 30, 1-16 e13.
7. Steuer Costa, W., Van der Auwera, P., Glock, C., Liewald, J.F., Bach, M., Schuler, C., Wabnig, S., Oranth, A., Masurat, F., Bringmann, H., Schoofs L., Stelzer E.H.K., Fischer S.C., Gottschalk A*. (2019). A GABAergic and peptidergic sleep neuron as a locomotion stop neuron with compartmentalized Ca2+ dynamics. Nat Commun 10, 4095.
8. Bringmann, H.* (2019). Genetic sleep deprivation: using sleep mutants to study sleep functions. EMBO Rep 20.
9. Wu, Y., Masurat, F., Preis, J., and Bringmann, H.* (2018). Sleep Counteracts Aging Phenotypes to Survive Starvation-Induced Developmental Arrest in C. elegans. Curr Biol 28, 3610-3624 e3618.
10. Bringmann, H.* (2018). Sleep-Active Neurons: Conserved Motors of Sleep. Genetics 208, 1279-1289.
11. Spies, J., and Bringmann, H.* (2018). Automated detection and manipulation of sleep in C. elegans reveals depolarization of a sleep-active neuron during mechanical stimulation-induced sleep deprivation. Sci Rep 8, 9732.
12. Schwarz, J., and Bringmann, H.* (2017). Analysis of the NK2 homeobox gene ceh-24 reveals sublateral motor neuron control of left-right turning during sleep. eLife 6.
13. Kucherenko, M.M., Ilangovan, V., Herzig, B., Shcherbata, H.R.*, and Bringmann, H.* (2016). TfAP-2 is required for night sleep in Drosophila. BMC Neuroscience 17, 72.
14. Besseling, J., and Bringmann, H.* (2016). Engineered non-Mendelian inheritance of entire parental genomes in C. elegans. Nature Biotechnology 34, 982-986.
15. Turek, M., Besseling, J., Spies, J.P., Konig, S., and Bringmann, H.* (2016). Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep. eLife 5.
16. Urmersbach, B., Besseling, J., Spies, J.P., and Bringmann, H.* (2016). Automated analysis of sleep control via a single neuron active at sleep onset in C. elegans. Genesis 54, 212-219.
17. Turek, M., Besseling, J., and Bringmann, H.* (2015). Agarose Microchambers for Long-term Calcium Imaging of Caenorhabditis elegans. Journal of visualized experiments : JoVE, e52742.
18. Turek, M., and Bringmann, H.* (2014). Gene expression changes of Caenorhabditis elegans larvae during molting and sleep-like lethargus. PLoS One 9, e113269.
19. Turek, M., Lewandrowski, I., and Bringmann, H.* (2013). An AP2 transcription factor is required for a sleep-active neuron to induce sleep-like quiescence in C. elegans. Curr Biol 23, 2215-2223.
20. Schwarz, J., and Bringmann, H.* (2013). Reduced sleep-like quiescence in both hyperactive and hypoactive mutants of the Galphaq Gene egl-30 during lethargus in Caenorhabditis elegans. PLoS One 8, e75853.
21. Bringmann, H.* (2012). G protein regulator 1 (GPR-1) localizes to cortical sites of artificial mechanical indentation in Caenorhabditis elegans zygotes. Cytoskeleton (Hoboken) 69, 819-825.
22. Schwarz, J., Spies, J.P., and Bringmann, H.* (2012). Reduced muscle contraction and a relaxed posture during sleep-like Lethargus. Worm 1, 12-14.
23. Schwarz, J., Lewandrowski, I., and Bringmann, H.* (2011). Reduced activity of a sensory neuron during a sleep-like state in Caenorhabditis elegans. Curr Biol 21, R983-984.
24. Bringmann, H.* (2011). Agarose hydrogel microcompartments for imaging sleep- and wake-like behavior and nervous system development in Caenorhabditis elegans larvae. J Neurosci Methods 201, 78-88.
25. Redemann, S., Schloissnig, S., Ernst, S., Pozniakowsky, A., Ayloo, S., Hyman, A.A., and Bringmann, H.* (2011). Codon adaptation-based control of protein expression in C. elegans. Nature Methods 8, 250-252.
26. Schenk, C., Bringmann, H., Hyman, A.A., and Cowan, C.R.* (2010). Cortical domain correction repositions the polarity boundary to match the cytokinesis furrow in C. elegans embryos. Development 137, 1743-1753.
27. Bringmann, H.* (2008). Mechanical and genetic separation of aster- and midzone-positioned cytokinesis. Biochemical Society Transactions 36, 381-383.
28. Bringmann, H.*, Cowan, C.R., Kong, J., and Hyman, A.A. (2007). LET-99, GOA-1/GPA-16, and GPR-1/2 are required for aster-positioned cytokinesis. Curr Biol 17, 185-191.
29. Zumdieck, A., Kruse, K., Bringmann, H., Hyman, A.A., and Julicher, F.* (2007). Stress generation and filament turnover during actin ring constriction. PLoS One 2, e696.
30. Bringmann, H.*, and Hyman, A.A. (2005). A cytokinesis furrow is positioned by two consecutive signals. Nature 436, 731-734.
31. Bringmann, H.* (2005). Cytokinesis and the spindle midzone. Cell Cycle 4, 1709-1712.
32. Bringmann, H., Skiniotis, G., Spilker, A., Kandels-Lewis, S., Vernos, I., and Surrey, T.* (2004). A kinesin-like motor inhibits microtubule dynamic instability. Science 303, 1519-1522.